Micromachined monolithic 6-axis inertial sensor

Information

  • Patent Grant
  • 9278846
  • Patent Number
    9,278,846
  • Date Filed
    Sunday, September 18, 2011
    13 years ago
  • Date Issued
    Tuesday, March 8, 2016
    8 years ago
Abstract
The device layer of a 6-degrees-of-freedom (6-DOF) inertial measurement system can include a single proof-mass 6-axis inertial sensor formed in an x-y plane, the inertial sensor including: a main proof-mass section suspended about a single, central anchor; a central suspension system configured to suspend the 6-axis inertial sensor from the single, central anchor; and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion. The drive electrode and the central suspension system are configured to oscillate the 6-axis inertial sensor about a z-axis normal to the x-y plane.
Description
TECHNICAL FIELD

The present invention relates generally to inertial sensor devices and more particularly to micromachined inertial sensor devices.


BACKGROUND

6-axis motion sensing applications require x, y, and z-axis accelerometers and gyroscopes for 3-axis acceleration and 3-axis angular rate measurement. Several single or multi-axis micromachined accelerometer and gyroscope structures have been reported in the literature that can be integrated into a system to form a 6-axis inertial sensor cluster. However, the size and cost of such clusters consisting of separate sensors can be excessive for certain applications. Further, existing instances of single or multi-axis gyroscopes and accelerometers fabricated on a single micro-electro-mechanical system (MEMS) chip require separate drive and sense electronics for each sensor, further increasing cost and complexity of the resulting single MEMS chip.


OVERVIEW

This document discusses, among other things, a 6-degrees-of-freedom (6-DOF) inertial measurement system including a single proof-mass 6-axis inertial sensor formed in an x-y plane of a device layer. The single proof-mass 6-axis inertial sensor can include a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards the edge of the 6-axis inertial sensor, a central suspension system configured to suspend the 6-axis inertial sensor from the single, central anchor, and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 6-axis inertial sensor about a z-axis normal to the x-y plane.


In an example, the 6-DOF inertial measurement system can include a cap wafer bonded to a first surface of the device layer and a via wafer bonded to a second surface of the device layer. In certain examples, the cap wafer and the via wafer can be configured to encapsulate the single proof-mass 6-axis inertial sensor.


This overview is intended to provide an overview of subject matter of the present patent application. It is not intended to provide an exclusive or exhaustive explanation of the invention. The detailed description is included to provide further information about the present patent application.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale, like numerals may describe similar components in different views. Like numerals having different letter suffixes may represent different instances of similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.



FIG. 1 illustrates generally a schematic cross sectional view of a 6-degrees-of-freedom (6-DOF) inertial measurement unit (IMU).



FIG. 2 illustrates generally an example of a 6-axis inertial sensor.



FIG. 3 illustrates generally an example of a 6-axis inertial sensor in drive motion.



FIG. 4 illustrates generally an example of a 6-axis inertial sensor including a single proof-mass during sense motion in response to rotation about the x-axis.



FIG. 5 illustrates generally an example of a 6-axis inertial sensor including a single proof-mass during sense motion in response to rotation about the y-axis.



FIG. 6 illustrates generally an example of a 6-axis inertial sensor including a single proof-mass during sense motion in response to rotation about the z-axis.



FIG. 7 illustrates generally an example of a 6-axis inertial sensor including a single proof-mass during sense motion in response to acceleration about the x-axis.



FIG. 8 illustrates generally an example of a 6-axis inertial sensor including a single proof-mass during sense motion in response to acceleration about the y-axis.



FIG. 9 illustrates generally an example of a 6-axis inertial sensor including a single proof-mass during sense motion in response to acceleration about the z-axis.



FIG. 10 illustrates generally an example of a system including via wafer electrode placement.



FIG. 11 illustrates generally an example of a 6-axis inertial sensor including curved in-plane parallel-plate sense electrodes.



FIG. 12 illustrates generally an example of the central suspension at rest about an anchor.



FIG. 13 illustrates generally an example of a portion of the central suspension in drive motion.





DETAILED DESCRIPTION

The present inventor has recognized, among other things, a micromachined monolithic 6-axis inertial sensor configured to utilize a single center-anchored proof-mass to detect 3-axis acceleration and 3-axis angular rate. Further, the present inventor has recognized a micromachined monolithic 6-axis inertial sensor configured to decouple the response modes for each axis to minimize cross-axis interference.


In an example, the micromachined monolithic 6-axis inertial sensor can include a partitioned proof-mass and flexure bearing structure configured to allow 3-axis angular rate detection utilizing a single drive-mode oscillation requiring one drive control loop for all axes. Thus, in contrast to existing multi-axis gyroscopes that utilize three separate drive control loops, the complexity and cost of control electronics for the micromachined monolithic 6-axis inertial sensor described herein are significantly reduced. In an example, the flexure bearing structure can provide distinct motion modes for acceleration and angular rate responses, allowing simultaneous accelerometer and gyroscope functionality (e.g., angular rate and linear acceleration detection) from a single proof-mass inertial sensor.


Device Structure


FIG. 1 illustrates generally a schematic cross sectional view of a 6-degrees-of-freedom (6-DOF) inertial measurement unit (IMU) 100 formed in a chip-scale package including a cap wafer 101, a device layer 105 including micromachined structures (e.g., a micromachined monolithic 6-axis inertial sensor), and a via wafer 103. In an example, the device layer 105 can be sandwiched between the cap wafer 101 and the via wafer 103, and the cavity between the device layer 105 and the cap wafer 101 can be sealed under vacuum at the wafer level.


In an example, the cap wafer 101 can be bonded to the device layer 105, such as using a metal bond 102. The metal bond 102 can include a fusion bond, such as a non-high temperature fusion bond, to allow getter to maintain long term vacuum and application of anti-stiction coating to prevent stiction that can occur to low-g acceleration sensors. In an example, during operation of the 6-DOF IMU 100, the metal bond 102 can generate thermal stress between the cap wafer 101 and the device layer 105. In certain examples, one or more features can be added to the device layer 105 to isolate the micromachined structures in the device layer 105 from thermal stress, such as one or more stress reducing grooves formed around the perimeter of the micromachined structures. In an example, the via wafer 103 can be bonded to the device layer 105, such as fusion bonded (e.g., silicon-silicon fusion bonded, etc.), to obviate thermal stress between the via wafer 103 and the device layer 105.


In an example, the via wafer 103 can include one or more isolated regions, such as a first isolated region 107, isolated from one or more other regions of the via wafer 103, for example, using one or more through-silicon-vias (TSVs), such as a first TSV 108 insulated from the via wafer 103 using a dielectric material 109. In certain examples, the one or more isolated regions can be utilized as electrodes to sense or actuate out-of-plane operation modes of the 6-axis inertial sensor, and the one or more TSVs can be configured to provide electrical connections from the device layer 105 outside of the 6-DOF IMU 100. Further, the 6-DOF IMU 100 can include one or more contacts, such as a first contact 110, selectively isolated from one or more portions of the via wafer 103 using a dielectric layer 104 and configured to provide an electrical connection between one or more of the isolated regions or TSVs of the via wafer 103 to one or more external components, such as an ASIC wafer, using bumps, wire bonds, or one or more other electrical connection.


In certain examples, the micromachined monolithic 6-axis inertial sensor in the device layer 105 can be supported or anchored to the via wafer 103 by bonding the device layer 105 to a protruding portion of the via wafer 103, such as an anchor 106. In an example, the anchor 106 can be located substantially at the center of the via wafer 103, and the device layer 105 can be fusion bonded to the anchor 106, such as to eliminate problems associated with metal fatigue.



FIG. 2 illustrates generally an example of a 6-axis inertial sensor 200 (e.g., a micromachined monolithic 6-axis inertial sensor), such as formed in a single plane of a device layer 105 of a 6-DOF IMU 100. In an example, the structure of the 6-axis inertial sensor 200 can be symmetrical about the x and y axes illustrated in FIG. 2, with a z-axis conceptually coming out of the figure. Reference in FIG. 2 is made to structure and features in one portion of the 6-axis inertial sensor 200. However, in certain examples, such reference and description can apply to unlabeled like portions of the 6-axis sensor 200.


In an example, the 6-axis inertial sensor 200 can include a single proof-mass design providing 3-axis gyroscope and 3-axis accelerometer operational modes patterned into the device layer 105 of the 6-DOF IMU 100, such as illustrated in the example of FIG. 1.


In an example, the single proof-mass can be suspended at its center using a single central anchor (e.g., anchor 106) and a central suspension 111 including symmetrical central flexure bearings (“flexures”), such as disclosed in the copending Acar et al., PCT Patent Application Ser. No. US2011052006, entitled “FLEXURE BEARING TO REDUCE QUADRATURE FOR RESONATING MICROMACHINED DEVICES,” filed on Sep. 16, 2011, which is hereby incorporated by reference in its entirety. The central suspension 111 can allow the single proof-mass to oscillate torsionally about the x, y, and z axes, providing three gyroscope operational modes, including:


(1) Torsional in-plane drive motion about the z-axis (e.g., as illustrated in FIG. 3);


(2) Torsional out-of-plane y-axis gyroscope sense motion about the x-axis (e.g., as illustrated in FIG. 4); and


(3) Torsional out-of-plane x-axis gyroscope sense motion about the y-axis (e.g., as illustrated in FIG. 5).


Further, the single proof-mass design can be composed of multiple sections, including, for example, a main proof-mass section 115, x-axis proof-mass sections 116, 117 symmetrical about the y-axis, and y-axis proof-mass sections 118, 119 symmetrical about the x-axis.


In the example of FIG. 2, the main proof-mass section 115 includes a first bulk portion including the central suspension 111 with main arms extending radially from the center of the main proof-mass section 115 towards respective drive electrodes 123 positioned at the corners of the 6-axis inertial sensor 200. In an example, a combination of the central suspension 111 and the drive electrodes 123 can be configured to provide a torsional in-plane drive motion about the z-axis, allowing detection of angular motion about the x and y axes.


In an example, the x-axis proof-mass sections 116, 117 can be coupled to the main proof-mass section 115 using multi-function flexure bearings 120, and to each other using z-axis gyroscope anti-phase flexure bearings 121. In an example, the multi-function flexure bearings 120 can allow the x-axis proof-mass sections 116, 117 to oscillate in the following manners:


(1) Linear anti-phase in x-direction for z-axis gyroscope sense motion (e.g., as illustrated in FIG. 6);


(2) Linear in-phase in x-direction for x-axis accelerometer sense motion (e.g., as illustrated in FIG. 7); and


(3) Torsional out-of-plane about the y-axis for the z-axis accelerometer sense motion (e.g., as illustrated in FIG. 9).


In an example, the anti-phase flexure bearings 121 define a zigzag pattern. In an example, the y-axis proof-mass sections 118, 119 can be coupled to the main proof-mass section 115 using y-axis flexure bearings 122, which can allow the y-axis proof-mass sections 118, 119 to oscillate linear in-phase in y-direction for x-axis accelerometer sense motion.


Further, the 6-axis inertial sensor 200 can include x-axis accelerometer sense electrodes 125 and z-axis gyroscope sense electrodes 127, 129 configured to detect, respectively, in-phase and anti-phase, in-plane motion of one or more proof-mass sections along the x-axis. In certain examples, the x-axis accelerometer sense electrodes 125 and the z-axis gyroscope sense electrodes 127, 129 can be combined into a single set of sense electrodes. In an example, y-axis accelerometer sense electrodes 131 are configured to detect in-phase, in-plane motion of one or more proof-mass sections along the y-axis.


In an example, each of the drive electrodes 123, x-axis accelerometer sense electrodes 125, z-axis gyroscope sense electrodes 127, 129, and y-axis accelerometer sense electrodes 131 can include moving fingers coupled to one or more proof-mass sections interdigitated with a set of stationary fingers fixed in position (e.g., to the via wafer 103) using a respective anchor, such as anchors 124, 126, 128, 130, 132.


Gyroscope Operational Modes


FIG. 3 illustrates generally an example of a 6-axis inertial sensor 300 in drive motion. In an example, the drive electrodes 123 can include a set of moving fingers coupled to the main proof-mass section 115 interdigitated with a set of stationary fingers fixed in position using a first drive anchor 124 (e.g., a raised and electrically isolated portion of the via wafer 103). In an example, the stationary fingers can be configured to receive energy through the first drive anchor 124, and the interaction between the interdigitated moving and stationary fingers of the drive electrodes 123 can be configured to provide an angular force to the single proof-mass about the z-axis.


In the example of FIG. 3, the drive electrodes 123 are driven to rotate the single proof-mass about the z-axis while the central suspension 111 provides restoring torque with respect to the fixed anchor 106, causing the single proof-mass to oscillate torsionally, in-plane about the z-axis at a drive frequency dependent on the energy applied to the drive electrodes 123. In certain examples, the drive motion of the single proof-mass can be detected using the drive electrodes 123.


X-Axis Rate Response


FIG. 4 illustrates generally an example of a 6-axis inertial sensor 400 including a single proof-mass during sense motion in response to rotation about the x-axis, the single proof-mass including a main proof-mass section 115, x-axis proof-mass sections 116, 117, y-axis proof-mass sections 118, 119, and central suspension 111.


In the presence of an angular rate about the x-axis, and in conjunction with the drive motion of the 6-axis inertial sensor 400 described in the example of FIG. 3, Coriolis forces in opposite directions along the z-axis can be induced on the x-axis proof-mass sections 116, 117 because the velocity vectors are in opposite directions along the y-axis. Thus, the single proof-mass can be excited torsionally about the y-axis by flexing the central suspension 111. The sense response can be detected using out-of-plane x-axis gyroscope sense electrodes, e.g., formed in the via wafer 103 and using capacitive coupling of the x-axis proof-mass sections 116, 117 and the via wafer 103).


Y-Axis Rate Response


FIG. 5 illustrates generally an example of a 6-axis inertial sensor 500 including a single proof-mass during sense motion in response to rotation about the y-axis, the single proof-mass including a main proof-mass section 115, x-axis proof-mass sections 116, 117, y-axis proof-mass sections 118, 119, and central suspension 111.


In the presence of an angular rate about the y-axis, and in conjunction with the drive motion of the 6-axis inertial sensor 400 described in the example of FIG. 3, Coriolis forces in opposite directions along the z-axis can be induced on the y-axis proof-mass sections 118, 119 because the velocity vectors are in opposite directions along the x-axis. Thus, the single proof-mass can be excited torsionally about the x-axis by flexing the central suspension 111. The sense response can be detected using out-of-plane y-axis gyroscope sense electrodes, e.g., formed in the via wafer 103 and using capacitive coupling of the y-axis proof-mass sections 118, 119 the via wafer 103.


Z-Axis Rate Response


FIG. 6 illustrates generally an example of a 6-axis inertial sensor 600 including a single proof-mass during sense motion in response to rotation about the z-axis, the single proof-mass including a main proof-mass section, x-axis proof-mass sections 116, 117, y-axis proof-mass sections, central suspension, multi-function flexure bearings 120, and z-axis gyroscope anti-phase flexure bearings 121.


In the presence of an angular rate about the z-axis, and in conjunction with the drive motion of the 6-axis inertial sensor 400 described in the example of FIG. 3, Coriolis forces in opposite directions along the x-axis can be induced on the x-axis proof-mass sections 116, 117 because the velocity vectors are in opposite directions along the y-axis. Thus, the x-axis proof-mass sections 116, 117 can be excited linearly in opposite directions along the x-axis by flexing the multi-function flexure bearings 120 in the x-direction. Further, the z-axis gyroscope anti-phase flexure bearings 121 can be used to provide a linear anti-phase resonant mode of x-axis proof-mass sections 116, 117, which are directly driven by the anti-phase Coriolis forces. The sense response can be detected using in-plane parallel-plate sense electrodes, such as the z-axis gyroscope sense electrodes 127, 129 formed in the device layer 105.


Accelerometer Operational Modes

In an example, the accelerometer response modes can be primarily enabled by the multi-function flexure bearings 120 and the y-axis accelerometer flexure bearings 122. The multi-function flexure bearings 120 can allow the x-axis proof-mass sections 116, 117 to respond to x and z-axis accelerations as well as the gyroscope motion, and the y-axis accelerometer flexure bearings 122 can allow the y-axis proof-mass sections 118, 119 to respond to y-axis accelerations.


X-Axis Accelerometer Response


FIG. 7 illustrates generally an example of a 6-axis inertial sensor 700 including a single proof-mass during sense motion in response to acceleration about the x-axis, the single proof-mass including a main proof-mass section, x-axis proof-mass sections 116, 117, y-axis proof-mass sections, central suspension, multi-function flexure bearings 120, and z-axis gyroscope anti-phase flexure bearings 121.


In the presence of x-axis acceleration, the x-axis proof-mass sections 116, 117 can deflect in-phase along the x-direction. The multi-function flexure bearings 120 can allow the x-axis proof-mass sections 116, 117 to move in unison in the x-direction. During this motion, the z-axis gyroscope anti-phase flexure bearings 121 between the x-axis proof-mass sections 116, 117 may not deflect, resulting in a lower frequency than the z-axis gyroscope sense frequency. The sense response can be detected using in-plane parallel-plate sense electrodes, such as the x-axis accelerometer sense electrodes 125 formed in the device layer 105.


Y-Axis Accelerometer Response


FIG. 8 illustrates generally an example of a 6-axis inertial sensor 800 including a single proof-mass during sense motion in response to acceleration about the y-axis, the single proof-mass including a main proof-mass section, x-axis proof-mass sections, y-axis proof-mass sections 118, 119, central suspension, multi-function flexure bearings, z-axis gyroscope anti-phase flexure bearings, and y-axis accelerometer flexure bearings 122.


In the presence of y-axis acceleration, the y-axis proof-mass sections 118, 119 can deflect in-phase along the y-direction. The y-axis accelerometer flexure bearings 122 can allow the y-axis proof-mass sections 118, 119 to move in unison relative to the main proof-mass section. The sense response can be detected using in-plane parallel-plate sense electrodes, such as the y-axis accelerometer sense electrodes 131 formed in the device layer 105.


Z-Axis Accelerometer Response


FIG. 9 illustrates generally an example of a 6-axis inertial sensor 900 including a single proof-mass during sense motion in response to acceleration about the z-axis, the single proof-mass including a main proof-mass section, x-axis proof-mass sections 116, 117, y-axis proof-mass sections, central suspension, multi-function flexure bearings 120, and z-axis gyroscope anti-phase flexure bearings 121.


In the presence of z-axis acceleration, the x-axis proof-mass sections 116, 117 can deflect torsionally in opposite directions out-of-plane. The multi-function flexure bearings 120 can act as torsional hinges, and can allow the x-axis proof-mass sections 116, 117 to move about an axis at the center of the multi-function flexure bearings 120. Because the areas on opposite sides of the multi-function flexure bearings 120 move in opposite directions, a fully differential detection scheme can be achieved with only one layer of out-of-plane electrodes located in the via wafer 103.


Out-of-Plane Electrode Placement


FIG. 10 illustrates generally an example of a system 1000 including via wafer 103 electrode placement. In certain examples, one or more conductive portions of the via wafer 103, such as electrodes, isolated conductive regions, etc., can be used to detect capacitive coupling between portions of the 6-axis inertial sensor and the via wafer 103, and in turn, to detect x-axis angular rate using x-axis gyroscope sense electrodes 140, to detect y-axis angular rate using y-axis gyroscope sense electrodes 141, and to detect z-axis acceleration using z-axis accelerometer sense electrodes 142.


Drive and Detection Frequencies

In an example, the drive mode and the three gyroscope sense modes can be located in the 20 kHz range. For open-loop operation, the drive mode can be separated from the sense-modes by a mode separation, such as 100 Hz to 500 Hz, which can determine the mechanical sensitivity of the gyroscopes. To increase sensitivity, the gyroscope operational resonant frequencies can be reduced if the vibration specifications of the application allow. If closed-loop sense operation is implemented, the mode separation can be reduced to increase mechanical sensitivity further.


The accelerometer sense mode resonant frequencies can be located substantially below the gyroscope operational modes, for example, in the 5 kHz to 10 kHz range. Thus, the gyroscope and accelerometer signals can be separated in the frequency domain as well. Further, lower resonant frequencies can be implemented to increase sensitivity.


Curved In-Plane Parallel-Plate Electrodes


FIG. 11 illustrates generally an example of a 6-axis inertial sensor 1100 including a single proof-mass, the single proof-mass including a main proof-mass section 115, x-axis proof-mass sections 116, 117, and y-axis proof-mass sections 118, 119. In an example, one or more of the x-axis accelerometer sense electrodes 125, the z-axis gyroscope sense electrodes 127, or the y-axis accelerometer sense electrodes 131 can include curved in-plane parallel-plate electrodes, in certain examples, curved normal to the direction of the torsional drive motion to reduce the sensitivity of detection electrode capacitances to the gyroscope drive motion. Since the drive motion is rotational about the z-axis, the array of curved electrodes normal to the drive motion with centers at the die center would reduce the gap change or overlap area change due to the gyroscope drive motion.


Quadrature Error Reduction


FIG. 12 illustrates generally an example of the central suspension 111 at rest about an anchor 106, the central suspension 111 including symmetric “C-beams” configured to locally cancel quadrature error. The primary source of quadrature error in micromachined gyroscopes is the DRIE sidewall angle errors, which result in deviation of the etch profile from a straight sidewall. If sidewalls have an angle error, the in-plane drive motion can also cause out-of-plane motion when the skew axis is along beam length. Thus, when skewed compliant beams are located on opposite sides of the drive motion, the resulting out-of-plane deflections cause quadrature error.



FIG. 13 illustrates generally an example of a portion of the central suspension 111 in drive motion. The central suspension 111 utilizes symmetric “C-beams” on each side of the anchor 106. The out-of-plane motion caused by each C-beam on a side is cancelled out by its symmetric counterpart. Thus, the quadrature error induced on each beam can be locally cancelled.


Cross-Axis Sensitivity

The operational modes of the gyroscope and the accelerometer functions are very well decoupled by the suspension system, including the central suspension 111 and the multi-function flexure bearings 120, which effectively conserve the orthogonality of the operational modes. Thus, sense electrodes of each axis remain stationary with respect to the response motion in other axes. Furthermore, the gyroscope and accelerometer response signals are separated in the frequency domain, as described above.


Additional Notes and Examples

In Example 1, a 6-degrees-of-freedom (6-DOF) inertial measurement system includes a device layer including a single proof-mass 6-axis inertial sensor formed in an x-y plane, the single proof-mass 6-axis inertial sensor including a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards the edge of the 6-axis inertial sensor, a central suspension system configured to suspend the 6-axis inertial sensor from the single, central anchor, and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 6-axis inertial sensor about a z-axis normal to the x-y plane at a drive frequency. The single proof-mass 6-axis inertial sensor optionally includes a cap wafer bonded to a first surface of the device layer and a via wafer bonded to a second surface of the device layer, wherein the cap wafer and the via wafer are configured to encapsulate the single proof-mass 6-axis inertial sensor.


In Example 2, the single proof-mass 6-axis inertial sensor of Example 1 optionally includes first and second x-axis proof-mass sections coupled to the main proof-mass section using multi-function flexure bearings.


In Example 3, the multi-function flexure bearings of any one or more of Examples 1-2 are optionally configured to allow the first and second x-axis proof-mass sections to move in-phase or anti-phase along the x-axis.


In Example 4, the multi-function flexure bearings of any one or more of Examples 1-3 are optionally configured to allow the first and second x-axis proof-mass sections to move in-phase along the x-axis in response to an x-axis acceleration.


In Example 5, the multi-function flexure bearings of any one or more of Examples 1-4 are optionally configured to allow the first and second x-axis proof-mass sections to move anti-phase along the x-axis in response to a z-axis rotation.


In Example 6, the multi-function flexure bearings of any one or more of Examples 1-5 are optionally configured to allow each of the first and second x-axis proof-mass sections to rotate about the y-axis in response to a z-axis acceleration.


In Example 7, at least one of the multi-function flexure bearings of any one or more of Examples 1-6 is optionally elongate, extending between the main proof-mass section and the first x-axis proof-mass section along the y-axis.


In Example 8, the at least one multi-function flexure bearing of any one or more of Examples 1-7 is optionally configured to be flexed under torsion about an axis parallel to the y-axis.


In Example 9, four multi-function flexure bearings are optionally configured to couple the single proof-mass to the first and second x-axis proof-mass section, wherein for each multi-function flexure bearing there is an opposing multi-function bearing mirrored about the x-z plane, and another multi-function bearing mirrored about the y-z plane.


In Example 10, the first and second x-axis proof-mass sections of any one or more of Examples 1-9 are optionally coupled by an anti-phase flexure bearing that is elongate extending along the y-axis.


In Example 11, two anti-phase flexure bearings of any one or more of Examples 1-110 optionally couple the first x-axis proof-mass to the second x-axis proof-mass on opposing sides of the x-z plane.


In Example 12, each of the two anti-phase flexure bearings of any one or more of Examples 1-11 zigzag as they extend along the x-axis between the first and second x-axis proof-masses.


In Example 13, the single proof-mass of any one or more of Examples 1-12 is optionally quadrilateral in shape, wherein the single, central anchor is centered in the quadrilateral, and wherein the main proof-mass section includes four radial portions extending outward towards the four corners of the 6-axis inertial sensor.


In Example 14, the drive electrode of any one or more of Examples 1-13 optionally includes a plurality of moving fingers interdigitated with a plurality of stationary fingers, and wherein the stationary fingers are anchored to the via wafer.


In Example 15, any one or more of Examples 1-12 optionally includes first electrodes in-plane with the device layer and configured to detect z-axis angular rotation, x-axis acceleration, and y-axis acceleration and second electrodes out-of-plane with the device layer and configured to detect z-axis acceleration, x-axis angular rotation, and y-axis angular rotation.


In Example 16, the via wafer of any one or more of Examples 1-15 optionally includes the second electrodes, and the second electrodes are optionally capacitively coupled to the device layer.


In Example 17, a single proof-mass, micromachined, monolithic, 6-axis inertial sensor apparatus includes a main proof-mass section suspended about a single, central anchor, the main proof-mass section including radial portions extending outward towards the edge of the 6-axis inertial sensor, a pair of x-axis proof-mass sections coupled to the main proof-mass section using multi-function flexure bearings and coupled to each other using an anti-phase flexure bearing; a pair of y-axis proof-mass sections coupled to multiple radial portions of the main proof-mass section using elongated flexure bearings, a central suspension system configured to suspend the 6-axis inertial sensor from the single, central anchor; and a drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 6-axis inertial sensor about a z-axis normal to the x-y plane at a drive frequency.


In Example 18, the multi-function flexure bearings of any one or more of Examples 1-17 are optionally configured to allow the first and second x-axis proof-mass sections to move in-phase or anti-phase along the x-axis.


In Example 19, the multi-function flexure bearings of any one or more of Examples 1-18 are optionally configured to allow the first and second x-axis proof-mass sections to move in-phase along the x-axis in response to an x-axis acceleration, and anti-phase along the x-axis in response to a z-axis rotation.


In Example 20, the multi-function flexure bearings of any one or more of Examples 1-19 are optionally configured to allow each of the first and second x-axis proof-mass sections to rotate about the y-axis in response to a z-axis acceleration.


In Example 21, a method includes suspending a single proof-mass of a 6-axis inertial sensor about a single, central anchor coupled to a stationary layer using central suspension, the main proof-mass section including a radial portion extending outward towards the edge of the 6-axis inertial sensor, suspending first and second x-axis proof-mass sections from the main proof-mass section using multi-function flexure bearings, anchoring a stationary drive electrode to the stationary layer, coupling a moveable electrode to the stationary electrode, and oscillating the single proof-mass at a drive frequency using the stationary drive electrode, the moveable electrode, and the central suspension.


In Example 22, a system or apparatus can include, or can optionally be combined with any portion or combination of any portions of any one or more of Examples 1-21 to include, means for performing any one or more of the functions of Examples 1-21, or a machine-readable medium including instructions that, when performed by a machine, cause the machine to perform any one or more of the functions of Examples 1-20.


The above detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are also referred to herein as “examples.” All publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.


In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one, independent of any other instances or usages of “at least one” or “one or more.” In this document, the term “or” is used to refer to a nonexclusive or, such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Also, in the following claims, the terms “including” and “comprising” are open-ended, that is, a system, device, article, or process that includes elements in addition to those listed after such a term in a claim are still deemed to fall within the scope of that claim. Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.


The above description is intended to be illustrative, and not restrictive. In other examples, the above-described examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments can be used, such as by one of ordinary skill in the art upon reviewing the above description. The Abstract is provided to comply with 37 C.F.R. §1.72(b), to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. Also, in the above Detailed Description, various features may be grouped together to streamline the disclosure. This should not be interpreted as intending that an unclaimed disclosed feature is essential to any claim. Rather, inventive subject matter may lie in less than all features of a particular disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims
  • 1. A 6-degrees-of-freedom (6-DOF) inertial measurement system, comprising: a device layer including a single proof-mass 6-axis inertial sensor formed in an x-y plane, the single proof-mass 6-axis inertial sensor including: a main proof-mass section suspended about a single, central anchor, the main proof-mass section including a radial portion extending outward towards an edge of the 6-axis inertial sensor;a pair of x-axis proof-mass sections coupled to the main proof-mass section using multi-function flexure bearings and coupled to each other using an anti-phase flexure bearing;a central suspension system configured to suspend the 6-axis inertial sensor from the single, central anchor; anda drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portion, wherein the drive electrode and the central suspension system are configured to oscillate the 6-axis inertial sensor about a z-axis normal to the x-y plane at a drive frequency;a cap wafer bonded to a first surface of the device layer; anda via wafer bonded to a second surface of the device layer, wherein the cap wafer and the via wafer are configured to encapsulate the single proof-mass 6-axis inertial sensor.
  • 2. The system of claim 1, wherein the multi-function flexure bearings are configured to allow the first and second x-axis proof-mass sections to move in-phase or anti-phase along an x-axis of the x-y plane.
  • 3. The system of claim 2, wherein the multi-function flexure bearings are configured to allow the first and second x-axis proof-mass sections to move in-phase along the x-axis in response to an x-axis acceleration.
  • 4. The system of claim 2, wherein the multi-function flexure bearings are configured to allow the first and second x-axis proof-mass sections to move anti-phase along the x-axis in response to a z-axis rotation.
  • 5. The system of claim 1, wherein the multi-function flexure bearings are configured to allow each of the first and second x-axis proof-mass sections to rotate about a y-axis of the x-y plane in response to a z-axis acceleration.
  • 6. The system of claim 1, wherein at least one of the multi-function flexure bearings is elongate, extending between the main proof-mass section and the first x-axis proof-mass section along a y-axis of the x-y plane.
  • 7. The system of claim 6, wherein the at least one multi-function flexure bearing is configured to be flexed under torsion about an axis parallel to the y-axis.
  • 8. The system of claim 7, wherein four multi-function flexure bearings couple the single proof-mass to the first and second x-axis proof-mass sections, wherein for each multi-function flexure bearing there is an opposing multi-function bearing mirrored about an x-z plane, and another multi-function bearing mirrored about an y-z plane.
  • 9. The system of claim 1, wherein the anti-phase flexure bearing that is elongate extending along a y-axis of the x-y plane.
  • 10. The system of claim 9, wherein two anti-phase flexure bearings couple the first x-axis proof-mass section to the second x-axis proof-mass section on opposing sides of an x-z plane.
  • 11. The system of claim 10, wherein each of the two anti-phase flexure bearings zigzag as they extend along an x-axis between the first and second x-axis proof-mass sections.
  • 12. The system of claim 1, wherein the single proof-mass inertial sensor is quadrilateral in shape, wherein the single, central anchor is centered in the quadrilateral, and wherein the main proof-mass section includes four radial portions extending outward towards the four corners of the 6-axis inertial sensor.
  • 13. The system of claim 1, wherein the drive electrode includes a plurality of moving fingers interdigitated with a plurality of stationary fingers, and wherein the stationary fingers are anchored to the via wafer.
  • 14. The system of claim 1, including: first electrodes in-plane with the device layer and configured to detect z-axis angular rotation, x-axis acceleration, and y-axis acceleration; andsecond electrodes out-of-plane with the device layer and configured to detect z-axis acceleration, x-axis angular rotation, and y-axis angular rotation.
  • 15. A single proof-mass, micromachined, monolithic, 6-axis inertial sensor apparatus, comprising: a main proof-mass section forming an x-y plane suspended about a single, central anchor, the main proof-mass section including radial portions extending outward towards an edge of the 6-axis inertial sensor;a pair of x-axis proof-mass sections coupled to the main proof-mass section using multi-function flexure bearings and coupled to each other using an anti-phase flexure bearing;a pair of y-axis proof-mass sections coupled to multiple radial portions of the main proof-mass section using elongated flexure bearings;a central suspension system configured to suspend the 6-axis inertial sensor from the single, central anchor; anda drive electrode including a moving portion and a stationary portion, the moving portion coupled to the radial portions, wherein the drive electrode and the central suspension system are configured to oscillate the 6-axis inertial sensor about a z-axis normal to the x-y plane at a drive frequency.
  • 16. The apparatus of claim 15, wherein the multi-function flexure bearings are configured to allow the pair of x-axis proof-mass sections to move in-phase or anti-phase along an x-axis of the x-y plane.
  • 17. The apparatus of claim 16, wherein the multi-function flexure bearings are configured to allow the pair of x-axis proof-mass sections to move in-phase along the x-axis in response to an x-axis acceleration, and anti-phase along the x-axis in response to a z-axis rotation.
  • 18. The apparatus of claim 15, wherein the multi-function flexure bearings are configured to allow each of the pair of x-axis proof-mass sections to rotate about a y-axis of the x-y plane in response to a z-axis acceleration.
  • 19. A method, comprising: suspending a single proof-mass of a 6-axis inertial sensor about a single, central anchor coupled to a stationary layer using a central suspension, the single proof-mass including a main proof-mass section including a radial portion extending outward towards an edge of the 6-axis inertial sensor;suspending first and second x-axis proof-mass sections from the main proof-mass section using multi-function flexure bearings;coupling the first and second x-axis proof-mass sections to each other using an anti-phase flexure bearing;anchoring a stationary drive electrode to the stationary layer;coupling a moveable electrode to the stationary electrode; andoscillating the single proof-mass at a drive frequency using the stationary drive electrode, the moveable electrode, and the central suspension.
  • 20. The method of claim 19, wherein the multi-function flexure bearings are configured to allow the first and second x-axis proof-mass sections to move in-phase along the x-axis in response to an x-axis acceleration, anti-phase along the x-axis in response to a z-axis rotation, and to rotate about the y-axis in response to a z-axis acceleration.
CLAIM OF PRIORITY

This application is a U.S. National Stage Filing under 35 U.S.C. 371 from International Patent Application Serial No. PCT/US2011/052061, filed on Sep. 18, 2011, and published on Mar. 22, 2012 as WO 2012/037538 A2, which claims the benefit of priority of Acar, U.S. Provisional Patent Application Ser. No. 61/384,240, entitled “MICROMACHINED MONOLITHIC 6-AXIS INERTIAL SENSOR,” filed on Sep. 18, 2010, each of which are hereby incorporated by reference herein in its entirety. Further, this application is related to Acar et al., U.S. patent application Ser. No. 12/849,742, entitled “MICROMACHINED INERTIAL SENSOR DEVICES,” filed on Aug. 3, 2010 and to Marx et al., U.S. patent application Ser. No. 12/849,787, entitled “MICROMACHINED DEVICES AND FABRICATING THE SAME,” filed Aug. 3, 2010, each of which is hereby incorporated by reference herein in its entirety.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2011/052061 9/18/2011 WO 00 6/24/2013
Publishing Document Publishing Date Country Kind
WO2012/037538 3/22/2012 WO A
US Referenced Citations (253)
Number Name Date Kind
3231729 Stern Jan 1966 A
4896156 Garverick Jan 1990 A
5481914 Ward Jan 1996 A
5487305 Ristic et al. Jan 1996 A
5491604 Nguyen et al. Feb 1996 A
5600064 Ward Feb 1997 A
5656778 Roszhart Aug 1997 A
5703292 Ward Dec 1997 A
5723790 Andersson Mar 1998 A
5751154 Tsugai May 1998 A
5760465 Alcoe et al. Jun 1998 A
5765046 Watanabe et al. Jun 1998 A
5894091 Kubota Apr 1999 A
5912499 Diem et al. Jun 1999 A
6131457 Sato Oct 2000 A
6214644 Glenn Apr 2001 B1
6236096 Chang et al. May 2001 B1
6250157 Touge Jun 2001 B1
6253612 Lemkin et al. Jul 2001 B1
6301965 Chu et al. Oct 2001 B1
6351996 Nasiri et al. Mar 2002 B1
6366468 Pan Apr 2002 B1
6390905 Korovin et al. May 2002 B1
6501282 Dummermuth et al. Dec 2002 B1
6504385 Hartwell Jan 2003 B2
6516651 Geen Feb 2003 B1
6553835 Hobbs et al. Apr 2003 B1
6654424 Thomae et al. Nov 2003 B1
6664941 Itakura et al. Dec 2003 B2
6722206 Takada Apr 2004 B2
6725719 Cardarelli Apr 2004 B2
6737742 Sweterlitsch May 2004 B2
6781231 Minervini et al. Aug 2004 B2
6848304 Geen Feb 2005 B2
7051590 Lemkin et al. May 2006 B1
7054778 Geiger et al. May 2006 B2
7093487 Mochida Aug 2006 B2
7166910 Minervini et al. Jan 2007 B2
7173402 Chen et al. Feb 2007 B2
7202552 Zhe et al. Apr 2007 B2
7210351 Lo et al. May 2007 B2
7221767 Mullenborn et al. May 2007 B2
7240552 Acar et al. Jul 2007 B2
7258011 Nasiri et al. Aug 2007 B2
7258012 Xie et al. Aug 2007 B2
7266349 Kappes Sep 2007 B2
7293460 Zarabadi et al. Nov 2007 B2
7301212 Mian et al. Nov 2007 B1
7305880 Caminada et al. Dec 2007 B2
7339384 Peng et al. Mar 2008 B2
7358151 Araki et al. Apr 2008 B2
7436054 Zhe Oct 2008 B2
7449355 Lutz et al. Nov 2008 B2
7451647 Matsuhisa et al. Nov 2008 B2
7454967 Skurnik Nov 2008 B2
7518493 Bryzek et al. Apr 2009 B2
7539003 Ray May 2009 B2
7544531 Grosjean Jun 2009 B1
7595648 Ungaretti et al. Sep 2009 B2
7600428 Robert et al. Oct 2009 B2
7616078 Prandi et al. Nov 2009 B2
7622782 Chu et al. Nov 2009 B2
7694563 Durante et al. Apr 2010 B2
7706149 Yang et al. Apr 2010 B2
7781249 Laming et al. Aug 2010 B2
7795078 Ramakrishna et al. Sep 2010 B2
7817331 Moidu Oct 2010 B2
7851925 Theuss et al. Dec 2010 B2
7859352 Sutton Dec 2010 B2
7950281 Hammerschmidt May 2011 B2
7965067 Grönthal et al. Jun 2011 B2
8004354 Pu et al. Aug 2011 B1
8006557 Yin et al. Aug 2011 B2
8026771 Kanai et al. Sep 2011 B2
8037755 Nagata et al. Oct 2011 B2
8113050 Acar et al. Feb 2012 B2
8171792 Sameshima May 2012 B2
8201449 Ohuchi et al. Jun 2012 B2
8250921 Nasiri et al. Aug 2012 B2
8256290 Mao Sep 2012 B2
8375789 Prandi et al. Feb 2013 B2
8378756 Huang et al. Feb 2013 B2
8421168 Allen et al. Apr 2013 B2
8476970 Mokhtar et al. Jul 2013 B2
8497746 Visconti et al. Jul 2013 B2
8508290 Elsayed et al. Aug 2013 B2
8643382 Steele et al. Feb 2014 B2
8710599 Marx et al. Apr 2014 B2
8739626 Acar Jun 2014 B2
8742964 Kleks et al. Jun 2014 B2
8754694 Opris et al. Jun 2014 B2
8763459 Brand et al. Jul 2014 B2
8813564 Acar Aug 2014 B2
8978475 Acar Mar 2015 B2
9003882 Ayazi et al. Apr 2015 B1
9006846 Bryzek et al. Apr 2015 B2
9062972 Acar et al. Jun 2015 B2
9069006 Opris et al. Jun 2015 B2
9094027 Tao et al. Jul 2015 B2
9095072 Bryzek et al. Jul 2015 B2
9156673 Bryzek et al. Oct 2015 B2
20020021059 Knowles et al. Feb 2002 A1
20020083757 Geen Jul 2002 A1
20020117728 Brosnihhan et al. Aug 2002 A1
20020178831 Takada Dec 2002 A1
20020189352 Reeds, III et al. Dec 2002 A1
20020196445 Mcclary et al. Dec 2002 A1
20030033850 Challoner et al. Feb 2003 A1
20030038415 Anderson et al. Feb 2003 A1
20030061878 Pinson Apr 2003 A1
20030200807 Hulsing, II Oct 2003 A1
20030222337 Stewart Dec 2003 A1
20040051508 Hamon et al. Mar 2004 A1
20040085784 Salama et al. May 2004 A1
20040088127 M'closkey et al. May 2004 A1
20040119137 Leonardi et al. Jun 2004 A1
20040177689 Cho et al. Sep 2004 A1
20040211258 Geen Oct 2004 A1
20040219340 McNeil et al. Nov 2004 A1
20040231420 Xie et al. Nov 2004 A1
20040251793 Matsuhisa Dec 2004 A1
20050005698 McNeil et al. Jan 2005 A1
20050097957 Mcneil et al. May 2005 A1
20050139005 Geen Jun 2005 A1
20050189635 Humpston et al. Sep 2005 A1
20050274181 Kutsuna et al. Dec 2005 A1
20060032308 Acar et al. Feb 2006 A1
20060034472 Bazarjani et al. Feb 2006 A1
20060043608 Bernier et al. Mar 2006 A1
20060097331 Hattori May 2006 A1
20060112764 Higuchi Jun 2006 A1
20060137457 Zdeblick Jun 2006 A1
20060207328 Zarabadi et al. Sep 2006 A1
20060213265 Weber et al. Sep 2006 A1
20060213266 French et al. Sep 2006 A1
20060213268 Asami et al. Sep 2006 A1
20060246631 Lutz et al. Nov 2006 A1
20060283245 Konno et al. Dec 2006 A1
20070013052 Zhe et al. Jan 2007 A1
20070034005 Acar et al. Feb 2007 A1
20070040231 Harney et al. Feb 2007 A1
20070042606 Wang et al. Feb 2007 A1
20070047744 Karney et al. Mar 2007 A1
20070071268 Harney et al. Mar 2007 A1
20070085544 Viswanathan Apr 2007 A1
20070099327 Hartzell et al. May 2007 A1
20070113653 Nasiri et al. May 2007 A1
20070114643 DCamp et al. May 2007 A1
20070165888 Weigold Jul 2007 A1
20070205492 Wang Sep 2007 A1
20070214883 Durante et al. Sep 2007 A1
20070220973 Acar Sep 2007 A1
20070222021 Yao Sep 2007 A1
20070284682 Laming et al. Dec 2007 A1
20080049230 Chin et al. Feb 2008 A1
20080079120 Foster et al. Apr 2008 A1
20080079444 Denison Apr 2008 A1
20080081398 Lee et al. Apr 2008 A1
20080083958 Wei et al. Apr 2008 A1
20080083960 Chen et al. Apr 2008 A1
20080092652 Acar Apr 2008 A1
20080122439 Burdick et al. May 2008 A1
20080157238 Hsiao Jul 2008 A1
20080157301 Ramakrishna et al. Jul 2008 A1
20080169811 Viswanathan Jul 2008 A1
20080202237 Hammerschmidt Aug 2008 A1
20080245148 Fukumoto Oct 2008 A1
20080247585 Leidl et al. Oct 2008 A1
20080251866 Belt et al. Oct 2008 A1
20080290756 Huang Nov 2008 A1
20080302559 Leedy Dec 2008 A1
20080314147 Nasiri Dec 2008 A1
20090007661 Nasiri et al. Jan 2009 A1
20090056443 Netzer Mar 2009 A1
20090064780 Coronato et al. Mar 2009 A1
20090064781 Ayazi et al. Mar 2009 A1
20090072663 Ayazi et al. Mar 2009 A1
20090114016 Nasiri et al. May 2009 A1
20090140606 Huang Jun 2009 A1
20090166827 Foster et al. Jul 2009 A1
20090175477 Suzuki et al. Jul 2009 A1
20090183570 Acar et al. Jul 2009 A1
20090194829 Chung et al. Aug 2009 A1
20090217757 Nozawa Sep 2009 A1
20090263937 Ramakrishna et al. Oct 2009 A1
20090266163 Ohuchi et al. Oct 2009 A1
20090272189 Acar et al. Nov 2009 A1
20100019393 Hsieh et al. Jan 2010 A1
20100024548 Cardarelli Feb 2010 A1
20100038733 Minervini Feb 2010 A1
20100044853 Dekker et al. Feb 2010 A1
20100052082 Lee Mar 2010 A1
20100058864 Hsu et al. Mar 2010 A1
20100072626 Theuss et al. Mar 2010 A1
20100089154 Ballas et al. Apr 2010 A1
20100122579 Hsu et al. May 2010 A1
20100126269 Coronato et al. May 2010 A1
20100155863 Weekamp Jun 2010 A1
20100206074 Yoshida et al. Aug 2010 A1
20100212425 Hsu et al. Aug 2010 A1
20100224004 Suminto et al. Sep 2010 A1
20100236327 Mao et al. Sep 2010 A1
20100263445 Hayner et al. Oct 2010 A1
20100294039 Geen Nov 2010 A1
20110023605 Tripoli et al. Feb 2011 A1
20110030473 Acar Feb 2011 A1
20110030474 Kuang et al. Feb 2011 A1
20110031565 Marx et al. Feb 2011 A1
20110074389 Knierim et al. Mar 2011 A1
20110094302 Schofield et al. Apr 2011 A1
20110120221 Yoda May 2011 A1
20110121413 Allen et al. May 2011 A1
20110146403 Rizzo Piazza Roncoroni et al. Jun 2011 A1
20110147859 Tanaka et al. Jun 2011 A1
20110179868 Kaino et al. Jul 2011 A1
20110201197 Nilsson et al. Aug 2011 A1
20110234312 Lachhwani et al. Sep 2011 A1
20110265564 Acar et al. Nov 2011 A1
20110285445 Huang et al. Nov 2011 A1
20110316048 Ikeda et al. Dec 2011 A1
20120126349 Horning et al. May 2012 A1
20120326248 Daneman et al. Dec 2012 A1
20130098153 Trusov et al. Apr 2013 A1
20130139591 Acar Jun 2013 A1
20130139592 Acar Jun 2013 A1
20130192364 Acar Aug 2013 A1
20130192369 Acar et al. Aug 2013 A1
20130199263 Egretzberger et al. Aug 2013 A1
20130221457 Conti et al. Aug 2013 A1
20130247666 Acar Sep 2013 A1
20130247668 Bryzek Sep 2013 A1
20130250532 Bryzek et al. Sep 2013 A1
20130257487 Opris et al. Oct 2013 A1
20130263641 Opris et al. Oct 2013 A1
20130263665 Opris et al. Oct 2013 A1
20130265070 Kleks et al. Oct 2013 A1
20130265183 Kleks et al. Oct 2013 A1
20130268227 Opris et al. Oct 2013 A1
20130268228 Opris et al. Oct 2013 A1
20130269413 Tao et al. Oct 2013 A1
20130270660 Bryzek et al. Oct 2013 A1
20130271228 Tao et al. Oct 2013 A1
20130277772 Bryzek et al. Oct 2013 A1
20130277773 Bryzek et al. Oct 2013 A1
20130283911 Ayazi et al. Oct 2013 A1
20130298671 Acar, Cenk et al. Nov 2013 A1
20130328139 Acar, Cenk Dec 2013 A1
20130341737 Bryzek, Janusz et al. Dec 2013 A1
20140070339 Marx Mar 2014 A1
20140275857 Toth et al. Sep 2014 A1
20150059473 Jia Mar 2015 A1
20150114112 Valzasina et al. Apr 2015 A1
20150185012 Acar Jul 2015 A1
Foreign Referenced Citations (166)
Number Date Country
1068444 Jan 1993 CN
1198587 Nov 1998 CN
1206110 Jan 1999 CN
1221210 Jun 1999 CN
1272622 Nov 2000 CN
1389704 Jan 2003 CN
1532524 Sep 2004 CN
1595062 Mar 2005 CN
1595063 Mar 2005 CN
1603842 Apr 2005 CN
1617334 May 2005 CN
1659810 Aug 2005 CN
1693181 Nov 2005 CN
1813192 Aug 2006 CN
1816747 Aug 2006 CN
1818552 Aug 2006 CN
1886669 Dec 2006 CN
1905167 Jan 2007 CN
1948906 Apr 2007 CN
101038299 Sep 2007 CN
101059530 Oct 2007 CN
101067555 Nov 2007 CN
101069099 Nov 2007 CN
101171665 Apr 2008 CN
101180516 May 2008 CN
101217263 Jul 2008 CN
101239697 Aug 2008 CN
101257000 Sep 2008 CN
101270988 Sep 2008 CN
101316462 Dec 2008 CN
101329446 Dec 2008 CN
101426718 May 2009 CN
101459866 Jun 2009 CN
101519183 Sep 2009 CN
101520327 Sep 2009 CN
101561275 Oct 2009 CN
101634662 Jan 2010 CN
101638211 Feb 2010 CN
101813480 Aug 2010 CN
101839718 Sep 2010 CN
101055180 Oct 2010 CN
101858928 Oct 2010 CN
101916754 Dec 2010 CN
101922934 Dec 2010 CN
201688848 Dec 2010 CN
102109345 Jun 2011 CN
102337541 Feb 2012 CN
102364671 Feb 2012 CN
102597699 Jul 2012 CN
103209922 Jul 2013 CN
103210278 Jul 2013 CN
103221331 Jul 2013 CN
103221332 Jul 2013 CN
103221333 Jul 2013 CN
103221778 Jul 2013 CN
103221779 Jul 2013 CN
103221795 Jul 2013 CN
103238075 Aug 2013 CN
103363969 Oct 2013 CN
103363983 Oct 2013 CN
103364590 Oct 2013 CN
103364593 Oct 2013 CN
103368503 Oct 2013 CN
103368562 Oct 2013 CN
103368577 Oct 2013 CN
103376099 Oct 2013 CN
103376102 Oct 2013 CN
103403495 Nov 2013 CN
203275441 Nov 2013 CN
203275442 Nov 2013 CN
203301454 Nov 2013 CN
203349832 Dec 2013 CN
203349834 Dec 2013 CN
103663344 Mar 2014 CN
203683082 Jul 2014 CN
203719664 Jul 2014 CN
104094084 Oct 2014 CN
104105945 Oct 2014 CN
104220840 Dec 2014 CN
104272062 Jan 2015 CN
112011103124 Dec 2013 DE
102013014881 Mar 2014 DE
0638782 Feb 1995 EP
1055910 Nov 2000 EP
1335185 Aug 2003 EP
1460380 Sep 2004 EP
1521086 Apr 2005 EP
1688705 Aug 2006 EP
1832841 Sep 2007 EP
1860402 Nov 2007 EP
2053413 Apr 2009 EP
2096759 Sep 2009 EP
2259019 Dec 2010 EP
2466257 Jun 2012 EP
0989927 Apr 1997 JP
09089927 Apr 1997 JP
10239347 Sep 1998 JP
1164002 Mar 1999 JP
2000046560 Feb 2000 JP
2005024310 Jan 2005 JP
2005114394 Apr 2005 JP
2005294462 Oct 2005 JP
3882972 Feb 2007 JP
2007024864 Feb 2007 JP
2008294455 Dec 2008 JP
2009075097 Apr 2009 JP
2009186213 Aug 2009 JP
2009192458 Aug 2009 JP
2010025898 Feb 2010 JP
2010506182 Feb 2010 JP
1020110055449 May 2011 KR
1020130052652 May 2013 KR
1020130052653 May 2013 KR
1020130054441 May 2013 KR
1020130055693 May 2013 KR
1020130057485 May 2013 KR
1020130060338 Jun 2013 KR
1020130061181 Jun 2013 KR
101311966 Sep 2013 KR
1020130097209 Sep 2013 KR
101318810 Oct 2013 KR
1020130037462 Oct 2013 KR
1020130112789 Oct 2013 KR
1020130112792 Oct 2013 KR
1020130112804 Oct 2013 KR
1020130113385 Oct 2013 KR
1020130113386 Oct 2013 KR
1020130113391 Oct 2013 KR
1020130116189 Oct 2013 KR
1020130116212 Oct 2013 KR
101332701 Nov 2013 KR
1020130139914 Dec 2013 KR
1020130142116 Dec 2013 KR
101352827 Jan 2014 KR
1020140034713 Mar 2014 KR
I255341 May 2006 TW
WO-9311415 Jun 1993 WO
WO-9503534 Feb 1995 WO
WO-0107875 Feb 2001 WO
WO-0175455 Oct 2001 WO
WO-2008059757 May 2008 WO
WO-2008087578 Jul 2008 WO
WO-2009038924 Mar 2009 WO
WO-2009050578 Apr 2009 WO
WO-2009156485 Dec 2009 WO
WO-2011016859 Feb 2011 WO
WO-2011016859 Feb 2011 WO
WO-2011107542 Sep 2011 WO
WO-2012037492 Mar 2012 WO
WO-2012037492 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037501 Mar 2012 WO
WO-2012037536 Mar 2012 WO
WO-2012037537 Mar 2012 WO
WO-2012037538 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037539 Mar 2012 WO
WO-2012037540 Mar 2012 WO
WO-2012040194 Mar 2012 WO
WO-2012040211 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2012040245 Mar 2012 WO
WO-2013115967 Aug 2013 WO
WO-2013116356 Aug 2013 WO
WO-2013116514 Aug 2013 WO
WO-2013116522 Aug 2013 WO
Non-Patent Literature Citations (310)
Entry
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability mailed Mar. 17, 2014”, 3 pgs.
“U.S. Appl. No. 12/849,742, Supplemental Notice of Allowability mailed May 5, 2014”, 2 pgs.
“U.S. Appl. No. 12/849,787, Supplemental Notice of Allowability mailed Mar. 21, 2014”, 3 pgs.
“U.S. Appl. No. 13/362,955, Non Final Office Action mailed Apr. 15, 2014”, 9 pgs.
“U.S. Appl. No. 13/363,537, Response filed Jun. 6, 2014 to Non Final Office Action mailed Feb. 6, 2014”, 11 pgs.
“U.S. Appl. No. 13/742,942, Supplemental Notice of Allowability mailed Apr. 10, 2014”, 2 pgs.
“U.S. Appl. No. 13/755,841, Notice of Allowance mailed May 7, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Preliminary Amendment filed Oct. 10, 2013”, 10 pgs.
“U.S. Appl. No. 13/755,841, Response filed Apr. 21, 2014 to Restriction Requirement mailed Feb. 21, 2014”, 7 pgs.
“U.S. Appl. No. 13/821,589, Restriction Requirement mailed Apr. 11, 2014”, 10 pgs.
“Chinese Application Serial No. 2010800423190, Office Action mailed Mar. 26, 2014”, 10 pgs.
“Chinese Application Serial No. 201180053926.1, Response filed Apr. 29, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 10 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed May 27, 2014 to Office Action mailed Jan. 13, 2014”, w/English Claims, 29 pgs.
“Chinese Application Serial No. 201180055309.5, Office Action mailed Mar. 31, 2014”, w/English Claims, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jan. 30, 2014”, w/English Claims, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Mar. 18, 2014 to Office Action mailed Jan. 30, 2014”, w/English Claims, 20 pgs.
“Chinese Application Serial No. 201320565239.4, Response filed Mar. 31, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 38 pgs.
“European Application Serial No. 118260070.2, Office Action mailed Mar. 12, 2014”, 1 pg.
“European Application Serial No. 11826070.2, Extended European Search Report mailed Feb. 21, 2014”, 5 pgs.
“European Application Serial No. 11826071.0, Extended European Search Report mailed Feb. 20, 2014”, 6 pgs.
“European Application Serial No. 11826071.0, Office Action mailed Mar. 12, 2014”, 1 pg.
“European Application Serial No. 13001692.6, Response filed Apr. 1, 2014 to Extended European Search Report mailed Jul. 24, 2013”, 19 pgs.
“European Application Serial No. 13001721.3, Response filed Apr. 7, 2014 to Extended European Search Report mailed Jul. 18, 2013”, 25 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Apr. 28, 2014”, w/English Claims, 19 pgs.
“U.S. Appl. No. 13/363,537, Final Office Action mailed Jun. 27, 2014”, 8 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance mailed Jan. 28, 2014”, 8 pgs.
“U.S. Appl. No. 13/755,841, Supplemental Notice of Allowability Jun. 27, 2014”, 2 pgs.
“U.S. Appl. No. 13/821,589, Non Final Office Action mailed Jul. 9, 2014”, 10 pgs.
“U.S. Appl. No. 13/821,589, Response to Restriction Requirement mailed Apr. 11, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,598, Restriction Requirement mailed Aug. 15, 2014”, 11 pgs.
“U.S. Appl. No. 13/821,612, Non Final Office Action mailed Jul. 23, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,853, Non Final Office Action mailed Jul. 30, 2014”, 10 pgs.
“U.S. Appl. No. 13/860,761, Non Final Office Action mailed Aug. 19, 2014”, 13 pgs.
“Chinese Application Serial No. 2010800423190, Response filed Aug. 11, 2014 to Office Action mailed Mar. 26, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Jun. 30, 2014 to Office Action mailed Jan. 16, 2014”, w/English Claims, 3 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jul. 2, 2014”, w/English Translation, 5 pgs.
“Chinese Application Serial No. 201180055309.5, Response filed Aug. 13, 2014 to Office Action mailed Mar. 31, 2014”, w/English Claims, 27 pgs.
“Chinese Application Serial No. 201380007588.7, Notification to Make Rectification mailed Aug. 18, 2014”, 2 pgs.
“Chinese Application Serial No. 201380007615.0, Notification to Make Rectification mailed Aug. 18, 2014”, 2 pgs.
“European Application Serial No. 10806751.3, Response filed Jul. 24, 2014 to Office Action mailed Jan. 24, 2014”, 26 pgs.
“European Application Serial No. 11826068.6, Extended European Search Report mailed Jul. 16, 2014”, 10 pgs.
“European Application Serial No. 13001719.7, Extended European Search Report mailed Jun. 24, 2014”, 10 pgs.
“International Application Serial No. PCT/US2013/021411, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/023877, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 7 pgs.
“International Application Serial No. PCT/US2013/024138, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs.
“International Application Serial No. PCT/US2013/024149, International Preliminary Report on Patentability mailed Aug. 14, 2014”, 6 pgs.
Xia, Guo-Ming, et al., “Phase correction in digital self-oscillation drive circuit for improve silicon MEMS gyroscope bias stability”, Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, IEEE, (Nov. 1 2010), 1416-1418.
“U.S. Appl. No. 12/849,742, Non Final Office Action mailed Mar. 28, 2013”, 9 pgs.
“U.S. Appl. No. 12/849,742, Non Final Office Action mailed Aug. 23, 2012”, 9 pgs.
“U.S. Appl. No. 12/849,742, Response filed Jan. 23, 2012 to Non Final Office Action mailed Aug. 23, 2012”, 10 pgs.
“U.S. Appl. No. 12/849,787, Response filed Feb. 4, 2013 to Restriction Requirement mailed Oct. 4, 2012”, 7 pgs.
“U.S. Appl. No. 12/849,787, Restriction Requirement mailed Oct. 4, 2012”, 5 pgs.
“U.S. Appl. No. 13/813,443, Preliminary Amendment mailed Jan. 31, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,586, Preliminary Amendment mailed Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,589, Preliminary Amendment mailed Mar. 8, 2013”, 6 pgs.
“U.S. Appl. No. 13/821,609, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,612, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,842, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“U.S. Appl. No. 13/821,853, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“Application Serial No. PCT/US2011/051994, International Republished Application mailed Jun. 7, 2012”, 1 pg.
“Application Serial No. PCT/US2011/052006, International Republished Application mailed Jun. 7, 12”, 1 pg.
“Application Serial No. PCT/US2011/052417, International Republished Application mailed Jun. 7, 12”, 1 pg.
“International Application Serial No. PCT/US2010/002166, International Preliminary Report on Patentability mailed Feb. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2010/002166, International Search Report mailed Feb. 28, 2011”, 3 pgs.
“International Application Serial No. PCT/US2010/002166, Written Opinion mailed Feb. 28, 2011”, 4 pgs.
“International Application Serial No. PCT/US2011/051994, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 8 pgs.
“International Application Serial No. PCT/US2011/051994, International Search Report mailed Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/051994, Written Opinion mailed Apr. 16, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052006, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052006, Search Report mailed Apr. 16, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052006, Written Opinion mailed Apr. 16, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052059, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 14 pgs.
“International Application Serial No. PCT/US2011/052059, Search Report mailed Apr. 20, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052059, Written Opinion mailed Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052060, International Preliminary Report on Patentability mailed Jan. 22, 2013”, 12 pgs.
“International Application Serial No. PCT/US2011/052060, International Search Report Apr. 20, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052060, Written Opinion mailed Apr. 20, 2012”, 7 pgs.
“International Application Serial No. PCT/US2011/052061, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 6 pgs.
“International Application Serial No. PCT/US2011/052061, International Search Report mailed Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052061, Written Opinion mailed Apr. 10, 2012”, 4 pgs.
“International Application Serial No. PCT/US2011/052064, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052064, Search Report mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052064, Written Opinion mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, International Preliminary Report on Patentability mailed Mar. 28, 2013”, 7 pgs.
“International Application Serial No. PCT/US2011/052065, International Search Report mailed Apr. 10, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052065, Written Opinion mailed Apr. 10, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052369, International Search Report mailed Apr. 24, 2012”, 6 pgs.
“International Application Serial No. PCT/US2011/052369, Written Opinion mailed Apr. 24, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052417, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 6 pgs.
“International Application Serial No. PCT/US2011/052417, International Search Report mailed Apr. 23, 2012”, 5 pgs.
“International Application Serial No. PCT/US2011/052417, Written Opinion mailed Apr. 23, 2012”, 4 pgs.
Beyne, E, et al., “Through-silicon via and die stacking technologies for microsystems-integration”, IEEE International Electron Devices Meeting, 2008. IEDM 2008., (Dec. 2008), 1-4.
Cabruja, Enric, et al., “Piezoresistive Accelerometers for MCM-Package-Part II”, The Packaging Journal of Microelectromechanical Systems. vol. 14, No. 4, (Aug. 2005), 806-811.
Ezekwe, Chinwuba David, “Readout Techniques for High-Q Micromachined Vibratory Rate Gyroscopes”, Electrical Engineering and Computer Sciences University of California at Berkeley, Technical Report No. UCB/EECS-2007-176, http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-176.html, (Dec. 21, 2007), 94 pgs.
Rimskog, Magnus, “Through Wafer Via Technology for MEMS and 3D Integration”, 32nd IEEE/CPMT International Electronic Manufacturing Technology Symposium, 2007. IEMT '07., (2007), 286-289.
“U.S. Appl. No. 13/362,955, Notice of Allowance mailed Feb. 25, 2015”, 8 pgs.
“U.S. Appl. No. 13/362,955, Response filed Jan. 16, 2015 to Final Office Action mailed Nov. 19, 2014”, 9 pgs.
“U.S. Appl. No. 13/363,537, Corrected Notice of Allowance mailed Jan. 28, 2015”, 2 pgs.
“U.S. Appl. No. 13/742,994, Non Final Office Action mailed May 1, 2015”, 20 pgs.
“U.S. Appl. No. 13/755,953, Response filed May 4, 2015 to Restrictiion Requirement mailed Mar. 3, 2015”, 7 pgs.
“U.S. Appl. No. 13/755,953, Restriction Requirement mailed Mar. 3, 2015”, 6 pgs.
“U.S. Appl. No. 13/765,068, Notice of Allowance mailed May 7, 2015”, 12 pgs.
“U.S. Appl. No. 13/813,443, Restriction Requirement mailed Apr. 29, 2015”, 6 pgs.
“U.S. Appl. No. 13/821,586, Non Final Office Action mailed Jan. 15, 2015”, 8 pgs.
“U.S. Appl. No. 13/821,589, Final Office Action mailed Mar. 12, 2015”, 13 pgs.
“U.S. Appl. No. 13/821,598, Response filed Feb. 20, 2015 to Non Final Office Action mailed Nov. 20, 2014”, 12 pgs.
“U.S. Appl. No. 13/821,609, Notice of Allowance mailed Mar. 23, 2015”, 11 pgs.
“U.S. Appl. No. 13/821,609, Response filed Feb. 13, 2015 to Restriction Requirement mailed Dec. 15, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,609, Restriction Requirement mailed Dec. 15, 2014”, 7 pgs.
“U.S. Appl. No. 13/821,612, Notice of Allowance mailed Dec. 10, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,842, Non Final Office Action mailed Mar. 18, 2015”, 20 pgs.
“U.S. Appl. No. 13/821,853, Non Final Office Action mailed Feb. 18, 2015”, 15 pgs.
“U.S. Appl. No. 13/821,853, Response filed Dec. 1, 2014 to Non Final Office Action mailed Jul. 30, 2014”, 10 pgs.
“U.S. Appl. No. 13/860,761, Advisory Action mailed Mar. 25, 2015”, 3 pgs.
“U.S. Appl. No. 13/860,761, Final Office Action mailed Jan. 15, 2015”, 14 pgs.
“U.S. Appl. No. 13/860,761, Notice of Allowance mailed Apr. 28, 2015”, 8 pgs.
“U.S. Appl. No. 13/860,761, Response filed Mar. 16, 2015 to Final Office Action mailed Jan. 16, 2015”, 12 pgs.
“U.S. Appl. No. 13/860,761, Response filed Apr. 16, 2015 to Advisory Action mailed Mar. 25, 2015”, 11 pgs.
“U.S. Appl. No. 13/860,761, Response filed Dec. 19, 2014 to Non Final Office Action mailed Aug. 19, 2014”, 12 pgs.
“U.S. Appl. No. 14/658,579, Prliminary Amendment filed Mar. 18, 2015”, 8 pgs.
“Chinese Application Serial No. 2010800423190, Office Action mailed Dec. 3, 2014”, 3 pgs.
“Chinese Application Serial No. 2010800423190, Response filed Feb. 15, 2015”, 3 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jan. 30, 2015”, with English translation of claims, 5 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Nov. 19, 2014 to Office Action mailed Sep. 4, 2014”, with English translation of claims, 7 pgs.
“Chinese Application Serial No. 201180054796.3, Response filed Apr. 14, 2015 to Office Action mailed Jan. 30, 2015”, w/ English Claims, 30 pgs.
“Chinese Application Serial No. 201180055309.5, Office Action mailed Jan. 8, 2015”, with English translation of claims, 5 pgs.
“Chinese Application Serial No. 201180055309.5, Response filed Jan. 14, 2015 to Office Action mailed Jan. 8, 2015”, 8 pgs.
“Chinese Application Serial No. 201180055630.3, Office Action mailed Dec. 22, 2014”, with English translation of claims, 10 pgs.
“Chinese Application Serial No. 201180055630.3, Response filed Apr. 20, 2015 to Office Action mailed Dec. 22, 2014”, w/ English Claims, 10 pgs.
“Chinese Application Serial No. 201180055792.7, Office Action mailed Dec. 22, 2014”, with English translation of claims, 10 pgs.
“Chinese Application Serial No. 201180055794.6, Office Action mailed Dec. 17, 2014”, with English translation of claims, 9 pgs.
“Chinese Application Serial No. 201180055823.9, Office Action mailed Mar. 19, 2015”, w/ English Claims, 8 pgs.
“Chinese Application Serial No. 201180055845.5, Office Action mailed Mar. 4, 2015”, w/ English Claims, 8 pgs.
“Chinese Application Serial No. 2013101188456, Response filed Jan. 21, 2015”, with English translation of claims, 16 pgs.
“Chinese Application Serial No. 201310119472.4, Response filed Jan. 21, 2015”, with English translation of claims, 16 pgs.
“Chinese Application Serial No. 201380007588.7, Response filed Oct. 24, 2014”, with English translation, 3 pgs.
“Chinese Application Serial No. 201380007615.0, Response filed Oct. 24, 2014”, with English translation, 3 pgs.
“European Application Serial No. 11826067.8, Response filed Apr. 27, 2015 to Extended European Search Report mailed Oct. 6, 2014”, 32 pgs.
“European Application Serial No. 11826068.6, Response filed Feb. 9, 2015”, 30 pgs.
“European Application Serial No. 11826071.0, Examination Notification Art. 94(3) mailed Dec. 11, 2014”, 4 pgs.
“European Application Serial No. 11826071.0, Response filed Apr. 13, 2015 to Examination Notification Art. 94(3) mailed Dec. 11, 2014”, 5 pgs.
“European Application Serial No. 13001695.9, Extended European Search Report mailed Jan. 22, 2015”, 8 pgs.
“European Application Serial No. 13001719.7, Response filed Jan. 21, 2015”, 29 pgs.
“U.S. Appl. No. 12/849,787, Non Final Office Action mailed May 28, 2013”, 18 pgs.
“U.S. Appl. No. 12/947,543, Notice of Allowance mailed Dec. 17, 2012”, 11 pgs.
“U.S. Appl. No. 13/821,598, Preliminary Amendment mailed Mar. 8, 2013”, 7 pgs.
“U.S. Appl. No. 13/821,619, Preliminary Amendment mailed Mar. 8, 2013”, 3 pgs.
“DigiSiMic™ Digital Silicon Microphone Pulse Part No. TC100E”, TC100E Datasheet version 4.2 DigiSiMic™ Digital Silicon Microphone. (Jan. 2009), 6 pgs.
“EPCOS MEMS Microphone With TSV”, 1 pg , no date.
“International Application Serial No. PCT/US2011/052340, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2011/052340, Search Report mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052340, Written Opinion mailed Feb. 29, 2012”, 3 pgs.
“International Application Serial No. PCT/US2011/052369, International Preliminary Report on Patentability mailed Apr. 4, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, International Search Report mailed Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/021411, Written Opinion mailed Apr. 30, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/023877, International Search Report mailed May 14, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/023877, Written Opinion mailed May 14, 2013”, 5 pgs.
“International Application Serial No. PCT/US2013/024149, Written Opinion mailed”, 4 pages , no date.
“International Application Serial No. PCT/US2013/024149, International Search Report mailed”, 7 pages , no date.
“T4020 & T4030 MEMS Microphones for Consumer Electronics”, Product Brief 2010, Edition Feb. 2010, 2 pgs.
Acar, Cenk, et al., “Chapter 4: Mechanical Design of MEMS Gyroscopes”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 73-110.
Acar, Cenk, et al., “Chapter 6: Linear Multi DOF Architecture—Sections 6.4 and 6.5”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 158-178.
Acar, Cenk, et al., “Chapter 7: Torsional Multi-DOF Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (209), 187-206.
Acar, Cenk, et al., “Chapter 8: Distributed-Mass Architecture”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 207-224.
Acar, Cenk, et al., “Chapter 9: Conclusions and Future Trends”, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer, (2009), 225-245.
Krishnamurthy, Rajesh, et al., “Drilling and Filling, but not in your Dentist's Chair A look at some recent history of multi-chip and through silicon via (TSV) technology”, Chip Design Magazine, (Oct./Nov. 2008), 7 pgs.
“U.S. Appl. No. 12/849,742, Response filed Sep. 30, 2013 to Non-Final Office Action mailed Mar. 28, 2013”, 12 pgs.
“U.S. Appl. No. 12/849,787, Response filed Oct. 28, 2013 to Non Final Office Action mailed May 28, 2013”, 12 pgs.
“Chinese Application Serial No. 201180053926.1, Amendment filed Aug. 21, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201180055309.5, Voluntary Amendment filed Aug. 23, 2013”, w/English Translation, 13 pgs.
“Chinese Application Serial No. 201320165465.3, Office Action mailed Jul. 22, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320165465.3, Response filed Aug. 7, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial 201320171504.0, Office Action mailed Jul. 22, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320171504.0, Response filed Jul. 25, 2013 to Office Action mailed Jul. 22, 2013”, w/English Translation, 33 pgs.
“Chinese Application Serial No. 201320171616.6, Office Action mailed Jul. 10, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Office Action mailed Jul. 11, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 25, 2013 to Office Action mailed Jul. 11, 2013”, w/English Translation, 21 pgs.
“Chinese Application Serial No. 201320171757.8, Response filed Jul. 26, 2013 to Office Action mailed Jul. 10, 2013”, w/English Translation, 40 pgs.
“Chinese Application Serial No. 201320172128.7, Office Action mailed Jul. 12, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172128.7, Response filed Aug. 7, 2013 to Office Action mailed Jul. 12, 2013”, w/English Translation, 39 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Jul. 9, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320172367.2, Office Action mailed Jul. 9, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320172367.2, Response filed Sep. 16, 2013 to Office Action mailed Jul. 9, 2013”, w/English Translation, 24 pgs.
“Chinese Application Serial No. 201320185461.1, Office Action mailed Jul. 23, 2013”, w/English Translation, 3 pgs.
“Chinese Application Serial No. 201320185461.1, Response filed Sep. 10, 2013 to Office Action mailed Jul. 23, 2013”, w/English Translation, 25 pgs.
“Chinese Application Serial No. 201320186292.3, Office Action mailed Jul. 19, 2013”, w/English Translation, 2 pgs.
“Chinese Application Serial No. 201320186292.3, Response filed Sep. 10, 2013 to Office Action mailed Jul. 19, 2013”, w/English Translation, 23 pgs.
“European Application Serial No. 13001692.6, European Search Report mailed Jul. 24, 2013”, 5 pgs.
“European Application Serial No. 13001696.7, Extended European Search Report mailed Aug. 6, 2013”, 4 pgs.
“European Application Serial No. 13001721.3, European Search Report mailed Jul. 18, 2013”, 9 pgs.
“International Application Serial No. PCT/US2013/024138, International Search Report mailed May 24, 2013”, 3 pgs.
“International Application Serial No. PCT/US2013/024138, Written Opinion mailed May 24, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Sep. 17, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Sep. 17, 2013”, w/English Translation, 8 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Aug. 29, 2013”, w/English Translation, 6 pgs.
“Korean Application Serial No. 10-2013-7009790, Office Action mailed Jun. 26, 2013”, W/English Translation, 7 pgs.
“Korean Application Serial No. 10-2013-7009790, Response filed Aug. 26, 2013 to Office Action mailed Aug. 26, 2013”, w/English Claims, 11 pgs.
“Korean Application Serial No. 10-2013-7010143, Office Action mailed May 28, 2013”, w/English Translation, 5 pgs.
“Korean Application Serial No. 10-2013-7010143, Response filed Jul. 24, 2013 to Office Action mailed May 28, 2013”, w/English Claims, 14 pgs.
Ferreira, Antoine, et al., “A Survey of Modeling and Control Techniques for Micro- and Nanoelectromechanical Systems”, IEEE Transactions on Systems, Man and Cybernetics—Part C: Applications and Reviews vol. 41, No. 3., (May 2011), 350-364.
Fleischer, Paul E, “Sensitivity Minimization in a Single Amplifier Biquad Circuit”, IEEE Transactions on Circuits and Systems. vol. Cas-23, No. 1, (1976), 45-55.
Reljin, Branimir D, “Properties of SAB filters with the two-pole single-zero compensated operational amplifier”, Circuit Theory and Applications: Letters to the Editor. vol. 10, (1982), 277-297.
Sedra, Adel, et al., “Chapter 8.9: Effect of Feedback on the Amplifier Poles”, Microelectronic Circuits, 5th edition, (2004), 836-864.
Song-Hee, Cindy Paik, “A MEMS-Based Precision Operational Amplifier”, Submitted to the Department of Electrical Engineering and Computer Sciences MIT, [Online]. Retrieved from the Internet: <URL: http://dspace.mit.edu/bitstream/handle/1721.1/16682/57138272.pdf? . . . >, (Jan. 1, 2004), 123 pgs.
“U.S. Appl. No. 13/362,955, Final Office Action mailed Nov. 19, 2014”, 5 pgs.
“U.S. Appl. No. 13/362,955, Response filed Aug. 15, 2014 to Non Final Office Action mailed May 15, 2014”, 13 pgs.
“U.S. Appl. No. 13/363,537, Examiner Interview Summary mailed Sep. 29, 2014”, 3 pgs.
“U.S. Appl. No. 13/363,537, Notice of Allowance mailed Nov. 7, 2014”, 5 pgs.
“U.S. Appl. No. 13/363,537, Response filed Sep. 29, 2014 to Final Office Action mailed Jun. 27, 2014”, 9 pgs.
“U.S. Appl. No. 13/821,586, Response filed Nov. 24, 2014 to Restriction Requirement mailed Sep. 22, 2014”, 6 pgs.
“U.S. Appl. No. 13/821,586, Restriction Requirement mailed Sep. 22, 2014”, 4 pgs.
“U.S. Appl. No. 13/821,589, Response filed Nov. 10, 2014 to Non Final Office Action mailed Jul. 9, 2014”, 15 pgs.
“U.S. Appl. No. 13/821,598, Non Final Office Action mailed Nov. 20, 2014”, 9 pgs.
“U.S. Appl. No. 13/821,598, Response filed Oct. 15, 2014 to Restriction Requirement mailed Aug. 15, 2014”, 8 pgs.
“U.S. Appl. No. 13/821,612, Response filed Oct. 23, 2014 to Non Final Office Action mailed Jul. 23, 2014”, 6 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Sep. 4, 2014”, w/English Claims, 11 pgs.
“Chinese Application Serial No. 201180055029.4, Response filed Nov. 14, 2014 to Office Action mailed Jul. 2, 2014”, w/English Claims, 23 pgs.
“Chinese Application Serial No. 201310118845.6, Office Action mailed Sep. 9, 2014”, 8 pgs.
“Chinese Application Serial No. 201310119472.4, Office Action mailed Sep. 9, 2014”, w/English Translation, 11 pgs.
“European Application Serial No. 11826043.9, Office Action mailed May 6, 2013”, 2 pgs.
“European Application Serial No. 11826043.9, Response filed Nov. 4, 2013 to Office Action mailed May 6, 2013”, 6 pgs.
“European Application Serial No. 11826067.8, Extended European Search Report mailed Oct. 6, 2014”, 10 pgs.
“European Application Serial No. 11826070.2, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 11 pgs.
“European Application Serial No. 11826071.0, Response filed Sep. 19, 2014 to Office Action mailed Mar. 12, 2014”, 20 pgs.
“European Application Serial No. 11827347.3, Office Action mailed May 2, 2013”, 6 pgs.
“European Application Serial No. 11827347.3, Response filed Oct. 30, 2013 to Office Action mailed May 2, 2013”, 9 pgs.
“European Application Serial No. 11827384.6, Extended European Search Report mailed Nov. 12, 2014”, 6 pgs.
“European Application Serial No. 13001695.9, European Search Report mailed Oct. 5, 2014”, 6 pgs.
Dunn, C, et al., “Efficient linearisation of sigma-delta modulators using single-bit dither”, Electronics Letters 31(12), (Jun. 1995), 941-942.
Kulah, Haluk, et al., “Noise Analysis and Characterization of a Sigma-Delta Capacitive Microaccelerometer”, 12th International Conference on Solid State Sensors, Actuators and Microsystems, (2003), 95-98.
Sherry, Adrian, et al., “AN-609 Application Note: Chopping on Sigma-Delta ADCs”, Analog Devices, [Online]. Retrieved from the Internet: <URL: http://www.analog.com/static/imported-files/application—notes/AN-609.pdf>, (2003), 4 pgs.
“U.S. Appl. No. 12/849,742, Notice of Allowance mailed Nov. 29, 2013”, 7 pgs.
“U.S. Appl. No. 12/849,787, Notice of Allowance mailed Dec. 11, 2013”, 9 pgs.
“U.S. Appl. No. 13/362,955, Response filed Feb. 17, 2014 to Restriction Requirement mailed Dec. 17, 2013”, 9 pgs.
“U.S. Appl. No. 13/362,955, Restriction Requirement mailed Dec. 17, 2013”, 6 pgs.
“U.S. Appl. No. 13/363,537, Non Final Office Action mailed Feb. 6, 2014”, 10 pgs.
“U.S. Appl. No. 13/742,942, Notice of Allowance mailed Jan. 28, 2014”, 9 pgs.
“U.S. Appl. No. 13/746,016, Notice of Allowance mailed Jan. 17, 2014”, 10 pgs.
“U.S. Appl. No. 13/755,841, Restriction Requirement mailed Feb. 21, 2014”, 6 pgs.
“Chinese Application Serial No. 201180053926.1, Office Action mailed Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jan. 16, 2014”, 8 pgs.
“Chinese Application Serial No. 201180055029.4, Office Action mailed Jan. 13, 2014”, 7 pgs.
“Chinese Application Serial No. 201320172366.8, Office Action mailed Oct. 25, 2013”, 8 pgs.
“Chinese Application Serial No. 201320172366.8, Response filed Dec. 24, 2013 to Office Action mailed Oct. 25, 2013”, 11 pgs.
“Chinese Application Serial No. 201320565239.4, Office Action mailed Jan. 16, 2014”, w/English Translation, 3 pgs.
“European Application Serial No. 10806751.3, Extended European Search Report mailed Jan. 7, 2014”, 7 pgs.
“Korean Application Serial No. 10-2013-0109990, Amendment filed Dec. 10, 2013”, 4 pgs.
“Korean Application Serial No. 10-2013-7009775, Office Action mailed Dec. 27, 2013”, 8 pgs.
“Korean Application Serial No. 10-2013-7009775, Response filed Oct. 29, 2013 to Office Action mailed Sep. 17, 2013”, w/English Claims, 23 pgs.
“Korean Application Serial No. 10-2013-7009777, Office Action mailed Jan. 27, 2014”, 5 pgs.
“Korean Application Serial No. 10-2013-7009777, Response filed Nov. 5, 2013 to Office Action mailed Sep. 17, 2013”, 11 pgs.
“Korean Application Serial No. 10-2013-7009788, Office Action mailed Dec. 27, 2013”, w/English Translation, 10 pgs.
“Korean Application Serial No. 10-2013-7009788, Response filed Oct. 29, 2013 to Office Action mailed Aug. 29, 2013”, w/English Claims, 22 pgs.
“U.S. Appl. No. 13/742,942, Supplemental Notice of Allowability mailed Apr. 10, 2014”, 3 pgs.
“U.S. Appl. No. 13/742,994, Response filed Jul. 31, 2015 to Non Final Office Action mailed May 1, 2015”, 12 pgs.
“U.S. Appl. No. 13/755,953, Non Final Office Action mailed May 14, 2015”, 11 pgs.
“U.S. Appl. No. 13/755,953, Notice of Allowance mailed Oct. 28, 2015”, 5 pgs.
“U.S. Appl. No. 13/755,953, Response filed Sep. 15, 2015 to Non Final Office Action mailed May 14, 2015”, 10 pgs.
“U.S. Appl. No. 13/813,443, Non Final Office Action mailed Jun. 10, 2015”, 10 pgs.
“U.S. Appl. No. 13/813,443, Response filed May 22, 2015 to Restriction Requirement mailed Apr. 29, 2015”, 7 pgs.
“U.S. Appl. No. 13/813,443, Response filed Oct. 13, 2015 to Non Final Office Action mailed Jun. 10, 2015”, 7 pgs.
“U.S. Appl. No. 13/821,586, Notice of Allowance mailed Jun. 5, 2015”, 6 pgs.
“U.S. Appl. No. 13/821,586, Response filed May 15, 2015 to Non Final Office Action mailed Jan. 15, 2015”, 12 pgs.
“U.S. Appl. No. 13/821,589, Final Office Action mailed Jul. 17, 2015”, 14 pgs.
“U.S. Appl. No. 13/821,589, Response filed May 12, 2015 toFinal Office Action mailed May 12, 2015”, 12 pgs.
“U.S. Appl. No. 13/821,589, Response filed Oct. 19, 2015 to Final Office Action mailed Jul. 17, 2015”, 10 pgs.
“U.S. Appl. No. 13/821,598, Non Final Office Action mailed Jul. 7, 2015”, 9 pgs.
“U.S. Appl. No. 13/821,598, Response filed Oct. 7, 2015 to Non Final Office Action mailed Jul. 7, 2015”, 10 pgs.
“U.S. Appl. No. 13/821,619, Ex Parte Quayle Action mailed Jul. 16, 2015”, 8 pgs.
“U.S. Appl. No. 13/821,619, Non Final Office Action mailed Oct. 13, 2015”, 11 pgs.
“U.S. Appl. No. 13/821,619, Response filed Sep. 16, 2015 to Ex Parte Quayle Action mailed Jul. 16, 2015”, 11 pgs.
“U.S. Appl. No. 13/821,842, Corrected Notice of Allowance mailed Oct. 19, 2015”, 2 pgs.
“U.S. Appl. No. 13/821,842, Examiner Interview Summary mailed Sep. 15, 2015”, 3 pgs.
“U.S. Appl. No. 13/821,842, Notice of Allowance Received mailed Sep. 15, 2015”, 13 pgs.
“U.S. Appl. No. 13/821,842, Response filed Jun. 18, 2015 Non Final Office Action mailed Mar. 18, 2015”, 11 pgs.
“U.S. Appl. No. 13/821,842, Supplemental Notice of Allowability mailed Sep. 28, 2015”, 2 pgs.
“U.S. Appl. No. 13/821,853, Final Office Action mailed Jun. 18, 2015”, 7 pgs.
“U.S. Appl. No. 13/821,853, Response filed May 18, 2015 to Non Final Office Action mailed Feb. 18, 2015”, 12 pgs.
“U.S. Appl. No. 13/821,853, Response filed Oct. 19, 2015 to Final Office Action mailed Jun. 18, 2015”, 8 pgs.
“U.S. Appl. No. 13/857,349, Non Final Office Action mailed Oct. 8, 2015”, 10 pgs.
“U.S. Appl. No. 14/023,869, Non Final Office Action mailed Jun. 15, 2015”, 15 pgs.
“U.S. Appl. No. 14/658,579, Final Office Action mailed Oct. 21, 2015”, 10 pgs.
“U.S. Appl. No. 14/658,579, Non Final Office Action mailed Jul. 1, 2015”, 9 pgs.
“U.S. Appl. No. 14/658,579, Response filed Oct. 1, 2015 to Non Final Office Action mailed Jul. 1, 2015”, 11 pgs.
“Chinese Application Serial No. 201180044919.5, Office Action mailed Jun. 25, 2015”, w/ English Translation, 8 pgs.
“Chinese Application Serial No. 201180054796.3, Office Action mailed Jun. 4, 2015”, w/ English Translation, 7 pgs.
“Chinese Application Serial No. 201180055630.3, Office Action mailed Jul. 10, 2015”, w/ English Claims, 8 pgs.
“Chinese Application Serial No. 201180055630.3, Response filed Sep. 25, 2015 to Office Action mailed Jul. 10, 2015”, w/ English Claims, 14 pgs.
“Chinese Application Serial No. 201180055792.7, Office Action mailed Jul. 21, 2015”, w/ English Translation, 5 pgs.
“Chinese Application Serial No. 201180055792.7, Response filed May 5, 2015 to Office Action mailed Dec. 22, 2014”, w/ English Claims, 15 pgs.
“Chinese Application Serial No. 201180055794.6, Response filed May 4, 2015 to Office Action mailed Dec. 17, 2014”, w/ English Claims, 15 pgs.
“Chinese Application Serial No. 201180055823.9,Response filed Aug. 3, 2015 to Office Action mailed Mar. 19, 2015”, w/ English Translation, 14 pgs.
“Chinese Application Serial No. 201180055845.5, Office Action mailed Aug. 5, 2015”, w/ English Translation, 5 pgs.
“Chinese Application Serial No. 201180055845.5,Response filed Jul. 13, 2015 to Office Action mailed Mar. 4, 2015”, w/ English Translation, 17 pgs.
“Chinese Application Serial No. 201310115550.3, Office Action mailed May 22, 2015”, w/ English Claims, 8 pgs.
“Chinese Application Serial No. 201310119730.9, Office Action mailed May 4, 2015”, w/ English Claims, 8 pgs.
“Chinese Application Serial No. 201310119806.8, Office Action mailed Jul. 3, 2015”, w/ English Claims, 12 pgs.
“Chinese Application Serial No. 201310119986.X, Office Action mailed May 12, 2015”, w/ English Claims, 14 pgs.
“Chinese Application Serial No. 201310127961.4, Office Action mailed May 6, 2015”, w/ English Claims, 7 pgs.
“Chinese Application Serial No. 201310127961.4, Response filed Sep. 2, 2015 to Office Action mailed May 6, 2015”, w/ English Claims, 19 pgs.
“Chinese Application Serial No. 201310128046.7, Office Action mailed Jul. 23, 2015”, w/ English Translation, 7 pgs.
“Chinese Application Serial No. 201310415336.X, Office Action mailed Jul. 3, 2015”, w/ English Claims, 9 pgs.
“Chinese Application Serial No. 201380007588.7, Office Action mailed Jun. 10, 2015”, w/ English Claims, 7 pgs.
“Chinese Application Serial No. 201380007615.0, Office Action mailed May 6, 2015”, w/ English Claims, 7 pgs.
“European Application Serial No. 11826069.4, Extended European Search Report mailed Jul. 23, 2015”, 8 pgs.
“European Application Serial No. 11827347.3, Extended European Search Report mailed Jul. 31, 2015”, 6 pgs.
“European Application Serial No. 11827357.2, Extended European Search Report mailed Aug. 26, 2015”, 4 pgs.
“European Application Serial No. 13001694.2, Extended European Search Report mailed Oct. 2, 2015”, 8 pgs.
“European Application Serial No. 13001720.5, Extended European Search Report mailed Aug. 20, 2015”, 7 pgs.
Related Publications (1)
Number Date Country
20130270657 A1 Oct 2013 US
Provisional Applications (1)
Number Date Country
61384240 Sep 2010 US