The instant application contains a ST26 Sequence Listing in XML format which is hereby incorporated by reference in its entirety. Said XML copy, entitled “MRT-1105US3_ST26.xml”, created on Mar. 20, 2023 and 19 kilobytes in size is incorporated herein by reference in its entirety.
Conventional gene therapy involves the use of DNA for insertion of desired genetic information into host cells. The DNA introduced into the cell is usually integrated into the genome of one or more transfected cells, allowing for long-lasting action of the introduced genetic material in the host. While there may be perceived benefits to such sustained action, integration of exogenous DNA into a host genome may also have many deleterious effects. For example, it is possible that the introduced DNA will be inserted into an intact gene, resulting in a mutation which impedes or even totally eliminates the function of the endogenous gene. Thus, gene therapy with DNA may result in the impairment of a vital genetic function in the treated host, such as e.g., elimination or deleteriously reduced production of an essential enzyme or interruption of a gene critical for the regulation of cell growth, resulting in unregulated or cancerous cell proliferation. In addition, with conventional DNA based gene therapy it is necessary for effective expression of the desired gene product to include a strong promoter sequence, which again may lead to undesirable changes in the regulation of normal gene expression in the cell. It is also possible that the DNA based genetic material will result in the induction of undesired anti-DNA antibodies, which in turn, may trigger a possibly fatal immune response.
In contrast to DNA, the use of RNA as a gene therapy agent is substantially safer because RNA is not integrated into the genome of the transfected cell, thus eliminating the concern that the introduced genetic material will disrupt the normal functioning of an essential gene, or cause a mutation that results in deleterious or oncogenic effects. RNA therapy also does not require extraneous promoter for effective translation of the encoded protein, again avoiding possible deleterious side effects. In addition, any deleterious effects that do result from mRNA based on gene therapy would be of limited duration due to the relatively short half-life Consequently, for many applications the transient nature of mRNA and short life span of the resulting protein can be desirable, compared to the longer lasting stable integration achieved using DNA based gene therapy.
However, in some cases, mRNA instability and short half-life limits its therapeutic effects. Therefore, there is a need for enhancing mRNA stability and prolong half-life for more effective and successful therapeutic use.
The invention provides improved mRNA therapy that has increased mRNA stability and prolonged half-life, among other things. In particular, the invention is based on mRNA encoding a therapeutic protein fused to a polypeptide that is capable of binding to an Fc receptor (“Therapeutic Fusion Protein”), for delivery to one or more target cells for production of therapeutic levels of functional protein. Without wishing to be bound by any theory, it is contemplated that such therapeutic fusion protein is readily transported from the target cell into systemic circulation via an Fc receptor and/or secreted from the cell, recaptured by an Fc receptor and then transcytosed into the systemic circulation. In certain embodiments, the therapeutic protein encoded is naturally secreted and thus naturally associated with an appropriate signal sequence. In other embodiments mRNA encoding a protein that is not normally secreted may be operatively linked to an appropriate signal sequence that results in the secretion of the translated protein.
In certain embodiments, the compositions of the invention are able to translocate, i.e., move intact by either active or passive means from initial target cells (e.g., lung cells) to the systemic blood supply where they are then deposited in different tissues (e.g., liver cells). In these embodiments, the cells where the mRNA is deposited act as a depot for the production of therapeutic protein, which is then readily transported out of the depot cells into systemic circulation via an Fc receptor.
In some embodiments, the compositions of the invention are administered to the lung by inhalation, aerosolization, nebulization, or instillation. Pulmonary delivery provides significant advantages over intravenous infusions or local injections. It eliminates injection site or infusion reactions and should reduce pain upon administration.
Thus, the invention provides compositions and methods for delivery of therapeutic proteins through non-invasive pulmonary applications that result in the production of therapeutically effective levels of protein in both lung and non-lung cells, which is then readily transported into systemic circulation via an Fc receptor. This results in the accumulation of therapeutically effective systemic concentrations of the encoded protein by simple inhalation of the synthetic mRNA compositions of the invention. In addition to facilitating delivery of the fusion protein to the circulatory system, the polypeptide that is capable of binding to an Fc receptor also improves systemic exposure by extending protein half-life.
The compositions and methods of the invention are useful in the management and treatment of a large number of diseases, including but not limited to diseases which result from protein and/or enzyme deficiencies or malfunction. In some embodiments, individuals suffering from such diseases may have underlying genetic defects that lead to the compromised expression of a protein or enzyme, including, for example, the non-synthesis of the secreted protein, the reduced synthesis of the secreted protein, or synthesis of a secreted protein lacking or having diminished biological activity. In some embodiments, the methods and compositions of the invention are useful for the treatment of lysosomal storage disorders and/or urea cycle metabolic disorders that occur as a result of one or more defects in the biosynthesis of secreted enzymes involved in the urea cycle.
The compositions of the invention comprise an mRNA encoding a therapeutic protein fused to a polypeptide that is capable of binding to an Fc receptor (i.e., mRNA that encodes a Therapeutic Fusion Protein). Optionally, the mRNA may include one or more untranslated regions. The compositions of the invention may further comprise a transfer vehicle, such as, e.g., a lipid nanoparticle or a polymeric carrier. The mRNA can encode any clinically useful secreted protein or any clinically useful protein that has been engineered to include a signal sequence that allows the protein to be secreted. In one aspect of the invention, the therapeutic protein is chosen from proteins listed in Tables 1-3, mammalian homologs thereof, and homologs from animals of veterinary or industrial interest thereof. The polypeptide that binds to an Fc receptor can be, e.g., an immunoglobulin Fc domain or an FcRn binding peptide.
Another aspect of the invention provides a method of treating a subject that will benefit from in vivo expression of a therapeutic protein, comprising administering a composition comprising at least one mRNA that encodes a Therapeutic Fusion Protein, wherein following administration of said composition the mRNA is translated in a target cell to produce the Therapeutic Fusion Protein, which is then transported into circulation via an Fc receptor. In some embodiments administration comprises single or repeated doses. In certain embodiments, the dose is administered intravenously, or by pulmonary delivery.
Therapeutic Fusion Proteins produced from mRNA in vivo provide significant advantages over administration of recombinant proteins. Proteins produced from mRNA in endogenous cells, such as, e.g., endogenous epithelial cells, reflect post-translational modifications present normally in the body as opposed to proteins manufactured in common commercially used non-human host systems such as Chinese Hamster Ovary, cells, bacterial cells or yeast cells. Endogenous human glycosylation patterns, protein folding or other native posttranslational modifications may improve tolerability, potency, and reduce immunogenicity.
In addition, the mRNA production process is simplified and improved compared to typical recombinant protein production. The process development, manufacturing, and cost profile compared to typical protein manufacturing is improved. The mRNA process is interchangeable among constructs; only the mRNA sequence changes. mRNA manufacturing also eliminates the need for costly fermentation in bioreactors and large footprint manufacturing facilities and staffing.
The above discussed and many other features and attendant advantages of the present invention will become better understood by reference to the following detailed description of the invention when taken in conjunction with the accompanying examples. The various embodiments described herein are complimentary and can be combined or used together in a manner understood by the skilled person in view of the teachings contained herein.
The invention provides compositions and methods for intracellular delivery of mRNA encoding a Therapeutic Fusion Protein for production of therapeutic levels of functional protein in vivo. The invention further provides methods of treatment of various diseases and conditions by administering the compositions of the invention.
Administration of the compositions of the invention results in the production of functional protein in vivo. The term “functional,” as used herein to qualify a protein or enzyme, means that the protein or enzyme has biological activity, or alternatively is able to perform the same, or a similar function as the native or normally-functioning protein or enzyme. The mRNA compositions of the invention are useful for the treatment of various metabolic or genetic disorders, and in particular those genetic or metabolic disorders that involve the non-expression, mis-expression or deficiency of a protein or enzyme.
The term “therapeutic levels” refers to levels of protein detected in the blood or tissues that are above control levels, wherein the control may be normal physiological levels, or the levels in the subject prior to administration of the mRNA composition.
As provided herein, the compositions may include a transfer vehicle. As used herein, the terms “transfer vehicle,” “delivery vehicle,” “carrier” and the like refer to standard pharmaceutical carriers, diluents, excipients and the like which are generally intended for use in connection with the administration of biologically active agents, including nucleic acids. The compositions and in particular the transfer vehicles described herein are capable of delivering mRNA to the target cell. In certain embodiments, the transfer vehicle is a lipid nanoparticle. In other embodiments, the transfer vehicle is a polymeric carrier, such as, e.g., polyethyleneimine.
mRNA
The mRNA in the compositions of the invention encodes a therapeutic protein, (including a functional polypeptide or peptide), such as, e.g., a hormone, enzyme, or receptor. The therapeutic protein of interest may be one that is normally secreted or excreted. In alternate embodiments, the mRNA is engineered to encode a protein that is not normally secreted or excreted, operably linked to a signal sequence that will allow the protein to be secreted when it is expressed in the cells.
In some embodiments of the invention, the mRNA may optionally have chemical or biological modifications which, for example, improve the stability and/or half-life of such mRNA or which improve or otherwise facilitate protein production. Upon transfection, a natural mRNA in the compositions of the invention may decay with a half-life of between 30 minutes and several days. The mRNAs in the compositions of the invention preferably retain at least some ability to be translated, thereby producing a functional protein or enzyme. Accordingly, the invention provides compositions comprising and methods of administering a stabilized mRNA. In some embodiments of the invention, the activity of the mRNA is prolonged over an extended period of time. For example, the activity of the mRNA may be prolonged such that the compositions of the present invention are administered to a subject on a semi-weekly or bi-weekly basis, or more preferably on a monthly, bi-monthly, quarterly or an annual basis. The extended or prolonged activity of the mRNA of the present invention is directly related to the quantity of protein or enzyme produced from such mRNA. Similarly, the activity of the compositions of the present invention may be further extended or prolonged by modifications made to improve or enhance translation of the mRNA. Furthermore, the quantity of functional protein or enzyme produced by the target cell is a function of the quantity of mRNA delivered to the target cells and the stability of such mRNA. To the extent that the stability of the mRNA of the present invention may be improved or enhanced, the half-life, the activity of the produced protein or enzyme and the dosing frequency of the composition may be further extended.
Accordingly, in some embodiments, the mRNA in the compositions of the invention comprise at least one modification which confers increased or enhanced stability to the nucleic acid, including, for example, improved resistance to nuclease digestion in vivo. As used herein, the terms “modification” and “modified” as such terms relate to the nucleic acids provided herein, include at least one alteration which preferably enhances stability and renders the mRNA more stable (e.g., resistant to nuclease digestion) than the wild-type or naturally occurring version of the mRNA. As used herein, the terms “stable” and “stability” as such terms relate to the nucleic acids of the present invention, and particularly with respect to the mRNA, refer to increased or enhanced resistance to degradation by, for example nucleases (i.e., endonucleases or exonucleases) which are normally capable of degrading such mRNA. Increased stability can include, for example, less sensitivity to hydrolysis or other destruction by endogenous enzymes (e.g., endonucleases or exonucleases) or conditions within the target cell or tissue, thereby increasing or enhancing the residence of such mRNA in the target cell, tissue, subject and/or cytoplasm. The stabilized mRNA molecules provided herein demonstrate longer half-lives relative to their naturally occurring, unmodified counterparts (e.g. the wild-type version of the mRNA). Also contemplated by the terms “modification” and “modified” as such terms related to the mRNA of the present invention are alterations which improve or enhance translation of mRNA nucleic acids, including for example, the inclusion of sequences which function in the initiation of protein translation (e.g., the Kozak consensus sequence). (Kozak, M., Nucleic Acids Res 15 (20): 8125-48 (1987)).
In some embodiments, the mRNAs used in the compositions of the invention have undergone a chemical or biological modification to render them more stable. Exemplary modifications to an mRNA include the depletion of a base (e.g., by deletion or by the substitution of one nucleotide for another) or modification of a base, for example, the chemical modification of a base. The phrase “chemical modifications” as used herein, includes modifications which introduce chemistries which differ from those seen in naturally occurring mRNA, for example, covalent modifications such as the introduction of modified nucleotides, (e.g., nucleotide analogs, or the inclusion of pendant groups which are not naturally found in such mRNA molecules).
In addition, suitable modifications include alterations in one or more nucleotides of a codon such that the codon encodes the same amino acid but is more stable than the codon found in the wild-type version of the mRNA. For example, an inverse relationship between the stability of RNA and a higher number cytidines (C's) and/or uridines (U's) residues has been demonstrated, and RNA devoid of C and U residues have been found to be stable to most RNases (Heidenreich, et al. J Biol Chem 269, 2131-8 (1994)). In some embodiments, the number of C and/or U residues in an mRNA sequence is reduced. In another embodiment, the number of C and/or U residues is reduced by substitution of one codon encoding a particular amino acid for another codon encoding the same or a related amino acid. Contemplated modifications to the mRNA nucleic acids of the present invention also include the incorporation of pseudouridines. The incorporation of pseudouridines into the mRNA nucleic acids of the present invention may enhance stability and translational capacity, as well as diminishing immunogenicity in vivo. See, e.g., Kariko, K., et al., Molecular Therapy 16 (11): 1833-1840 (2008). Substitutions and modifications to the mRNA of the present invention may be performed by methods readily known to one of ordinary skill in the art.
The constraints on reducing the number of C and U residues in a sequence may be greater within the coding region of an mRNA, compared to an untranslated region, (i.e., it will likely not be possible to eliminate all of the C and U residues present in the message while still retaining the ability of the message to encode the desired amino acid sequence). The degeneracy of the genetic code, however presents an opportunity to allow the number of C and/or U residues that are present in the sequence to be reduced, while maintaining the same coding capacity (i.e., depending on which amino acid is encoded by a codon, several different possibilities for modification of RNA sequences may be possible). For example, the codons for Gly can be altered to GGA or GGG instead of GGU or GGC.
Other suitable polynucleotide modifications that may be incorporated into the mRNA used in the compositions of the invention include, but are not limited to, 4′-thio-modified bases: 4′-thio-adenosine, 4′-thio-guanosine, 4′-thio-cytidine, 4′-thio-uridine, 4′-thio-5-methyl-cytidine, 4′-thio-pseudouridine, and 4′-thio-2-thiouridine, pyridin-4-one ribonucleoside, 5-aza-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyluridine, 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine, 1-taurinomethyl-4-thio-uridine, 5-methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine, dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxyuridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, 2-aminopurine, 2,6-diaminopurine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine, 7-deaza-8-aza-2-aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine, N6-glycinylcarbamoyladenosine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethyladenosine, 7-methyladenine, 2-methylthio-adenine, and 2-methoxy-adenine, inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deaza-guanosine, 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, and N2,N2-dimethyl-6-thio-guanosine, and combinations thereof. The term modification also includes, for example, the incorporation of non-nucleotide linkages or modified nucleotides into the mRNA sequences of the present invention (e.g., modifications to one or both of the 3′ and 5′ ends of an mRNA molecule encoding a functional protein or enzyme). Such modifications include the addition of bases to an mRNA sequence (e.g., the inclusion of a poly A tail or a longer poly A tail), the alteration of the 3′ UTR or the 5′ UTR, complexing the mRNA with an agent (e.g., a protein or a complementary nucleic acid molecule), and inclusion of elements which change the structure of an mRNA molecule (e.g., which form secondary structures).
Cap Structure
In some embodiments, mRNAs include a 5′ cap structure. A 5′ cap is typically added as follows: first, an RNA terminal phosphatase removes one of the terminal phosphate groups from the 5′ nucleotide, leaving two terminal phosphates; guanosine triphosphate (GTP) is then added to the terminal phosphates via a guanylyl transferase, producing a 5′5′5 triphosphate linkage; and the 7-nitrogen of guanine is then methylated by a methyltransferase. Examples of cap structures include, but are not limited to, m7G(5′)ppp (5′(A,G(5′)ppp(5′)A and G(5′)ppp(5′)G.
Naturally occurring cap structures comprise a 7-methyl guanosine that is linked via a triphosphate bridge to the 5′-end of the first transcribed nucleotide, resulting in a dinucleotide cap of m7G(5′)ppp(5′)N, where N is any nucleoside. In vivo, the cap is added enzymatically. The cap is added in the nucleus and is catalyzed by the enzyme guanylyl transferase. The addition of the cap to the 5′ terminal end of RNA occurs immediately after initiation of transcription. The terminal nucleoside is typically a guanosine, and is in the reverse orientation to all the other nucleotides, i.e., G(5′)ppp(5′)GpNpNp.
A common cap for mRNA produced by in vitro transcription is m7G(5′)ppp(5′)G, which has been used as the dinucleotide cap in transcription with T7 or SP6 RNA polymerase in vitro to obtain RNAs having a cap structure in their 5′-termini. The prevailing method for the in vitro synthesis of capped mRNA employs a pre-formed dinucleotide of the form m7G(5′)ppp(5′)G (“m7GpppG”) as an initiator of transcription.
To date, a usual form of a synthetic dinucleotide cap used in in vitro translation experiments is the Anti-Reverse Cap Analog (“ARCA”) or modified ARCA, which is generally a modified cap analog in which the 2′ or 3′ OH group is replaced with —OCH3.
Additional cap analogs include, but are not limited to, a chemical structures selected from the group consisting of m7GpppG, m7GpppA, m7GpppC; unmethylated cap analogs (e.g., GpppG); dimethylated cap analog (e.g., m2,7GpppG), trimethylated cap analog (e.g., m2,2,7GpppG), dimethylated symmetrical cap analogs (e.g., m7Gpppm7G), or anti reverse cap analogs (e.g., ARCA; m7,2′OmeGpppG, m72′dGpppG, m7,3′OmeGpppG, m7,3′dGpppG and their tetraphosphate derivatives) (see, e.g., Jemielity, J. et al., “Novel ‘anti-reverse’ cap analogs with superior translational properties”, RNA, 9: 1108-1122 (2003)).
In some embodiments, a suitable cap is a 7-methyl guanylate (“m7G”) linked via a triphosphate bridge to the 5′-end of the first transcribed nucleotide, resulting in m7G(5′)ppp(5′)N, where N is any nucleoside. A preferred embodiment of a m7G cap utilized in embodiments of the invention is m7G(5′)ppp(5′)G.
In some embodiments, the cap is a Cap0 structure. Cap0 structures lack a 2′-O-methyl residue of the ribose attached to bases 1 and 2. In some embodiments, the cap is a Cap1 structure. Cap1 structures have a 2′-O-methyl residue at base 2. In some embodiments, the cap is a Cap2 structure. Cap2 structures have a 2′-O-methyl residue attached to both bases 2 and 3.
A variety of m7G cap analogs are known in the art, many of which are commercially available. These include the m7GpppG described above, as well as the ARCA 3′-OCH3 and 2′-OCH3 cap analogs (Jemielity, J. et al., RNA, 9: 1108-1122 (2003)). Additional cap analogs for use in embodiments of the invention include N7-benzylated dinucleoside tetraphosphate analogs (described in Grudzien, E. et al., RNA, 10: 1479-1487 (2004)), phosphorothioate cap analogs (described in Grudzien-Nogalska, E., et al., RNA, 13: 1745-1755 (2007)), and cap analogs (including biotinylated cap analogs) described in U.S. Pat. Nos. 8,093,367 and 8,304,529, incorporated by reference herein.
Tail Structure
Typically, the presence of a “tail” serves to protect the mRNA from exonuclease degradation. A poly A or poly U tail is thought to stabilize natural messengers and synthetic sense RNA. Therefore, in certain embodiments a long poly A or poly U tail can be added to an mRNA molecule thus rendering the RNA more stable. Poly A or poly U tails can be added using a variety of art-recognized techniques. For example, long poly A tails can be added to synthetic or in vitro transcribed RNA using poly A polymerase (Yokoe, et al. Nature Biotechnology. 1996; 14: 1252-1256). A transcription vector can also encode long poly A tails. In addition, poly A tails can be added by transcription directly from PCR products. Poly A may also be ligated to the 3′ end of a sense RNA with RNA ligase (see, e.g., Molecular Cloning A Laboratory Manual, 2nd Ed., ed. by Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press: 1991 edition)).
Typically, the length of a poly A or poly U tail can be at least about 10, 100, 200, 300, 400 at least 500 nucleotides. In some embodiments, a poly-A tail on the 3′ terminus of mRNA typically includes about 10 to 300 adenosine nucleotides (e.g., about 10 to 200 adenosine nucleotides, about 10 to 150 adenosine nucleotides, about 10 to 100 adenosine nucleotides, about 20 to 70 adenosine nucleotides, or about to 60 adenosine nucleotides). In some embodiments, mRNAs include a 3′ poly(C) tail structure. A suitable poly-C tail on the 3′ terminus of mRNA typically include about 10 to 200 cytosine nucleotides (e.g., about 10 to 150 cytosine nucleotides, about to 100 cytosine nucleotides, about 20 to 70 cytosine nucleotides, about 20 to 60 cytosine nucleotides, or about 10 to 40 cytosine nucleotides). The poly-C tail may be added to the poly-A or poly U tail or may substitute the poly-A or poly U tail.
In some embodiments, the length of the poly A or poly C tail is adjusted to control the stability of a modified sense mRNA molecule of the invention and, thus, the transcription of protein. For example, since the length of the poly A tail can influence the half-life of a sense mRNA molecule, the length of the poly A tail can be adjusted to modify the level of resistance of the mRNA to nucleases and thereby control the time course of polynucleotide expression and/or polypeptide production in a target cell.
Signal Peptide Sequence
In some embodiments, an mRNA according to the present invention incorporates a nucleotide sequence encoding a signal peptide. As used herein, the term “signal peptide” refers to a peptide present at a newly synthesized protein that can target the protein towards the secretory pathway. In some embodiments, the signal peptide is cleaved after translocation into the endoplasmic reticulum following translation of the mRNA. Signal peptide is also referred to as signal sequence, leader sequence or leader peptide. Typically, a signal peptide is a short (e.g., 5-30, 5-25, 5-20, 5-15, or 5-10 amino acids long) peptide. A signal peptide may be present at the N-terminus of a newly synthesized protein. Without wishing to be bound by any particular theory, the incorporation of a signal peptide encoding sequence on an mRNA may facilitate the secretion and/or production of the encoded protein in vivo.
A suitable signal peptide for the present invention can be a heterogeneous sequence derived from various eukaryotic and prokaryotic proteins, in particular secreted proteins. In some embodiments, a suitable signal peptide is a leucine-rich sequence. See Yamamoto Y et al. (1989), Biochemistry, 28:2728-2732, which is incorporated herein by reference. A suitable signal peptide may be derived from a human growth hormone (hGH), serum albumin preproprotein, Ig kappa light chain precursor, Azurocidin preproprotein, cystatin-S precursor, trypsinogen 2 precursor, potassium channel blocker, alpha conotoxin 1p1.3, alpha conotoxin, alfa-galactosidase, cellulose, aspartic proteinase nepenthesin-1, acid chitinase, K28 prepro-toxin, killer toxin zygocin precursor, and Cholera toxin. Exemplary signal peptide sequences are described in Kober, et al., Biotechnol. Bioeng., 110: 1164-73, 2012, which is incorporated herein by reference.
In some embodiments, an mRNA according to the present invention may incorporate a sequence encoding a signal peptide derived from human growth hormone (hGH), or a fragment thereof. A non-limiting nucleotide sequence encoding a hGH signal peptide is show below.
In some embodiments, an mRNA according to the present invention may incorporate a signal peptide encoding sequence having at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or more identity to SEQ ID NO:7 or SEQ ID NO:8.
5′ and 3′ Untranslated Region
In one embodiment, an mRNA can be modified by the incorporation of 3′ and/or 5′ untranslated (UTR) sequences that are not naturally found in the wild-type mRNA. In one embodiment, a 3′ and/or 5′ flanking sequence that naturally flanks an mRNA and encodes a second, unrelated protein can be incorporated into the nucleotide sequence of an mRNA molecule encoding a therapeutic or functional protein in order to modify it. For example, 3′ or 5′ sequences from mRNA molecules that are stable (e.g., globin, actin, GAPDH, tubulin, histone, or citric acid cycle enzymes) can be incorporated into the 3′ and/or 5′ region of a sense mRNA nucleic acid molecule to increase the stability of the sense mRNA molecule. See, e.g., US2003/0083272.
In some embodiments, the mRNA in the compositions of the invention include modification of the 5′ end of the mRNA to include a partial sequence of a CMV immediate-early 1 (IE1) gene, or a fragment thereof (e.g., SEQ ID NO:1) to improve the nuclease resistance and/or improve the half-life of the mRNA. In addition to increasing the stability of the mRNA nucleic acid sequence, it has been surprisingly discovered that the inclusion of a partial sequence of a CMV immediate-early 1 (IE1) gene enhances the translation of the mRNA and the expression of the functional protein or enzyme. Also contemplated is the inclusion of a human growth hormone (hGH) gene sequence, or a fragment thereof (e.g., SEQ ID NO:2) to the 3′ ends of the nucleic acid (e.g., mRNA) to further stabilize the mRNA. Generally, preferred modifications improve the stability and/or pharmacokinetic properties (e.g., half-life) of the mRNA relative to their unmodified counterparts, and include, for example modifications made to improve such mRNA's resistance to in vivo nuclease digestion.
Further contemplated are variants of the nucleic acid sequence of SEQ ID NO:1 and/or SEQ ID NO:2, wherein the variants maintain the functional properties of the nucleic acids including stabilization of the mRNA and/or pharmacokinetic properties (e.g., half-life). Variants may have at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, or at least 99% sequence identity to SEQ ID NO:1 or SEQ ID NO:2.
In some embodiments, the composition can comprise a stabilizing reagent. The compositions can include one or more formulation reagents that bind directly or indirectly to, and stabilize the mRNA, thereby enhancing residence time in the target cell. Such reagents preferably lead to an improved half-life of the mRNA in the target cells. For example, the stability of an mRNA and efficiency of its translation may be increased by the incorporation of “stabilizing reagents” that form complexes with the mRNA that naturally occur within a cell (see e.g., U.S. Pat. No. 5,677,124). Incorporation of a stabilizing reagent can be accomplished for example, by combining the poly A and a protein with the mRNA to be stabilized in vitro before loading or encapsulating the mRNA within a transfer vehicle. Exemplary stabilizing reagents include one or more proteins, peptides, aptamers, translational accessory protein, mRNA binding proteins, and/or translation initiation factors.
Stabilization of the compositions may also be improved by the use of opsonization-inhibiting moieties, which are typically large hydrophilic polymers that are chemically or physically bound to the transfer vehicle (e.g., by the intercalation of a lipid-soluble anchor into the membrane itself, or by binding directly to active groups of membrane lipids). These opsonization-inhibiting hydrophilic polymers form a protective surface layer which significantly decreases the uptake of the liposomes by the macrophage-monocyte system and reticulo-endothelial system (e.g., as described in U.S. Pat. No. 4,920,016, the entire disclosure of which is herein incorporated by reference). Transfer vehicles modified with opsonization-inhibition moieties thus remain in the circulation much longer than their unmodified counterparts.
When RNA is hybridized to a complementary nucleic acid molecule (e.g., DNA or RNA) it may be protected from nucleases. (Krieg, et al. Melton. Methods in Enzymology. 1987; 155, 397-415). The stability of hybridized mRNA is likely due to the inherent single strand specificity of most RNases. In some embodiments, the stabilizing reagent selected to complex an mRNA is a eukaryotic protein, (e.g., a mammalian protein). In yet another embodiment, the mRNA can be modified by hybridization to a second nucleic acid molecule. If an entire mRNA molecule were hybridized to a complementary nucleic acid molecule translation initiation may be reduced. In some embodiments the 5′ untranslated region and the AUG start region of the mRNA molecule may optionally be left unhybridized. Following translation initiation, the unwinding activity of the ribosome complex can function even on high affinity duplexes so that translation can proceed. (Liebhaber. J. Mol. Biol. 1992; 226: 2-13; Monia, et al. J Biol Chem. 1993; 268: 14514-22.)
It will be understood that any of the above described methods for enhancing the stability of mRNA may be used either alone or in combination with one or more of any of the other above-described methods and/or compositions.
The mRNA of the present invention may be optionally combined with a reporter gene (e.g., upstream or downstream of the coding region of the mRNA) which, for example, facilitates the determination of mRNA delivery to the target cells or tissues. Suitable reporter genes may include, for example, Green Fluorescent Protein mRNA (GFP mRNA), Renilla Luciferase mRNA (Luciferase mRNA), Firefly Luciferase mRNA, or any combinations thereof. For example, GFP mRNA may be fused with an mRNA encoding a secretable protein to facilitate confirmation of mRNA localization in the target cells that will act as a depot for protein production.
mRNA Synthesis
mRNAs according to the present invention may be synthesized according to any of a variety of known methods. For example, mRNAs according to the present invention may be synthesized via in vitro transcription (IVT). Briefly, IVT is typically performed with a linear or circular DNA template containing a promoter, a pool of ribonucleotide triphosphates, a buffer system that may include DTT and magnesium ions, and an appropriate RNA polymerase (e.g., T3, T7 or SP6 RNA polymerase), DNAse I, pyrophosphatase, and/or RNAse inhibitor. The exact conditions will vary according to the specific application.
In some embodiments, for the preparation of mRNA according to the invention, a DNA template is transcribed in vitro. A suitable DNA template typically has a promoter, for example a T3, T7 or SP6 promoter, for in vitro transcription, followed by desired nucleotide sequence for desired mRNA and a termination signal.
Desired mRNA sequence(s) according to the invention may be determined and incorporated into a DNA template using standard methods. For example, starting from a desired amino acid sequence (e.g., an enzyme sequence), a virtual reverse translation is carried out based on the degenerated genetic code. Optimization algorithms may then be used for selection of suitable codons. Typically, the G/C content can be optimized to achieve the highest possible G/C content on one hand, taking into the best possible account the frequency of the tRNAs according to codon usage on the other hand. The optimized RNA sequence can be established and displayed, for example, with the aid of an appropriate display device and compared with the original (wild-type) sequence. A secondary structure can also be analyzed to calculate stabilizing and destabilizing properties or, respectively, regions of the RNA.
Therapeutic Fusion Proteins
Compositions of the invention comprise mRNA encoding a Therapeutic Fusion Protein. A Therapeutic Fusion Protein comprises a therapeutic protein fused to a polypeptide capable of binding to an Fc receptor. The Therapeutic Fusion Protein may optionally comprise a linker sequence between the therapeutic protein and the polypeptide capable of binding to an Fc receptor. Upon delivery of the compositions of the invention to target cells, the mRNA is translated to produce the encoded Therapeutic Fusion Protein, which is secreted and taken up again by the cells and transported to the circulatory system via the Fc receptor.
Therapeutic Protein
The therapeutic protein portion of the Therapeutic Fusion Protein can be chosen from any protein or polypeptide that can be expressed to provide a therapeutic effect. In some embodiments, the therapeutic protein may be a functional protein or enzyme that is normally secreted into extracellular space. For example, such secreted proteins include clotting factors, components of the complement pathway, cytokines, chemokines, chemoattractants, protein hormones (e.g. EGF, PDF), protein components of serum, secretable toll-like receptors, and others. In some embodiments, the therapeutic protein is erythropoietin, al-antitrypsin, carboxypeptidase N or human growth hormone. In some embodiments, the therapeutic protein is one that is not normally secreted. In such cases, the mRNA in the compositions of the invention may be engineered to comprise a secretory leader sequence operatively linked to the sequence encoding the Therapeutic Fusion Protein to direct secretion of the encoded protein. Suitable secretory leader sequences are described, for example, in US 2008/0286834.
In some embodiments, the therapeutic protein in the Therapeutic Fusion Protein is chosen from the secreted proteins listed in Table 1; thus, compositions of the invention may comprise an mRNA encoding a protein listed in Table 1 (or a homolog thereof, as discussed below) along with other components set out herein, and methods of the invention may comprise preparing and/or administering a composition comprising an mRNA encoding a protein listed in Table 1 (or a homolog thereof, as discussed below) along with other components set out herein.
The Uniprot IDs set forth in Table 1 refer to the human versions of the listed proteins and the sequences of each are available from the Uniprot database. Sequences of the listed proteins are also generally available for various animals, including various mammals and animals of veterinary or industrial interest. Accordingly, in some embodiments, compositions and methods of the invention provide for the delivery of one or more mRNAs encoding a Therapeutic Fusion Protein, wherein the encoded therapeutic protein is chosen from mammalian homologs or homologs from an animal of veterinary or industrial interest of the secreted proteins listed in Table 1. In some embodiments, mammalian homologs are chosen from mouse, rat, hamster, gerbil, horse, pig, cow, llama, alpaca, mink, dog, cat, ferret, sheep, goat, or camel homologs. In some embodiments, the animal of veterinary or industrial interest is chosen from the mammals listed above and/or chicken, duck, turkey, salmon, catfish, or tilapia.
In some embodiments, the therapeutic protein is chosen from the putative secreted proteins listed in Table 2; thus, compositions of the invention may comprise an mRNA encoding a Therapeutic Fusion Protein, wherein the encoded therapeutic protein is one listed in Table 2 (or a homolog thereof, as discussed below) along with other components set out herein, and methods of the invention may comprise preparing and/or administering a composition comprising an mRNA encoding a Therapeutic Fusion Protein, wherein the therapeutic protein is chosen from the proteins listed in Table 2 (or a homolog thereof, as discussed below) along with other components set out herein.
The Uniprot IDs set forth in Table 2 refer to the human versions the listed putative proteins and the sequences of each are available from the Uniprot database. Sequences of the listed proteins are also available for various animals, including various mammals and animals of veterinary or industrial interest. Accordingly, in some embodiments, compositions and methods of the invention provide for the delivery of one or more mRNAs encoding a Therapeutic Fusion Protein, wherein the therapeutic protein is chosen from mammalian homologs or homologs from an animal of veterinary or industrial interest of a protein listed in Table 2. In some embodiments, mammalian homologs are chosen from mouse, rat, hamster, gerbil, horse, pig, cow, llama, alpaca, mink, dog, cat, ferret, sheep, goat, or camel homologs. In some embodiments, the animal of veterinary or industrial interest is chosen from the mammals listed above and/or chicken, duck, turkey, salmon, catfish, or tilapia.
In some embodiments, the therapeutic protein is chosen from the lysosomal and related proteins listed in Table 3; thus, compositions of the invention may comprise an mRNA encoding a Therapeutic Fusion Protein, wherein the therapeutic protein is one listed in Table 3 (or a homolog thereof, as discussed below) along with other components set out herein, and methods of the invention may comprise preparing and/or administering a composition comprising an mRNA encoding a Therapeutic Fusion Protein, wherein the therapeutic protein is chosen from the proteins listed in Table 3 (or a homolog thereof, as discussed below) along with other components set out herein.
Information regarding lysosomal proteins is available from Lubke et al., “Proteomics of the Lysosome,” Biochim Biophys Acta. (2009) 1793: 625-635. In some embodiments, the protein listed in Table 3 and encoded by mRNA in the compositions and methods of the invention is a human protein. Sequences of the listed proteins are also available for various animals, including various mammals and animals of veterinary or industrial interest. Accordingly, in some embodiments, compositions and methods of the invention provide for the delivery of one or more mRNAs encoding a Therapeutic Fusion Protein, wherein the therapeutic protein chosen from mammalian homologs or homologs from an animal of veterinary or industrial interest of a protein listed in Table 3. In some embodiments, mammalian homologs are chosen from mouse, rat, hamster, gerbil, horse, pig, cow, llama, alpaca, mink, dog, cat, ferret, sheep, goat, or camel homologs. In some embodiments, the animal of veterinary or industrial interest is chosen from the mammals listed above and/or chicken, duck, turkey, salmon, catfish, or tilapia.
In some embodiments, the therapeutic protein is erythropoietin, α-galactosidase, low density lipoprotein receptor (LDLR), Factor VIII, Factor IX, α-L-iduronidase, iduronate sulfatase, heparin-N-sulfatase, α-N-acetylglucosaminidase, galactose 6-sulfatase, lysosomal acid lipase, arylsulfatase-A, IL-12, IL-23, α-galactosidase, erythropoietin (EPO), α-1-antitrypsin (A1AT), follistatin, glucocerebrosidase, interferon-β, hemoglobin, collagen type 4 (COL4A5), arginosuccinate synthase (AS), surfactant protein B (SPB), methylmalonyl-coA mutase (MCM), proprionyl-coA carboxylase (PCC), phenylalanine hydroxylase (PAH), apolipoprotein E (APOE), glucose-6-phosphatase (G6P), human growth hormone (hGH), urate oxidase, or granulocyte colony stimulating factor (GCSF).
Polypeptides Capable of Binding to an Fc Receptor
The Therapeutic Fusion Proteins of the invention comprise a therapeutic protein fused to a polypeptide capable of binding to an Fc receptor. In some embodiments, the polypeptide capable of binding to an Fc receptor comprises a portion of an immunoglobulin constant region that includes an Fc fragment. An Fc fragment can be comprised of the CH2 and CH3 domains of an immunoglobulin and the hinge region of the immunoglobulin. The immunoglobulin may be IgG, IgM, IgA, IgD, or IgE. In certain embodiments, the polypeptide capable of binding to an Fc receptor comprises an Fc fragment of an IgG1, an IgG2, an IgG3 or an IgG4. In one embodiment, the immunoglobulin is an Fc fragment of an IgG1. In one embodiment, the immunoglobulin is an Fc fragment of an IgG2.
The portion of an immunoglobulin constant region may include an Fc variant. “Fc variant” refers to a polypeptide or amino acid sequence that is modified from a native Fc but still comprises a binding site for an Fc receptor, such as, e.g., the FcRn. (See, e.g., WO 97/34631). “Native Fc” refers to an Fc that has not been modified. WO 96/32478 describes exemplary Fc variants, as well as interaction with an Fc receptor. Thus, the term “Fc variant” includes a polypeptide or amino acid sequence that is humanized from a non-human native Fc. Furthermore, a native Fc comprises sites that can and/or should be removed because they provide structural features or biological activity that are not required for the fusion molecules of the present invention. Thus, Fc variant may comprise a polypeptide or amino acid sequence that lacks one or more native Fc sites or residues that affect or are involved in (1) disulfide bond formation, (2) incompatibility with a target cell (3)N-terminal heterogeneity upon expression in a target cell, (4) glycosylation, (5) interaction with complement, (6) binding to an Fc receptor other than FcRn, or (7) antibody-dependent cellular cytotoxicity (ADCC).
In some embodiments, the polypeptide capable of binding to an Fc receptor binds to the neonatal Fc receptor, FcRn. FcRn is active in adult epithelial tissue and expressed in the lumen of the intestines, pulmonary airways, nasal surfaces, vaginal surfaces, colon and rectal surfaces (U.S. Pat. No. 6,485,726). Chimeric proteins comprised of FcRn binding partners (e.g., IgG-Fc fragments) can be effectively shuttled across epithelial barriers by FcRn, thus providing a non-invasive means to administer the desired therapeutic protein. Additionally, Therapeutic Fusion Proteins comprising an FcRn binding partner will be endocytosed by cells expressing the FcRn. But instead of being marked for degradation, proteins bound to the FcRn are recycled out into circulation again, thus increasing the in vivo half-life of these proteins.
Thus, in some embodiments, the polypeptide capable of binding to an Fc receptor is an FcRn binding partner. An FcRn binding partner is any polypeptide, peptide, or amino acid sequence that specifically binds to the FcRn receptor with consequent active transport by the FcRn receptor of the FcRn binding partner and any associated therapeutic protein. The FcRn receptor has been isolated from several mammalian species including humans. The sequences of the human FcRn, rat FcRn, and mouse FcRn are known (Story et al. 1994, J. Exp. Med. 180:2377). The FcRn receptor binds IgG (but not other immunoglobulin classes such as IgA, IgM, IgD, and IgE) at relatively low pH, actively transports the IgG transcellularly in a luminal to serosal direction, and then releases the IgG at relatively higher pH found in the interstitial fluids. It is expressed in adult epithelial tissue (U.S. Pat. Nos. 6,030,613 and 6,086,875) including lung and intestinal epithelium (Israel et al. 1997, Immunology 92:69) renal proximal tubular epithelium (Kobayashi et al. 2002, Am. J. Physiol. Renal Physiol. 282: F358) as well as nasal epithelium, vaginal surfaces, and biliary tree surfaces.
FcRn binding partners useful in the Therapeutic Fusion Proteins in the compositions of the invention may encompass any polypeptide, peptide, or amino acid sequence that can be specifically bound by the FcRn receptor including whole IgG, the Fc fragment of IgG, and other fragments that include the complete binding region of the FcRn receptor. The region of the Fc portion of IgG that binds to the FcRn receptor has been described based on X-ray crystallography (Burmeister et al. 1994, Nature 372:379). The major contact area of the Fc with the FcRn is near the junction of the CH2 and CH3 domains. Fc-FcRn contacts are all within a single Ig heavy chain. FcRn binding partners include whole IgG, the Fc fragment of IgG, and other fragments of IgG that include the complete binding region of FcRn. The major contact sites include amino acid residues 248, 250-257, 272, 285, 288, 290-291, 308-311, and 314 of the CH2 domain and amino acid residues 385-387, 428, and 433-436 of the CH3 domain. References made to amino acid numbering of immunoglobulins or immunoglobulin fragments, or regions, are all based on Kabat et al. 1991, Sequences of Proteins of Immunological Interest, U.S. Department of Public Health, Bethesda, MD
The Fc region of IgG can be modified according to well recognized procedures such as site directed mutagenesis and the like to yield modified IgG or Fc fragments or portions thereof that will be bound by FcRn. Such modifications include modifications remote from the FcRn contact sites as well as modifications within the contact sites that preserve or even enhance binding to the FcRn. For example the following single amino acid residues in human IgG1 Fc (Fcγ1) can be substituted without significant loss of Fc binding affinity for FcRn: P238A, S239A, K246A, K248A, D249A, M252A, T256A, E258A, T260A, D265A, S267A, H268A, E269A, D270A, E272A, L274A, N276A, Y278A, D280A, V282A, E283A, H285A, N286A, T289A, K290A, R292A, E293A, E294A, Q295A, Y296F, N297A, S298A, Y300F, R301A, V303A, V305A, T307A, L309A, Q311A, D312A, N315A, K317A, E318A, K320A, K322A, S324A, K326A, A327Q, P329A, A330Q, A330S, P331A, P331S, E333A, K334A, T335A, S337A, K338A, K340A, Q342A, R344A, E345A, Q347A, R355A, E356A, M358A, T359A, K360A, N361A, Q362A, Y373A, S375A, D376A, A378Q, E380A, E382A, S383A, N384A, Q386A, E388A, N389A, N390A, Y391F, K392A, L398A, S400A, D401A, D413A, K414A, R416A, Q418A, Q419A, N421A, V422A, S424A, E430A, N434A, T437A, Q438A, K439A, S440A, S444A, and K447A, where, for example, P238A represents wild type proline substituted by alanine at position number 238. In addition to alanine, other amino acids may be substituted for the wild type amino acids at the positions specified above. Mutations may be introduced singly into Fc, giving rise to more than one hundred FcRn binding partners distinct from native Fc. Additionally, combinations of two, three, or more of these individual mutations may be introduced together, giving rise to hundreds more FcRn binding partners.
Certain of the above mutations may confer new functionality upon the FcRn binding partner. For example, one embodiment incorporates N297A, removing a highly conserved N-glycosylation site. The effect of this mutation is to reduce immunogenicity, thereby enhancing circulating half-life of the FcRn binding partner, and to render the FcRn binding partner incapable of binding to FcγRI, FcγRIIA, FcγRIIB, and FcγRIIIA, without compromising affinity for FcRn (Routledge et al. 1995, Transplantation 60:847; Friend et al. 1999, Transplantation 68:1632; Shields et al. 1995, J. Biol. Chem. 276:6591). Additionally, at least three human Fc gamma receptors appear to recognize a binding site on IgG within the lower hinge region, generally amino acids 234-237. Therefore, another example of new functionality and potential decreased immunogenicity may arise from mutations of this region, as for example by replacing amino acids 233-236 of human IgG1 “ELLG” to the corresponding sequence from IgG2 “PVA” (with one amino acid deletion). It has been shown that FcγRI, FcγRII, and FcγRIII, which mediate various effector functions will not bind to IgG1 when such mutations have been introduced (Ward and Ghetie 1995, Therapeutic Immunology 2:77 and Armour et al. 1999, Eur. J. Immunol. 29:2613). As a further example of new functionality arising from mutations described above affinity for FcRn may be increased beyond that of wild type in some instances. This increased affinity may reflect an increased “on” rate, a decreased “off” rate or both an increased “on” rate and a decreased “off” rate. Mutations believed to impart an increased affinity for FcRn include T256A, T307A, E380A, and N434A (Shields et al. 2001, J. Biol. Chem. 276:6591).
In one embodiment, the FcRn binding partner is a polypeptide including the sequence PKNSSMISNTP and optionally further including a sequence selected from HQSLGTQ, HQNLSDGK, HQNISDGK, or VISSHLGQ (See, U.S. Pat. No. 5,739,277).
Optional Linkers
The Therapeutic Fusion Protein encoded by the mRNA in the compositions of the invention may optionally comprise one or more linker sequences. In certain embodiments, the linker can comprise 1-5 amino acids, 1-10 amino acids, 1-15 amino acids, 1-20 amino acids, 10-50 amino acids, 50-100 amino acids, or 100-200 amino acids. In one embodiment, the linker may comprise only glycine residues. In other embodiments, the linker can comprise the sequence (GGS)n, wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. Examples of suitable linkers include, but are not limited to, GGG, SGGSGGS, GGSGGSGGSGGSGGG, GGSGGSGGSGGSGGSGGS. In some embodiments, the linker is encoded by the sequence ccc aag agc ugu gac aag acc cac acc ugc ccu ccg ugu ccc.
Transfer Vehicle
In certain embodiments, the mRNA molecules of the invention may be administered as naked or unpackaged mRNA. In some embodiments, the administration of the mRNA in the compositions of the invention may be facilitated by inclusion of a suitable carrier. In certain embodiments, the carrier is selected based upon its ability to facilitate the transfection of a target cell with one or more mRNAs. As used herein, the terms “transfect” or “transfection” mean the intracellular introduction of an mRNA encoding a Therapeutic Fusion Protein into a cell, and preferably into a target cell. The introduced mRNA may be stably or transiently maintained in the target cell. The term “transfection efficiency” refers to the relative amount of mRNA taken up by the target cell which is subject to transfection. In practice, transfection efficiency can be estimated by the amount of a reporter nucleic acid product expressed by the target cells following transfection. The mRNA in the compositions of the invention may be introduced into target cells with or without a carrier or transfer vehicle.
As used herein, the terms “transfer vehicle,” “carrier,” and the like include any of the standard pharmaceutical carriers, vehicles, diluents, excipients and the like which are generally intended for use in connection with the administration of biologically active agents, including mRNA.
In certain embodiments, the carriers employed in the compositions of the invention may comprise a liposomal vesicle, or other means to facilitate the transfer of a mRNA to target cells and/or tissues. Preferred embodiments include compositions with high transfection efficacies and in particular those compositions that minimize adverse effects which are mediated by transfection of non-target cells. The compositions of the present invention that demonstrate high transfection efficacies improve the likelihood that appropriate dosages of the mRNA will be delivered to the target cell, while minimizing potential systemic adverse effects. In one embodiment of the present invention, the transfer vehicles of the present invention are capable of delivering large mRNA sequences (e.g., mRNA of a size ranging from 0.2 kilobases (kb) to 10 kb or more, e.g., mRNA of a size greater than or equal to 0.2 kb, 0.5 kb, 1 kb, 1.5 kb, 2 kb, 3 kb, 4 kb, or 4.5 kb, and/or having a size of up to 5 kb, 5.5 kb, 6 kb, 7 kb, 8 kb, 9 kb, or 10 kb).
The mRNA can be formulated with one or more acceptable reagents, which provide a vehicle for delivering such mRNA to target cells. Appropriate reagents are generally selected with regard to a number of factors, which include, among other things, the biological or chemical properties of the mRNA, the intended route of administration, the anticipated biological environment to which such mRNA will be exposed and the specific properties of the intended target cells. In some embodiments, transfer vehicles, such as liposomes, encapsulate the mRNA without compromising biological activity. In some embodiments, the transfer vehicle demonstrates preferential and/or substantial binding to a target cell relative to non-target cells. In a preferred embodiment, the transfer vehicle delivers its contents to the target cell such that the mRNA is delivered to the appropriate subcellular compartment, such as the cytoplasm.
In some embodiments, the compositions of the invention employ a polymeric carrier alone or in combination with other carriers. Suitable polymers may include, for example, polyacrylates, polyalkycyanoacrylates, polylactide, polylactide-polyglycolide copolymers, polycaprolactones, dextran, albumin, gelatin, alginate, collagen, chitosan, cyclodextrins, protamine, PEGylated protamine, PLL, PEGylated PLL, polyethylenimine (PEI), including, but not limited to branched PEI (25 kDa) and multi-domain-block polymers. Alternatively, suitable carriers include, but are not limited to, lipid nanoparticles and liposomes, nanoliposomes, ceramide-containing nanoliposomes, proteoliposomes, both natural and synthetically-derived exosomes, natural, synthetic and semi-synthetic lamellar bodies, nanoparticulates, calcium phosphor-silicate nanoparticulates, calcium phosphate nanoparticulates, silicon dioxide nanoparticulates, nanocrystalline particulates, semiconductor nanoparticulates, dry powders, nanodendrimers, starch-based delivery systems, micelles, emulsions, sol-gels, niosomes, plasmids, viruses, calcium phosphate nucleotides, aptamers, peptides, peptide conjugates, small-molecule targeted conjugates, and other vectorial tags. Also contemplated is the use of bionanocapsules and other viral capsid proteins assemblies as a suitable carrier. (Hum. Gene Ther. 2008 Sep; 19(9):887-95).
Lipid Nanoparticles
In certain embodiments, the transfer vehicle in the compositions of the invention is a liposomal transfer vehicle, e.g. a lipid nanoparticle or a lipidoid nanoparticle. In one embodiment, the transfer vehicle may be selected and/or prepared to optimize delivery of the mRNA to a target cell. For example, if the target cell is a hepatocyte the properties of the transfer vehicle (e.g., size, charge and/or pH) may be optimized to effectively deliver such transfer vehicle to the target cell, reduce immune clearance and/or promote retention in that target cell. Alternatively, if the target cell is in the central nervous system (e.g., mRNA administered for the treatment of neurodegenerative diseases may specifically target brain or spinal tissue), selection and preparation of the transfer vehicle must consider penetration of, and retention within, the blood brain barrier and/or the use of alternate means of directly delivering such transfer vehicle to such target cell. In one embodiment, the compositions of the present invention may be combined with agents that facilitate the transfer of exogenous mRNA (e.g., agents which disrupt or improve the permeability of the blood brain barrier and thereby enhance the transfer of exogenous mRNA to the target cells).
Liposomes (e.g., liposomal lipid nanoparticles) are known to be particularly for their use as transfer vehicles of diagnostic or therapeutic compounds in vivo (Lasic, Trends Biotechnol., 16: 307-321, 1998; Drummond et al., Pharmacol. Rev., 51: 691-743, 1999) and are usually characterized as microscopic vesicles having an interior aqua space sequestered from an outer medium by a membrane of one or more bilayers. Bilayer membranes of liposomes are typically formed by amphiphilic molecules, such as lipids of synthetic or natural origin that comprise spatially separated hydrophilic and hydrophobic domains (Lasic, Trends Biotechnol., 16: 307-321, 1998). Bilayer membranes of the liposomes can also be formed by amphiphilic polymers and surfactants (e.g., polymerosomes, niosomes, etc.).
In the context of the present invention, a liposomal transfer vehicle typically serves to transport the mRNA to the target cell. For the purposes of the present invention, the liposomal transfer vehicles are prepared to contain mRNA encoding a Therapeutic Fusion Protein. The process of incorporation of the desired mRNA into a liposome is referred to as “loading” and is described in Lasic, et al., FEES Lett., 312: 255-258, 1992. The liposome-incorporated nucleic acids may be completely or partially located in the interior space of the liposome, within the bilayer membrane of the liposome, or associated with the exterior surface of the liposome membrane. The incorporation of a nucleic acid into liposomes is also referred to herein as “encapsulation” wherein the nucleic acid is entirely contained within the interior space of the liposome.
The purpose of incorporating an mRNA into a transfer vehicle, such as a liposome, is often to protect the nucleic acid from an environment which may contain enzymes or chemicals that degrade nucleic acids and/or systems or receptors that cause the rapid excretion of the nucleic acids. Accordingly, in a preferred embodiment of the present invention, the selected transfer vehicle is capable of enhancing the stability of the mRNA contained therein. The liposome can allow the encapsulated mRNA to reach the target cell and/or may preferentially allow the encapsulated mRNA to reach the target cell, or alternatively limit the delivery of such mRNA to other sites or cells where the presence of the administered mRNA may be useless or undesirable. Furthermore, incorporating the mRNA into a transfer vehicle, such as for example, a cationic liposome, also facilitates the delivery of such mRNA into a target cell.
Ideally, liposomal transfer vehicles are prepared to encapsulate mRNA encoding a Therapeutic Fusion Protein such that the compositions demonstrate high transfection efficiency and enhanced stability. While liposomes can facilitate introduction of nucleic acids into target cells, the addition of polycations (e.g., poly L-lysine and protamine), as a copolymer can facilitate, and in some instances markedly enhance, the transfection efficiency of several types of cationic liposomes by 2-28 fold in a number of cell lines both in vitro and in vivo. (See N.J. Caplen, et al., Gene Ther. 1995; 2: 603; S. Li, et al., Gene Ther. 1997; 4, 891.) Thus, in certain embodiments of the present invention, the transfer vehicle is formulated as a lipid nanoparticle.
In certain embodiments, the mRNA encoding a Therapeutic Fusion Protein is combined with a multi-component lipid mixture of varying ratios employing one or more cationic lipids, non-cationic lipids, helper lipids, and PEG-modified or PEGylated lipids designed to encapsulate various nucleic acid-based materials. As used herein, the phrase “cationic lipid” refers to any of a number of lipid species that carry a net positive charge at a selected pH, such as physiological pH. Several cationic lipids have been described in the literature, many of which are commercially available.
Cationic lipids may include, but are not limited to ALNY-100 ((3aR,5s,6aS)-N,N-dimethyl-2,2-di((9Z,12Z)-octadeca-9,12-dienyl)tetrahydro-3aH-cyclopenta[d] [1,3]dioxol-5-amine)), DODAP (1,2-dioleyl-3-dimethylammonium propane), HGT4003 (WO 2012/170889, the teachings of which are incorporated herein by reference in their entirety), HGT5000 (U.S. Provisional Patent Application No. 61/617,468, the teachings of which are incorporated herein by reference in their entirety) or HGT5001(cis or trans) (Provisional Patent Application No. 61/617,468), aminoalcohol lipidoids such as those disclosed in WO2010/053572, DOTAP (1,2-dioleyl-3-trimethylammonium propane), DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane), DLinDMA (1,2-dilinoleyloxy-N,N-dimethyl-3-aminopropane)(Heyes, et al., J. Contr. Rel. 107:276-287(2005)), DLin-KC2-DMA (Semple, et al., Nature Biotech. 28:172-176 (2010)), C12-200 (Love, et al., Proc. Nat'l. Acad. Sci. 107:1864-1869(2010)).
In some embodiments, DOTMA can be formulated alone or can be combined with the neutral lipid, DOPE (dioleoylphosphatidyl-ethanolamine), or other cationic or non-cationic lipids into a liposomal transfer vehicle or a lipid nanoparticle, and such liposomes can be used to enhance the delivery of nucleic acids into target cells. Other suitable cationic lipids include, for example, DOGS (5-carboxyspermyl glycinedioctadecylamide), DOSPA (2,3-dioleyloxy-N-[2(spermine-carboxamido)ethyl]-N,N-dimethyl-1-propanaminium) (Behr et al. Proc. Nat'l Acad. Sci. 86, 6982 (1989); U.S. Pat. Nos. 5,171,678; 5,334,761), DOTAP (1,2-Dioleoyl-3-Trimethylammonium-Propane). Contemplated cationic lipids also include DSDMA (1,2-distearyloxy-N,N-dimethyl-3-aminopropane, DODMA (1,2-dioleyloxy-N,N-dimethyl-3-aminopropane), DLenDMA (1,2-dilinolenyloxy-N,N-dimethyl-3-aminopropane), DODAC (N-dioleyl-N,N-dimethylammonium chloride), DDAB (N,N-distearyl-N,N-dimethylammonium bromide), DMRIE (N-(1,2-dimyristyloxyprop-3-yl)-N,N-dimethyl-N-hydroxyethyl ammonium bromide), CLinDMA (3-dimethylamino-2-(cholest-5-en-3-beta-oxybutan-4-oxy)-1-(cis,cis-9,12-octadecadienoxy)propane), CpLinDMA (2-[5′-(cholest-5-en-3-beta-oxy)-3′-oxapentoxy)-3-dimethy 1-1-(cis,cis-9′, 1-2′-octadecadienoxy)propane), DMOBA (N,N-dimethyl-3,4-dioleyloxybenzylamine), DOcarbDAP (1,2-N,N′-dioleylcarbamyl-3-dimethylaminopropane), DLinDAP (2,3-Dilinoleoyloxy-N,N-dimethylpropylamine), DLincarbDAP (1,2-N,N′-Dilinoleylcarbamyl-3-dimethylaminopropane), DLinCDAP (1,2-Dilinoleoylcarbamyl-3-dimethylaminopropane, DLin-K-DMA (2,2-dilinoleyl-4-dimethylaminomethyl-[1,3]-dioxolane), DLin-K-XTC2-DMA (2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane), or mixtures thereof.
Specific biodegradable lipids suitable for use in the compositions and methods of the invention include:
and their salts.
Additional specific cationic lipids for use in the compositions and methods of the invention are XTC (2,2-Dilinoleyl-4-dimethylaminoethyl-11,31-dioxolane) and, MC3 (((6Z,9Z,28Z,31Z)-heptatriaconta-6,9,28,31-tetraen-19-yl 4-(dimethylamino) butanoate):
both of which are described in detail in US 20100267806.
Another cationic lipid that may be used in the compositions and methods of the invention is NC98-5 (4,7,13-tris(3-oxo-3-(undecylamino)propyl)-N1,N16-diundecyl-4,7,10,13-tetraazahexadecane-1,16-diamide):
which is described in WO06138380A2.
Suitable helper lipids include, but are not limited to DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), DOPE (1,2-dioleyl-sn-glycero-3-phosphoethanolamine), DPPE (1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine), DMPE (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine), DOPG (2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)), and cholesterol. Cholesterol-based cationic lipids can be used, either alone or in combination with other cationic or non-cationic lipids. Suitable cholesterol-based cationic lipids include, for example, DC-Chol (N,N-dimethyl-N-ethylcarboxamidocholesterol), 1,4-bis(3-N-oleylamino-propyl)piperazine (Gao, et al. Biochem. Biophys. Res. Comm 179, 280 (1991); Wolf et al. BioTechniques 23, 139 (1997); U.S. Pat. No. 5,744,335), or ICE (3S, 10R, 13R, 17R)-10, 13-dimethyl-17-((R)-6-methylheptan-2-yl)-2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 3-(1H-imidazol-4-yl)propanoate)(WO/2011/068810).
Non-cationic lipids may also be used in the compositions of the invention. As used herein, the phrase “non-cationic lipid” refers to any neutral, zwitterionic or anionic lipid. “Anionic lipid” refers to any of a number of lipid species that carry a net negative charge at a selected pH, such as physiological pH. Non-cationic lipids include, but are not limited to, DSPC (distearoylphosphatidyl-choline), DOPC (dioleoylphosphatidylcholine), DPPC (dipalmitoylphosphatidyl-choline), DOPG (dioleoylphosphatidylglycerol), DPPG (dipalmitoylphosphatidyl-glycerol), DOPE (dioleoylphosphatidylethanolamine), POPC (palmitoyloleoyl-phosphatidylcholine), POPE (palmitoyloleoyl-phosphatidylethanolamine), DOPE-mal (dioleoyl-phosphatidylethanolamine 4-(N-maleimidomethyl)-cyclohexane-1-carboxylate), DDPE (dipalmitoyl phosphatidyl ethanolamine), DMPE (dimyristoyl-phosphoethanolamine), DSPE (distearoylphosphatidylethanolamine), SOPE (16-O-monomethyl PE, 16-O-dimethyl PE, 18-1-trans PE, 1-stearoyl-2-oleoyl-phosphatidyethanolamine), cholesterol, or a mixture thereof. Such non-cationic lipids may be used alone, but are preferably used in combination with other excipients, for example, cationic lipids. When used in combination with a cationic lipid, the non-cationic lipid may comprise a molar ratio of 5% to about 90%, or preferably about 10% to about 70% of the total lipid present in the transfer vehicle.
Polyethylene glycol (PEG)-modified phospholipids and derivatized lipids for use in nanoparticle formulations include, but are not limited to a poly(ethylene) glycol chain of up to 5 kDa in length covalently attached to a lipid with alkyl chain(s) of C6-C20 length, DMG-PEG2K, PEG-DSG, PEG-DMG, and PEG-derivatized ceramides (PEG-CER), including N-Octanoyl-Sphingosine-1-[Succinyl(Methoxy Polyethylene Glycol)-2000], (C8 PEG-2000 ceramide). The use of PEG-modified lipids is contemplated for use the compositions of the invention, either alone or preferably in combination with other lipids which together comprise the transfer vehicle (e.g., a lipid nanoparticle). The addition of such components may prevent complex aggregation and may also provide a means for increasing circulation lifetime and increasing the delivery of the lipid-nucleic acid composition to the target cell, (Klibanov et al. (1990) FEBS Letters, 268 (1): 235-237), or they may be selected to rapidly exchange out of the formulation in vivo (see U.S. Pat. No. 5,885,613). Particularly useful exchangeable lipids are PEG-ceramides having shorter acyl chains (e.g., C14 or C18). The PEG-modified phospholipid and derivatized lipids of the present invention may comprise a molar ratio from about 0% to about 20%, about to about 20%, about 1% to about 15%, about 4% to about 10%, or about 2% of the total lipid present in the liposomal transfer vehicle.
In addition, several reagents are commercially available to enhance transfection efficacy. Suitable examples include LIPOFECTIN (DOTMA:DOPE) (Invitrogen, Carlsbad, Calif.), LIPOFECTAMINE (DOSPA:DOPE) (Invitrogen), LIPOFECTAMINE2000. (Invitrogen), FUGENE, TRANSFECTAM (DOGS), and EFFECTENE.
Preferably, the transfer vehicle (e.g., a lipid nanoparticle) is prepared by combining multiple lipid and/or polymer components. For example, a transfer vehicle may comprise C12-200, DSPC, CHOL, and DMG-PEG or MC3, DSPC, chol, and DMG-PEG or C12-200, DOPE, chol, DMG-PEG2K. The selection of cationic lipids, non-cationic lipids and/or PEG-modified lipids which comprise the lipid nanoparticle, as well as the relative molar ratio of such lipids to each other, is based upon the characteristics of the selected lipid(s), the nature of the intended target cells, the characteristics of the mRNA to be delivered. For example, a transfer vehicle may be prepared using C12-200, DOPE, cholesterol, DMG-PEG2K at a molar ratio of or DODAP, DOPE, cholesterol, DMG-PEG2K at a molar ratio of 18:56:20:6; or HGT5000, DOPE, cholesterol, DMG-PEG2K at a molar ratio of or HGT5001, DOPE, cholesterol, DMG-PEG2K at a molar ratio of or XTC, DSPC, cholesterol, PEG-DMG at a molar ratio of 57.5:7.5:31.5:3.5 or a molar ratio of 60:7.5:31:1.5; or MC3, DSPC, cholesterol, PEG-DMG in a molar ratio of 50:10:38.5:1.5 or a molar ratio of 40:15:40:5; or MC3, DSPC, cholesterol, PEG-DSG/GalNAc-PEGDSG in a molar ratio of 50:10:35:4.5:0.5; or ALNY-100, DSPC, cholesterol, PEG-DSG.
Additional considerations include, for example, the saturation of the alkyl chain, as well as the size, charge, pH, pKa, fusogenicity and toxicity of the selected lipid(s). Thus the molar ratios may be adjusted accordingly. For example, in embodiments, the percentage of cationic lipid in the lipid nanoparticle may be greater than 10%, greater than 20%, greater than 30%, greater than 40%, greater than 50%, greater than 60%, or greater than 70%. The percentage of non-cationic lipid in the lipid nanoparticle may be greater than 5%, greater than 10%, greater than 20%, greater than 30%, or greater than 40%. The percentage of cholesterol in the lipid nanoparticle may be greater than 10%, greater than 20%, greater than 30%, or greater than 40%. The percentage of PEG-modified lipid in the lipid nanoparticle may be greater than 1%, greater than 2%, greater than 5%, greater than 10%, or greater than 20%.
In certain preferred embodiments, the lipid nanoparticles of the invention comprise at least one of the following cationic lipids: XTC, MC3, NC98-5, ALNY-100, C12-200, DLin-KC2-DMA, DODAP, HGT4003, ICE, HGT5000, or HGT5001. In some embodiments, the transfer vehicle comprises cholesterol and/or a PEG-modified lipid. In some embodiments, the transfer vehicles comprise DMG-PEG2K.
The liposomal transfer vehicles for use in the compositions of the invention can be prepared by various techniques which are presently known in the art. Multi-lamellar vesicles (MLV) may be prepared via conventional techniques, for example, by depositing a selected lipid on the inside wall of a suitable container or vessel by dissolving the lipid in an appropriate solvent, and then evaporating the solvent to leave a thin film on the inside of the vessel or by spray drying. An aqueous phase may then added to the vessel with a vortexing motion which results in the formation of MLVs. Uni-lamellar vesicles (ULV) can then be formed by homogenization, sonication or extrusion of the multi-lamellar vesicles. In addition, unilamellar vesicles can be formed by detergent removal techniques.
In certain embodiments of this invention, the compositions of the present invention comprise a transfer vehicle wherein the mRNA is associated on both the surface of the transfer vehicle and encapsulated within the same transfer vehicle. For example, during preparation of the compositions of the present invention, cationic liposomal transfer vehicles may associate with the mRNA through electrostatic interactions.
Selection of the appropriate size of a liposomal transfer vehicle must take into consideration the site of the target cell or tissue and to some extent the application for which the liposome is being made. In some embodiments, it may be desirable to limit transfection of the mRNA to certain cells or tissues. For example, to target hepatocytes a liposomal transfer vehicle may be sized such that its dimensions are smaller than the fenestrations of the endothelial layer lining hepatic sinusoids in the liver; accordingly the liposomal transfer vehicle can readily penetrate such endothelial fenestrations to reach the target hepatocytes. Alternatively, a liposomal transfer vehicle may be sized such that the dimensions of the liposome are of a sufficient diameter to limit or expressly avoid distribution into certain cells or tissues. For example, a liposomal transfer vehicle may be sized such that its dimensions are larger than the fenestrations of the endothelial layer lining hepatic sinusoids to thereby limit distribution of the liposomal transfer vehicle to hepatocytes. Generally, the size of the transfer vehicle is within the range of about 25 to 250 nm, preferably less than about 250 nm, 175 nm, 150 nm, 125 nm, 100 nm, 75 nm, 50 nm, 25 nm or 10 nm.
A variety of alternative methods known in the art are available for sizing of a population of liposomal transfer vehicles. One such sizing method is described in U.S. Pat. No. 4,737,323, incorporated herein by reference. Sonicating a liposome suspension either by bath or probe sonication produces a progressive size reduction down to small ULV less than about 0.05 microns in diameter. Homogenization is another method that relies on shearing energy to fragment large liposomes into smaller ones. In a typical homogenization procedure, MLV are recirculated through a standard emulsion homogenizer until selected liposome sizes, typically between about 0.1 and 0.5 microns, are observed. The size of the liposomal vesicles may be determined by quasi-electric light scattering (QELS) as described in Bloomfield, Ann. Rev. Biophys. Bioeng., 10:421-450 (1981), incorporated herein by reference. Average liposome diameter may be reduced by sonication of formed liposomes. Intermittent sonication cycles may be alternated with QELS assessment to guide efficient liposome synthesis.
Target Cells
As used herein, the term “target cell” refers to a cell or tissue to which a composition of the invention is to be directed or targeted. In some embodiments, the target cells are epithelial cells found e.g., in the lung, intestine, renal proximal tubes, nasal passages, vaginal surfaces, and bilary tree surfaces, which contain the Fc neonatal receptor.
In some embodiments, the target cells are deficient in a protein or enzyme of interest. For example, where it is desired to deliver a nucleic acid to a hepatocyte, the hepatocyte represents the target cell. In some embodiments, the compositions of the invention transfect the target cells on a discriminatory basis (i.e., do not transfect non-target cells). The compositions of the invention may be prepared to preferentially target a variety of target cells, which include, but are not limited to, hepatocytes, epithelial cells, hematopoietic cells, epithelial cells, endothelial cells, lung cells, bone cells, stem cells, mesenchymal cells, neural cells (e.g., meninges, astrocytes, motor neurons, cells of the dorsal root ganglia and anterior horn motor neurons), photoreceptor cells (e.g., rods and cones), retinal pigmented epithelial cells, secretory cells, cardiac cells, adipocytes, vascular smooth muscle cells, cardiomyocytes, skeletal muscle cells, beta cells, pituitary cells, synovial lining cells, ovarian cells, testicular cells, fibroblasts, B cells, T cells, reticulocytes, leukocytes, granulocytes and tumor cells.
The compositions of the invention may be prepared to preferentially distribute to target cells such as in the heart, lungs, kidneys, liver, and spleen. In some embodiments, the compositions of the invention distribute into the cells of the liver to facilitate the delivery and the subsequent expression of the mRNA comprised therein by the cells of the liver (e.g., hepatocytes). The targeted hepatocytes may function as a biological “reservoir” or “depot” capable of producing, and systemically excreting a functional protein or enzyme. Accordingly, in one embodiment of the invention the liposomal transfer vehicle may target hepatocyes and/or preferentially distribute to the cells of the liver upon delivery. Following transfection of the target hepatocytes, the mRNA loaded in the liposomal vehicle is translated and a functional protein product is produced, excreted and systemically distributed. In other embodiments, cells other than hepatocytes (e.g., lung, spleen, heart, ocular, or cells of the central nervous system) can serve as a depot location for protein production.
In one embodiment, the compositions of the invention facilitate a subject's endogenous production of one or more functional proteins and/or enzymes, and in particular the production of proteins and/or enzymes which demonstrate less immunogenicity relative to their recombinantly-prepared counterparts. In a preferred embodiment of the present invention, the transfer vehicles comprise mRNA which encode a protein or enzyme for which the subject is deficient. Upon distribution of such compositions to the target tissues and the subsequent transfection of such target cells, the exogenous mRNA loaded into the liposomal transfer vehicle (e.g., a lipid nanoparticle) may be translated in vivo to produce a functional protein or enzyme encoded by the exogenously administered mRNA (e.g., a protein or enzyme for which the subject is deficient). Accordingly, the compositions of the present invention exploit a subject's ability to translate exogenously- or synthetically-prepared mRNA to produce an endogenously-translated protein or enzyme, and thereby produce (and where applicable excrete) a functional protein or enzyme. The expressed or translated proteins or enzymes may also be characterized by the in vivo inclusion of native post-translational modifications which may often be absent in recombinantly-prepared proteins or enzymes, thereby further reducing the immunogenicity of the translated protein or enzyme.
The present invention also contemplates the discriminatory targeting of target cells and tissues by both passive and active targeting means. The phenomenon of passive targeting exploits the natural distributions patterns of a transfer vehicle in vivo without relying upon the use of additional excipients or means to enhance recognition of the transfer vehicle by target cells. For example, transfer vehicles which are subject to phagocytosis by the cells of the reticulo-endothelial system are likely to accumulate in the liver or spleen, and accordingly may provide means to passively direct the delivery of the compositions to such target cells.
Alternatively, the present invention contemplates active targeting, which involves the use of additional excipients, referred to herein as “targeting ligands” that may be bound (either covalently or non-covalently) to the transfer vehicle to encourage localization of such transfer vehicle at certain target cells or target tissues. For example, targeting may be mediated by the inclusion of one or more endogenous targeting ligands (e.g., apolipoprotein E) in or on the transfer vehicle to encourage distribution to the target cells or tissues. Recognition of the targeting ligand by the target tissues actively facilitates tissue distribution and cellular uptake of the transfer vehicle and/or its contents in the target cells and tissues (e.g., the inclusion of an apolipoprotein-E targeting ligand in or on the transfer vehicle encourages recognition and binding of the transfer vehicle to endogenous low density lipoprotein receptors expressed by hepatocytes).
As provided herein, the composition may comprise a ligand capable of enhancing affinity of the composition to the target cell. Targeting ligands may be linked to the outer bilayer of the lipid particle during formulation or post-formulation. These methods are well known in the art. In addition, some lipid particle formulations may employ fusogenic polymers such as PEAA, hemagluttinin, other lipopeptides (see U.S. Patent Application Ser. Nos. 08/835,281, and 60/083,294, which are incorporated herein by reference) and other features useful for in vivo and/or intracellular delivery. In other some embodiments, the compositions of the present invention demonstrate improved transfection efficacies, and/or demonstrate enhanced selectivity towards target cells or tissues of interest. Contemplated therefore are compositions which comprise one or more ligands (e.g., peptides, aptamers, oligonucleotides, a vitamin or other molecules) that are capable of enhancing the affinity of the compositions and their nucleic acid contents for the target cells or tissues. Suitable ligands may optionally be bound or linked to the surface of the transfer vehicle. In some embodiments, the targeting ligand may span the surface of a transfer vehicle or be encapsulated within the transfer vehicle.
Suitable ligands and are selected based upon their physical, chemical or biological properties (e.g., selective affinity and/or recognition of target cell surface markers or features.) Cell-specific target sites and their corresponding targeting ligand can vary widely. Suitable targeting ligands are selected such that the unique characteristics of a target cell are exploited, thus allowing the composition to discriminate between target and non-target cells. For example, compositions of the invention may include surface markers (e.g., apolipoprotein-B or apolipoprotein-E) that selectively enhance recognition of, or affinity to hepatocytes (e.g., by receptor-mediated recognition of and binding to such surface markers). Additionally, the use of galactose as a targeting ligand would be expected to direct the compositions of the present invention to parenchymal hepatocytes, or alternatively the use of mannose containing sugar residues as a targeting ligand would be expected to direct the compositions of the present invention to liver endothelial cells (e.g., mannose containing sugar residues that may bind preferentially to the asialoglycoprotein receptor present in hepatocytes). (See Hillery A M, et al. “Drug Delivery and Targeting: For Pharmacists and Pharmaceutical Scientists” (2002) Taylor & Francis, Inc.) The presentation of such targeting ligands that have been conjugated to moieties present in the transfer vehicle (e.g., a lipid nanoparticle) therefore facilitate recognition and uptake of the compositions of the present invention in target cells and tissues. Examples of suitable targeting ligands include one or more peptides, proteins, aptamers, vitamins and oligonucleotides.
Methods of Administration and Treatment
As used herein, the term “subject” refers to any animal (e.g., a mammal), including, but not limited to, humans, non-human primates, rodents, and the like, to which the compositions and methods of the present invention are administered. Typically, the terms “subject” and “patient” are used interchangeably herein in reference to a human subject.
The compositions and methods of the invention provide for the delivery of mRNA encoding a Therapeutic Fusion Protein to treat a number of disorders. In some embodiments, the compositions and methods of the present invention are suitable for the treatment of diseases or disorders relating to the deficiency of proteins and/or enzymes that are excreted or secreted by the target cell into the surrounding extracellular fluid (e.g., mRNA encoding hormones and neurotransmitters). In some embodiments the disease may involve a defect or deficiency in a secreted protein (e.g. Fabry disease, or ALS). In certain embodiments, the disease may not be caused by a defect or deficit in a secreted protein, but may benefit from providing a secreted protein. For example, the symptoms of a disease may be improved by providing the compositions of the invention. Disorders for which the present invention are useful include, but are not limited to, disorders such as Pompe Disease, Gaucher Disease, beta-thalassemia, Huntington's Disease; Parkinson's Disease; muscular dystrophies (such as, e.g. Duchenne and Becker); hemophilia diseases (such as, e.g., hemophilia B (FIX), hemophilia A (FVIII); SMN1-related spinal muscular atrophy (SMA); amyotrophic lateral sclerosis (ALS); GALT-related galactosemia; SLC3A1-related disorders including cystinuria; COL4A5-related disorders including Alport syndrome; galactocerebrosidase deficiencies; X-linked adrenoleukodystrophy and adrenomyeloneuropathy; Friedreich's ataxia; Pelizaeus-Merzbacher disease; TSC1 and TSC2-related tuberous sclerosis; Sanfilippo B syndrome (MPS IIIB); CTNS-related cystinosis; the FMR1-related disorders which include Fragile X syndrome, Fragile X-Associated Tremor/Ataxia Syndrome and Fragile X Premature Ovarian Failure Syndrome; Prader-Willi syndrome; hereditary hemorrhagic telangiectasia (AT); Niemann-Pick disease Type Cl; the neuronal ceroid lipofuscinoses-related diseases including Juvenile Neuronal Ceroid Lipofuscinosis (JNCL), Juvenile Batten disease, Santavuori-Haltia disease, Jansky-Bielschowsky disease, and PTT-1 and TPP1 deficiencies; EIF2B1, EIF2B2, EIF2B3, EIF2B4 and EIF2B5-related childhood ataxia with central nervous system hypomyelination/vanishing white matter; CACNA1A and CACNB4-related Episodic Ataxia Type 2; the MECP2-related disorders including Classic Rett Syndrome, MECP2-related Severe Neonatal Encephalopathy and PPM-X Syndrome; CDKL5-related Atypical Rett Syndrome; Kennedy's disease (SBMA); Notch-3 related cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL); SCN1A and SCN1B-related seizure disorders; the Polymerase G-related disorders which include Alpers-Huttenlocher syndrome, POLG-related sensory ataxic neuropathy, dysarthria, and ophthalmoparesis, and autosomal dominant and recessive progressive external ophthalmoplegia with mitochondrial DNA deletions; X-Linked adrenal hypoplasia; X-linked agammaglobulinemia; Wilson's disease; and Fabry Disease. In some embodiments, the compositions of the invention provide for the in vivo delivery of one or more of Alpha 1-antitrypsin (A1AT), follistatin (e.g., for treatment of Duchenne's Muscular Dystrophy or A1At deficiency), acid alpha-glucosidase (GAA) (e.g., for treatment of Pompe Disease), glucocerebrosidase (e.g., for treatment of Gaucher Disease), Interferon Beta (IFN-β), hemoglobin (e.g., for treatment of beta-thalassemia), Collagen Type 4 (COL4A5) (e.g., for treatment of Alport Syndrome) and Granulocyte colony-stimulating factor (GCSF).
The compositions of the present invention may be administered and dosed in accordance with current medical practice, taking into account the clinical condition of the subject, the site and method of administration, the scheduling of administration, the subject's age, sex, body weight and other factors relevant to clinicians of ordinary skill in the art. The “effective amount” for the purposes herein may be determined by such relevant considerations as are known to those of ordinary skill in experimental clinical research, pharmacological, clinical and medical arts. In some embodiments, the amount administered is effective to achieve at least some stabilization, improvement or elimination of symptoms and other indicators as are selected as appropriate measures of disease progress, regression or improvement by those of skill in the art. For example, a suitable amount and dosing regimen is one that causes at least transient protein production.
Suitable routes of administration include, for example, oral, rectal, vaginal, transmucosal, pulmonary including intratracheal or inhaled, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Pulmonary administration by aerosolization or nebulization is particularly preferred for its non-invasive features and because of the ability of the Therapeutic Fusion Protein to be easily transported across the lung epithelium into the circulatory system.
Alternately, the compositions of the invention may be administered in a local rather than systemic manner, for example, via injection of the pharmaceutical composition directly into a targeted tissue, preferably in a sustained release formulation. Local delivery can be affected in various ways, depending on the tissue to be targeted. For example, aerosols containing compositions of the present invention can be inhaled (for nasal, tracheal, or bronchial delivery); compositions of the present invention can be injected into the site of injury, disease manifestation, or pain, for example; compositions can be provided in lozenges for oral, tracheal, or esophageal application; can be supplied in liquid, tablet or capsule form for administration to the stomach or intestines, can be supplied in suppository form for rectal or vaginal application; or can be delivered to the eye by use of creams, drops, or even injection. Formulations containing compositions of the present invention complexed with therapeutic molecules or ligands can even be surgically administered, for example in association with a polymer or other structure or substance that can allow the compositions to diffuse from the site of implantation to surrounding cells. Alternatively, they can be applied surgically without the use of polymers or supports.
In one embodiment, the compositions of the invention are formulated such that they are suitable for extended-release of the mRNA contained therein. Such extended-release compositions may be conveniently administered to a subject at extended dosing intervals. For example, in one embodiment, the compositions of the present invention are administered to a subject twice day, daily or every other day. In a preferred embodiment, the compositions of the present invention are administered to a subject twice a week, once a week, every ten days, every two weeks, every three weeks, or more preferably every four weeks, once a month, every six weeks, every eight weeks, every other month, every three months, every four months, every six months, every eight months, every nine months or annually. Also contemplated are compositions and liposomal vehicles which are formulated for depot administration (e.g., intramuscularly, subcutaneously, intravitreally) to either deliver or release an mRNA over extended periods of time. Preferably, the extended-release means employed are combined with modifications made to the mRNA to enhance stability.
Also contemplated herein are lyophilized pharmaceutical compositions comprising one or more of the liposomal nanoparticles disclosed herein and related methods for the use of such lyophilized compositions as disclosed for example, in PCT Application Publication No. WO 2012/170889, the teachings of which are incorporated herein by reference in their entirety. For example, lyophilized pharmaceutical compositions according to the invention may be reconstituted prior to administration or can be reconstituted in vivo. For example, a lyophilized pharmaceutical composition can be formulated in an appropriate dosage form (e.g., an intradermal dosage form such as a disk, rod or membrane) and administered such that the dosage form is rehydrated over time in vivo by the individual's bodily fluids.
Apparatuses Loaded with a Pharmaceutical Composition
In some embodiments, the compositions of the invention, such as a cationic lipid-based or PEI-based composition comprising an mRNA encoding a Therapeutic Fusion Protein, is provided within an apparatus for administration to the respiratory system of a subject. The apparatus can be, e.g., an instillation, aerosolization, or nebulization apparatus. Suitable apparatuses include, for example, a PARI Boy jet nebulizer, Aeroneb® Lab nebulizer, MicroSprayer®, or EFlow mesh nebulizer. Alternatively, dry powder inhalers or aerosolization apparatuses such as portable inhalers may be used.
While certain compounds, compositions and methods of the present invention have been described with specificity in accordance with certain embodiments, the following examples serve only to illustrate the compounds of the invention and are not intended to limit the same. Each of the publications, reference materials, accession numbers and the like referenced herein to describe the background of the invention and to provide additional detail regarding its practice are hereby incorporated by reference in their entirety.
The articles “a” and “an” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to include the plural referents. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention also includes embodiments in which more than one, or the entire group members are present in, employed in, or otherwise relevant to a given product or process. Furthermore, it is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, descriptive terms, etc., from one or more of the listed claims is introduced into another claim dependent on the same base claim (or, as relevant, any other claim) unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.
Where elements are presented as lists, (e.g., in Markush group or similar format) it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements, features, etc., certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements, features, etc. For purposes of simplicity those embodiments have not in every case been specifically set forth in so many words herein. It should also be understood that any embodiment or aspect of the invention can be explicitly excluded from the claims, regardless of whether the specific exclusion is recited in the specification. The publications and other reference materials referenced herein to describe the background of the invention and to provide additional detail regarding its practice are hereby incorporated by reference.
mRNAs encoding human erythropoietin•IgG Fc (SEQ ID NO: 3;
Formulation 1: Aliquots of 50 mg/mL ethanolic solutions of C12-200, DOPE, Chol and DMG-PEG2K (40:30:25:5) are mixed and diluted with ethanol to 3 mL final volume. Separately, an aqueous buffered solution (10 mM citrate/150 mM NaCl, pH 4.5) of mRNA is prepared from a 1 mg/mL stock. The lipid solution is injected rapidly into the aqueous mRNA solution and shaken to yield a final suspension in 20% ethanol. The resulting nanoparticle suspension is filtered, diafiltrated with 1× PBS (pH 7.4), concentrated and stored at 2-8° C.
Formulation 2: Aliquots of 50 mg/mL ethanolic solutions of DODAP, DOPE, cholesterol and DMG-PEG2K (18:56:20:6) are mixed and diluted with ethanol to 3 mL final volume. Separately, an aqueous buffered solution (10 mM citrate/150 mM NaCl, pH 4.5) of mRNA is prepared from a 1 mg/mL stock. The lipid solution is injected rapidly into the aqueous mRNA solution and shaken to yield a final suspension in 20% ethanol. The resulting nanoparticle suspension is filtered, diafiltrated with 1× PBS (pH 7.4), concentrated and stored at 2-8° C. Final concentration=1.35 mg/mL EPO mRNA (encapsulated). Zave=75.9 nm (Dv(50)=57.3 nm; Dv(90)=92.1 nm).
Formulation 3: Aliquots of 50 mg/mL ethanolic solutions of HGT4003, DOPE, cholesterol and DMG-PEG2K (50:25:20:5) are mixed and diluted with ethanol to 3 mL final volume. Separately, an aqueous buffered solution (10 mM citrate/150 mM NaCl, pH 4.5) of mRNA is prepared from a 1 mg/mL stock. The lipid solution is injected rapidly into the aqueous mRNA solution and shaken to yield a final suspension in 20% ethanol. The resulting nanoparticle suspension is filtered, diafiltrated with 1× PBS (pH 7.4), concentrated and stored at 2-8° C.
Formulation 4: Aliquots of 50 mg/mL ethanolic solutions of ICE, DOPE and DMG-PEG2K (70:25:5) are mixed and diluted with ethanol to 3 mL final volume. Separately, an aqueous buffered solution (10 mM citrate/150 mM NaCl, pH 4.5) of mRNA is prepared from a 1 mg/mL stock. The lipid solution is injected rapidly into the aqueous mRNA solution and shaken to yield a final suspension in 20% ethanol. The resulting nanoparticle suspension is filtered, diafiltrated with 1× PBS (pH 7.4), concentrated and stored at 2-8° C.
Formulation 5: Aliquots of 50 mg/mL ethanolic solutions of HGT5000, DOPE, cholesterol and DMG-PEG2K (40:20:35:5) are mixed and diluted with ethanol to 3 mL final volume. Separately, an aqueous buffered solution (10 mM citrate/150 mM NaCl, pH 4.5) of mRNA is prepared from a 1 mg/mL stock. The lipid solution is injected rapidly into the aqueous mRNA solution and shaken to yield a final suspension in 20% ethanol. The resulting nanoparticle suspension is filtered, diafiltrated with 1× PBS (pH 7.4), concentrated and stored at 2-8° C. Final concentration=1.82 mg/mL EPO mRNA (encapsulated). Zave=105.6 nm (Dv(50)=53.7 nm; Dv(90)=157 nm).
Formulation 6: Aliquots of 50 mg/mL ethanolic solutions of HGT5001, DOPE, cholesterol and DMG-PEG2K (40:20:35:5) are mixed and diluted with ethanol to 3 mL final volume. Separately, an aqueous buffered solution (10 mM citrate/150 mM NaCl, pH 4.5) of mRNA is prepared from a 1 mg/mL stock. The lipid solution is injected rapidly into the aqueous mRNA solution and shaken to yield a final suspension in 20% ethanol. The resulting nanoparticle suspension is filtered, diafiltrated with 1× PBS (pH 7.4), concentrated and stored at 2-8° C.
Studies are performed using either female BALB/C mice or (therapeutic protein deficient) KO mice. Samples are introduced via either direct instillation (MicroSprayer®) or nebulization (PARI Boy or Aeroneb) respective dose of encapsulated FFL mRNA. Mice are sacrificed and perfused with saline at the designated time points.
Intratracheal Administration. Test materials are administered by a single intratracheal aerosol administration via a Microsprayer™ (50 μL/animal) while animals are anesthetized with intraperitoneal injection of a mixture of ketamine mg/kg and xylazine 5-15 mg/kg.
Nebulization (Aerosol) Administration. FFL test materials are administered to all animals by a single aerosol inhalation via Aeroneb® Lab nebulizer (nominal dose volume of up to 8 mL/group). The test material is delivered to a box containing the whole group of animals (n=4) and connected to oxygen flow and scavenger system.
Euthanasia. Animals are euthanized by CO 2 asphyxiation at representative times post-dose administration (±5%) followed by thoracotomy and exsanguinations. Whole blood (maximal obtainable volume) is collected via cardiac puncture.
Perfusion. Following exsanguination, animals undergo cardiac perfusion with saline. In brief, whole body intracardiac perfusion is performed by inserting 23/21 gauge needle attached to 10 mL syringe containing saline set into the lumen of the left ventricle for perfusion. The right atrium is incised to provide a drainage outlet for perfusate. Gentle and steady pressure is applied to the plunger to perfuse the animal after the needle has been positioned in the heart. Adequate flow of the flushing solution is ensured when the exiting perfusate flows clear (free of visible blood) indicating that the body is saturated with flushing solution and the procedure is complete.
Tissue Collection. Following perfusion, the liver, lungs (right and left) and spleen are harvested from each animal, snap frozen, and stored at −80° C. or stored in 10% neutral buffered formalin for analysis.
Isolation of serum for analysis. Whole blood (maximal obtainable volume) is collected from animals euthanized by CO 2 asphyxiation 48 hours post dose administration (±5%) followed by thoracotomy and terminal cardiac blood collection via cardiac puncture on euthanized animals into serum separator tubes, allowed to clot at room temperature for at least 30 minutes, centrifuged at 22° C.±5° C. at 9300 g for 10 minutes, and the serum is extracted. For interim blood collections, approximately 40-50 μL of whole blood is collected via facial vein puncture or tail snip. Samples collected from non treatment animals are used as a baseline for comparison to study animals.
EPO ELISA: Quantification of EPO protein is performed following procedures reported for human EPO ELISA kit (Quantikine IVD, R&D Systems, Catalog #Dep-00). Positive controls are ultrapure and tissue culture grade recombinant human erythropoietin protein (R&D Systems, Catalog #286-EP and 287-TC, respectively). Detection is monitored via absorption (450 nm) on a Molecular Device Flex Station instrument.
GLA ELISA: Standard ELISA procedures are followed employing sheep anti-Alpha-galactosidase G-188 IgG as the capture antibody with rabbit anti-Alpha-galactosidase TK-88 IgG as the secondary (detection) antibody (Shire Human Genetic Therapies). Horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG is used for activation of the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate solution. The reaction is quenched using 2N H2SO4 after 20 minutes. Detection is monitored via absorption (450 nm) on a Molecular Device Flex Station instrument. Untreated mouse serum and human Alpha-galactosidase protein are used as negative and positive controls, respectively.
FIX ELISA: Quantification of FIX protein is performed following procedures reported for human FIX ELISA kit (AssayMax, Assay Pro, Catalog #EF1009-1).
A1AT ELISA: Quantification of A1AT protein is performed following procedures reported for human A1AT ELISA kit (Innovative Research, Catalog #IRAPKT015).
Western Blot Analysis (EPO): Samples can also be analyzed via Western blot. For example, Western blot analyses of the EPO fusion protein are performed using an anti-hEPO antibody (R&D Systems #MAB2871) and ultrapure human EPO protein (R&D Systems #286-EP) as the control.
Results: The results will demonstrate that administration of mRNA encoding Therapeutic Fusion Proteins result in the production of protein in vivo and delivery of significant levels of therapeutic protein into the circulatory system. Such a depot effect can be achieved in multiple sites within the body (i.e., lung, liver, kidney, spleen, and muscle).
This patent application is a continuation application of U.S. application Ser. No. 16/422,403, filed on May 24, 2019, which is a continuation of application of U.S. application Ser. No. 14/774,263, filed on Feb. 19, 2016, which is a U.S. National Entry claiming priority to International Application No. PCT/US14/28330, filed on Mar. 14, 2014, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/784,766, filed on Mar. 14, 2013, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61784766 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16422403 | May 2019 | US |
Child | 18186856 | US | |
Parent | 14774263 | Feb 2016 | US |
Child | 16422403 | US |