Multi-channel gas-delivery system

Information

  • Patent Grant
  • 9441295
  • Patent Number
    9,441,295
  • Date Filed
    Monday, November 22, 2010
    14 years ago
  • Date Issued
    Tuesday, September 13, 2016
    8 years ago
Abstract
One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gases to a corresponding gas channel.
Description
BACKGROUND

1. Field


This disclosure is generally related to deposition systems. More specifically, this disclosure is related to a multi-channel gas-delivery system used in a deposition reactor.


2. Related Art


The negative environmental impact caused by the use of fossil fuels and their rising cost have resulted in a dire need for cleaner, cheaper alternative energy sources. Among different forms of alternative energy sources, solar power has been favored for its cleanness and wide availability.


A solar cell converts light into electricity using the photoelectric effect. There are several basic solar cell structures, including a single p-n junction, p-i-n/n-i-p, and multi-junction. A typical single p-n junction structure includes a p-type doped layer and an n-type doped layer of similar material. A heterojunction structure includes at least two layers of materials of different bandgaps. A p-i-n/n-i-p structure includes a p-type doped layer, an n-type doped layer, and an optional intrinsic (undoped) semiconductor layer (the i-layer) sandwiched between the p-layer and the n-layer. A multi junction structure includes multiple semiconductor layers of different bandgaps stacked on top of one another.


In a solar cell, light is absorbed near the p-n junction generating carriers. The carriers diffuse into the p-n junction and are separated by the built-in electric field, thus producing an electrical current across the device and external circuitry. An important metric in determining a solar cell's quality is its energy-conversion efficiency, which is defined as the ratio between power converted (from absorbed light to electrical energy) and power collected when the solar cell is connected to an electrical circuit.


Materials that can be used to construct solar cells include amorphous silicon (a-Si), polycrystalline silicon (poly-Si), crystalline silicon (c-Si), cadmium telluride (CdTe), etc. FIG. 1 illustrates an exemplary crystalline-silicon thin-film solar cell. Solar cell 100 includes a low-grade crystalline-Si substrate 102, a p-type doped single-crystal Si layer 104, an n+ silicon emitter layer 106, front electrodes 108, and an Al back electrode 110. Arrows in FIG. 1 indicate incident sunlight.


Based on industrial surveys, c-Si wafer-based solar cells dominate nearly 90% of the market. However, the cost of producing c-Si wafer-based solar cells is high, and the waste of Si material during the ingot-cutting process and the wafer-polishing process has caused a bottleneck in the supply of crystalline-Si wafers. Due to the soaring price and the supply shortage of Si material, there has been a great interest in alternative ways to manufacture solar cells. Recently, photovoltaic thin-film technology has been drawing vast interest because it can significantly reduce the amount of material used, thus lowering the cost of solar cells. Among various competing technologies, single-crystal Si thin-film solar cells have drawn great interest for their low cost and high efficiency.


Single-crystal Si thin-film solar cells can be created using conventional semiconductor epitaxy technologies which not only reduce manufacturing costs but also enable flexible doping levels in the emitter, absorber and back surface field of the solar cell, thus enhancing its efficiency. Single-crystal Si thin-film solar cells with an efficiency as high as 17% have been demonstrated in research labs (see M. Reutuer et al., “17% Efficient 50 μm Thick Solar Cells,” Technical Digest, 17th International Photovoltaic Science and Engineering Conference, Fukuoka, Japan, p. 424).


A high-quality single-crystal Si thin film can be produced using Si epitaxy, which has been widely used in the semiconductor industry to create a high-quality single-crystal Si layer for CMOS integrated circuits, power devices and high-voltage discrete devices. Among possible Si epitaxial deposition techniques, trichlorosilane (TCS) based chemical vapor deposition (CVD) can provide a deposition rate of up to 10 μm/min. Therefore, it is possible to achieve a high-throughput and low-cost epitaxial process for solar cell application.


However, there is a lack of suitable Si epitaxy tools that can meet the demand for high throughput and low deposition cost for Si film layers with thicknesses up to tens of microns, as required by the solar cell industry. Existing Si epitaxy tools, such as AMC7810™and Centura 5200™by Applied Materials, Inc., of Santa Clara, Calif., US; MT7700™by Moore Epitaxial, Inc., of Tracy, Calif., US; PE2061™by LPE Epitaxial Technology of Italy; and Epsilon 3200™by ASM International of the Netherlands, are optimized for the needs of semiconductor device manufacturing. Although these epitaxial tools can deliver Si films with the highest quality, these tools are not compatible, in terms of throughput and gas conversion efficiency, with the economics of the solar cell industry.



FIG. 2 presents a diagram illustrating the structure of an existing barrel epitaxial reactor (prior art), such as that used for the batch processing of multiple wafers. Barrel reactor 200 includes a reaction chamber 202, which has a gas inlet 204 at the top and a vent 206 at the bottom. A vertically positioned susceptor 208 holds a number of wafers, such as wafer 210. Radio frequency (RF) heating coils 212 radiate heat onto the susceptor and wafers. Although barrel reactor 200 can batch process multiple wafers, the number of wafers it can process is limited by the architect of the system, the size of the chamber, and the design of the susceptor. Once built, it is difficult to modify the reactor or the susceptor to accommodate more wafers. In addition, the susceptor needs to be rotated during deposition in order to allow a uniform gas flow over each wafer during the deposition process.


SUMMARY

One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gases to a corresponding gas channel.


In a variation on the embodiment, the gas-delivery system further includes a main gas line configured to deliver the reaction gases to the main-gas-inlet port.


In a further variation, the main gas line includes a stainless steel tube with an outer diameter of 0.5 inch


In a variation on the embodiment, at least one of the sub-gas lines is coupled to a flow control valve configured to individually control a gas flow rate within the sub-gas lines, thereby facilitating a uniform gas flow into the reactor chamber.


In a further variation, the flow control valve is a bellow metering valve (BMV).


In a variation on the embodiment, at least one of the sub-gas lines include a stainless steel tube with an outer diameter of 0.25 inch.


In a variation on the embodiment, the gas holes have a diameter of 1 mm.


In a variation on the embodiment, the gas-delivery system further includes a gas diffuser situated between a sub-gas line and a corresponding gas channel.





BRIEF DESCRIPTION OF THE FIGURES
Color Drawings

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1 presents a diagram illustrating the structure of an exemplary crystalline-Si thin-film solar cell.



FIG. 2 presents a diagram illustrating an existing barrel reactor (prior art).



FIG. 3A presents a diagram illustrating the side view of an exemplary deposition reactor in accordance with an embodiment of the present invention.



FIG. 3B presents a diagram illustrating the front view of a cross section of an exemplary deposition reactor in accordance with an embodiment of the present invention.



FIG. 4A presents a diagram illustrating the front side of a susceptor in accordance with an embodiment of the present invention.



FIG. 4B presents a diagram illustrating the back side of a susceptor in accordance with an embodiment.



FIG. 5 presents a diagram illustrating a cross-sectional view of a conventional gas-delivery system.



FIG. 6 presents a diagram illustrating a cross-sectional view of a gas-delivery system in accordance with an embodiment of the present invention.



FIG. 7A presents a diagram illustrating a 3-dimensional (3-D) view of a multi-channel gas-delivery system in accordance with an embodiment of the present invention.



FIG. 7B presents a 3-D diagram illustrating the amplified view of a region close to sub-gas line 704, in accordance with an embodiment of the present invention.



FIG. 8 presents a diagram illustrating a cross-sectional view of a part of a deposition reactor implementing a multi-channel gas-delivery system, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure.


Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention provide a multi-channel gas-delivery system used in a material deposition reactor. The gas-delivery system includes a main gas-inlet port and a multi-channel gas-delivery plate. During operation, process gas enters the multi-channel gas-delivery plate via the main gas-inlet port. The multi-channel gas-delivery plate includes a plurality of equally spaced channels, each leading to a flow control valve, which controls the gas flow in a respective channel. The processing gas enters the reaction chamber through the multiple channels located on the gas-delivery plate. By individually controlling the flow rate of each channel, the multi-channel gas-delivery system can ensure a uniform gas flow over each wafer surface.


Chamber and Susceptors



FIG. 3A presents a diagram illustrating the side view of an exemplary deposition reactor in accordance with an embodiment of the present invention. In this example, deposition reactor 300 includes a reactor chamber 302, a gas-inlet port 304, and a gas-outlet port 306.



FIG. 3B presents a diagram illustrating the front view of a cross section of an exemplary deposition reactor in accordance with an embodiment of the present invention. FIG. 3B demonstrates that a pair of susceptors 308 and 310 are placed vertically inside reaction chamber 302. A narrow channel 312 is formed between susceptors 308 and 310.



FIG. 4A presents a diagram illustrating the front side of a susceptor in accordance with an embodiment of the present invention. During deposition, a susceptor 402 is placed vertically inside the reactor chamber. To avoid heat absorption by chamber walls, the reactor chamber is formed using a material that is transparent to radiant heat. In one embodiment, the reactor chamber is formed using quartz. By contrast, susceptor 402 is formed using a material that is opaque and absorbs radiant heat energy, such as SiC-coated graphite and monolithic SiC. In one embodiment, susceptor 402 is formed using SiC-coated graphite. As a result, most of the radiant heat from lamp-heating units located outside the reactor chamber is absorbed by susceptor 402.


The front side of susceptor 402 includes a set of pockets, such as pocket 404, for supporting substrates to be deposited. The shape of the bottom of the pockets is carefully designed to ensure a good thermal contact between the susceptor and the substrates. In one embodiment, the bottom of pocket 404 has a contour shape. Depending on the size of susceptor 402, various numbers of substrates can fit onto susceptor 402. In one embodiment, susceptor 402 includes 12 pockets for supporting 12 125×125 mm2 substrates. FIG. 4B presents a diagram illustrating the back side of a susceptor in accordance with an embodiment.


Detailed descriptions of the deposition reactor, including the reactor chamber and the susceptors, can be found in U. S. patent application Ser. No. 12/355,463 (Attorney Docket No. SSP08-1003US), entitled “Scalable, High-Throughput, Multi-Chamber Epitaxial Reactor for Silicon Deposition,” by inventors Steve Poppe, Yan Rozenzon, Davis Z. Chen, Xiaole Yan, Peijun Ding, and Zheng Xu, filed 16 Jan. 2009, the disclosures of which are incorporated by reference in their entirety herein.


Gas-Delivery System


In a solar cell, film uniformity greatly impacts the solar cell's efficiency. In a traditional epitaxial system, it has been difficult to achieve good deposition uniformity and a high reaction-gas-utilization rate at the same time. Substrate rotation can be used to improve uniformity. However, it becomes increasingly difficult to rotate substrates in a large batch reactor. To achieve better deposition uniformity, the aforementioned U.S. patent application Ser. No. 12/355,463 has proposed to inject precursor gases, such as TCS and H2, into the narrow channel formed by the two interlocked susceptors from the top and bottom of the reactor chamber, alternately. It is important to address the uniformity issue across the horizontal direction, where the gas flow rate over each wafer varies depending on the location of the wafer. For example, a wafer placed directly underneath the precursor gas inlet may experience a higher gas flow rate compared with another wafer placed on the edge. The different gas flow rates over the different wafers may result in non-uniform deposition result.



FIG. 5 presents a diagram illustrating a cross-sectional view of a conventional gas-delivery system. Gas-delivery system 500 includes a main gas-inlet port 502 and a single-channel gas-delivery plate 504. Gas-delivery plate 504 includes a plurality of gas holes, such as gas holes 506 and 508, coupled to the reactor chamber (not shown). During deposition, precursor gas is delivered to gas-delivery plate 504 via main gas-inlet port 502. Once the precursor gas filled the single large channel within single-channel gas-delivery plate 504, it will enter the reactor chamber through the plurality of gas holes, such as gas holes 506 and 508. Note that because of the geometry configurations of single-channel gas-delivery plate 504 and the reactor chamber, the gas flow rate into the reactor chamber can be non-uniform. For example, gas holes that are directly beneath main gas-inlet port 502, such as gas hole 508, can have a slightly higher gas flow rate than that of gas holes that are further away, such as gas hole 506. Such a non-uniform gas flow rate can result in a non-uniform deposition rate, and thus non-uniform film thickness of wafers located at different locations.


To address the non-uniformity problem, embodiments of the present invention implements a multi-channel gas-delivery plate. FIG. 6 presents a diagram illustrating a cross-sectional view of a gas-delivery system in accordance with an embodiment of the present invention. Gas-delivery system 600 includes a main gas-inlet port 602, a plurality of sub-gas lines, such as sub-gas line 604, and a multi-channel gas-delivery plate 606.


During deposition, precursor gas first enters gas-delivery system 600 through main gas-inlet port 602. Main gas-outlet port 602 can have various dimensions and can be made of different materials. In one embodiment, main gas-inlet port 602 includes a stainless steel tube with an outer diameter (OD) of 0.5 inch. Subsequently, the precursor gas enters multi-channel gas-delivery plate 606 through the sub-gas lines, such as sub-gas line 604. Each sub-gas line is coupled to a flow control valve (not shown), which can individually control the flow rate of the coupling sub-gas line. The sub-gas line can have various dimensions and can be made of different materials. In one embodiment, the sub-gas lines are stainless steel tubes with an OD of 0.25 inch. In addition, various types of flow control valves can be used to control the flow rate in the sub-gas lines. In one embodiment, each sub-gas line is coupled to a bellow metering valve (BMV), which can be individually adjusted.


Multi-channel gas-delivery plate 606 includes a plurality of channels, such as channel 608, each coupled to an individual sub-gas line. For example, channel 608 is coupled to sub-gas line 604. In addition, each channel couples to the reactor chamber though a plurality of gas holes, such as gas hole 610. The number of gas holes per channel and the dimensions of the gas holes can vary. In one embodiment, the gas holes are uniformly sized with an OD of 1 mm. During deposition, precursor gas fills each channel through the coupling sub-gas line before entering the reactor chamber via the gas holes. The relative locations of the sub-gas lines and the channels can be arbitrary. In one embodiment, the sub-gas lines are equally spaced, and each sub-gas line is approximately coupled to the center of each gas channel. To match the gas pressure within the sub-gas lines and the channels, in one embodiment, a gas diffuser (not shown) is inserted between each sub-gas line and each channel.


Because the flow rate within each gas-sub-line can be individually adjusted, the amount of gas flow into the reactor chamber via each channel can also be individually adjusted. Consequently, a uniform gas flow across the horizontal intersection of the narrow channel formed by the two interlocking susceptors can be achieved. For example, by slightly increasing the flow rate in the edge sub-gas lines, the system can match the flow rate between the gas channels located at the edge and the gas channels located in the center. Such adjustment can result in the same amount of precursor gas flow over the surface of wafers at different locations during the deposition process.



FIG. 7A presents a diagram illustrating a 3-dimensional (3-D) view of a multi-channel gas-delivery system in accordance with an embodiment of the present invention. A multi-channel gas-delivery system 700 includes a main gas line 702, a main gas-diffusion space 703, a number of sub-gas lines (such as sub-gas line 704), and a multi-channel gas-delivery plate 708. FIG. 7A illustrates that each sub-gas line is coupled to a flow control valve, such as flow control valve 706, which individually controls the gas flow rate in the sub-gas line.



FIG. 7B presents a 3-D diagram illustrating the amplified view of a region close to sub-gas line 704, in accordance with an embodiment of the present invention. From FIG. 7B, one can see that a gas diffuser 710 is inserted between a gas channel 712 and sub-gas line 704. FIG. 7B also shows that gas channel 712 is coupled to a plurality of gas holes, such as gas hole 714.



FIG. 8 presents a diagram illustrating a cross-sectional view of a part of a deposition reactor implementing the multi-channel gas-delivery system, in accordance with an embodiment of the present invention. Deposition reactor 800 includes a main gas line 802, a main gas-diffusion space 803, a number of sub-gas lines (such as sub-gas line 804), a gas-delivery plate 806, a gas nozzle 808, a susceptor 810, and a chamber 820.


During deposition, precursor gas enters the deposition reactor via main gas line 802, which couples to gas-delivery plate 806 though the sub-gas lines. Gas-delivery plate 806 includes a number of gas channels, such as channel 812. Once the precursor gas fills the gas channel, it enters gas nozzle 808, which then leads the gas to the narrow channel formed by two interlocking suceptors, such as susceptor 810, located within chamber 820. A number of wafers, such as wafer 814, are attached to the surface of susceptor 810. Note that deposition reactor 800 may also include other gas nozzles for exhaust or for injecting purging gas into chamber 820. In addition, it is optional to implement the multi-channel gas-delivery system for those nozzles since they don't require uniform gas input.


By individually controlling the flow rate of each sub-gas line, a uniform gas flow (indicated by the arrows in FIG. 8) over the wafers can be created during the deposition process. Note that a uniform flow of precursor gas over the surfaces of the wafers is critical for ensuring uniform film quality and thickness.


Note that, although this disclosure gives an example of a gas-delivery system incorporating 1 main gas line, 6 sub-gas lines, and 6 gas channels, other configurations with fewer or more main gas lines, sub-gas lines, or channels are also possible. In addition, the numbers of gas holes per channel can be different. Also note that, although in the example shown in FIGS. 6 and 7 the main gas line and the sub-gas lines are situated at the center of the delivery plate and the channels, respectively, the relative locations of the gas lines can vary. For example, the main gas line can be placed off center relative to the delivery plate.


The foregoing descriptions of various embodiments have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention.

Claims
  • 1. A reactor, comprising: a chamber; a gas nozzle positioned on a first side of the chamber; anda gas-delivery system configured to deliver reaction gases to the chamber via the gas nozzle, and wherein the gas-delivery system comprises: a main gas-inlet port for receiving the reaction gases; an elongated gas-delivery plate comprising a plurality of gas channels aligned along a length of the elongated gas-delivery plate, wherein the plurality of gas channels comprise two separate edge gas channels positioned near opposite ends of the elongated gas-delivery plate; anda plurality of sub-gas lines respectively coupled to the plurality of gas channels, wherein the two edge gas channels are coupled to two separate sub-gas lines from the plurality of sub-gas lines, wherein each sub-gas line is configured to deliver a portion of the received reaction gases to the chamber through a plurality of gas holes belonging to a coupled gas channel, and wherein each sub-gas line is coupled to a flow control valve configured to individually control a gas flow rate within the sub-gas line, thereby facilitating the reaction gases to flow into the chamber uniformly across a horizontal plane.
  • 2. The reactor of claim 1, wherein the main gas-inlet port includes a main gas line, which includes a stainless steel tube with an outer diameter substantially around 0.5 inch.
  • 3. The reactor of claim 1, wherein the flow control valve is a bellow metering valve (BMV).
  • 4. The reactor of claim 1, wherein a respective sub-gas line from the plurality of sub-gas lines includes a stainless steel tube with an outer diameter substantially around 0.25 inch.
  • 5. The reactor of claim 1, wherein the gas holes have a diameter substantially around 1 mm.
  • 6. The reactor of claim 1, further comprising a pair of susceptors situated inside the chamber, wherein each susceptor has a front side and a back side, wherein the front side mounts a number of substrates, wherein the susceptors are positioned vertically in such a way that the front sides of the susceptors face each other, wherein the vertical edges of the susceptors are in contact with each other, thereby forming a substantially enclosed narrow channel between the substrates mounted on different susceptors, and wherein the susceptors are formed using at least one of: SiC-coated graphite and monolithic SiC.
  • 7. The reactor of claim 1, wherein the chamber is made of a material that comprises quartz.
  • 8. The reactor of claim 1, further comprising a gas diffuser situated between the sub-gas line and the coupled gas channel.
  • 9. A material-deposition system, comprising: a chamber; andan elongated gas-delivery plate positioned near a first side of the chamber, wherein the elongated gas-delivery plate comprises a plurality of gas channels aligned along a length of the elongated gas-delivery plate, wherein the plurality of gas channels comprise two separate edge gas channels positioned near opposite ends of the elongated gas-delivery plate;a gas-inlet port positioned near the first side of the elongated gas- delivery plate and configured to receive reaction gases;a plurality of sub-gas lines coupled between the plurality of gas channels and the gas-inlet port, wherein the two edge gas channels are coupled to two separate sub-gas lines from the plurality of sub-gas lines, wherein each sub-gas line is configured to deliver a portion of the received reaction gases to the chamber through a plurality of gas holes belonging to a coupled gas channel, and wherein each sub-gas line is coupled to a flow control valve configured to individually control a gas flow rate within the sub-gas line, thereby facilitating the reaction gases to flow into the chamber uniformly across a horizontal plane.
  • 10. The material-deposition system of claim 9, further comprising a gas nozzle positioned between the chamber and the elongated gas-delivery plate, wherein the gas nozzle is configured to inject the reaction gases into the chamber.
  • 11. The material-deposition system of claim 9, wherein the gas-inlet port includes a main gas line, which includes a stainless steel tube with an outer diameter substantially around 0.5 inch.
  • 12. The material-deposition system of claim 9, wherein the flow control valve is a bellow metering valve.
  • 13. The material-deposition system of claim 9, wherein a respective sub-gas line from the plurality of sub-gas lines includes a stainless steel tube with an outer diameter substantially around 0.25 inch.
  • 14. The material-deposition system of claim 9, wherein a respective gas hole from the plurality of gas holes has a diameter substantially around 1 mm.
  • 15. The material-deposition system of claim 9, further comprising a pair of susceptors positioned inside the chamber, wherein each susceptor has a front side and a back side, wherein the front side mounts a number of substrates, wherein the susceptors are positioned vertically in such a way that the front sides of the susceptors face each other, wherein the vertical edges of the susceptors are in contact with each other, thereby forming a substantially enclosed narrow channel between the substrates mounted on different susceptors, and wherein the susceptors are formed using at least one of: SiC-coated graphite and monolithic SiC.
  • 16. The material-deposition system of claim 9, wherein the chamber is made of a material that comprises quartz.
  • 17. The material-deposition system of claim 9, further comprising a gas diffuser positioned between a sub-gas line and a corresponding gas channel.
RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 61/334,987, entitled “Uniform Gas Flow over Multiple Wafers in a High Volume EPI Reactor” by inventors Yan Rozenzon, Robert T. Trujillo, and Steven C. Beese, filed 14 May 2010. The subject matter of this application is related to the subject matter of U.S. patent application Ser. No. 12/355,463, entitled “Scalable, High-Throughput, Multi-Chamber Epitaxial Reactor for Silicon Deposition,” by inventors Steve Poppe, Yan Rozenzon, David Z. Chen, Xiaole Yan, Peijun Ding, and Zheng Xu, filed 16 Jan. 2009, the disclosures of which are incorporated by reference in their entirety herein.

Government Interests

This invention was made with government support under DE-EE0000589 awarded by Department of Energy. The government has certain rights in the invention.

US Referenced Citations (154)
Number Name Date Kind
3603284 Garnache Sep 1971 A
3637434 Nakanuma Jan 1972 A
3658585 Folkmann Apr 1972 A
3675619 Burd Jul 1972 A
3699298 Briody Oct 1972 A
3796182 Rosler Mar 1974 A
3806360 Briody Apr 1974 A
4168998 Hasegawa Sep 1979 A
4193756 Leon Mar 1980 A
4268374 Lepselter May 1981 A
4298443 Maydan Nov 1981 A
4325778 Lepselter Apr 1982 A
4496828 Kusmierz Jan 1985 A
4522149 Garbis Jun 1985 A
4558660 Nishizawa Dec 1985 A
4565157 Brors Jan 1986 A
4579080 Martin Apr 1986 A
4612207 Jansen Sep 1986 A
4661199 Looney Apr 1987 A
4747367 Posa May 1988 A
4761269 Conger Aug 1988 A
4786352 Benzing Nov 1988 A
4794220 Sekiya Dec 1988 A
4807562 Sandys Feb 1989 A
4823736 Post Apr 1989 A
4838983 Schumaker Jun 1989 A
4839145 Gale Jun 1989 A
4858558 Ohmura Aug 1989 A
4928626 Carlson May 1990 A
5038711 Dan Aug 1991 A
5053247 Moore Oct 1991 A
5074245 Ota Dec 1991 A
5119540 Kong Jun 1992 A
5121531 Severns Jun 1992 A
5151133 Ohmine Sep 1992 A
5207835 Moore May 1993 A
5269847 Anderson Dec 1993 A
5288364 Burt Feb 1994 A
5350455 Mahler Sep 1994 A
5373806 Logar Dec 1994 A
5374159 Severns Dec 1994 A
5427824 Inushima Jun 1995 A
5441571 Ohta Aug 1995 A
5453124 Moslehi Sep 1995 A
5458918 Hawkins Oct 1995 A
5476359 Severns Dec 1995 A
5505778 Ono Apr 1996 A
5518549 Hellwig May 1996 A
5532190 Goodyear Jul 1996 A
5614447 Yamaga Mar 1997 A
5629245 Inushima May 1997 A
5700422 Usui Dec 1997 A
5871586 Crawley Feb 1999 A
5916369 Anderson Jun 1999 A
5950925 Fukunaga Sep 1999 A
5964948 Dietze Oct 1999 A
5993555 Hamilton Nov 1999 A
5994675 Bethune Nov 1999 A
6013338 Inushima Jan 2000 A
6110289 Moore Aug 2000 A
6113984 MacLeish Sep 2000 A
6120605 Sato Sep 2000 A
6129048 Sullivan Oct 2000 A
6193804 Chang Feb 2001 B1
6214116 Shin Apr 2001 B1
6217662 Kong Apr 2001 B1
6262393 Imai Jul 2001 B1
6338756 Dietze Jan 2002 B2
6348397 Ide Feb 2002 B2
6399510 Riley Jun 2002 B1
6435428 Kim Aug 2002 B2
6472639 Nishitani Oct 2002 B2
6475284 Moore Nov 2002 B1
6478923 Igarashi Nov 2002 B1
6500734 Anderson Dec 2002 B2
6506256 Ide Jan 2003 B2
6530990 Kong Mar 2003 B2
6544333 Keck Apr 2003 B2
6562128 Dietze May 2003 B1
6747249 Robinson Jun 2004 B2
6814811 Ose Nov 2004 B2
6916399 Rozenzon Jul 2005 B1
6934145 Hsieh Aug 2005 B2
7153368 Preti Dec 2006 B2
7159537 Wickramanayaka Jan 2007 B2
7270713 Blonigan Sep 2007 B2
7273526 Shinriki Sep 2007 B2
7314526 Preti Jan 2008 B1
7354622 Shinriki Apr 2008 B2
7462246 Hellwig Dec 2008 B2
7628863 Sen Dec 2009 B2
7918938 Provencher Apr 2011 B2
8080107 Kennedy Dec 2011 B2
8133323 Kakegawa Mar 2012 B2
8183132 Nijhawan May 2012 B2
8231799 Bera Jul 2012 B2
8257547 Pei Sep 2012 B2
8268078 Suzuki Sep 2012 B2
8288645 Lee Oct 2012 B2
8388753 Pei Mar 2013 B2
8404049 Hellwig Mar 2013 B2
8430962 Masuda Apr 2013 B2
8448598 Pei May 2013 B2
8539908 Takagi Sep 2013 B2
8562745 Rozenzon Oct 2013 B2
8608854 Pei Dec 2013 B2
8764902 Suzuki Jul 2014 B2
8778079 Begarney Jul 2014 B2
8808454 Lee Aug 2014 B2
8877000 Strang Nov 2014 B2
8967081 Borean Mar 2015 B2
8980005 Carlson Mar 2015 B2
9117670 Abedijaberi Aug 2015 B2
20010040100 Wang Nov 2001 A1
20020004309 Collins Jan 2002 A1
20020102859 Yoo Aug 2002 A1
20030012885 Gramarossa Jan 2003 A1
20030019428 Ku Jan 2003 A1
20030145791 Shinya Aug 2003 A1
20040135979 Hazelton Jul 2004 A1
20050016956 Liu Jan 2005 A1
20050208217 Shinriki Sep 2005 A1
20050229848 Shinriki Oct 2005 A1
20060016559 Kobayashi Jan 2006 A1
20060060791 Hazelton Mar 2006 A1
20060124169 Mizusawa Jun 2006 A1
20060191118 Lee Aug 2006 A1
20060191637 Zajac Aug 2006 A1
20060201414 Brabant Sep 2006 A1
20060231035 Hellwig Oct 2006 A1
20070131173 Halpin Jun 2007 A1
20070175391 Mizusawa Aug 2007 A1
20070181181 Mizusawa Aug 2007 A1
20070247075 Kim Oct 2007 A1
20070249173 Kim Oct 2007 A1
20070251642 Bera Nov 2007 A1
20070254483 Bera Nov 2007 A1
20070254486 Bera Nov 2007 A1
20090081878 Dhindsa Mar 2009 A1
20090117746 Masuda May 2009 A1
20090139570 Kinoshita Jun 2009 A1
20090194235 Kobayashi Aug 2009 A1
20090311869 Okesaku Dec 2009 A1
20100092697 Poppe Apr 2010 A1
20100092698 Poppe Apr 2010 A1
20100183825 Becker Jul 2010 A1
20100263587 Sivaramakrishnan Oct 2010 A1
20100313877 Bellman Dec 2010 A1
20110048325 Choi Mar 2011 A1
20110067632 Poppe Mar 2011 A1
20110277688 Trujillo Nov 2011 A1
20110277690 Rozenzon Nov 2011 A1
20110283941 Rozenzon Nov 2011 A1
20120111271 Begarney May 2012 A1
Foreign Referenced Citations (5)
Number Date Country
H11288890 Oct 1999 JP
2003158054 May 2003 JP
2003277936 Oct 2003 JP
2006080098 Mar 2006 JP
20060117134 Nov 2006 KR
Non-Patent Literature Citations (1)
Entry
Beaucarne, G et al., “Epitaxial thin-film Si solar cells”, pp. 533-542, Science Direct, www.sciencedirect.com, Thin Solid Films 511-512 (2006) 533-542.
Related Publications (1)
Number Date Country
20110277690 A1 Nov 2011 US
Provisional Applications (1)
Number Date Country
61334987 May 2010 US