The present disclosure generally relates to systems, methods and compositions for use in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cpf1 genome editing systems. Disclosed herein are modified Cpf1 mRNAs, modified guide RNAs, and combinations thereof, that confer increased levels of genome editing.
The bacterial type II CRISPR-Cas9 genome editing method has recently received a great deal of interest in the field of genome engineering. The co-expression of a single Cas9 protein isolated from Streptococcus pyogenes with a chimeric single guide RNA (sgRNA) can precisely create double stranded breaks (DSBs) in a genome. The Cas9 protein is directed to a precise DNA sequence in the genome by a twenty nucleotide target sequence present in the sgRNA, which guides the Cas9 protein to create the DSB. The presence of a double-stranded break in genomic DNA dramatically increases the rate of homologous recombination.
Recently, an additional genome editing system, termed the CRISPR-Cpf1 system, was identified (Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015 Oct. 22; 163(3):759-71). Cpf1 cleaves DNA in a staggered pattern and leaves sticky ends, as compared to the cleaved blunt DNA ends left by the Cas9 enzyme. In addition, Cpf1 only requires one guide RNA rather than the two (tracrRNA and crRNA) needed by Cas9 for cleavage (or a chimeric single guide RNA). However, gene editing frequencies are still very low, and thus new methods are needed to improve the efficiency of the CRISPR-Cpf1 gene editing system.
Messenger RNAs (mRNAs) encoding functional proteins have demonstrated their therapeutic potential in fundamental and clinical studies. For example, immunotherapy with mRNA-electroporated dendritic cell provided therapeutic benefit in several cancer clinical trials. mRNAs were also utilized to produce chimeric antigen receptors in T cells for adoptive T-cell therapy, to express functional proteins for protein replacement therapy, and most recently, to make nucleases for gene engineering. Although there have been significant advances in mRNA-based therapeutics in the past decade, instability and immunogenicity of mRNA hinders its therapeutic application in humans.
The systems, methods, and compositions disclosed herein address these and other needs.
Disclosed herein are systems, methods, and compositions that utilize modified Cpf1 mRNAs, modified guide RNAs, and combinations thereof. These modified RNAs can be used in the CRISPR-Cpf1 genome editing system. These modified Cpf1 mRNAs and modified guide RNAs can incorporate a number of chemical changes to the nucleotides, including changes to the nucleobase, the ribose sugar, and/or the phosphodiester linkage; or these changes can include insertions or deletions into the guide RNA sequence. These modified Cpf1 mRNAs, modified guide RNAs, and combinations thereof, can improve efficiency of the CRISPR/Cpf1 genome editing system, reduce off-target effects, reduce toxicity, increase Cpf1 protein levels, increase Cpf1 nuclease activity, increase guide RNA stability, and/or increase Cpf1 mRNA stability.
In one aspect, disclosed herein is a genome editing system comprising:
In one embodiment, the guide RNA hybridizes with the target sequence and the Cpf1 protein cleaves the DNA molecule.
In one embodiment, the at least one chemically modified nucleotide confers increased Cpf1 nuclease activity, increased Cpf1 protein levels, decreased off-target effects, reduced toxicity, and/or increased Cpf1 mRNA stability as compared to a corresponding mRNA encoding a Cpf1 protein not having the chemically modified nucleotide. In one aspect, disclosed herein is a genome editing system comprising:
In one aspect, disclosed herein is a genome editing system comprising:
In another aspect, provided herein is a method of RNA-guided genome editing, the method comprising:
introducing into a cell of the subject:
In another aspect, provided herein is a method of RNA-guided genome editing, the method comprising:
introducing into a cell of the subject:
In another aspect, provided herein is a method of RNA-guided genome editing, the method comprising:
introducing into a cell of the subject:
In another aspect, provided herein is a method of increasing Cpf1 protein levels in a cell, the method comprising:
introducing into a cell of the subject:
In a further aspect, provided herein is a method of increasing Cpf1 nuclease activity in a cell, the method comprising:
introducing into a cell of the subject:
In another aspect, provided herein is a method of reducing toxicity of RNA-guided genome editing in a cell, the method comprising:
introducing into a cell of the subject:
In one aspect, disclosed herein is a genome editing system comprising:
In one embodiment, the at least one chemically modified nucleotide confers increased Cpf1 nuclease activity, decreased off-target effects, reduces toxicity, and/or increased guide RNA stability as compared to a corresponding guide RNA not having the chemical modification.
In another aspect, provided herein is a method of increasing the efficiency of RNA-guided genome editing in a cell, the method comprising:
introducing into a cell of the subject:
In a further aspect, provided herein is a method of decreasing the off-target effects of RNA-guided genome editing in a cell, the method comprising:
introducing into a cell of the subject:
In another aspect, provided herein is a method of reducing toxicity of RNA-guided genome editing in a cell, the method comprising:
introducing into a cell of the subject:
The accompanying figures, which are incorporated in and constitute a part of this specification, illustrate several aspects described below.
Disclosed herein are systems, methods, and compositions that utilize modified Cpf1 mRNAs, modified guide RNAs, and combinations thereof. These modified RNAs can be used in the CRISPR-Cpf1 genome editing system. These modified Cpf1 mRNAs and modified guide RNAs can incorporate a number of chemical changes to the nucleotides, including changes to the nucleobase, the ribose sugar, and/or the phosphodiester linkage; or these changes can include insertions or deletions into the guide RNA sequence. These modified Cpf1 mRNAs, modified guide RNAs, and combinations thereof, can improve efficiency of the CRISPR/Cpf1 genome editing system, reduce off-target effects, reduce toxicity, increase Cpf1 protein levels, increase Cpf1 nuclease activity, increase guide RNA stability, and/or increase Cpf1 mRNA stability.
Reference will now be made in detail to the embodiments of the invention, examples of which are illustrated in the drawings and the examples. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. The following definitions are provided for the full understanding of terms used in this specification.
As used herein, the article “a,” “an,” and “the” means “at least one,” unless the context in which the article is used clearly indicates otherwise.
The term “nucleic acid” as used herein means a polymer composed of nucleotides, e.g. deoxyribonucleotides or ribonucleotides.
The terms “ribonucleic acid” and “RNA” as used herein mean a polymer composed of ribonucleotides.
The terms “deoxyribonucleic acid” and “DNA” as used herein mean a polymer composed of deoxyribonucleotides.
The term “oligonucleotide” denotes single- or double-stranded nucleotide multimers of from about 2 to up to about 100 nucleotides in length. Suitable oligonucleotides may be prepared by the phosphoramidite method described by Beaucage and Carruthers, Tetrahedron Lett., 22:1859-1862 (1981), or by the triester method according to Matteucci, et al., J. Am. Chem. Soc., 103:3185 (1981), both incorporated herein by reference, or by other chemical methods using either a commercial automated oligonucleotide synthesizer or VLSIPS™ technology. When oligonucleotides are referred to as “double-stranded,” it is understood by those of skill in the art that a pair of oligonucleotides exist in a hydrogen-bonded, helical array typically associated with, for example, DNA. In addition to the 100% complementary form of double-stranded oligonucleotides, the term “double-stranded,” as used herein is also meant to refer to those forms which include such structural features as bulges and loops, described more fully in such biochemistry texts as Stryer, Biochemistry, Third Ed., (1988), incorporated herein by reference for all purposes.
The term “polynucleotide” refers to a single or double stranded polymer composed of nucleotide monomers. In some embodiments, the polynucleotide is composed of nucleotide monomers of generally greater than 100 nucleotides in length and up to about 8,000 or more nucleotides in length.
The term “polypeptide” refers to a compound made up of a single chain of D- or L-amino acids or a mixture of D- and L-amino acids joined by peptide bonds.
The term “complementary” refers to the topological compatibility or matching together of interacting surfaces of a probe molecule and its target. Thus, the target and its probe can be described as complementary, and furthermore, the contact surface characteristics are complementary to each other.
The term “hybridization” refers to a process of establishing a non-covalent, sequence-specific interaction between two or more complementary strands of nucleic acids into a single hybrid, which in the case of two strands is referred to as a duplex.
The term “anneal” refers to the process by which a single-stranded nucleic acid sequence pairs by hydrogen bonds to a complementary sequence, forming a double-stranded nucleic acid sequence, including the reformation (renaturation) of complementary strands that were separated by heat (thermally denatured).
The term “melting” refers to the denaturation of a double-stranded nucleic acid sequence due to high temperatures, resulting in the separation of the double strand into two single strands by breaking the hydrogen bonds between the strands.
The term “target” refers to a molecule that has an affinity for a given probe. Targets may be naturally-occurring or man-made molecules. Also, they can be employed in their unaltered state or as aggregates with other species.
The term “promoter” or “regulatory element” refers to a region or sequence determinants located upstream or downstream from the start of transcription and which are involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. Promoters need not be of bacterial origin, for example, promoters derived from viruses or from other organisms can be used in the compositions, systems, or methods described herein. The term “regulatory element” is intended to include promoters, enhancers, internal ribosomal entry sites (IRES), and other expression control elements (e.g. transcription termination signals, such as polyadenylation signals and poly-U sequences). Such regulatory elements are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Regulatory elements include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). A tissue-specific promoter may direct expression primarily in a desired tissue of interest, such as muscle, neuron, bone, skin, blood, specific organs (e.g. liver, pancreas), or particular cell types (e.g. lymphocytes). Regulatory elements may also direct expression in a temporal-dependent manner, such as in a cell-cycle dependent or developmental stage-dependent manner, which may or may not also be tissue or cell-type specific. In some embodiments, a vector comprises one or more pol III promoter (e.g. 1, 2, 3, 4, 5, or more pol I promoters), one or more pol II promoters (e.g. 1, 2, 3, 4, 5, or more pol II promoters), one or more pol I promoters (e.g. 1, 2, 3, 4, 5, or more pol I promoters), or combinations thereof. Examples of pol III promoters include, but are not limited to, U6 and H1 promoters. Examples of pol II promoters include, but are not limited to, the retroviral Rous sarcoma virus (RSV) LTR promoter (optionally with the RSV enhancer), the cytomegalovirus (CMV) promoter (optionally with the CMV enhancer) [see, e.g., Boshart et al, Cell, 41:521-530 (1985)], the SV40 promoter, the dihydrofolate reductase promoter, the β-actin promoter, the phosphoglycerol kinase (PGK) promoter, and the EF1α promoter. Also encompassed by the term “regulatory element” are enhancer elements, such as WPRE; CMV enhancers; the R-U5′ segment in LTR of HTLV-I (Mol. Cell. Biol., Vol. 8(1), p. 466-472, 1988); SV40 enhancer; and the intron sequence between exons 2 and 3 of rabbit β-globin (Proc. Natl. Acad. Sci. USA., Vol. 78(3), p. 1527-31, 1981). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression desired, etc.
The term “recombinant” refers to a human manipulated nucleic acid (e.g. polynucleotide) or a copy or complement of a human manipulated nucleic acid (e.g. polynucleotide), or if in reference to a protein (i.e, a “recombinant protein”), a protein encoded by a recombinant nucleic acid (e.g. polynucleotide). In embodiments, a recombinant expression cassette comprising a promoter operably linked to a second nucleic acid (e.g. polynucleotide) may include a promoter that is heterologous to the second nucleic acid (e.g. polynucleotide) as the result of human manipulation (e.g., by methods described in Sambrook et al., Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y, (1989) or Current Protocols in Molecular Biology Volumes 1-3, John Wiley & Sons, Inc. (1994-1998)). In another example, a recombinant expression cassette may comprise nucleic acids (e.g. polynucleotides) combined in such a way that the nucleic acids (e.g. polynucleotides) are extremely unlikely to be found in nature. For instance, human manipulated restriction sites or plasmid vector sequences may flank or separate the promoter from the second nucleic acid (e.g. polynucleotide). One of skill will recognize that nucleic acids (e.g. polynucleotides) can be manipulated in many ways and are not limited to the examples above.
The term “expression cassette” refers to a nucleic acid construct, which when introduced into a host cell, results in transcription and/or translation of a RNA or polypeptide, respectively. In embodiments, an expression cassette comprising a promoter operably linked to a second nucleic acid (e.g. polynucleotide) may include a promoter that is heterologous to the second nucleic acid (e.g. polynucleotide) as the result of human manipulation (e.g., by methods described in Sambrook et al., Molecular Cloning—A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y, (1989) or Current Protocols in Molecular Biology Volumes 1-3, John Wiley & Sons, Inc. (1994-1998)). In some embodiments, an expression cassette comprising a terminator (or termination sequence) operably linked to a second nucleic acid (e.g. polynucleotide) may include a terminator that is heterologous to the second nucleic acid (e.g. polynucleotide) as the result of human manipulation. In some embodiments, the expression cassette comprises a promoter operably linked to a second nucleic acid (e.g. polynucleotide) and a terminator operably linked to the second nucleic acid (e.g. polynucleotide) as the result of human manipulation. In some embodiments, the expression cassette comprises an endogenous promoter. In some embodiments, the expression cassette comprises an endogenous terminator. In some embodiments, the expression cassette comprises a synthetic (or non-natural) promoter. In some embodiments, the expression cassette comprises a synthetic (or non-natural) terminator.
The terms “identical” or percent “identity,” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 60% identity, preferably 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or higher identity over a specified region when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site or the like). Such sequences are then said to be “substantially identical.” This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 10 amino acids or 20 nucleotides in length, or more preferably over a region that is 10-50 amino acids or 20-50 nucleotides in length. As used herein, percent (%) amino acid sequence identity is defined as the percentage of amino acids in a candidate sequence that are identical to the amino acids in a reference sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN, ALIGN-2 or Megalign (DNASTAR) software. Appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full-length of the sequences being compared can be determined by known methods.
For sequence comparisons, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
One example of an algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) Nuc. Acids Res. 25:3389-3402, and Altschul et al. (1990) J. Mol. Biol. 215:403-410, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al. (1990) J. Mol. Biol. 215:403-410). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) or 10, M=5, N=−4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLO SUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=−4, and a comparison of both strands.
The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01.
The phrase “codon optimized” as it refers to genes or coding regions of nucleic acid molecules for the transformation of various hosts, refers to the alteration of codons in the gene or coding regions of polynucleic acid molecules to reflect the typical codon usage of a selected organism without altering the polypeptide encoded by the DNA. Such optimization includes replacing at least one, or more than one, or a significant number, of codons with one or more codons that are more frequently used in the genes of that selected organism.
Nucleic acid is “operably linked” when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, “operably linked” means that the DNA sequences being linked are near each other, and, in the case of a secretory leader, contiguous and in reading phase. However, operably linked nucleic acids (e.g. enhancers and coding sequences) do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. In embodiments, a promoter is operably linked with a coding sequence when it is capable of affecting (e.g. modulating relative to the absence of the promoter) the expression of a protein from that coding sequence (i.e., the coding sequence is under the transcriptional control of the promoter).
The term “nucleobase” refers to the part of a nucleotide that bears the Watson/Crick base-pairing functionality. The most common naturally-occurring nucleobases, adenine (A), guanine (G), uracil (U), cytosine (C), and thymine (T) bear the hydrogen-bonding functionality that binds one nucleic acid strand to another in a sequence specific manner.
As used throughout, by a “subject” (or a “host”) is meant an individual. Thus, the “subject” can include, for example, domesticated animals, such as cats, dogs, etc., livestock (e.g., cattle, horses, pigs, sheep, goats, etc.), laboratory animals (e.g., mouse, rabbit, rat, guinea pig, etc.) mammals, non-human mammals, primates, non-human primates, rodents, birds, reptiles, amphibians, fish, and any other animal. The subject can be a mammal such as a primate or a human.
The terms “guide RNA”, “gRNA”, “CRISPR RNA”, or “crRNA” are used interchangeably throughout the specification. This crRNA (or guide RNA) consists of a 5′-handle and a guide segment. Cpf1 protein interacts with the pseudoknot structure formed by the 5′-handle of crRNA (or guide RNA). The guide segment possesses complementary binding with the target DNA sequences.
In one aspect, disclosed herein is a genome editing system comprising:
In one aspect, disclosed herein is a genome editing system comprising:
In one aspect, disclosed herein is a genome editing system comprising:
In one aspect, disclosed herein is a genome editing system comprising:
In one aspect, disclosed herein is a genome editing system comprising:
In one embodiment, the at least one chemically modified nucleotide confers increased Cpf1 nuclease activity, decreased off-target effects, and/or increased guide RNA stability as compared to a corresponding guide RNA not having the chemical modification.
In one aspect, disclosed herein is a genome editing system comprising:
In one aspect, disclosed herein is a genome editing system comprising:
In one aspect, disclosed herein is a nucleic acid comprising:
In one embodiment, the at least one chemically modified nucleotide confers increased Cpf1 nuclease activity, increased Cpf1 protein levels, increased Cpf1 translation, decreased off-target effects, reduced toxicity, and/or increased Cpf1 mRNA stability as compared to a corresponding mRNA encoding a Cpf1 protein not having the chemically modified nucleotide.
In one embodiment, the mRNA encoding a Cpf1 protein is encoded by the DNA sequence SEQ ID NO:1, wherein the mRNA encoding a Cpf1 protein comprises at least one chemically modified nucleotide. In one embodiment, the mRNA encoding a Cpf1 protein is encoded by a nucleic acid which is at least 50%, at least 60%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97.5%, or at least 99% identical to the DNA sequence SEQ ID NO:1.
In one embodiment, the mRNA encoding a Cpf1 protein is encoded by the DNA sequence SEQ ID NO:2, wherein the mRNA encoding a Cpf1 protein comprises at least one chemically modified nucleotide. In one embodiment, the mRNA encoding a Cpf1 protein is encoded by a nucleic acid which is at least 50%, at least 60%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97.5%, or at least 99% identical to the DNA sequence SEQ ID NO:2.
In some embodiments, the at least one chemically modified nucleotide comprises a chemically modified nucleobase, a chemically modified ribose, a chemically modified phosphodiester linkage, or a combination thereof.
In some embodiments, the mRNA encoding a Cpf1 protein comprises at least one chemically modified nucleotide selected from a chemically modified nucleobase, a chemically modified ribose, a chemically modified phosphodiester linkage, or a combination thereof.
In some embodiments, the guide RNA comprises at least one chemically modified nucleotide selected from a chemically modified nucleobase, a chemically modified ribose, a chemically modified phosphodiester linkage, or a combination thereof.
In some embodiments, the mRNA encoding a Cpf1 protein comprises at least one chemically modified nucleotide selected from a chemically modified nucleobase, a chemically modified ribose, a chemically modified phosphodiester linkage, or a combination thereof; and the guide RNA comprises at least one chemically modified nucleotide selected from a chemically modified nucleobase, a chemically modified ribose, a chemically modified phosphodiester linkage, or a combination thereof.
In some embodiments, the mRNA encoding a Cpf1 protein comprises a chemically modified nucleobase and the guide RNA comprises a chemically modified ribose.
In some embodiments, the mRNA encoding a Cpf1 protein comprises a pseudouridine and the guide RNA comprises a chemically modified ribose.
In some embodiments, the mRNA encoding a Cpf1 protein comprises a chemically modified nucleobase and the guide RNA comprises a 2′-Fluoro (2′-F).
In some embodiments, the mRNA encoding a Cpf1 protein comprises a pseudouridine and the guide RNA comprises a 2′-Fluoro (2′-F).
In some embodiments, the chemically modified nucleotides in the mRNA encoding a Cpf1 protein and the chemically modified nucleotides in the guide RNA can be the same type of modification. In some embodiments, the chemically modified nucleotides in the mRNA encoding a Cpf1 protein can be different than the chemically modified nucleotides in the guide RNA.
In one aspect, disclosed herein is a genome editing system comprising:
In one aspect, disclosed herein is a genome editing system comprising:
In some embodiments, the engineered guide RNA comprises at least one nucleotide insertion. In some embodiments, the engineered guide RNA comprises at least four nucleotide insertions. In some embodiments, the engineered guide RNA comprises from four to twelve nucleotide insertions.
In some embodiments, the engineered guide RNA comprises at least one nucleotide deletion. In some embodiments, the engineered guide RNA comprises at least two nucleotide deletion. In some embodiments, the engineered guide RNA comprises from two to eight nucleotide deletion.
In one embodiment, the guide RNA is split into at least two RNAs. In one embodiment, the guide RNA is split at the stem loop into two RNAs.
In one aspect, provided herein is a method of RNA-guided genome editing, the method comprising:
introducing into a cell of the subject:
In another aspect, provided herein is a method of RNA-guided genome editing, the method comprising:
introducing into a cell of the subject:
In another aspect, provided herein is a method of RNA-guided genome editing, the method comprising:
introducing into a cell of the subject:
In another aspect, provided herein is a method of increasing Cpf1 protein levels in a cell, the method comprising:
introducing into a cell of the subject:
In another aspect, provided herein is a method of increasing Cpf1 protein levels in a cell, the method comprising:
introducing into a cell of the subject:
In some embodiments, the method further comprises: introducing into a cell of the subject a guide RNA that hybridizes with a target sequence of a DNA molecule in a eukaryotic cell that contains the DNA molecule.
In a further aspect, provided herein is a method of increasing Cpf1 nuclease activity in a cell, the method comprising:
introducing into a cell of the subject:
In a further aspect, provided herein is a method of increasing Cpf1 nuclease activity in a cell, the method comprising:
introducing into a cell of the subject:
In some embodiments, the method further comprises: introducing into a cell of the subject a guide RNA that hybridizes with a target sequence of a DNA molecule in a eukaryotic cell that contains the DNA molecule.
In another aspect, provided herein is a method of reducing toxicity of RNA-guided genome editing in a cell, the method comprising:
introducing into a cell of the subject:
In another aspect, provided herein is a method of increasing Cpf1 mRNA levels, the method comprising:
transcribing a nucleic acid encoding a Cpf1 protein;
In another aspect, provided herein is a method of increasing Cpf1 protein levels, the method comprising:
translating an mRNA encoding a Cpf1 protein;
In another aspect, provided herein is a method of increasing the efficiency of RNA-guided genome editing in a cell, the method comprising:
introducing into a cell of the subject:
In a further aspect, provided herein is a method of decreasing the off-target effects of RNA-guided genome editing in a cell, the method comprising:
introducing into a cell of the subject:
In a further aspect, provided herein is a method of reducing toxicity of RNA-guided genome editing in a cell, the method comprising:
introducing into a cell of the subject:
Previous studies have reported that chemical modifications can improve the stability and potency of various RNAs including siRNA, miRNA and antisense nucleic acids. Recently, chemical modifications were incorporated into guide RNAs for the CRISPR-Cas9 system comprising 2′O-methyl, 3′phosphorothioate, or 3′thioPACE at three terminal nucleotides at both the 5′ and 3′ ends of gRNAs (Hendel, A. Nature Biotechnology 2015, 33: 985-989). In some embodiments, the guide RNA comprises at least one chemically modified nucleotide.
In some embodiments, the at least one chemically modified nucleotide comprises a chemically modified nucleobase, a chemically modified ribose, a chemically modified phosphodiester linkage, or a combination thereof.
In some embodiments, the mRNA encoding a Cpf1 protein comprises at least one chemically modified nucleotide selected from a chemically modified nucleobase, a chemically modified ribose, a chemically modified phosphodiester linkage, or a combination thereof.
In some embodiments, the guide RNA comprises at least one chemically modified nucleotide selected from a chemically modified nucleobase, a chemically modified ribose, a chemically modified phosphodiester linkage, or a combination thereof.
In some embodiments, the mRNA encoding a Cpf1 protein comprises at least one chemically modified nucleotide selected from a chemically modified nucleobase, a chemically modified ribose, a chemically modified phosphodiester linkage, or a combination thereof; and the guide RNA comprises at least one chemically modified nucleotide selected from a chemically modified nucleobase, a chemically modified ribose, a chemically modified phosphodiester linkage, or a combination thereof.
In some embodiments, the mRNA encoding a Cpf1 protein comprises a chemically modified nucleobase and the guide RNA comprises a chemically modified ribose.
In some embodiments, the mRNA encoding a Cpf1 protein comprises a pseudouridine and the guide RNA comprises a chemically modified ribose.
In some embodiments, the mRNA encoding a Cpf1 protein comprises a chemically modified nucleobase and the guide RNA comprises a 2′-Fluoro (2′-F).
In some embodiments, the mRNA encoding a Cpf1 protein comprises a pseudouridine and the guide RNA comprises a 2′-Fluoro (2′-F).
In one aspect, disclosed herein is a method of RNA-guided genome editing, the method comprising:
introducing into a cell of the subject:
In one aspect, disclosed herein is a method of RNA-guided genome editing, the method comprising:
introducing into a cell of the subject:
In some embodiments, the engineered guide RNA comprises at least one nucleotide insertion. In some embodiments, the engineered guide RNA comprises at least four nucleotide insertions. In some embodiments, the engineered guide RNA comprises from four to twelve nucleotide insertions.
In some embodiments, the engineered guide RNA comprises at least one nucleotide deletion. In some embodiments, the engineered guide RNA comprises at least two nucleotide deletion. In some embodiments, the engineered guide RNA comprises from two to eight nucleotide deletion.
In one embodiment, the at least one chemically modified nucleotide is a chemically modified nucleobase. In some embodiments, the mRNA encoding a Cpf1 protein comprises a chemically modified nucleobase. In some embodiments, the guide RNA comprises a chemically modified nucleobase.
In one embodiment, the chemically modified nucleobase is selected from 5-formylcytidine (5fC), 5-methylcytidine (5meC), 5-methoxycytidine (5moC), 5-hydroxycytidine (5hoC), 5-hydroxymethylcytidine (5hmC), 5-formyluridine (5fU), 5-methyluridine (5-meU), 5-methoxyuridine (5moU), 5-carboxymethylesteruridine (5 camU), pseudouridine (Ψ), N′-methylpseudouridine (me1Ψ), N6-methyladenosine (me6A), or thienoguanosine (thG).
In some embodiments, the chemically modified nucleobase is selected from 5-methoxyuridine (5moU), pseudouridine (T), and N′-methylpseudouridine (meq). In some embodiments, the chemically modified nucleobase is 5-methoxyuridine (5moU). In some embodiments, the chemically modified nucleobase is pseudouridine (4′). In some embodiments, the chemically modified nucleobase is N′-methylpseudouridine (meq).
In some embodiments, the at least one chemically modified nucleobase comprises N′-methylpseudouridine (meq) and 5-methylcytidine (5meC). In some embodiments, the at least one chemically modified nucleobase comprises pseudouridine (‘l’) and 5-methylcytidine (5meC). In some embodiments, the at least one chemically modified nucleobase comprises 5-methyluridine (5-meU) and 5-methoxycytidine (5moC). In some embodiments, the at least one chemically modified nucleobase comprises 5-methyluridine (5-meU) and 5-hydroxymethylcytidine (5hmC).
The structures of these modified nucleobases are shown below:
In one embodiment, the at least one chemically modified nucleotide is a chemically modified ribose. In some embodiments, the mRNA encoding a Cpf1 protein comprises a chemically modified ribose. In some embodiments, the guide RNA comprises a chemically modified ribose.
In one embodiment, the chemically modified ribose is selected from 2′47-methyl (2′-O-Me), 2′-Fluoro 2′-deoxy-2′-fluoro-beta-D-arabino-nucleic acid (2′F-ANA), 4′-SFANA, 2′-azido, UNA, 2′-O-methoxy-ethyl (2′-O-ME), 2′-O-Ethylamine, 2′-O-Cyanoethyl, Locked nucleic acid (LAN), Methylene-CLAN, N-MeO-amino BNA, or N-MeO-aminooxy BNA. In one embodiment, the chemically modified ribose is selected from 2′-O-methyl (2′-O-Me) or 2′-Fluoro (2′-F).
The structures of these modified riboses are shown below:
In one embodiment, the at least one chemically modified nucleotide is a chemically modified phosphodiester linkage. In some embodiments, the mRNA encoding a Cpf1 protein comprises a chemically modified phosphodiester linkage. In some embodiments, the guide RNA comprises a chemically modified phosphodiester linkage.
In One embodiment, the chemically modified phosphodiester linkage is selected from Phosphorothioate (PS), Boranophosphate, phosphodithioate (PS2), 3′,5′-amide, N3′-phosphoramidate (NP), Phosphodiester (PU), or 2′,5′-phosphodiester (2′,5′-PO). In one embodiment, the chemically modified phosphodiester linkage is pbosphorothioate.
The structures of these modified phosphodiester linkages are shown below:
In one aspect, the invention provides a kit comprising one or more of the components described herein. In some embodiments, the kit comprises instructions for using the kit. In some embodiments, the kit comprises:
In one embodiment, the invention, provides a method of modifying a target polynucleotide in a eukaryotic cell. In one embodiment, the invention provides a method of modifying expression of a polynucleotide in a eukaryotic cell.
In some embodiments, an enzyme coding sequence encoding a Cpf1 protein is codon optimized for expression in particular cells, such as eukaryotic cells. In some embodiments, the DNA sequence encoding a Cpf1 protein is similar, or shares substantial identity with SEQ ID NO:1. In one embodiment, the mRNA encoding a. Cpf1 protein is encoded by SEQ ID NO:1. In one embodiment, the mRNA encoding a Cpf1 protein is encoded by a nucleic acid which is at least 50%, at least 60%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97.5%, or at least 99% identical to SEQ ID NO:1.
In some embodiments, an enzyme coding sequence encoding a Cpf1 protein is codon optimized for expression in particular cells, such as eukaryotic cells. In some embodiments, the DNA sequence encoding a Cpf1 protein is similar, or shares substantial identity with SEQ ID NO:2. In one embodiment, the mRNA encoding a Cpf1 protein is encoded by SEQ ID NO:2. In one embodiment, the mRNA encoding a Cpf1 protein is encoded by a nucleic acid which is at least 50%, at least 60%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97.5%, or at least 99% identical to SEQ ID NO:2.
In general, a guide RNA sequence is any polynucleotide sequence having sufficient complementarity with a target polynucleotide sequence to hybridize with the target sequence and direct sequence-specific binding of a CRISPR-Cpf1 complex to the target sequence. In some embodiments, the degree of complementarity between a guide sequence and its corresponding target sequence, when optimally aligned using a suitable alignment algorithm, is about or more than about 50%, 60%, 75%, 80%, 85%, 90%, 95%, 97.5%, 99%, or more. In some embodiments, the guide RNA comprises at least one chemically modified nucleotide.
The chemically modified Cpf1 mRNA can be used to correct a mutation in a genome. For example, the guide RNAs can be designed to correct mutations that cause hemophilia (due to mutations in the genes encoding Factor VIII (F8; hemophilia A) or Factor IX (F9; hemoglobin B). In one aspect, the CRISPR-Cpf1 system, including the chemically modified Cpf1 mRNA, may be used to correct genetic mutations causing hemophilia.
In one aspect, disclosed herein is a method of treating hemophilia in a subject comprising: introducing into a cell of the subject:
In one aspect, disclosed herein is a method of treating hemophilia in a subject comprising: introducing into a cell of the subject:
In one aspect, disclosed herein is a method of treating hemophilia in a subject comprising:
introducing into a cell of the subject:
In additional embodiments, the CRISPR-Cpf1 system can be used to repair point mutations, truncations, deletions, inversions, or other genetic mutations that are identified as the causal mutation for a genetic disease.
In one embodiment, the Cpf1 protein is encoded by SEQ ID NO:1. This sequence can be codon optimized, can differ due to the degeneracy of the genetic code, can be similar, or share substantial identity, to SEQ ID NO:1, but still retain nuclease activity.
In one embodiment, the Cpf1 protein is encoded by SEQ ID NO:2. This sequence can be codon optimized, can differ due to the degeneracy of the genetic code, can be similar, or share substantial identity, to SEQ ID NO:2, but still retain nuclease activity.
The following examples are set forth below to illustrate the systems, methods, compositions and results according to the disclosed subject matter. These examples are not intended to be inclusive of all aspects of the subject matter disclosed herein, but rather to illustrate representative systems, methods, compositions and results. These examples are not intended to exclude equivalents and variations of the present invention which are apparent to one skilled in the art.
Synthesis of Chemically Modified Cpf1 mRNA.
Chemically modified mRNAs encoding AsCpf1 (Acidaminococcus sp. BV3L6 CRISPR from Prevotella and Francisella 1) protein including but not limited to PS backbone modification, ψ, 5moU, me1ψ, 5hmC, 5meU, 5meC and 5moC base modification, 2′-O-Me, 2′-F sugar modification, as well as their combinations (
Co-Delivery of AsCpf1 mRNA & Guide RNA (gRNA) and Extraction of Genomic DNA
293T cells were seeded on a 24-well plate at a density of 100,000 cells per well. After overnight culture, cells were treated with chemically modified AsCpf1 mRNA expressing AsCpf1 protein (500 or 1000 ng) and gRNA (15 or 30 pmol, PAGE-grade) using LipofectamineMAX, Lipofectamine 3000 or mRNA-in reagent. 48 hr after treatment, genomic DNA (gDNA) from 293T cells was extracted using the DNeasy Blood & Tissue Kit (QIAGEN) following the manufacturer's instructions, and quantified by Nanodrop 2000. Unmodified AsCpf1 mRNA served as a control.
On-target or off-target sites were amplified using Q5 High-Fidelity DNA Polymerase (New England Biolabs) and specific primers (Integrated DNA Technologies, Supplementary). The PCR products (10 uL) were then hybridized in NEBuffer 2 (New England Biolabs) in a T100 thermal cycler (Bio-Rad). Subsequently, the annealed PCR products were subjected to T7 Endonuclease I (New England Biolabs) digestion, and analysis on a 2% agarose gel to determine the efficiency of genome editing (indel %) with the following formula: 100×(1−(1−fraction cleaved)1/2).
In one embodiment, the Cpf1 protein is encoded by SEQ ID NO:1. This sequence can be codon optimized, can differ due to the degeneracy of the genetic code, can be similar, or share substantial identity, to SEQ ID NO:1, but still retain nuclease activity.
In one embodiment, the Cpf1 protein is encoded by SEQ ID NO:2. This sequence can be codon optimized, can differ due to the degeneracy of the genetic code, can be similar, or share substantial identity, to SEQ ID NO:2, but still retain nuclease activity.
In one embodiment, all of the uridines (corresponding to the thymidines (T) in the DNA sequence) in the Cpf1 mRNA have been replaced by pseudouridine (See
Synthesis of DNMT1 Guide RNA (gRNA).
Guide RNAs (gRNAs) targeting human DNMT1 locus were synthesized using automated solid-phase DNA/RNA synthesizer. The sequence of unmodified gRNA for CRISPR-AsCpf1 is
Messenger RNAs (mRNAs) encoding functional proteins have demonstrated their therapeutic potential in fundamental and clinical studies (Sahin, U., et. al. (2014) Nat. Rev. Drug Discov. 13, 759-780; Islam, M. A., et. al. (2015) Biomater. Sci. 3, 1519-1533; McIvor, R. S. (2011) Mol. Ther. 19, 822-823; Pascolo, S. (2008) Handb. Exp. Pharmacol. 221-235; Tavernier, G., et. al. (2011) J. Control Release 150, 238-247)). For example, immunotherapy with mRNA-electroporated dendritic cell provided therapeutic benefit in several cancer clinical trials (Pascolo, S. (2008) Handb. Exp. Pharmacol. 221-235; Anguille, S., et. al. (2014) Lancet Oncol. 15, e257-267)). mRNAs were also utilized to produce chimeric antigen receptors in T cells for adoptive T-cell therapy, (Zhao, Y, et. al. (2010) Cancer Res. 70, 9053-9061)) to express functional proteins for protein replacement therapy, (Li, B., et. al. (2015) Nano Lett. 15, 8099-8107; Kauffman, et. al. (2015) Nano Lett. 15, 7300-7306; Zangi, L., et. al. (2013) Nat. Biotechnol. 31, 898-907; Kormann, M. S., et. al. (2011) Nat. Biotechnol. 29, 154-157; Thess, A., et. al. (2015) Mol. Ther. 23, 1456-1464)) and most recently, to make nucleases for gene engineering (Hendel, A., et. al. (2015) Nat. Biotechnol. 33, 985-989; Wang, J., et. al. (2015) Nat. Biotechnol. 33, 1256-1263)). Although there have been significant advances in mRNA-based therapeutics in the past decade, instability and immunogenicity of mRNA hinders its therapeutic application in humans (Sahin, U., et. al. (2014) Nat. Rev. Drug Discov. 13, 759-780; Pascolo, S. (2008) Handb. Exp. Pharmacol. 221-235; Tavernier, G., et. al. (2011) J. Control Release 150, 238-247; Weissman, D., and Kariko, K. (2015) Mol. Ther. 23, 1416-1417; Kariko, K., et. al. (2004) J. Biol. Chem. 279, 12542-12550)).
In order to address these issues, numerous strategies for mRNA modification can be investigated to improve translation efficiency and reduce immunogenicity, including modifications at the 5′ cap, 5′ and 3′-untranslated regions, the coding region, and the poly(A) tail (Sahin, U., et. al. (2014) Nat. Rev. Drug Discov. 13, 759-780). Incorporation of chemically modified nucleotides into mRNAs (
In order to investigate the effects of chemical modifications on mRNAs, a library of 24 firefly Luciferase mRNAs (FLuc mRNAs) using chemically modified nucleotides was synthesized (See
Next, the effects of temperature on mRNA translation was analyzed by conducting the experiment at 37° C. Analysis of the results indicated significant correlation for translation at 30 and 37° C. (p<0.0001; R2=0.69; Pearson correlation coefficient r=0.8316,
In order to study protein expression in cells, FLuc mRNAs were transfected in Hep 3B cells (a hepatocellular carcinoma cell line). As shown in
In order to examine the effects of chemical modification on mRNAs with a different coding sequence, a library of 24 mRNAs encoding enhanced green fluorescent protein (eGFP mRNAs) with the same chemical modifications as FLuc mRNAs was prepared by in vitro transcription as mentioned above. Next, Hep 3B and THP-1 cells were transfected with modified eGFP mRNAs using the unmodified eGFP mRNA as a control. As shown in
To study the stability of chemically modified mRNAs, Hep 3B cells were transfected with unmodified, me′ψ-, 5moU-, or ψ-modified eGFP mRNAs. After 1 h treatment (t=0), total RNA was collected at different time intervals (t=0, 1.5, 3, and 4.5 h) and reversely transcribed into complementary DNA (cDNA). The amount of each eGFP mRNA was calculated by quantitative PCR (qPCR) analysis in normalization of endogenous 18S rRNA. Relative mRNA levels were in percentage of their corresponding mRNAs at t=0. As shown in
In summary, two sets of chemically modified mRNAs (FLuc and eGFP mRNAs) were designed and synthesized, which incorporated full substitution of one or two types of chemically modified nucleotides. The effects of the chemically modified mRNAs on protein expression were investigated by varying conditions including temperature in the rabbit reticulocyte lysate system, cell types, and coding sequences. The results indicated that temperature doesn't affect the trend for a large set of mRNAs screening in the rabbit reticulocyte lysate. Yet, when conducting high throughput screening of chemically modified mRNAs, it is necessary to strictly control assay temperature in the rabbit reticulocyte lysate system in order to predict the top modified mRNAs since significant correlation of luciferase intensity in the rabbit reticulocyte lysate system at 30° C. and in Hep 3B cells was observed. Additionally, cell types and coding sequences play important roles in protein expression of different chemically modified mRNAs. Moreover, 5moU modifications significantly increased the stability of eGFP mRNA compared to unmodified and other modified mRNAs. Therefore, the chemical modification of mRNA may require specific design and screening for particular therapeutic applications or biological studies. Because numerous enzymes play essential roles in mRNA translation and protein expression, further mechanistic studies may elucidate mRNA-enzyme interactions involved in multiple signaling pathways. For example, Kariko et al reported that ψ-modified mRNA enhances translation by reducing the activation of RNA-dependent protein kinase (PKR) (Anderson, B. R., et. al. (2010) Nucleic Acids Res. 38, 5884-5892). Lastly, N1-methylpseudouridine (me1ψ), 5-methoxyuridine (5moU), and pseudouridine (ψ) were identified as exhibiting the largest increases on protein expression.
Rabbit reticulocyte lysate kit and Bright-Glo reagent were purchased from Promega Corporation. Eagle's Minimum Essential Medium (EMEM) was purchased from Corning Incorporated. RPMI-1640 Medium and Hep 3B cells were purchased from American Type Culture Collection. RNeasy Mini Kit was from QIAGEN. Dulbecco's Modified Eagle Medium (DMEM), Opti-MEM medium, fetal bovine serum, Lipofectamine 2000, High Capacity cDNA Reverse Transcription Kits and SYBR Green PCR Master Mix were purchased from Life technologies. Antarctic phosphatase was purchased from New England Biolabs.
Synthesis of Chemically Modified mRNA.
Chemically modified mRNAs encoding firefly Luciferase and green fluorescent protein respectively were synthesized using an in vitro transcription from the corresponding plasmid DNA template by TriLink BioTechnologies. Chemically modified nucleotides were completely substituted for their natural counterparts while synthesizing the mRNAs. The transcripts were then further modified for mammalian systems with 5′ cap and 3′ poly(A) tail structures. mRNAs were purified using commercially available silica-based spin columns. mRNAs were dephosphorylated with Antarctic phosphatase and repurified by silica-based spin column.
mRNA Translation in Rabbit Reticulocyte Lysate System.
Two microliters of FLuc mRNA (1 μg/μL) was added to 48 μL of rabbit reticulocyte lysate reaction assembly and the mixture was incubated at either 30° C. or 37° C. for 90 min. After incubation, 50 μL of the substrate consisting of 25 μL of Bright-Glo and 25 μL of PBS was added to 2.5 μL of the reaction mixture. Luminescence intensity was measured immediately after 5 minutes dark incubation.
mRNA Translation in Cells.
Hep 3B cells were cultured in Eagle's Minimum Essential Medium (EMEM), THP-1 cells in RPMI-1640 Medium and primary rat hepatocytes in Dulbecco's Modified Eagle Medium (DMEM). All medium supplemented with 10% fetal bovine serum. For FLuc mRNA translation, Hep 3B and THP-1 cells were seeded in 96-well white plates at a density of 104 cells/well. Following overnight culture, 50 ng of modified FLuc mRNA was complexed with Lipofectamine 2000 in Opti-MEM medium, and the mixture was added to each well after 5 min incubation. Twenty four hours post-transfection, 100 μL of Bright-Glo reagent was added to each well, and luminescence intensity was measured immediately after 5 minutes dark incubation. For eGFP mRNA translation, Hep 3B, THP-1 cells and primary rat hepatocytes were seeded in 6-well plates at a density of 2.0×105/well. After overnight culture, 2 μg of modified FLuc mRNA was complexed with Lipofectamine 2000 in Opti-MEM medium, and the mixture was added to each well after 5 min incubation. After 24 hours treatment, cells were harvested and the green fluorescence intensity was determined on a BD LSR II flow cytometer (BD Biosciences, San Jose, Calif.).
RNA Isolation, cDNA Synthesis and Quantitative PCR (qPCR).
Hep 3B cells were seeded in 6-well plates at a density of 3×105 cells/well and cultured overnight. 1 μg of eGFP mRNA complexed with Lipofectamine 2000 in Opti-MEM medium was transfected into cells. After one hour incubation, cells were rinsed twice to remove the residual RNA and incubated with fresh medium. At desired time points (t=0, 1.5, 3 and 4.5 h), total RNAs were extracted with RNeasy Mini Kit, reverse transcribed into complementary DNA (cDNA) by High Capacity cDNA Reverse Transcription Kits, and quantified with gene-specific primers (Table 1) and SYBR Green PCR Master Mix in a StepOne Plus Real Time PCR system (Applied Biosystems, Foster City, Calif.) according the manufacturer's instruction. The expression of the target gene versus that of the reference gene (18S rRNA) was calculated using formula 2−ΔΔCt, where Ct was the cycle threshold value. The relative eGFP mRNA levels at different time points were normalized to the initial (t=0) eGFP mRNAs.
CRISPR (clustered, regularly interspaced, short palindromic repeats) is part of adaptive immunity in bacteria and archaea (Makarova, K. S. et al. Nat Rev Microbiol 9, 467-477 (2011); Bosley, K. S. et al. Nat Biotechnol 33, 478-486 (2015)). CRISPR-associated protein 9 (Cas9) induces double stranded DNA breaks through complexation with two RNA molecules: CRISPR RNA (crRNA) and trans-activating crRNA (Jinek, M. et al. Science 337, 816-821 (2012); Cong, L. et al. Science 339, 819-823 (2013); Mali, P. et al. Science 339, 823-826 (2013)). Recently, CRISPR-Cpf1 from Acidaminococcus sp. (AsCpf1) and Lachnospiraceae (LbCpf1) (Zetsche, B. et al. Cell 163, 759-771 (2015); Dong, D. et al. Nature 532, 522-526 (2016); Fonfara, I., et al. Nature 532, 517-521 (2016); Yamano, T. et al. Cell (2016)), a second class 2 (type V) CRISPR system displayed comparable genome editing capability to Cas9. Genome-wide analysis suggested that Cpf1 may cause fewer off-target cleavages in comparison to Cas9 (Kleinstiver, B. P. et al. Nat Biotechnol 34, 869-874 (2016)), (Kim, D. et al. Nat Biotechnol 34, 863-868 (2016)). To exert sequence-specific endonuclease activity, Cpf1 is functional through a single crRNA without an additional tracrRNA (Zetsche, B. et al. Cell 163, 759-771 (2015); Fonfara, I., et al. Nature 532, 517-521 (2016)). As shown in
To increase genome editing efficiency and reduce off-target effects of CRISPR systems, previous studies explored a wide variety of approaches (Slaymaker, I. M. et al. Science 351, 84-88 (2016); Kleinstiver, B. P. et al. Nature 529, 490-495 (2016)). Among them, chemical modifications of CRISPR-Cas9 demonstrated enhanced activity in a number of human cells (Hendel, A. et al. Nat Biotechnol 33, 985-989 (2015); Randar, M. et al. Proc Natl Acad Sci USA 112, E7110-7117 (2015)). For example, guide RNAs with three chemically modified nucleotides at both 5′- and 3′-end strongly improved Cas9-mediated genome editing in human primary T cells (Hendel, A. et al. Nat Biotechnol 33, 985-989 (2015)). Moreover, incorporation of chemically modified nucleotides was able to remain indel percentage using Cas9 and truncated guide RNAs (Randar, M. et al. Proc Natl Acad Sci USA 112, E7110-7117 (2015)). In addition, the structures of guide RNA for Cas9 play important roles in gene cutting (Chen, B. et al. Cell 155, 1479-1491 (2013); Dang, Y. et al. Genome Biol 16, 280 (2015)). Yet, no literature is known about the effects of chemically modified crRNAs and Cpf1 mRNAs on their genome editing efficiency and off-target effects. In this example, 26 chemically modified crRNAs were investigated, which established comprehensive structure-activity (gene editing efficiency) relationships. A yr-modification was identified in this example as a favorable chemical alteration for Cpf1 mRNA. Importantly, combination of crRNA and yr-mRNA significantly increased gene editing efficiency over 300% compared to the positive control group. This combination induced more dramatic improvement of gene cutting efficiency when utilizing LbCpf1. More interestingly, AsCpf1 in complexation with LbCpf1 crRNA was able to effectively achieve genome editing while LbCpf1 in complexation with AsCpf1 crRNA completely lost its function. Overall, our findings offer a promising strategy for broad genome editing applications.
To study the effects of chemically modified crRNAs on gene editing efficiency, three types of chemically modified nucleotides were utilized in this example: phosphorothioate (PS), 2′-O-Me-, and 2′-F-modifications (Watts, J. K., et al. Drug Discov Today 13, 842-855 (2008)) (
Meanwhile, the effects of chemically modified AsCpf1 mRNAs on their gene editing efficiency were investigated. Pseudouridine (ψ), N1-methylpseudouridine (me1ψ), and 5-methoxyuridine (5moU) modified AsCpf1 mRNA was also designed, which were produced via an in vitro transcription. HEK293T cells were treated with crWT and modified Cpf1 mRNA. As shown in
Terminology of the Cpf1-family orthologs: Acidaminococcus sp. BV3L6 Cpf1 (AsCpf1); Francisella tularensis subsp. Novicida U112 Cpf1 (FnCpf1); Lachnospiraceae bacterium MC2017 Cpf1 (Lb3Cpf1); Butyrivibrio proteoclasticus Cpf1 (BpCpf1); Parcubacteria bacterium GWC2011_GWC2_44_17 Cpf1 (PbCpf1); Peregrinibacteria bacterium GW2011_GWA_33_10 Cpf1 (PeCpf1); Leptospira inadai Cpf1 (LiCpf1); Smithella sp. SC_K08D17 Cpf1 (SsCpf1); Lachnospiraceae bacterium MA2020 Cpf1 (Lb2Cpf1); Porphyromonas crevioricanis Cpf1 (PeCpf1); Porphyromonas macacae Cpf1 (PmCpf1); Candidatus Methanoplasma termitum Cpf1 (CMtCpf1); Eubacterium eligens Cpf1 (EeCpf1); Moraxella bovoculi 237 Cpf1 (MbCpf1); Prevotella disiens Cpf1 (PdCpf1); Lachnospiraceae bacterium ND2006 Cpf1 (LbCpf1).
Inspired by crRNAs from other 15 Cpf1-family, we then engineered the loop [U(−10)-C(−9)-U(−8)-U(−7)] of 5′-handle by substituting the loop of wild-type AsCpf1 crRNA (crWT here is defined as AscrRNA to distinguish crRNAs from other Cpf1-protein family) with those from crRNAs of other Cpf1 family orthologs to investigate the effects of loop on gene cutting activity (
To study the combination effects of chemically modified crRNA and AsCpf1 mRNAs, HEK293T cells were treated with the top-performing modified crRNA and AsCpf1 mRNA (cr3′5F and yr-modified AsCpf1 mRNA). Strikingly, this combination significantly enhanced the gene editing efficiency over 250% compared to the treatment of crWT and plasmid encoding Cpf1 (
Along with AsCpf1, LbCpf1 is another important endonuclease in the Cpf1-family, which displayed genome editing ability in human cells6,7 To investigate whether our strategy is applied to the LbCpf1, we utilized similar chemical modifications for LbCpf1 mRNA as well as its corresponding crRNA (LbCpf1 crRNA). As shown in
Potential off-target effects are one of the major concerns for CRISPR mediated gene editing and may limit its applications (Slaymaker, I. M. et al. Science 351, 84-88 (2016); Kleinstiver, B. P. et al. Nature 529, 490-+(2016)). To study off-target effects of chemically modified Cpf1 mRNAs and crRNAs, the top four previously defined off-target sites were selected and a T7EI assay was performed at each genomic site. No detectable indels were observed in both treatment groups (cr3′5F+ψ-modified AsCpf1 mRNA and crWT+plasmid encoding Cpf1;
In addition to AsCpf1, we also examined the on-target and off-target effects of LbCpf1 with three biological samples from HEK293T cells used in
In summary, genome editing efficiency and off-targets effects are major challenges for the broad applications of CRISPR systems. To address these issues, an array of crRNA variants including chemically modified crRNAs and pseudoknot rearranged crRNAs were designed, and the structure-activity relationships of crRNAs were elucidated for improved genome editing activity in CRISP-Cpf1 system. In sharp contrast to CRISPR-Cas9, neither phosphorothioate substitutions nor dual-modification at both sides of guide RNA enhanced gene editing efficiency. Moreover, slight modifications at the 5′-handle or seed region severely hampered cleavage activity. Importantly, 2′-F modification at the 3′ terminus (cr3′5F) exhibited higher potency compared with wild-type crRNA. Regarding chemically modified Cpf1 mRNA, pseudo-U (ψ) and me1ψ are favorable modifications compared to the mRNA with unmodified nucleotides. Strikingly, combination of cr3′ 5F and ψ Cpf1 mRNA synergistically improved the gene cutting efficiency, which improved over 3-fold compared to unmodified crRNA (crWT) and plasmid encoding AsCpf1. This phenomena were not only confirmed in three cell lines and two target gene sites, but also observed in another Cpf1 family protein LbCpf1, demonstrating the broad applicability of this chemical strategy. In addition, it was shown that the cross complexation of Cpf1 and its guide RNA:AsCpf1 was able to effectively achieve genome editing in the presence of LbCpf1 crRNA; nevertheless, LbCpf1 in combination with AsCpf1 crRNA completely lost its function. This finding further expands the current understanding of the CRISPR-Cpf1 system. Furthermore, targeted deep sequencing data suggested that combination of cr3′ 5F and ψ Cpf1 mRNA did not increase the level of off-target effects.
Synthesis of crRNAs.
The sequences of the crRNA targeting the DNMT1-3 locus:
The sequence of unmodified crRNA targeting AAVS1 locus:
The sequence of unmodified crRNA targeting FANCF-2 locus:
Unmodified crRNA (crWT) and all other crRNA variants including chemically modified crRNAs, stem loop deleted and inserted crRNAs were synthesized using an automated solid-phase DNA/RNA synthesizer. Chemically modified crRNAs consisted of partial or total chemically modified nucleotides including phosphate linkage (PS), 2′-O-Me, 2′-F modified, unlocked, locked nucleotides as well as their combinations (Tables 2 and 3 and
AsCpf1 Plasmid and mRNAs.
Cpf1 plasmid was a gift from Dr. Feng Zhang. ARCA capped and polyadenylated AsCpf1 mRNA transcripts were purchased from TriLink BioTechnologies (San Diego, Calif., USA). For modified mRNAs, uridines were fully substituted with pseudouridine (ψ), N1-methylpseudouridine (me1ψ), or 5-methoxyuridine (5moU). For S1228A & ψ modified mRNA, serine 1228 was substituted with alanine and uridines were fully substituted with pseudouridine (ψ). These mRNAs were subjected to DNase and phosphatase treatment and silica membrane-based purification for further use. All mRNAs were verified by polyacrylamide gels (
Co-Delivery AsCpf1 Plasmid/mRNA and crRNA.
HEK-293T cells were cultured in Dulbecco's modified Eagle's medium (Life technologies). Hep3B cells were cultured in Eagle's Minimum Essential Medium (EMEM, ATCC). All medium supplemented with 10% FBS, and both cell lines used in this study were maintained at 37° C. with 5% CO2. After overnight incubation (approximate 60-80% confluence), cells, seeded on 24-well plates at an initial density of approximate 100,000 cells per well were treated with either 500 ng of Cpf1 expression plasmid (transfection with Lipofectamine 3000 according to the protocol provided by Life Technologies) or 500 ng of mRNA (transfection with Lipofectamine 3000). At the same time, crRNAs (38 pmol for DNMT1-3 and AAVS1 locus, and 114 pmol for FANCF-2 locus) were formulated with Lipofectamine 3000 in Opti-MEM I reduced serum medium (Life Technologies) and added to each well following the manufacturer's recommended protocol.
Two days post-treatment, cells were washed with PBS. The genomic DNA (gDNA) was then extracted and purified with a DNeasy Blood & Tissue Kit (QIAGEN) following the manufacturer's instructions. Concentrations of gDNA were determined on a Nanodrop 2000. Genomic regions flanking the on-target as well as previously predicted off-target sites off-target sites for T7E1 assay were amplified using 100 ng of purified gDNA template, Q5 high-fidelity DNA polymerase (New England Biolabs) and specific primers (Integrated DNA Technologies, Table 3) on a T100 thermal cycler (Bio-Rad).
The PCR products (10 uL) generated using Q5 high-fidelity DNA polymerase were heteroduplexed in hybridization buffer (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 1 mM DTT, pH 7.9) (New England Biolabs) by heating to 98° C. for 10 minutes, followed by a 2° C./s ramp down to 85 C, 1 min at 85° C., and a 0.1° C./s ramp down to 25° C. on a T100 thermal cycler (Bio-Rad). Subsequently, the annealed samples were subjected to T7 Endonuclease I (New England Biolabs) digestion for 30 min, separated by a 2% agarose gel and quantitated on ChemiDoc XRS (Bio-Rad) using Quantity One software. The mutation frequency (indel %) was calculated with the following formula: 100×(1−(1−fraction cleaved)1/2).
To further characterize on-target and off-target effects, genomic segment (200300 bp) spanning the sites of interest were first amplified using sequencing primers with overhang adapter sequences (Table 4) in the first round of PCR for 25 cycles. After purification, the second limited-cycle PCR amplification (8 cycles) was performed using the Nextera XT Index Kit (Illumina) to attach multiplexing indices and Illumina P5/P7 sequencing adapters (Tables 5 and 6) to the first round PCR product. Next, libraries were normalized and pooled, and subjected to 2×300 paired-end sequencing on an Illumina MiSeq system. The raw deep sequencing data from MiSeq were analyzed with a bioinformatic tool, CRISPResso, with specific parameters.
UAAUUUCUACUCUUGUAGAUCUGAUGG
UCCAUGUCUGUUACUC (SEQ ID NO: 11)
UAAUUUCUACUCUUGUAGAUCUGAUGG
UAAUUUCUACUCUUGUAGAUCUGAUGG
UAAUUUCUACUCUUGUAGAUCUGAUGG
UAAUUUCUACUCUUGUAGAUCUGAUGG
UCCAUGUCUGUUACUC (SEQ ID NO: 67)
UAAUUUCUACUCUUGUAGAUCUGAUGG
UCCAUGUCUGUUACUC (SEQ ID NO: 69)
In Table 2, unmodified nucleotides are shown in black. PS modifications are underlined. 2′-O-methyl modifications are shown in italics. 2′-F modifications are shaded. 2′-O-methyl combined with PS modifications are underlined and italicized. 2′-F combined with PS modifications are shaded and underlined. Lowercase denotes DNA base. For Ψ-crRNA, 5meC-crRNA, 5moU-crRNA and m1A-crRNA, correspondent modified nucleotides are in bold (
Homo
TTTCCTGAT
sapiens
Homo
TTTCCTGCT
sapiens
Homo
TTTTCTGAT
sapiens
Homo
TTTTCTTAT
sapiens
TGTACATGT
Homo
TTTCCTGAT
sapiens
Homo
TTTGCTTAC
sapiens
Homo
TTTGGTCGG
sapiens
CRISPResso was utilized to analyze the deep sequencing data. 22 nt (T rather than U) from 3′ of the PAM (TTTN) is designated as crRNA sequences. The amplicon containing the PAM was used for alignment. To quantify mutation events and avoid false positives, the reading size is set up as 10 (10 nt before and after each side of the predicted cleavage site). Minimum average reading quality (phred33 scale) and minimum single bp quality (phred33 scale) is greater than 30 and 20 (recommended values), respectively. Default values were used for other parameters.
Those skilled in the art will appreciate that numerous changes and modifications can be made to the preferred embodiments of the invention and that such changes and modifications can be made without departing from the spirit of the invention. It is, therefore, intended that the appended claims cover all such equivalent variations as fall within the true spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/323,683, filed Apr. 16, 2016, U.S. Provisional Patent Application Ser. No. 62/328,741 filed Apr. 28, 2016, U.S. Provisional Patent Application Ser. No. 62/385,471, filed Sep. 9, 2016, and U.S. Provisional Patent Application Ser. No. 62/400,843 filed Sep. 28, 2016, each of which are expressly incorporated herein by reference.
This invention was made with Government Support under Grant No. 1R01HL136652 awarded by the National Heart, Lung, and Blood Institute. The Government has certain rights to the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/027762 | 4/14/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62323683 | Apr 2016 | US | |
62328741 | Apr 2016 | US | |
62385471 | Sep 2016 | US | |
62400843 | Sep 2016 | US |