The following references are herein incorporated by reference in their entirety for all purposes:
U.S. Patent Publication No. 2011/0268225 of U.S. patent application Ser. No. 12/784,414, filed May 20, 2010, naming Harm Cronie and Amin Shokrollahi, entitled “Orthogonal Differential Vector Signaling”, hereinafter identified as [Cronie I];
U.S. patent application Ser. No. 13/030,027, filed Feb. 17, 2011, naming Harm Cronie, Amin Shokrollahi and Armin Tajalli, entitled “Methods and Systems for Noise Resilient, Pin-Efficient and Low Power Communications with Sparse Signaling Codes”, hereinafter identified as [Cronie II];
U.S. patent application Ser. No. 14/158,452, filed Jan. 17, 2014, naming John Fox, Brian Holden, Peter Hunt, John D Keay, Amin Shokrollahi, Richard Simpson, Anant Singh, Andrew Kevin John Stewart, and Giuseppe Surace, entitled “Chip-to-Chip Communication with Reduced SSO Noise”, hereinafter identified as [Fox I];
U.S. patent application Ser. No. 13/842,740, filed Mar. 15, 2013, naming Brian Holden, Amin Shokrollahi and Anant Singh, entitled “Methods and Systems for Skew Tolerance in and Advanced Detectors for Vector Signaling Codes for Chip-to-Chip Communication”, hereinafter identified as [Holden I];
U.S. Provisional Patent Application No. 61/934,804, filed Feb. 2, 2014, naming Ali Hormati and Amin Shokrollahi, entitled “Methods for Code Evaluation Using ISI Ratio”, hereinafter identified as [Hormati I];
U.S. Provisional Patent Application No. 61/934,807, filed Feb. 2, 2014, naming Amin Shokrollahi, entitled “Vector Signaling Codes with High pin-efficiency and their Application to Chip-to-Chip Communications and Storage”, hereinafter identified as [Shokrollahi I];
U.S. Provisional Patent Application No. 61/839,360, filed Jun. 23, 2013, naming Amin Shokrollahi, entitled “Vector Signaling Codes with Reduced Receiver Complexity”, hereinafter identified as [Shokrollahi II].
U.S. Provisional Patent Application No. 61/946,574, filed Feb. 28, 2014, naming Amin Shokrollahi, Brian Holden, and Richard Simpson, entitled “Clock Embedded Vector Signaling Codes”, hereinafter identified as [Shokrollahi III].
U.S. Provisional Patent Application No. 62/015,172, filed Jul. 10, 2014, naming Amin Shokrollahi and Roger Ulrich, entitled “Vector Signaling Codes with Increased Signal to Noise Characteristics”, hereinafter identified as [Shokrollahi IV].
U.S. patent application Ser. No. 13/895,206, filed May 15, 2013, naming Roger Ulrich and Peter Hunt, entitled “Circuits for Efficient Detection of Vector Signaling Codes for Chip-to-Chip Communications using Sums of Differences”, hereinafter identified as [Ulrich I].
U.S. Provisional Patent Application No. 62/026,860, filed Jul. 21, 2014, naming Roger Ulrich and Amin Shokrollahi, entitled “Bus Reversible Orthogonal Differential Vector Signaling Codes”, hereinafter identified as [Ulrich II].
The following additional references to prior art have been cited in this application:
U.S. Pat. No. 7,053,802, filed Apr. 22, 2004 and issued May 30, 2006, naming William Cornelius, entitled “Single-Ended Balance-Coded Interface with Embedded-Timing”, hereinafter identified as [Cornelius];
U.S. Pat. No. 8,064,535, filed Mar. 2, 2007 and issued Nov. 22, 2011, naming George Wiley, entitled “Three Phase and Polarity Encoded Serial Interface, hereinafter identified as [Wiley].
U.S. Pat. No. 8,649,460, filed Mar. 11, 2010 and issued Feb. 11, 2014, naming Frederick Ware and Jade Kizer, entitled “Techniques for Multi-Wire Encoding with an Embedded Clock”, hereinafter identified as [Ware].
In communication systems, a goal is to transport information from one physical location to another. It is typically desirable that the transport of this information is reliable, is fast and consumes a minimal amount of resources. One common information transfer medium is the serial communications link, which may be based on a single wire circuit relative to ground or other common reference, or multiple such circuits relative to ground or other common reference. A common example uses singled-ended signaling (“SES”). SES operates by sending a signal on one wire, and measuring the signal relative to a fixed reference at the receiver. A serial communication link may also be based on multiple circuits used in relation to each other. A common example of the latter uses differential signaling (“DS”). Differential signaling operates by sending a signal on one wire and the opposite of that signal on a matching wire. The signal information is represented by the difference between the wires, rather than their absolute values relative to ground or other fixed reference.
There are a number of signaling methods that maintain the desirable properties of DS while increasing pin efficiency over DS. Vector signaling is a method of signaling. With vector signaling, a plurality of signals on a plurality of wires is considered collectively although each of the plurality of signals might be independent. Each of the collective signals is referred to as a component and the number of plurality of wires is referred to as the “dimension” of the vector. In some embodiments, the signal on one wire is entirely dependent on the signal on another wire, as is the case with DS pairs, so in some cases the dimension of the vector might refer to the number of degrees of freedom of signals on the plurality of wires instead of exactly the number of wires in the plurality of wires.
Any suitable subset of a vector signaling code denotes a “sub code” of that code. Such a subcode may itself be a vector signaling code. With binary vector signaling, each component or “symbol” of the vector takes on one of two possible values. With non-binary vector signaling, each symbol has a value that is a selection from a set of more than two possible values. When transmitted as physical signals on a communications medium, symbols may be represented by particular physical values appropriate to that medium; as examples, in one embodiment a voltage of 150 mV may represent a “+1” symbol and a voltage of 50 mV may represent a “−1” symbol, while in another embodiment “+1” may be represented by 800 mV and “−1” as −800 mV.
A vector signaling code, as described herein, is a collection C of vectors of the same length N, called codewords. The ratio between the binary logarithm of the size of C and the length N is called the pin-efficiency of the vector signaling code. The Orthogonal Differential Vector Signaling codes of [Cronie I], [Cronie II], [Fox I], [Shokrollahi I], [Shokrollahi II], and [Shokrollahi III] are examples of vector signaling codes, and are used herein for descriptive purposes.
Depending on which vector signaling code is used, there may be no decoder, or no encoder, or neither a decoder nor an encoder. For example, for the 8b8w code disclosed in [Cronie II], both encoder 112 and decoder 1138 exist. On the other hand, for the Hadamard code disclosed in [Cronie I], an explicit decoder may be unnecessary, as the system may be configured such that receiver 132 generates output bits 140 directly.
The operation of the transmitting device 110, comprising input data 100 and elements 112 and 118, and that of the receiving device 130, including element 132, optional element 138, and output data 140, have to be completely synchronized in order to guarantee correct functioning of the communication system. In some embodiments, this synchronization is performed by an external clock shared between the transmitter and the receiver. Other embodiments may combine the clock function with one or more of the data channels, as in the well-known Biphase encoding used for serial communications.
One important example is provided by memory interfaces in which a clock is generated on the controller and shared with the memory device. The memory device may use the clock information for its internal memory operations, as well as for I/O. Because of the burstiness and the asynchronicity of memory operations, the I/O may not be active all the time. Moreover, the main clock and the data lines may not be aligned due to skew. In such cases, additional strobe signals are used to indicate when to read and write the data.
Orthogonal differential vector signaling codes providing transport for both data and a clocking signal are described which are suitable for implementation in both conventional high-speed CMOS and DRAM integrated circuit processes. Example channels derived from current practice for Low-Powered DDR4 interfaces are described, as are modest channel enhancements providing higher speed and greater signal integrity.
Depending on which vector signaling code is used, there may be no decoder, or no encoder, or neither a decoder nor an encoder. For example, for the 8b8w code disclosed in [Cronie II], both encoder 112 and decoder 138 exist. On the other hand, for the H4 code disclosed in [Cronie I] (also described herein as ENRZ,) an explicit decoder may be unnecessary, as the system may be configured such that receiver 132 generates the received results 140 directly.
The operation of the communications transmitter 110 and communications receiver 130 have to be completely synchronized in order to guarantee correct functioning of the communication system. In some embodiments, this synchronization is performed by an external clock shared between the transmitter and the receiver. Other embodiments may combine the clock function with one or more of the data channels, as in the well-known Biphase encoding used for serial communications.
One important example is provided by memory interfaces in which a clock is generated on the controller and shared with the memory device. The memory device may use the clock information for its internal memory operations, as well as for I/O. Because of the burstiness and the asynchronicity of memory operations, the I/O may not be active all the time. Moreover, the main clock and the data lines may not be aligned due to skew. In such cases, additional strobe signals are used to indicate when to read and write the data.
The interface between a system memory controller and multiple Dynamic RAM devices has been well optimized over multiple design generations for both transfer speed and low power consumption. The present state of the art DRAM interface, LPDDR4, includes 8 data lines, 1 DMI signal, 2 strobe lines, as well as other non-data-transfer related lines.
There is considerable interest in extending LPDDR4 to support higher performance at equal or less power consumption, but simple performance extrapolations of the existing technology seem problematic. Decreasing signal integrity precludes simply raising data transfer rates using the existing single-ended interconnection, and misalignment of received DRAM data and its strobe signal is a known issue even at current clock speeds. However, introduction of new technology is constrained by a strong desire to retain as much of the conventional practice as possible regarding bus layout, signal distribution, clocking, etc., as well as a hard requirement that the new technology be implementable in both the high-speed CMOS process used for memory controllers, and in the highly specialized DRAM fabrication process which produces extremely small, high capacitance and low leakage memory cells, but comparatively slow digital and interface logic.
Because of this slow logic speed, conventional DRAM designs utilize two or more phases of processing logic to handle the current LPDDR4 data transfer rates, as one example using one phase of processing logic to capture data on the rising edge of the data transfer strobe, and another phase of processing logic to capture data on the falling edge of the strobe. One hidden limitation of such multi-phased processing embodiments is the difficulty of extracting difference-based information from consecutively received unit intervals, as consecutive unit intervals by definition are known only by different processing phases. Thus, multi-phased processing is problematic for both codes using transition-encoding, as well as embedded- or self-clocking data solutions that rely on comparison of data values received in consecutive unit intervals.
These issues of clock extraction, and transition- or change-detection are most intractable in the communications receiver embodiment, thus the examples herein focus on embodiments in which the relatively slow DRAM device is the receiver. No limitation is implied, as one familiar with the art will readily acknowledge that bidirectional data communication with DRAM devices is well understood, and that any example embodiment suitable for DRAM receive implementation could easily implement the simpler transmit requirements as well.
Receivers Using Multi-Input Comparators
As described in [Holden I], a multi-input comparator with coefficients a0, a1, . . . , am-1 is a circuit that accepts as its input a vector (x0, x1, . . . , xm-1) and outputs
Result=(a0*x0+ . . . +am-1*xm-1) (Eqn. 1)
In many embodiments, the desired output is a binary value, thus the value Result is sliced with an analog comparator to produce a binary decision output. Because this is a common use, the colloquial name of this circuit incorporates the term “comparator”, although other embodiments may use a PAM-3 or PAM-4 slicer to obtain ternary or quaternary outputs, or indeed may retain the analog output of Eqn. 1 for further computation. In at least one embodiment, the coefficients are selected according to sub-channel vectors corresponding to rows of a non-simple orthogonal or unitary matrix used to generate the ODVS code.
As one example, [Ulrich I] teaches that the ODVS code herein called ENRZ may be detected using three instances of the same four input multi-input comparator, performing the operations
R0=(A+C)−(B+D) (Eqn. 2)
R1=(C+D)−(A+B) (Eqn. 3)
R2=(C B)−(D+A) (Eqn. 4)
which may be readily performed with three identical instances of a multi-input comparator with coefficients of [+1 +1 −1 −1] and distinct permutations of the four input values as described in Eqn. 2-4.
ODVS Sub-Channels
It is conventional to consider the data input to encoder 112 of
However, it is equally accurate to model the communications system in a somewhat different way. As this alternate model is most easily understood in a system not requiring a separate decoder, a particular embodiment based on the ENRZ code as illustrated in
In
As previously noted, in this embodiment communications receiver 130 does not require an explicit decoder. The internal structure of receiver 132 is illustrated, comprising four receive front ends (as 131) that accept signals from wires 125, and optionally may include amplification and equalization, as required by the characteristics of the communications channel 120. Three multi-input comparators are shown with their inputs connected to the four received wire signals as described by Eqns. 2, 3, and 4. For avoidance of confusion, the multi-input comparators are illustrated as including a computational function 133 followed by a slicing function 134 producing digital outputs R0, R1, R2 from the computational combination of the input values.
One familiar with the art may note that the ODVS encoder accepts one set of input data and outputs one codeword per transmit unit interval. If, as is the case in many embodiments, the encoder includes combinatorial digital logic (i.e. without additional internal state,) this periodic codeword output may easily be seen as performing a sampling function on the input data followed by the encoding transformation, subsequent transmission, etc. Similarly, if the detection operation within the receiver is similarly combinatorial, as is the case here with multi-input comparators performing the detection, the state of a given output element is solely determined by the received signal levels on some number of channel wires. Thus, each independent signal input (as one example, S0) and its equivalent independent signal output (as R0) may be considered a virtual communications channel, herein called a “sub-channel” of the ODVS encoded system. A given sub-channel may be binary (i.e. communicate a two-state value) or may represent a higher-ordered value. Indeed, as taught by [Shokrollahi IV], the sub-channels of a given ODVS code are sufficiently independent that they may utilize different alphabets (and sizes of alphabets) to describe the values they communicate.
All data communications in an ODVS system, including the state changes in sub-channels, are communicated as codewords over the entire channel. An embodiment may associate particular mappings of input values to codewords and correlate those mappings with particular detector results, as taught by [Holden I] and [Ulrich I], but those correlations should not be confused with partitions, sub-divisions, or sub-channels of the communications medium itself
The concept of ODVS sub-channels is not limited by the example embodiment to a particular ODVS code, transmitter embodiment, or receiver embodiment. Encoders and/or decoders maintaining internal state may also be components of embodiments. Sub-channels may be represented by individual signals, or by states communicated by multiple signals.
Timing Information on a Sub-Channel
As an ODVS communications system must communicate each combination of data inputs as encoded transmissions, and the rate of such encoded transmissions is of necessity constrained by the capacity of the communications medium, the rate of change of the data to be transmitted must be within the Nyquist limit, where the rate of transmission of codewords represents the sampling interval. As one example, a binary clock or strobe signal may be transmitted on an ODVS sub-channel, if it has no more than one clock edge per codeword transmission.
An embodiment of an ODVS encoder and its associated line drivers may operate asynchronously, responding to any changes in data inputs. Other embodiments utilize internal timing clocks to, as one example, combine multiple phases of data processing to produce a single high-speed output stream. In such embodiments, output of all elements of a codeword is inherently simultaneous, thus a strobe or clock signal being transported on a sub-channel of the code will be seen at the receiver as a data-aligned clock (e.g. with its transition edges occurring simultaneous to data edges on other sub-channels of the same code.) Similar timing relationships are often presumed in clock-less or asynchronous embodiments as well.
Mapping LPDDR Communications to an ODVS System
The existing LPDDR4 specification provides for eight data wires, one wire for DMI, and two Strobe wires, for a total of 11 wires. These legacy connections may be mapped to a new protocol mode, herein called LPDDR5, using ODVS encoding in several ways.
As taught by [Holden I], the noise characteristics of a multi-input comparator are dependent on its input size and configuration. [Shokrollahi IV] also teaches that the signal amplitudes resulting from various computations as Eqn. 1 can present different receive eye characteristics. Thus, preferred embodiments will designate a higher quality (e.g. wider eye opening) sub-channel to carry clock, strobe, or other timing information, when the characteristics of the available sub-channels vary.
Glasswing
A first embodiment, herein identified as Glasswing and shown in the block diagram of
Each 5b6w receiver in Glasswing incorporates five multi-input comparators. In a preferred embodiment, the codewords of each instance of the 5b6w code are shown in Table 1 and the set of comparators are:
x0−x1
(x0+x1)/2−x2
x4−x5
x3−(x4+x5)/2
(x0+x1+x2)/3−(x3+x4+x5)/3
where the wires of each six wire group are designated as x0, x1 . . . x5.
Additional information about this 5b6w code is provided in [Ulrich II].
8b9w
A second embodiment, herein identified as “8b9w” and shown in the block diagram of
In at least one embodiment, each 4.5b5w receiver incorporates seven multi-input comparators, using the codewords of the 4.5b5w code as given in Table 2 and the set of comparators
x0−x1
x0−x2
x0−x3
x1−x2
x1−x3
x2−x3
(x0+x1+x2+x3)/4−x4
where the wires of each five wire group are designated as x0, x1 . . . x4.
The ISI-ratio of the first 6 comparators (as defined in [Hormati I]) is 2, whereas the ISI-ratio of the last comparator is 1.
In the same embodiments, the codewords of the 3.5b4w code are given in Table 3.
Each 3.5b4w receiver incorporates six multi-input comparators. If the wires of each four wire group are designated as x0, x1 . . . x3, the comparators are:
x0−x1
x0−x2
x0−x3
x1−x2
x1−x3
x2−x3
The ISI-ratio of all these comparators (as defined in [Hormati I]) is 2.
ENRZ
A third embodiment, herein identified as “ENRZ” and shown in the block diagram of
Further description of this embodiment may be found in [Shokrollahi III].
The examples presented herein illustrate the use of vector signaling codes for point-to-point wire communications. However, this should not been seen in any way as limiting the scope of the described embodiments. The methods disclosed in this application are equally applicable to other communication media including optical and wireless communications. Thus, descriptive terms such as “voltage” or “signal level” should be considered to include equivalents in other measurement systems, such as “optical intensity”, “RF modulation”, etc. As used herein, the term “physical signal” includes any suitable behavior and/or attribute of a physical phenomenon capable of conveying information. Physical signals may be tangible and non-transitory.
In at least one embodiment, a method 800 comprises receiving, at step 802, a set of symbols of a codeword of a vector signaling code at a plurality of multi-input comparators (MICs), the set of symbols representing a transformation of an input vector with a non-simple orthogonal or unitary matrix, the input vector comprising a plurality of sub-channels, wherein at least one sub-channel corresponds to an input data signal and wherein at least one sub-channel corresponds to a data-aligned strobe signal, forming, at step 802 a set of MIC output signals based on a plurality of comparisons between a plurality of subsets of symbols of the codeword, wherein for each comparison, each subset of symbols has a set of input coefficients applied to it determined by a corresponding MIC, and wherein the set of MIC output signals comprises at least one data output signal and at least one received data-aligned strobe signal, and sampling, at step 806, the at least one data output signal according to the at least one received data-aligned strobe signal.
In at least one embodiment, at least one data output signal is sampled on a rising edge of at least one received data-aligned strobe signal. In another embodiment, at least one output data signal is sampled on a falling edge of at least one received data-aligned strobe signal.
In at least one embodiment, the input vector comprises 4 sub-channels corresponding to input data signals and 1 sub-channel corresponding to a data-aligned strobe signal. In at least one embodiment, each symbol of the set of symbols has a value selected from a set of at least two values. In a further embodiment, each symbol of the set of symbols has a value selected from the set of values {+1, +⅓, −⅓, −1}.
In at least one embodiment, the sets of input coefficients for each MIC are determined by the non-simple orthogonal or unitary matrix.
In at least one embodiment, the codeword is balanced.
In at least one embodiment, the method further comprises forming a set of output bits by slicing the set of MIC output signals.
In at least one embodiment, the method further comprises receiving the input vector on a plurality of wires, generating, using an encoder, the set of symbols of the codeword representing a weighted sum of sub-channel vectors, the sub-channel vectors corresponding to rows of the non-simple orthogonal or unitary matrix, wherein a weighting of each sub-channel vector is determined by a corresponding input vector sub-channel, and providing the symbols of the codeword on a multi-wire bus.
In at least one embodiment, an apparatus comprises a multi-wire bus configured to receive a set of symbols of a codeword of a vector signaling code, the set of symbols representing a transformation of an input vector with a non-simple orthogonal or unitary matrix, the input vector comprising a plurality of sub-channels, wherein at least one sub-channel corresponds to an input data signal and wherein at least one sub-channel corresponds to a data-aligned strobe signal, a plurality of multi-input comparators (MICs) configured to form a set of MIC output signals based on a plurality of comparisons between a plurality of subsets of symbols of the codeword, wherein for each comparison, each subset of symbols has a set of input coefficients applied to the subset determined by a corresponding MIC, and wherein the set of MIC output signals comprises at least one data output signal and at least one received data-aligned strobe signal, and a plurality of sampling circuits configured to sample the at least one data output signal according to the at least one received data-aligned strobe signal.
In at least one embodiment, at least one sampling circuit is configured to sample at least one data output signal on a rising edge of at least one received data-aligned strobe signal. In another embodiment, at least one sampling circuit is configured to sample at least one output data signal on a falling edge of at least one received data-aligned strobe signal.
In at least one embodiment, the input vector comprises 4 sub-channels corresponding to input data signals and 1 sub-channel corresponding to a data-aligned strobe signal. In at least one embodiment, each symbol of the set of symbols has a value selected from a set of at least two values. In a further embodiment, each symbol of the set of symbols has a value selected from the set of values {+1, +⅓, −⅓, −1}.
In at least one embodiment, the sets of input coefficients of each MIC are determined by the non-simple orthogonal or unitary matrix.
In at least one embodiment, the codeword is balanced.
In at least one embodiment, the apparatus further comprises a plurality of slicers configured to generate a set of output bits by slicing the set of MIC output signals.
In at least one embodiment, an apparatus comprises a plurality of wires configured to receive an input vector, the input vector comprising a plurality of sub-channels, wherein at least one sub-channel corresponds to a data signal, and wherein at least one sub-channel corresponds to a data-aligned strobe signal, an encoder configured to generate a set of symbols of a codeword representing a weighted sum of sub-channel vectors, the sub-channel vectors corresponding to rows of a non-simple orthogonal or unitary matrix, wherein a weighting of each sub-channel vector is determined by a corresponding input vector sub-channel, and a plurality of line drivers configured to transmit the symbols of the codeword on a multi-wire bus.
This application is a continuation of U.S. application Ser. No. 15/829,904, filed Dec. 2, 2017, entitled “Orthogonal Differential Vector Signaling Codes with Embedded Clock”, which is a continuation of U.S. application Ser. No. 15/285,316, filed Oct. 4, 2016, entitled “Orthogonal Differential Vector Signaling Codes with Embedded Clock”, which is a continuation of U.S. application Ser. No. 14/816,896, filed Aug. 3, 2015, entitled “Orthogonal Differential Vector Signaling Codes with Embedded Clock,” which claims priority to U.S. Provisional Patent Application 62/032,175, filed Aug. 1, 2014, entitled “Orthogonal Differential Vector Signaling Codes with Embedded Clock,” all of which are hereby incorporated herein by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3196351 | David | Jul 1965 | A |
3970795 | Allen | Jul 1976 | A |
4163258 | Ebihara et al. | Jul 1979 | A |
4499550 | Ray et al. | Feb 1985 | A |
5053974 | Penz | Oct 1991 | A |
5166956 | Baltus et al. | Nov 1992 | A |
5311516 | Kuznicki et al. | May 1994 | A |
5331320 | Cideciyan et al. | Jul 1994 | A |
5412689 | Chan et al. | May 1995 | A |
5449895 | Hecht et al. | Sep 1995 | A |
5461379 | Weinman | Oct 1995 | A |
5511119 | Lechleider | Apr 1996 | A |
5553097 | Dagher | Sep 1996 | A |
5856935 | Moy et al. | Jan 1999 | A |
5982954 | Delen et al. | Nov 1999 | A |
6005895 | Perino et al. | Dec 1999 | A |
6084883 | Norrell et al. | Jul 2000 | A |
6084958 | Blossom | Jul 2000 | A |
6097732 | Jung | Aug 2000 | A |
6154498 | Dabral et al. | Nov 2000 | A |
6226330 | Mansur | May 2001 | B1 |
6278740 | Nordyke | Aug 2001 | B1 |
6317465 | Akamatsu et al. | Nov 2001 | B1 |
6359931 | Perino et al. | Mar 2002 | B1 |
6452420 | Wong | Sep 2002 | B1 |
6483828 | Balachandran et al. | Nov 2002 | B1 |
6504875 | Perino et al. | Jan 2003 | B2 |
6556628 | Poulton et al. | Apr 2003 | B1 |
6621427 | Greenstreet | Sep 2003 | B2 |
6621945 | Bissessur | Sep 2003 | B2 |
6650638 | Walker et al. | Nov 2003 | B1 |
6661355 | Cornelius et al. | Dec 2003 | B2 |
6766342 | Kechriotis | Jul 2004 | B2 |
6865234 | Agazzi | Mar 2005 | B1 |
6865236 | Terry | Mar 2005 | B1 |
6876317 | Sankaran | Apr 2005 | B2 |
6898724 | Chang | May 2005 | B2 |
6927709 | Kiehl | Aug 2005 | B2 |
6954492 | Williams | Oct 2005 | B1 |
6990138 | Bejjani et al. | Jan 2006 | B2 |
6999516 | Rajan | Feb 2006 | B1 |
7023817 | Kuffner et al. | Apr 2006 | B2 |
7039136 | Olson et al. | May 2006 | B2 |
7053802 | Cornelius | May 2006 | B2 |
7075996 | Simon et al. | Jul 2006 | B2 |
7127003 | Rajan et al. | Oct 2006 | B2 |
7142612 | Horowitz et al. | Nov 2006 | B2 |
7167019 | Broyde et al. | Jan 2007 | B2 |
7167523 | Mansur | Jan 2007 | B2 |
7180949 | Kleveland et al. | Feb 2007 | B2 |
7184483 | Rajan | Feb 2007 | B2 |
7269212 | Chau et al. | Sep 2007 | B1 |
7356213 | Cunningham et al. | Apr 2008 | B1 |
7358869 | Chiarulli et al. | Apr 2008 | B1 |
7400276 | Sotiriadis et al. | Jul 2008 | B1 |
7535957 | Ozawa et al. | May 2009 | B2 |
7583209 | Duan | Sep 2009 | B1 |
7613234 | Raghavan et al. | Nov 2009 | B2 |
7620116 | Bessios et al. | Nov 2009 | B2 |
7633850 | Ann | Dec 2009 | B2 |
7656321 | Wang | Feb 2010 | B2 |
7706456 | Laroia et al. | Apr 2010 | B2 |
7706524 | Zerbe | Apr 2010 | B2 |
7746764 | Rawlins et al. | Jun 2010 | B2 |
7841909 | Murray et al. | Nov 2010 | B2 |
7868790 | Bae | Jan 2011 | B2 |
7869546 | Tsai | Jan 2011 | B2 |
7899653 | Hollis | Mar 2011 | B2 |
8050332 | Chung et al. | Nov 2011 | B2 |
8055095 | Palotai et al. | Nov 2011 | B2 |
8064535 | Wiley | Nov 2011 | B2 |
8085172 | Li et al. | Dec 2011 | B2 |
8149906 | Saito et al. | Apr 2012 | B2 |
8159375 | Abbasfar | Apr 2012 | B2 |
8159376 | Abbasfar | Apr 2012 | B2 |
8199849 | Oh et al. | Jun 2012 | B2 |
8199863 | Chen et al. | Jun 2012 | B2 |
8218670 | Abou | Jul 2012 | B2 |
8245094 | Jiang et al. | Aug 2012 | B2 |
8274311 | Liu | Sep 2012 | B2 |
8279094 | Abbasfar | Oct 2012 | B2 |
8279745 | Dent | Oct 2012 | B2 |
8279976 | Lin et al. | Oct 2012 | B2 |
8284848 | Nam et al. | Oct 2012 | B2 |
8289914 | Li et al. | Oct 2012 | B2 |
8295250 | Gorokhov et al. | Oct 2012 | B2 |
8365035 | Hara | Jan 2013 | B2 |
8442099 | Sederat | May 2013 | B1 |
8442210 | Zerbe | May 2013 | B2 |
8451913 | Oh et al. | May 2013 | B2 |
8472513 | Malipatil et al. | Jun 2013 | B2 |
8498344 | Wilson et al. | Jul 2013 | B2 |
8498368 | Husted et al. | Jul 2013 | B1 |
8520493 | Goulahsen | Aug 2013 | B2 |
8539318 | Shokrollahi et al. | Sep 2013 | B2 |
8577284 | Seo et al. | Nov 2013 | B2 |
8588254 | Diab et al. | Nov 2013 | B2 |
8588280 | Oh et al. | Nov 2013 | B2 |
8593305 | Tajalli et al. | Nov 2013 | B1 |
8620166 | Guha | Dec 2013 | B2 |
8638241 | Sudhakaran et al. | Jan 2014 | B2 |
8644497 | Clausen et al. | Feb 2014 | B2 |
8649445 | Cronie et al. | Feb 2014 | B2 |
8649460 | Ware et al. | Feb 2014 | B2 |
8687968 | Nosaka et al. | Apr 2014 | B2 |
8718184 | Cronie | May 2014 | B1 |
8755426 | Cronie | Jun 2014 | B1 |
8773964 | Hsueh et al. | Jul 2014 | B2 |
8780687 | Clausen et al. | Jul 2014 | B2 |
8831440 | Yu et al. | Sep 2014 | B2 |
8879660 | Peng et al. | Nov 2014 | B1 |
8938171 | Tang et al. | Jan 2015 | B2 |
8949693 | Ordentlich et al. | Feb 2015 | B2 |
8951072 | Hashim et al. | Feb 2015 | B2 |
8989317 | Holden | Mar 2015 | B1 |
8996740 | Wiley et al. | Mar 2015 | B2 |
9015566 | Cronie et al. | Apr 2015 | B2 |
9069995 | Cronie | Jun 2015 | B1 |
9071476 | Fox et al. | Jun 2015 | B2 |
9077386 | Holden et al. | Jul 2015 | B1 |
9093791 | Liang | Jul 2015 | B2 |
9100232 | Hormati et al. | Aug 2015 | B1 |
9124557 | Fox et al. | Sep 2015 | B2 |
9165615 | Amirkhany et al. | Oct 2015 | B2 |
9197470 | Okunev | Nov 2015 | B2 |
9231790 | Wiley et al. | Jan 2016 | B2 |
9246713 | Shokrollahi | Jan 2016 | B2 |
9251873 | Fox et al. | Feb 2016 | B1 |
9288082 | Ulrich et al. | Mar 2016 | B1 |
9288089 | Cronie et al. | Mar 2016 | B2 |
9331962 | Lida et al. | May 2016 | B2 |
9362974 | Fox et al. | Jun 2016 | B2 |
9363114 | Shokrollahi et al. | Jun 2016 | B2 |
9401828 | Cronie et al. | Jul 2016 | B2 |
9432082 | Ulrich et al. | Aug 2016 | B2 |
9455765 | Schumacher et al. | Sep 2016 | B2 |
9461862 | Holden et al. | Oct 2016 | B2 |
9479369 | Shokrollahi | Oct 2016 | B1 |
9509437 | Shokrollahi | Nov 2016 | B2 |
9537644 | Jones et al. | Jan 2017 | B2 |
9634797 | Benammar et al. | Apr 2017 | B2 |
9667379 | Cronie et al. | May 2017 | B2 |
9710412 | Sengoku | Jul 2017 | B2 |
10055372 | Shokrollahi | Aug 2018 | B2 |
20010006538 | Simon et al. | Jul 2001 | A1 |
20020044316 | Myers | Apr 2002 | A1 |
20020152340 | Dreps et al. | Oct 2002 | A1 |
20020174373 | Chang | Nov 2002 | A1 |
20020181607 | Izumi | Dec 2002 | A1 |
20030048210 | Kiehl | Mar 2003 | A1 |
20030086366 | Branlund et al. | May 2003 | A1 |
20030117184 | Fecteau et al. | Jun 2003 | A1 |
20040057525 | Rajan et al. | Mar 2004 | A1 |
20040146117 | Subramaniam et al. | Jul 2004 | A1 |
20040155802 | Lamy et al. | Aug 2004 | A1 |
20040161019 | Raghavan et al. | Aug 2004 | A1 |
20040170231 | Bessios et al. | Sep 2004 | A1 |
20040239374 | Hori | Dec 2004 | A1 |
20050213686 | Love et al. | Sep 2005 | A1 |
20060013331 | Choi et al. | Jan 2006 | A1 |
20060018344 | Pamarti | Jan 2006 | A1 |
20060126751 | Bessios | Jun 2006 | A1 |
20060159005 | Rawlins et al. | Jul 2006 | A1 |
20060291589 | Eliezer et al. | Dec 2006 | A1 |
20070030796 | Green | Feb 2007 | A1 |
20070164883 | Furtner | Jul 2007 | A1 |
20070263711 | Theodor et al. | Nov 2007 | A1 |
20080104374 | Mohamed | May 2008 | A1 |
20080159448 | Anim-Appiah et al. | Jul 2008 | A1 |
20080192621 | Suehiro | Aug 2008 | A1 |
20080316070 | Van et al. | Dec 2008 | A1 |
20090046009 | Fujii | Feb 2009 | A1 |
20090059782 | Cole | Mar 2009 | A1 |
20090154604 | Lee et al. | Jun 2009 | A1 |
20100046644 | Mazet | Feb 2010 | A1 |
20100054355 | Kinjo et al. | Mar 2010 | A1 |
20100081451 | Mueck et al. | Apr 2010 | A1 |
20100215112 | Tsai et al. | Aug 2010 | A1 |
20100215118 | Ware et al. | Aug 2010 | A1 |
20100235673 | Abbasfar | Sep 2010 | A1 |
20100296556 | Rave et al. | Nov 2010 | A1 |
20100309964 | Oh et al. | Dec 2010 | A1 |
20110014865 | Seo et al. | Jan 2011 | A1 |
20110084737 | Oh et al. | Apr 2011 | A1 |
20110127990 | Wilson et al. | Jun 2011 | A1 |
20110235501 | Goulahsen | Sep 2011 | A1 |
20110268225 | Cronie et al. | Nov 2011 | A1 |
20110286497 | Nervig | Nov 2011 | A1 |
20110299555 | Cronie et al. | Dec 2011 | A1 |
20110302478 | Cronie et al. | Dec 2011 | A1 |
20120213299 | Cronie et al. | Aug 2012 | A1 |
20130010892 | Cronie | Jan 2013 | A1 |
20130013870 | Cronie et al. | Jan 2013 | A1 |
20130114392 | Sun et al. | May 2013 | A1 |
20130159584 | Nygren et al. | Jun 2013 | A1 |
20130259113 | Kumar | Oct 2013 | A1 |
20140112376 | Wang et al. | Apr 2014 | A1 |
20140177645 | Cronie et al. | Jun 2014 | A1 |
20140198837 | Fox et al. | Jul 2014 | A1 |
20140226734 | Fox | Aug 2014 | A1 |
20140254642 | Fox et al. | Sep 2014 | A1 |
20140376604 | Verlinden et al. | Dec 2014 | A1 |
20150063494 | Simpson et al. | Mar 2015 | A1 |
20150078479 | Whitby-Strevens | Mar 2015 | A1 |
20150092532 | Shokrollahi et al. | Apr 2015 | A1 |
20150195005 | De Lind Van Wijngaarden et al. | Jul 2015 | A1 |
20150222458 | Hormati et al. | Aug 2015 | A1 |
20150236885 | Ling et al. | Aug 2015 | A1 |
20150249559 | Shokrollahi et al. | Sep 2015 | A1 |
20150333940 | Shokrollahi | Nov 2015 | A1 |
20150349835 | Fox et al. | Dec 2015 | A1 |
20150365263 | Zhang et al. | Dec 2015 | A1 |
20150380087 | Mittelholzer et al. | Dec 2015 | A1 |
20150381768 | Fox et al. | Dec 2015 | A1 |
20160020824 | Ulrich et al. | Jan 2016 | A1 |
20160036616 | Holden et al. | Feb 2016 | A1 |
20160218894 | Fox et al. | Jul 2016 | A1 |
20160380787 | Hormati et al. | Dec 2016 | A1 |
20170272285 | Shokrollahi et al. | Sep 2017 | A1 |
20190103903 | Yang | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
1864346 | Nov 2006 | CN |
101854223 | Oct 2010 | CN |
2039221 | Feb 2013 | EP |
2003163612 | Jun 2003 | JP |
2009084121 | Jul 2009 | WO |
2010031824 | Mar 2010 | WO |
2011119359 | Sep 2011 | WO |
2011134678 | Nov 2011 | WO |
2011151469 | Dec 2011 | WO |
Entry |
---|
Abbasfar, Aliazam , “Generalized Differential Vector Signaling”, IEEE International Conference on Communications, ICC '09, Jun. 14, 2009, 1-5 (5 pages). |
Anonymous , “Constant-weight code”, Wikipedia.org, retrieved on Feb. 6, 2017, (3 pages). |
Cheng, Wei-Chung , et al., “Memory Bus Encoding for Low Power: A Tutorial”, Proceedings of the IEEE 2001. 2nd International Symposium on Quality Electronic Design, Mar. 28, 2001, 199-204 (6 pages). |
Counts, Lew , et al., “One-Chip “Slide Rule” Works with Logs, Antilogs for Real-Time Processing”, Analog Devices, Computational Products 6, Reprinted from Electronic Design, May 2, 1985, 3-9 (7 pages). |
Dasilva, Victor , et al., “Multicarrier Orthogonal CDMA Signals for Quasi-Synchronous Communication Systems”, IEEE Journal on Selected Areas in Communications, vol. 12, No. 5, Jun. 1994, 842-852 (11 pages). |
Farzan, Kamran , et al., “Coding Schemes for Chip-to-Chip Interconnect Applications”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, No. 4, Apr. 2006, 393-406 (14 pages). |
Giovaneli, Carlos Lopez, et al., “Space-Frequency Coded OFDM System for Multi-Wire Power Line Communications”, Power Line Communications and Its Applications, 2005 International Symposium on Vancouver, BC, Canada, IEEE XP-002433844, Apr. 6-8, 2005, 191-195 (5 pages). |
Healey, Adam , et al., “A Comparison of 25 Gbps NRZ & PAM-4 Modulation used in Legacy & Premium Backplane Channels”, Tyco Electronics Corporation, DesignCon 2012, Jan. 2012, 1-16 (16 pages). |
Holden, Brian , “An exploration of the technical feasibility of the major technology options for 400GE backplanes”, IEEE 802.3 400GE Study Group, Geneva, CH, Jul. 16, 2013, 1-18 (18 pages). |
Holden, Brian , “Simulation results for NRZ, ENRZ & PAM-4 on 16-wire full-sized 400GE backplanes”, IEEE 802.3 400GE Study Group, York, UK, Sep. 2, 2013, 1-19 (19 pages). |
Holden, Brian , “Using Ensemble NRZ Coding for 400GE Electrical Interfaces”, IEEE 802.3 400GE Study Group, May 17, 2013, 1-24 (24 pages). |
Jiang, Anxiao , et al., “Rank Modulation for Flash Memories”, IEEE Transactions of Information Theory, vol. 55, No. 6, Jun. 2009, 2659-2673 (16 pages). |
Oh, Dan , et al., “Pseudo-Differential Vector Signaling for Noise Reduction in Single-Ended Signaling Systems”, DesignCon 2009, Rambus Inc., Jan. 2009, (22 pages). |
Poulton, John , “Multiwire Differential Signaling”, UNC-CH Department of Computer Science Version 1.1, Aug. 6, 2003, 1-20 (20 pages). |
She, James , et al., “A Framework of Cross-Layer Superposition Coded Multicast for Robust IPTV Services over WiMAX”, IEEE Wireless Communications and Networking Conference, Apr. 15, 2008, 3139-3144 (6 pages). |
Skliar, Osvaldo , et al., “A Method for the Analysis of Signals: the Square-Wave Method”, Revista de Matematica: Teoria y Aplicationes, vol. 15, No. 2, Mar. 2008, 109-129 (21 pages). |
Slepian, David , “Permutation Modulation”, Proceedings of the IEE, vol. 53, No. 3, Mar. 1965, 228-236 (9 pages). |
Stan, Mircea , et al., “Bus-Invert Coding for Low-Power I/O”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 3, No. 1, Mar. 1995, 49-58 (10 pages). |
Tallini, Luca , et al., “Transmission Time Analysis for the Parallel Asynchronous Communication Scheme”, IEEE Transactions on Computers, vol. 52, No. 5,, May 2003, 558-571 (14 pages). |
Wang, Xin , et al., “Applying CDMA Technique to Network-on-Chip”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, No. 10, Oct. 1, 2007, 1091-1100 (10 pages). |
Number | Date | Country | |
---|---|---|---|
20190075004 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62032175 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15829904 | Dec 2017 | US |
Child | 16180953 | US | |
Parent | 15285316 | Oct 2016 | US |
Child | 15829904 | US | |
Parent | 14816896 | Aug 2015 | US |
Child | 15285316 | US |