This application claims priority to German Patent Application No. 10 2011 085 727.3, filed on Nov. 3, 2011 and PCT/EP2012/071724, filed Nov. 2, 2012.
The invention relates to a micromechanical element, a component having a micromechanical element and a method for producing a component.
In active and passive safety systems of contemporary automobiles, numerous sensor information items such as the wheel speed, steering lock, acceleration values and rotational speed values are required. For example, an airbag function uses acceleration information items along a longitudinal axis and along a transverse axis of the vehicle with a measurement range up to 500-1000 m/s2. In contrast, for the electronic stability programme, acceleration sensor information items in the range up to 20 m/s2 are required in addition to the measurement of the rotational speed about the vertical axis of the vehicle. In this context, separate sensors are conventionally used for measuring the acceleration for different measurement ranges.
A further procedure proposes integrating a plurality of sensors to form one unit. Arrangements with sensor integration on an individual chip are already known. EP 2 081 030 A2 describes a combination of an acceleration sensor with a rotational rate sensor. WO 2008/026331 A1 presents an acceleration sensor with an extended measurement range.
However, until now it has been problematic to carry out measurements of various measurement variables such as rotational speed and acceleration with a single micromechanical element.
The invention is based on the object of proposing solutions in order to be able to make available different physical measurement variables with a single device.
The object is achieved by means of the features described herein. Preferred developments of the invention are the subject matter of the dependent claims.
The invention is therefore based on the concept of making available a micromechanical element, a component having a micromechanical element and a method for producing the component. In this context, the micromechanical element, which can be part of a component, has a plurality of individual sensor elements, wherein at least two individual sensor elements of a micromechanical element are arranged in a housing of a component.
Individual sensor elements can be embodied as sensors such as, for example, rotational speed sensors and acceleration sensors. With the micromechanical element according to the invention it is possible to make available sensors for measuring rotational speed values and acceleration values with an extended measurement range. By integrating a plurality of individual sensor elements inside one micromechanical element it is possible to measure over time different physical measurement variables such as acceleration, velocity, rotational rate, pressure, temperature and angle, such as the angle of inclination.
A combination of individual sensor elements which can register physical measurement variables in different ranges, for example as an acceleration sensor unit, is also suitable for being arranged inside the micromechanical element according to the invention. Such micromechanical elements extend the measurement range of the individual sensor elements. This is advantageous, in particular, when measuring an acceleration in vehicles. In this context, low acceleration values and high acceleration values can be measured with similar precision using a single micromechanical element inside one component. Control units or control electronics units, which are also arranged in the component, can further process the detected measurement values.
It is therefore possible to use a single component or sensor to make available the measurement of rotational speed values and acceleration values with an extended measurement range. It is possible to make available integration of elements on a single electromechanical element or chip by, for example, integrating different micromechanical structures at different gas pressures on a chip in order to carry out different measurement tasks. In this context it is possible to make available different requirements using different adjustable pressures in the chip.
It is also possible to use the sensors according to the invention for measuring the longitudinal acceleration and transverse acceleration of a vehicle in the lower measurement range and in the high measurement range, as well as to detect the rotational speed about the vertical axis of a vehicle. Integrating the sensors inside one component allows a saving in terms of space and costs.
In addition it is advantageous to combine rotational rate sensors and acceleration sensors with one another on one unit in order to make available a single part for different measurement tasks. This is possible since the measurements of the rotational speed and acceleration can be based on similar physical principles, which permits all the sensors to be integrated in a single micromechanical element.
It is also advantageous if production processes of the acceleration sensors and of the rotational rate sensors are made similar, with the result that harmonizing the processes or method steps during the production of the two sensor types permits the same technology platform to be used.
In addition it is advantageous that the integration constitutes a reduction in the costs for the design technology and connection technology since fewer elements have to be processed. It is also possible to produce a combined micromechanical element more cost-effectively since there can be a saving in terms of structures such as, for example, frames. Finally, the space required for a single element is smaller compared to an arrangement with a plurality of elements.
Crash situations can also be detected in good time if strong and abrupt braking, which occurs in the low acceleration range, is detected and implemented in an airbag triggering method. Owing to differences in signal transit time and phases between acceleration sensors which operate separately and are physically independent it is possible for disadvantages to occur during the configuration of the triggering method. These disadvantages can now be overcome by using the proposed arrangements.
Developments of the invention may be method steps which implement the features of the specified components described herein.
The properties, features and advantages of this invention which are described above as well as the way in which they are achieved become clearer and more easily understandable in conjunction with the following description of the exemplary embodiments which are explained in more detail in conjunction with the drawings, in which:
In this context, the same reference symbols are used for identical or similar elements in the figures.
In
The micromechanical element 123a and the control devices 1′b, 2′b, 3′b, 23b, 123b are each connected to one another electrically via a first connection geometry 11. The control devices 1′b, 2′b, 3′b, 23b, 123b each have a second connection geometry 12 which is connected electrically to a third connection geometry 13 of the component 100. The component 100 can be placed in contact with external electrical wiring by the third connection geometry 13.
While the above description constitutes the preferred embodiment of the present invention, it will be appreciated that the invention is susceptible to modification, variation and change without departing from the proper scope and fair meaning of the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 085 727.3 | Nov 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/071724 | 11/2/2012 | WO | 00 | 4/30/2014 |