The present invention relates to the manufacture of electronic devices, particularly semiconductor devices, such as logic circuits, memory circuits, and/or combinations thereof.
Electronic devices are being made that combine various types of circuits on a single chip of semiconductor material. For example, devices are being made that combine logic circuits with memory arrays, or various types of memory, so that higher functionality can be achieved on a single chip. This type of integration often provides lower cost, smaller size and improved reliability compared to achieving the same functionality with a number of different chips wired together. Unfortunately, it can be difficult to integrate the manufacture of one type of circuit with another on a single chip.
Different types of circuits might have different types of devices that require different voltage inputs, and that have different thickness of gate oxide. For example, a logic field-effect transistor (“FET”) might have a different gate oxide thickness than an electronically erasable-programmable read only memory cell, or than a dynamic read-addressable memory (“DRAM”) cell. It is generally desirable to make all the gate oxides for all the devices on the chip in a single process step; therefore, it may be necessary to make the gate oxide in some regions thinner than the gate oxide in other regions.
A technique has been used to vary the thickness of an oxide layer grown on a silicon wafer during a oxide growth process by implanting nitrogen into selected regions of the silicon. The implanted nitrogen retards the growth of silicon oxide, resulting in a gate oxide of diminished thickness where the nitrogen was implanted. However, implanting nitrogen can degrade the resultant quality of the gate oxide. Gate oxide quality is especially important, compared to an inter-metal dielectric layer, for example, because of the electric field gradients a gate oxide must withstand and the low current leakage that is generally desired for good device performance. The quality of the gate oxide becomes even more important as device geometry and operating voltages shrink, both of which are associated with thinner gate oxides.
Therefore, it is desirable to fabricate an electronic device die with multiple thicknesses of gate oxide, and it is further desirable to be able to fabricate gate oxides of superior quality, especially thin gate oxides.
According to the present invention a multiple-thickness oxide layer may be grown by implanting oxygen into selected regions of a substrate where a thicker oxide layer is desired. In one embodiment, oxygen is implanted into selected regions of a silicon substrate through a thin sacrificial layer at an energy between about 10-30 keV. The sacrificial layer reduces implantation damage to the underlying silicon, and is stripped prior to thermal oxidation of the substrate, and the resulting oxide layer has multiple thickness and is of high quality and is suitable for a gate dielectric, for example.
In another embodiment, a polysilicon layer between about 1,000-5,000 Å thick is deposited over a gate oxide prior to implanting oxygen into selected regions of the silicon substrate. The implant energy is chosen according to the thickness of the polysilicon layer to place the peak of the oxygen profile just above the gate oxide, The substrate is then annealed in a nitrogen ambient at a temperature of about 900° C. for about 30 minutes to grow a thicker oxide in the regions that were implanted with oxygen.
Implanting oxygen to increase oxide thickness can provide a differential thickness of about 5-20 Å for implant doses of between about 5E15/cm2-1E16/cm2. Unlike nitrogen implantation techniques, where the thickness differential is highly sensitive to the thickness of the oxide, the present invention provides a differential thickness that is less sensitive to the oxide thickness. Additionally, the oxygen-implanted oxides exhibit superior reliability to nitrogen-implanted oxides, and even non-implanted oxides.
As noted above, the present invention provides an improved multiple-thickness gate oxide for transistors on a single semiconductor die.
The steps in the second embodiment illustrated in
Previous studies of forming thicker gate oxides using large implant dose of oxygen (−1017-2×1018 cm−2) have shown that severe damage occurs in the substrate, casting oxygen implant as an unsuitable technique for forming gate oxides. Due to the scaling of the gate oxide, however, the thickness differentials in today's embedded circuits is less than 5 nm as illustrated in the following table:
In another embodiment of the invention, the process illustrated in
While the above is a full description of the specific embodiments, various modifications, alternative constructions and equivalents may be used. For example, while reference is made to “O2” implants, it is understood that the implant is done with an O+ oxygen ion, or other types of oxygen, such as oxygen plasma species, or radicals, or even oxygen containing compounds, such as OH−, might be used to implement the present invention, Similarly, although the invention has been described in terms of a silicon substrate, it is understood that such a silicon substrate might be a single-crystal silicon wafer, a silicon-on-insulator wafer, a silicon-containing substrate, or the like. Therefore, the above description and illustrations should not be taken as limiting the scope of the present invention, which is defined by the appended claims.
This application claims the benefit of priority of prior filed PCT Application No. PCT/US99/28230 filed on Nov. 29, 1998; U.S. Provisional Patent Application No. 60/110,885, 1998; filed Dec. 4, 1998; and a divisional of U.S. application Ser. No. 09/449,063, filed on Nov. 24, 1999, the disclosures of which are hereby incorporated by reference herein in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTUS99/28230 | 11/29/1999 | WO | 00 | 9/5/2001 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0034548 | 6/15/2000 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4967245 | Cogan et al. | Oct 1990 | A |
5480828 | Hsu et al. | Jan 1996 | A |
5672521 | Barsan et al. | Sep 1997 | A |
5930620 | Wristers et al. | Jul 1999 | A |
6027977 | Mogami | Feb 2000 | A |
6054374 | Gardner et al. | Apr 2000 | A |
6358819 | Shelton et al. | Mar 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
60110885 | Dec 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09449063 | Nov 1999 | US |
Child | 09857453 | US |