The semiconductor integrated circuit (IC) industry has experienced rapid growth. Technological advances in IC materials and design have produced generations of ICs where each generation has smaller and more complex circuits than the previous generation. However, these advances have increased the complexity of processing and manufacturing ICs and, for these advances to be realized, similar developments in IC processing and manufacturing are needed.
In the course of IC evolution, functional density (i.e., the number of interconnected devices per chip area) has generally increased while geometry size (i.e., the smallest component (or line) that can be created using a fabrication process) has decreased. This scaling down process generally provides benefits by increasing production efficiency and lowering associated costs. Such scaling-down also produces a relatively high power dissipation value, which may be addressed by using low power dissipation devices such as complementary metal-oxide-semiconductor (CMOS) devices. CMOS devices have typically been formed with a gate oxide and polysilicon gate electrode. There has been a desire to replace the gate oxide and polysilicon gate electrode with a high-k gate dielectric and metal gate electrode to improve device performance as feature sizes continue to decrease. However, problems arise when integrating a high-k/metal gate feature in a CMOS process flow. For example, during gate patterning or gate etching, the edges of the high-k and metal layers may be damaged. Further, during subsequent thermal processing, the high-k and metal materials may be contaminated. Thus, performance characteristics such as carrier mobility, threshold voltage, and reliability may degrade.
One of the broader forms of an embodiment of the present invention involves a semiconductor device. The semiconductor device includes a semiconductor substrate and a transistor formed in the substrate. The transistor includes a high-k gate dielectric formed over the substrate, the high-k gate dielectric having a first length measured from one sidewall to the other sidewall of the high-k gate dielectric and a metal gate formed over the high-k gate dielectric, the metal gate having a second length measured from one sidewall to the other sidewall of the metal gate, the second length being smaller than the first length.
Another one of the broader forms of an embodiment of the present invention involves a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate, forming a high-k dielectric layer over the semiconductor substrate, forming a metal gate layer over the high-k dielectric layer, removing a portion of the metal gate layer to form a first portion of a gate structure, the first portion having a first length that extends form one sidewall to the other sidewall of the partially removed metal gate layer, and removing a portion of the high-k dielectric layer to form a second portion of the gate structure, the second portion having a second length that extends from one sidewall to the other sidewall of the partially removed high-k dielectric layer, the second length being larger than the first length.
Yet another one of the broader forms of an embodiment of the present invention involves a integrated circuit comprising a semiconductor substrate and a device formed in the substrate. The device includes a high-k gate dielectric formed over the substrate, a metal gate formed over the high-k gate dielectric, the metal gate having a first sidewall and a second sidewall; and a sealing layer formed on the first and second sidewalls of the metal gate. The high-k dielectric includes a first portion that extends beyond the first sidewall of the metal gate by a first length and a second portion that extends beyond the second sidewall of the metal gate by a second length.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Various features may be arbitrarily drawn in different scales for simplicity and clarity.
Referring to
The method 100 begins with block 110 in which a semiconductor substrate may be provided, the substrate having a gate dielectric layer, metal layer, and poly layer formed thereon. In
The semiconductor device 200 may further include an isolation structure (not shown) such as a shallow trench isolation (STI) feature formed in the substrate 202 for isolating active region in the substrate as is known in the art. The isolation structure may be formed of silicon oxide, silicon nitride, silicon oxynitride, fluoride-doped silicate (FSG), and/or a low k dielectric material known in the art.
The semiconductor device 200 may further include a gate dielectric layer 204 including an interfacial layer/high-k dielectric layer formed over the substrate 202. The interfacial layer may include a silicon oxide layer having a thickness ranging from about 5 to about 10 angstrom (A). The interfacial layer may be formed on the substrate 202. The high-k dielectric layer may be formed on the interfacial layer by atomic layer deposition (ALD), chemical vapor deposition (CVD), or other suitable technique. The high-k dielectric layer may include a thickness ranging from about 10 to about 40 angstrom (A). The high-k dielectric layer may include hafnium oxide (HfO2). Alternatively, the high-k dielectric layer may optionally include other high-k dielectrics such as hafnium silicon oxide (HfSiO), hafnium silicon oxynitride (HfSiON), hafnium tantalum oxide (HfTaO), hafnium titanium oxide (HfTiO), hafnium zirconium oxide (HfZrO), and combinations thereof. The semiconductor device 200 may further include a capping layer for tuning a work function of the gate electrode for properly performing as an NMOS transistor device and a PMOS transistor device, respectively. For example, the capping layer may include lanthanum oxide, LaSiO, manganese oxide, aluminum oxide, or other suitable materials. The capping layer may be formed on the high-k dielectric layer or underneath the high-k dielectric layer.
The semiconductor device 200 may further include a metal gate layer 206 formed over the gate dielectric layer 204. The metal gate layer 206 may include a thickness ranging from about 10 to about 500 angstrom (A). The metal gate layer 206 may be formed by various deposition techniques such as CVD, physical vapor deposition (PVD or sputtering), plating, or other suitable technique. The metal gate layer 206 may include TiN, TaN, ZrSi2, MoSi2, TaSi2, NiSi2, WN, combinations thereof, or other suitable material. The semiconductor device 200 may further include a polysilicon or poly layer 208 formed on the metal gate layer 206 by deposition or other suitable process.
The method 100 continues with block 120 in which a first portion of a gate structure may be formed from the poly layer and the metal gate layer, the first portion of a gate structure having a first length. In
The method 100 continues with block 130 in which a first sealing layer may be formed on the sidewalls of the poly layer and the metal gate layer. In
The method 100 continues with block 140 in which a second portion of the gate structure may be formed by from the gate dielectric layer using the first sealing layer as a mask, the second portion of the gate stack having a second length greater than the first length. In
The method 100 continues with block 150 in which a second sealing layer may be formed on the sidewalls of the gate dielectric layer of the second portion of the gate structure. In
The poly layer 208a and metal gate layer 206a of the first portion of the gate structure 209 may have a thickness 250 ranging from 50 to about 5000 angstrom, and preferably a thickness ranging from about 100 to about 1000 angstrom. The metal gate layer 206a of the first portion of the gate structure 209 may have a thickness 260 ranging from about 0 to about 500 angstrom, and preferably a thickness ranging from about 10 to about 100 angstrom. The gate dielectric layer 204a (including the interfacial layer/high-k dielectric layer) of the second portion of the gate structure 209 may include a thickness 270 ranging from about 10 to about 500 angstrom, and preferably a thickness ranging from about 10 to about 50 angstrom. The portions 231, 232 of the gate dielectric layer 204 may have an extension 280 ranging from 10 to about 500 angstrom, and preferably an extension ranging from about 20 to about 100 angstrom.
It should be noted that the during the etching of the gate dielectric layer 204 some portion of the high-k dielectric may be damaged due to the chemicals and strong reactions of the etching process. However, the portion that may be damaged is away from a channel region 290 of the transistor. In other words, the extended portions 231, 232 of the gate dielectric layer 204a may function as a buffer to prevent damage to the high-k dielectric 204a in the channel region 290. Thus, the high-k dielectric 204a in the channel region 290 may have a better quality (than extended portions 231, 232), and thus may provide better carrier mobility and reliability. Further, the extended portions 231, 232 may also function as a buffer to minimize oxygen contamination into the channel, and thus the threshold voltage of the transistor may be easier to control. In contrast, a vertical gate structure having a metal gate and high-k dielectric with substantially the same dimensions does not provide this buffer, That is, the edge of the high-k dielectric and metal gate may be damaged during etching and/or other processing. Also, the edge of high-k dielectric may be contaminate by oxygen penetrating the sealing layer. Accordingly, once the high-k dielectric is contaminated, the high-k quality, carrier mobility, threshold voltage control, and reliability may all seriously degrade.
Thereafter, it is understood that the semiconductor device 200 may undergo further CMOS process flow to form various features and structures such as lightly doped drain regions (LDD), sidewall spacers, source/drain regions, silicide regions, contact etch stop layer (CESL), inter-level dielectric (ILD), contacts/vias, metal layers, passivation layer, and so forth.
Referring to
Referring to
The present invention achieves different advantages in various embodiments disclosed herein. For example, the present disclosed method provides a simple and cost-effective non-vertical gate structure that improves device performance and reliability by reducing the risk of damage (e.g., loss or contamination) to the high-k dielectric and metal gate during semiconductor processing. The methods and devices disclosed herein may be easily integrated with current CMP process flow and thus are applicable in future and advanced technologies. In some embodiments, the high-k gate dielectric may have various shapes due to a different etch profile control. In other embodiments, the non-vertical gate structure may be sealed by various configurations to protect the high-k dielectric and metal gate during semiconductor processing. It is understood that different embodiments disclosed herein offer different advantages, and that no particular advantage is necessarily required for all embodiments.
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description that follows. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure. For example, the methods and devices disclosed herein may be implemented in a gate first process, a gate last process, or hybrid process. In the gate first process, a true metal gate structure may be formed first and may be followed by normal process flow to fabricate the final device. In the gate last process, a dummy poly gate structure may be formed first and may continue with normal process flow until deposition of an interlayer dielectric (ILD), and thereafter the dummy poly gate structure may be removed and replaced with a true metal gate structure. In the hybrid gate process, the metal gate for one device (NMOS or PMOS device) may be formed first and the metal gate for another device (PMOS or NMOS) may be formed last. Further, although the methods and devices disclosed herein are implemented with a CMOS process flow, it is understood that other technologies may benefit from the disclosed embodiments as well.
This application claims priority to Provisional Application Ser. No. 61/091,650, filed on Aug. 25, 2008, entitled “NOVEL HIGH-K METAL GATE STRUCTURE AND METHOD OF MAKING,” the entire disclosure of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61091650 | Aug 2008 | US |