The programmable metallization cell (PMC) and resistive random access memory (RRAM) cell are new types of memory that are candidates to eventually replace flash memory. Both PMC and RRAM can offer the benefits of longer lifetimes, lower power and better memory density. As PMC and RRAM are still being developed, there remains a need for novel or advantageous PMCs and RRAMs for use in memory applications.
Disclosed herein is a non volatile memory cell that includes a first electrode; a variable resistive layer disposed on the first electrode; a filament growth layer disposed on the variable resistive layer, the filament growth layer including dielectric material and metal atoms; and a second electrode.
Disclosed herein is a method of forming a non volatile memory cell that includes forming a first electrode; forming a variable resistive layer on the first electrode; forming a two phase alloy layer on the variable resistive layer; converting the two phase alloy layer to a filament growth layer; and forming a second electrode on the filament growth layer, thereby forming a non volatile memory cell.
These and various other features and advantages will be apparent from a reading of the following detailed description.
The disclosure may be more completely understood in consideration of the following detailed description of various embodiments of the disclosure in connection with the accompanying drawings, in which:
a through 2f are cross-sectional views of a non volatile memory cell at various stages of manufacture;
The figures are not necessarily to scale. Like numbers used in the figures refer to like components. However, it will be understood that the use of a number to refer to a component in a given figure is not intended to limit the component in another figure labeled with the same number.
In the following description, reference is made to the accompanying set of drawings that form a part hereof and in which are shown by way of illustration several specific embodiments. It is to be understood that other embodiments are contemplated and may be made without departing from the scope or spirit of the present disclosure. The following detailed description, therefore, is not to be taken in a limiting sense.
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the foregoing specification and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein.
The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5) and any range within that range.
As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
Spatially related terms, including but not limited to, “lower”, “upper”, “beneath”, “below”, “above”, and “on top”, if used herein, are utilized for ease of description to describe spatial relationships of an element(s) to another. Such spatially related terms encompass different orientations of the device in use or operation in addition to the particular orientations depicted in the figures and described herein. For example, if a cell depicted in the figures is turned over or flipped over, portions previously described as below or beneath other elements would then be above those other elements.
As used herein, when an element, component or layer for example is described as being “on” “connected to”, “coupled with” or “in contact with” another element, component or layer, it can be directly on, directly connected to, directly coupled with, in direct contact with, or intervening elements, components or layers may be on, connected, coupled or in contact with the particular element, component or layer, for example. When an element, component or layer for example is referred to as begin “directly on”, “directly connected to”, “directly coupled with”, or “directly in contact with” another element, there are no intervening elements, components or layers for example.
Disclosed herein are non volatile memory cells, devices and arrays including non volatile memory cells, methods of forming non volatile memory cells and methods of using non volatile memory cells. In an embodiment, non volatile memory cells disclosed herein can be programmable metallization cells (PMCs) or resistive random access memory (RRAM) cells for example. PMCs can also be referred to as conductive bridging RAM (CBRAM), nanobridge memory, or electrolytic memory.
A method of forming a non volatile memory cell is illustrated in
The first electrode 210 can generally be a conductive material, such as a metal. In an embodiment, the first electrode can be an active electrode. The first electrode can be made of any conductive material, including but not limited to those including, tungsten (W) or a noble metal such as gold (Au), platinum (Pt), palladium (Pd), rhodium (Rh), copper (Cu), Nickel (Ni), Silver (Ag), Cobalt (Co) or Iron (Fe). Generally, the first electrode can be formed by using known deposition methods, such as for example physical vapor deposition (PVD), chemical vapor deposition (CVD), electrochemical deposition (ECD), molecular beam epitaxy (MBE) and atomic layer deposition (ALD). In an embodiment, the first electrode can have a thickness from about 50 Å to about 5000 Å.
The next step in an exemplary method includes the step of forming a variable resistive layer 115.
Generally, a variable resistive layer can include any material whose resistance is changed by the presence or absence of one or more conductive filaments. In an embodiment, the variable resistive layer can be a PMC material. In an embodiment, the variable resistive layer can be a RRAM cell material.
In an embodiment where the variable resistive layer is a PMC material, the variable resistive layer 220 can generally be made of a material that allows ions to migrate in and out of the material. Exemplary materials include, but are not limited to, germanium selenide (GeSe) and germanium disulfide (GeS2) materials which can also be referred to as chalcogenide glass or chalcogenide materials. Specific examples of suitable materials include, but are not limited to Ge3Se7, Ge4Se6 and Ge2Se3. Exemplary materials can also include, but are not limited to, oxides and sulfides such as, tungsten oxide (WO3), silicon dioxide (SiO2), and silver sulfide (Ag2S) for example. Generally, the variable resistive layer of a PMC can be formed using known deposition methods, such as for example PVD, CVD, ECD, MBE and ALD. In an embodiment, the variable resistive layer of a PMC can have a thickness from about 10 Å to about 5000 Å.
In an embodiment where the variable resistive layer is a RRAM material, the variable resistive layer 220 can generally be made of a dielectric material. Specific types of RRAM materials include oxide materials for example, metal oxides. In some embodiments, the metal oxide can be a binary oxide material or a complex metal oxide material. Binary metal oxide materials can be expressed as MxOy In this formula, the characters “M”, “O”, “x” and “y” refer to metal, oxygen, a metal composition ratio, and an oxygen composition ratio, respectively. The metal “M” may be a transition metal and/or aluminum (Al). In this case, the transition metal may be nickel (Ni), niobium (Nb), titanium (Ti), zirconium (Zr), hafnium (Hf), cobalt (Co), iron (Fe), copper (Cu) and/or chrome (Cr). Specific examples of binary metal oxides that may be used as the RRAM material include, but are not limited to, CuO, NiO, CoO, ZnO, CrO2, TiO2, HfO2, ZrO2, Fe2O3, and Nb2O5. In some embodiments, the metal oxide can be any useful complex metal oxide such as, for example, pervovskites, which include complex oxide materials such as Pr0.7Ca0.3MnO3, or La0.7Ca0.4MnO3, or SrTiO3, or SiZrO3, or Pb(ZrxTi1-x)O3 or these oxides doped with Cr or Nb. The complex can also include LaCuO4, or Bi2Sr2CaCu2O8.
The next step in an exemplary method as disclosed herein includes forming a two phase alloy layer 125. In an embodiment, the two phase alloy layer can be deposited on the variable resistive layer 220.
The two phase alloy layer 231 generally includes at least two atomic components, a first atomic component and a second atomic component. In an embodiment, the two phase alloy can also be a material having metal inclusions. In an embodiment, a first atomic component is less readily oxidized than a second atomic component. In an embodiment, the first atomic component can be an electrically conductive atomic component. In an embodiment, a first atomic component can form a stable cation upon oxidation, the stable cation having a relatively high ionic conductivity in some media. In an embodiment, a first atomic component can be silver (Ag), copper (Cu), nickel (Ni), iron (Fe) or cobalt (Co) for example.
In an embodiment, a second atomic component is more easily oxidized than a first atomic component. In an embodiment, a second atomic component, once oxidized forms a stable oxide material. In an embodiment, a second atomic component, once oxidized, forms a material that has dielectric properties; such as aluminum (Al), zirconium (Zr), silicon (Si), gadolinium (Gd), halfnium (Hf), zinc (Zn) or titanium (Ti) for example. In an embodiment, the two phase alloy layer include silver (Ag), copper (Cu) or nickel (Ni) as the first atomic component and aluminum (Al) as the second atomic component. For example, the two phase alloy layer can be AgAlx, CuAlx or NiAlx where x is an integer. The thickness of the two phase alloy layer 231 can depend, at least in part, on the grain size of the first atomic component, which functions as the switch for the non volatile memory cell and thereby affects the speed at which the non volatile memory cell can function as a memory cell. In an embodiment, the two phase alloy layer 231 has a thickness of from about 5 Å to about 100 Å.
The two phase alloy layer generally comprises both of the atomic components and can, but need not be a mixture of the two components. In an embodiments where the two phase alloy layer is a mixture, the mixture can be homogeneous, mostly homogeneous, somewhat homogeneous, somewhat heterogeneous, mostly heterogeneous, heterogeneous, or any characterization in between. The two phase alloy layer can, but need not have portions with a higher amount of one atomic component and portions with a higher amount of the other atomic component. The two phase alloy layer could also be considered as a layer of one component with inclusions of the other component. For example, it could be a layer of a the second component with inclusions of the first component, for example metal atoms. The embodiment depicted in
Generally, the relative amounts of the first atomic component and the second atomic component can depend on a number of factors, including the identities of the components. In an embodiment, there can be less (in terms of the atomic percentage) of the first atomic component than the second atomic component. In such an embodiment, when the non volatile memory cell is turned off, substantially all of the first atomic component can be oxidized (converted to a cation) and thereby move into the variable resistive layer. In an embodiment where the first atomic component is silver (Ag) and the second atomic component is aluminum (Al), the two phase alloy layer can be 10 atomic percent silver and 90 atomic percent aluminum.
In an embodiment, a method of depositing the two phase alloy layer can include two different sources, one for each of the atomic components. Deposition of two different atomic components utilizing sputtering processes can be referred to as co-sputtering. In an embodiment, a deposition method that can be utilized can utilize a single source that includes each of the atomic components. Examples of such methods include, but are not limited to sputter deposition methods such as radio frequency (RF) sputtering, ion-beam sputtering, reactive sputtering, ion-assisted deposition, high-target-utilization sputtering, and high power impulse magnetron sputtering (HIPIMS).
The next step, step 135, in an exemplary method as disclosed herein is to convert the two phase alloy layer to a filament growth layer. Because the two phase alloy layer 231 is converted into the filament growth layer 230, the materials of the two phase alloy layer can be referred to as precursor materials to the filament growth layer or the components thereof. Generally, this step can be carried out using any process than can segregate the two atomic components and oxidize one of the components. A filament growth layer can generally function to form filaments for switching the non volatile memory cell while simultaneously providing mechanical stability. A filament growth layer can include the same atomic components as the two phase alloy layer, but one of the atomic components is in an oxidized form. A filament growth layer can also generally be more heterogeneous than a two phase alloy layer from which it was formed.
In an embodiment, the second atomic component is more easily oxidized than the first atomic component. In such an embodiment, the step 136 serves to oxidize at least a portion of the second atomic component. In an embodiment, the step 136 can serve to oxidize a majority of the second atomic component. In an embodiment, the step 136 can serve to oxidize substantially all of the second atomic component.
Oxidation can be carried out using natural oxidation or energy assisted oxidation methods. Generally, natural oxidation methods can include anodizing the two phase alloy layer in an acidic solution under a voltage. Specifically, selective oxidation by potential controlled anodization can be utilized. Energy assisted natural oxidation methods can include, but are not limited to, plasma oxidation and UV oxidation for example.
Once the two phase alloy layer has been oxidized, at least a portion of the second atomic component will exist in an oxidized form. In an embodiment, once the two phase alloy layer has been oxidized, a majority of the second atomic component will exist in an oxidized form. In an embodiment, once the two phase alloy layer has been oxidized, substantially all of the second atomic component will exist in an oxidized form. The oxidized version of the second atomic component can generally have dielectric properties, and can be referred to as a dielectric material. In an embodiment, the second atomic component can be the precursor or precursor material of the dielectric material included in a filament growth layer.
For exemplary purposes, where the second atomic component is aluminum (Al), at least a portion of it will exist as alumina (Al2O3) after oxidation; where the second atomic component is zirconium (Zr) at least a portion of it will exist as zirconia (ZrO2) after oxidation; where the second atomic component is silicon (Si), at least a portion of it will exist as silica or silicon dioxide (SiO2) after oxidation; where the second atomic component is gadolinium (Gd) at least a portion of it will exist as gadolinium oxide (Gd2O3) after oxidation; where the second atomic component is halfnium (Hf) at least a portion of it will exist as halfnium oxide (HfO2) after oxidation; where the second atomic component is zinc (Zn), at least a portion of it will exist as zinc oxide (ZnO2) after oxidation; where the second atomic component is titanium (Ti), at least a portion of it will exist as titania or titanium dioxide (TiO2) after oxidation.
The next step in an exemplary method for converting the two phase alloy layer to a filament growth layer includes step 134, annealing the two phase alloy layer. Generally, annealing causes at least one of the two atomic components in the two phase alloy layer to diffuse or migrate, ultimately leading to portions of the two phase alloy layer that have a higher concentration of the first atomic component and portions that have a higher concentration of the second atomic component. The two phase alloy layer can be somewhat heterogenous before annealing, but generally, the step of annealing will increase the homogeneity. In an embodiment oxidizing the two phase alloy before annealing, in an embodiment to oxidize one component but not the other, serves to ensure that a solid solution of the two components will not be created. Annealing before oxidizing could case both atomic components to melt, but if one is oxidized, the oxidized component will generally not melt and the unoxidized component can be easily segregated from the oxidized component.
In an embodiment, annealing can form areas where substantially only the first atomic component exists and areas where substantially only the second atomic component exists.
Generally, the step of annealing can be carried out by heating the two phase alloy layer. In an embodiment, the step of annealing can be carried out by heating the two phase alloy layer to a temperature that allows at least a portion of the first atomic component to migrate within the second atomic component. In an embodiment, the step of annealing can be carried out by heating the two phase alloy layer to a temperature that allows a majority of the first atomic component to migrate within the second atomic component. In an embodiment, the step of annealing can be carried out by heating the two phase alloy layer to a temperature that allows at least a portion of the first atomic component and at least a portion of the second atomic component to migrate. In an embodiment, the step of annealing can be carried out by heating the two phase alloy layer to a temperature that allows a majority of the first atomic component and a majority of the second component to migrate. In an embodiment, the step of annealing can be carried out by heating the two phase alloy layer to a temperature below the melting point of the alloy but above room temperature. Heating the two phase alloy layer can be carried out using known methods. Exemplary heating techniques can include localized heating of at least the two phase alloy layer or heating of the entire article. Exemplary heating techniques include, but are not limited to, infrared (IR) heating and convection heating for example.
The filament growth layer (the converted two phase alloy layer) can generally have a structure that includes clusters or areas of first atomic components interspersed in oxidized second atomic component. In an embodiment, the filament growth layer includes a dielectric material and metal atoms or metal atom clusters. The clusters or areas of first atomic components, which are depicted schematically as the first atomic component areas 233 in
The next step in an exemplary method includes the step 145 of forming the second electrode. The second electrode can also be referred to as a top electrode. In an embodiment where the non volatile memory cell is a PMC, the second electrode can be an inert electrode. The second electrode is generally disposed on the filament growth layer. In an embodiment, the second electrode is disposed directly on the filament growth layer.
The second electrode 240 can generally be a conductive material, such as a metal. In an embodiment, the second electrode can be an inert electrode. The second electrode can be made of any conductive material, including but not limited to, tungsten (W) or a noble metal such as gold (Au), platinum (Pt), palladium (Pd) or rhodium (Rh). Generally, the second electrode can be formed using known deposition methods, such as for example physical PVD, CVD, ECD, MBE and ALD. In an embodiment, the second electrode can have a thickness from about 50 Å to about 5000 Å.
Methods as disclosed herein can also be carried out in orders other than that discussed above with respect to
Another exemplary method involving a non volatile memory cell is illustrated in
The optional step of turning the cell “off” can function to initially switch the non volatile memory cell from the low resistance state to the high resistance state. When a positive bias is applied to the second electrode (e.g. an inert electrode in a PMC), the first atomic component (e.g. the metal atoms) will be oxidized and forced into the variable resistive layer. This will leave gaps in the filament growth layer where the first atomic component was located, these gaps function to change the non volatile memory cell to the high resistance state.
If the optional step of turning the cell “off” is undertaken, switching the non volatile memory cell can be accomplished as is generally known. When a positive bias is applied to the first electrode (e.g. the inert electrode in a PMC), the oxidized first atomic component (e.g. the metal atoms, which may be metal cations now) in the variable resistive layer and perhaps some from the first electrode (e.g. the active electrode in a PMC) flow towards the second electrode through initial two phase alloy layer (filament growth layer) and are reduced thereby (fill the gaps again). After a short period of time the reduced flowing ions in the filament growth layer short the regions between the two electrodes, which can be measured to indicate that the “writing” process is complete.
Reading the non volatile memory cell utilizes a small voltage applied across the cell. If the linked first metal filament clusters are present in that cell, the resistance will be low, leading to higher current, which is generally read as a “1”. If there are no metal filaments present or the linkage or the superionic clusters is broken, the resistance is higher, leading to low current, which is generally read as a “0”.
Erasing the cell can be carried out in the same way as the initial step of turning the cell “off”, e.g. apply a positive bias to the second electrode. The metal ions will migrate away from the filament growth layer, back into the variable resistive layer, and eventually to the now negatively-charged first electrode. This breaks the linkage of the cell and increases the resistance of the variable resistive layer.
When a non volatile memory cell as disclosed herein is in the “off”, or high resistance state, there can be a high concentration of oxidized first atomic components (e.g., metal ions) in the variable resistive layer. The concentration gradient of the metal ions can cause the metal ions to diffuse into the filament growth layer that now contains gaps where the first atomic component previously was located. This could be exacerbated by current leakage through the non volatile memory cell, which would tend to reduce the metal ions making them more likely to diffuse into the dielectric material of the filament growth layer. These conditions can cause data loss in a non volatile memory cell, a problem that is referred to as retention.
Another embodiment of a non volatile memory cell disclosed herein can be more advantageous in addressing retention issues as discussed above. Such an embodiment can be useful in PMCs or RRAMs.
The regulation layer 725 shown in
The regulation layer 725 can impede the reduced and/or cationic first atomic components from migrating out of the variable resistive layer 720. Electrical properties of the regulation layer 725 can afford this advantage. The regulation layer 725 can include a material that has both ionic and electrical conductivity. In an embodiment, the regulation layer can be made of a material that has an ionic conductivity which is less conductive than that of the variable resistive layer. In an embodiment, the regulation layer can be made of a single phase material which could include silver iodide (AgI), copper iodide (CuI2), copper tellurium (CuTe), germanium silver sulfide (GexSyAgz), silver tellurium (Ag2Te), or silver sulfide (Ag2S). In an embodiment, the regulation layer can be the rate determining material for the ionic diffusion rate. For example, during the programming of the non volatile memory cell, the cell will be under a bias, and at that time, the low ionic diffusion may not be a concern. However, during an idle state (where retention is important), the lower ionic conductivity of the regulation layer could impede or even stop diffusion of the metal ions out of the variable resistive layer. In an embodiment, the regulation layer would also be able to impede or even stop diffusion of metal atoms out of the variable resistive layer. Impeding migration of reduced and/or oxidized metal ions out of the variable resistive layer can lead to less metal ions in the filament growth layer, which will make it harder to form reduced metal filaments through current leakage in the cell.
Also disclosed herein are memory arrays that include non volatile memory cells as disclosed herein.
Non volatile memory cells as disclosed herein can be included in stand alone devices or can be integrated or embedded in devices that utilize the non volatile memory cells, including but not limited to microprocessors (e.g., computer systems such as a PC e.g., a notebook computer or a desktop computer or a server) microcontrollers, dedicated machines such as cameras, and video or audio playback devices.
Thus, embodiments of NON VOLATILE MEMORY CELLS INCLUDING A FILAMENT GROWTH LAYER AND METHODS OF FORMING THE SAME are disclosed. The implementations described above and other implementations are within the scope of the following claims. One skilled in the art will appreciate that the present disclosure can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present disclosure is limited only by the claims that follow.