This invention relates generally to optical metrology and more particularly to measurement of three dimensional critical dimensions using principles of scatterometry.
Semiconductor processing is a well established technology for making integrated circuit (IC) devices such as those used in computers, memory cells and digital cameras. Transistors, which are the active part of an IC, are formed in the semiconductor and film stacks consisting generally of alternating dielectrics and metals are built on top of the semiconductor. These films vary in thickness from a few Angstroms to a few microns depending on what function they serve. The device is built layer by layer starting from a surface of a semiconductor. Dielectric films are etched at specific lithographically defined locations to form vias or contacts. Vias or contacts are filled with conducting materials such as metals so that connections can be made from upper layer interconnects to lower layer interconnects. Interconnects connect different points of the device to each other within one plane. By far the smallest dimension that is printed and manufactured is at the transistor level; features used to control various aspects of a manufacturing process are frequently referred to as “critical dimensions” or CD's.
Clearly, if a CD changes for whatever reason there is a drastic change in the performance of an IC and a device may in fact simply fail. CD monitoring and tight control of CD is therefore, crucial in wafer processing. The instant invention is concerned with optical technologies for three dimensional critical dimension and overlay measurement employing a single system, in this case, the instant invention. CD measurement involves making dimensional measurement of structures such as a width of a line or trench, or a sidewall angle of a via. Overlay measurement involves measurement of an alignment between structures on two separate planes during wafer processing. As IC processing progresses toward smaller dimensions both CD and overlay metrology become increasingly difficult.
Scatterometry is described in U.S. Pat. Nos. 6,429,943, 6,433,878, 6,483,580, 6,451,621, 6,721,052, 6,900,892. Scatterometry relies on making dimensional measurement on a repetitive array of structures of interest. Often the structures of interest are significantly smaller than the wavelength of light employed and non-resolvable. For example an optical microscope is not capable of resolving details smaller than about 400 nm. However, in scatterometry a multitude of features comprising two dimensional patterns and three dimensional structures are illuminated simultaneously, the reflected, or scattered, spectrum is affected by the array characteristics of the multiplicity of features and structures. In scatterometry, one measures a spectral signature as a function of an illumination angle or wavelength. Such spectral signatures are a characteristic of features within the structure that one wants to measure.
Traditionally, the hardware part of a scatterometry system has been either a reflectometer or an ellipsometer or hardware which can be related to either a reflectometer or ellipsometer. Historically, the primary application of ellipsometry and reflectometry was for film thickness measurements; thin film applications are generally one dimensional measurements without any structural features being present on the film. More recently scatterometry has been used for measuring two dimensional arrays or parallel lines. Many structures of present interest during semiconductor processing are three dimensional (3D) in nature. For example an array of vias or contacts comprises three dimensional features. Recent transistor designs called FinFET or Trigate have three dimensional features of interest. Even with reference to traditional transistor designs Line Edge Roughness, LER, or Line width Roughness, LWR, are two critical parameters of interest; both 3D in nature and, furthermore, during the manufacturing of an IC generally a number of transistors are printed simultaneously and, thus there are 3D structures of interest. Scatterometry systems rely on illuminating a wafer from one azimuthal direction. This limitation fails to provide adequate information for 3D metrology of structures of interest.
U.S. Pat. No. 6,867,862, fully incorporated herein by reference and assigned to the present inventor, teaches variable azimuthal angle illumination by requiring a rotating platform. Alternative and less expensive embodiments are needed particularly in the area of integrated metrology where a metrology module is attached to a process toll such a track used in the litho section of the fab. In view of the foregoing, a need exists for an improved metrology and process monitoring system that overcomes the aforementioned obstacles and deficiencies of currently-available systems.
The various embodiments disclosed herein are directed toward a metrology or process monitoring system, referred to separately and collectively as a “metrology system” that is configured to make one or more dimensional measurements on two dimensional or three dimensional structures in a predetermined array of selected structures, patterns or features. Each embodiment is a metrology system comprising a measurement system that is in communication with a processing system. A metrology system of the instant invention is configured to characterize features or structures formed on a surface of an article of manufacture. A metrology or measurement system comprises at least two channels wherein each channel comprises one or more radiation sources, illumination optics, collection optics comprising at least one window and one detector array, and processing means for comparing a received signal pattern to a calculated or previously processed signal pattern of a predetermined array of two dimension or three dimension structures or features on a surface of an article of manufacture such as a wafer, in a preferred embodiment. In all embodiments a beam of radiation is generated by a source, processed and directed toward an object being measured by illumination optics; simultaneously energy reflected or scattered from the object is being received by collection optics and transmitted to processing means for analysis and comparison. Processing means may comprise single or multiple processors operating sequentially or in parallel and in communication with a metrology system; a processing means may be a physical part of a metrology system or located remotely. A processing means may be associated with two or more channels operating in a multiplexing mode.
Other aspects and features of various embodiments disclosed herein will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.
Definitions
A radiation source is a device that can generate optical energy from infrared to soft x-rays, wavelengths from about 10 micrometers to 10 about nanometers. Broadband or polychromatic sources are ones that generate a broad range of wavelengths simultaneously. These lamps include xenon or mercury arc lamps as well as deuterium lamps. Monochromatic sources are generally lasers. A monochromatic source may be implemented by a broadband source in conjunction with a narrow band filter after the source. For example, for a wavelength of 193 nm, lasers with a Gaussian output, running continuously, are not available at a reasonable cost; a deuterium lamp in conjunction with a narrow band filter can serve as a low cost substitute. This wavelength is of particular interest in this invention because this is a primary lithographic wavelength; there is a great deal of interest by semiconductor manufacturers to carry out the measurements around this wavelength. 193 nm is the shortest wavelength that propagates in air with tolerable adsorption and there is no requirement for vacuum; shorter wavelengths result in better measurement as critical dimensions become smaller. In some embodiments each channel has a dedicated source; in other embodiments an apparatus comprising multiple channels may have one source supplying all the channels; alternatively, two or more sources may be shared among two or more channels.
Illumination optics comprise an ensemble of optical components which include, optionally, reflective optics, fiber optics, lenses, optical filters, diffraction gratings, polarizers, wave plates, windows, opto-mechanical holders, beam-splitters, dichroic mirrors, optical modulators, telescopes, collimators, spatial light modulators, means for rotating a polarizer continuously or not, and spatial filters. Illumination optics condition or modulate a beam of one or more radiation energies impinging on a surface under examination; for the purposes of this invention a surface under examination is a predetermined region comprising at least a two or three dimensional grating structure on an article of manufacture, in a preferred embodiment a semiconductor wafer.
Collection optics is an ensemble of optical components comprising, optionally, reflective optics, fiber optics, lenses, optical filters, diffraction gratings, analyzers, wave plates, windows, opto-mechanical holders, telescopes, collimators, spatial filters, beam-splitters, dichroic mirrors, photodetectors, silicon detectors, photomultiplier tubes, CCD's, linear arrays, means for rotating an analyzer continuously or not, and spatial filters. Collection optics conditions a beam of one or more radiation energies received from a surface under examination, detects photons in a conditioned beam, converts photons to one or more signals, measures intensity of one or more signals, transmits one or more measurements to a processing means such that one or more parameters of examined surface may be calculated from collected radiation.
Beam delivery system is an ensemble of optical components comprising, optionally, dichroic mirrors, filters, beam splitters, optical fiber, fiber couplers, fiber splitters, diffraction-gratings for delivering radiation energy from one or more radiation sources, monochromatic or not, to illumination optics for a channel.
A multiple-line beam delivery system comprises two or more discrete wavelengths with a relatively small spectral width. A multiple line system may have two or more discrete wavelengths such as 633 nm, 532 nm and 193 nm or 670, 488, 193 nm. The aforementioned wavelengths are examples for wavelengths used in multiple-line systems; depending on the measurement desired, any combination of wavelengths may be used; a multi-line system may comprise two or more laser sources.
Polarizer and analyzer are optical components that let through a given state of polarization of incoming radiation. A polarizer is generally placed in the illumination optics; an analyzer is normally found in the collection optics. Alternatively, a polarizer or an analyzer may include rotating means which can be used to rotate a component as needed.
An illumination angle has two components to it, a fixed and a spread component. A fixed component of an illumination angle is an angle between a principal ray of an illumination beam and a normal to a surface. A spread component of an illumination angle is the angular spread around the fixed angle. Angle θo is an illumination angle and angle α is one half the spread component in
Wavelength separation optics comprises an ensemble of optical components comprising reflective optics, dichroic mirrors, filters, beam splitters, optical fiber, fiber couplers, diffraction gratings, prisms or combinations of these devices for separating wavelengths of collected radiation in a collection optics. A grating or prism based spectrometer is a specific type of wavelength separation optics for spreading a broadband beam into its constituent spectrum, for example, a rainbow in the case of sun light. For a case when the received or collected radiation comprises one or more discrete wavelengths, a wavelength separation optics may comprise one or more dichroic mirrors and beam splitters or alternatively several beam splitters in conjunction with the same number of narrowband filters.
The term “parameter” is applied to a signal intensity, phase, phase difference, and one or more combinations of phase and amplitude for one or more settings of a polarizer and analyzer. A parameter may be measured by rotating a polarizer or an analyzer, or both. Ellipsometric parameters, ellipsometric ψ or Δ, may be functions of wavelength, λ, or illumination angle, θ; polarization type S or P are parameters as well. A processor analyzes and compares spectral data as a function of at least one parameter chosen from a group comprising azimuthal angle, φ, illumination angle, θ, wavelengths, λ, polarization state S or P, angular spread, α, ellipsometric parameters, ellipsometric ψ or Δ, signal intensity, phase, phase difference, and one or more combinations of phase and amplitude for one or more settings of a polarizer and analyzer.
A measurement channel comprises a discrete apparatus comprising, optionally, radiation source, illumination optics, detection or collection optics and processing means comprising algorithms for data manipulation, extraction, and measurement and appropriate hardware. Note that a channel has a given azimuthal angular position, φ, relative to the array of structures being measured; illumination optics are located at φ and collection optics at φ+180°. The following configurations are some examples of a channel:
a) Illumination optics illuminates a wafer at illumination angles in the range of 1 to 89 degrees, a fixed or rotating polarizer and a fixed or rotating analyzer in the collection optics; variables in the measurement are wavelength λ or illumination angle, θo, or both. Note, the illumination angle being collected is θ, defined as θo±α; the angular position of illumination and collection optics is θo; the detector positioned in a collection optics detects radiation at θ based on the angular spread and the pixel size and location in the detector; a given pixel in a detector detects a unique θ, as θo−α1 based on its location; another pixel will have a slightly different θ, as θo−α2. Different pixels detect slightly different, and unique, information about an array being illuminated.
b) Illumination optics illuminates a wafer at an illumination angle, θo, in the range of 1 to 89 degrees; a polarizer is stationary; in the collection optics by means of a beam splitter or beam divider, a beam is divided into two parts each of which are analyzed with a separate analyzer; both S and P polarizations are detected; variables in the measurement are wavelength λ or illumination angle θ or both, simultaneously.
c) Illumination optics illuminates a wafer at an illumination angle, θo, in the range of 1 to 89 degrees; a polarizer is absent; a fixed or rotating analyzer is in a set of collection optics; variables in a measurement are wavelength λ or illumination angle θ or both, simultaneously.
d) Illumination optics illuminates a wafer at an illumination angle in the range of 1 to 89 degrees; a fixed or rotating polarizer is present; an analyzer is absent in a set of collection optics; variables in a measurement are wavelength λ or illumination angle θ or both, simultaneously.
e) Illumination optics illuminates a wafer at an illumination angle in the range of 1 to 89 degrees; neither a polarizer or analyzer is present; variables in a measurement are wavelength λ or illumination angle, θo, or both, simultaneously.
f) Illumination optics illuminates a wafer at an illumination angle in the range of 1 to 89 degrees; optionally, a fixed or rotating polarizer and a fixed or rotating analyzer are used, resulting in four possible configurations for a channel.
A source for each channel configuration stated above may be a broadband source, a laser source or a multi-line source. For a case of a single laser source the measurement may be done only as a function of an illumination angle, θo.
Foregoing described embodiments of the invention are provided as illustrations and descriptions. They are not intended to limit the invention to precise form described. In particular, it is contemplated that functional implementation of invention described herein may be implemented equivalently. Alternative construction techniques and processes are apparent to one knowledgeable with optics, scatterometry, integrated circuit and MEMS technology. Other variations and embodiments are possible in light of above teachings, and it is thus intended that the scope of invention not be limited by this Detailed Description, but rather by Claims following.
This application claims the benefit of U.S. provisional application Ser. No. 60/641,979 filed on Jan. 7, 2005 which is fully incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60641979 | Jan 2005 | US |