The invention relates to the providing of a control function for output drivers of addressable random access memory devices that provides a capability for changing the impedance of an addressable memory output drive circuit without disturbing the contents of the memory device.
In the art, dynamic random access memory arrays, DRAMS, are assembled in arrangements of devices involving data lines and control lines. However, in many constructions both types of lines do not have to connect to each device. As the art is progressing a need is arising for an ability to be able to adjust the output impedance of entire arrays and such a capability would lead to having each device being separately adjustable which in turn would require that the control through each type of line would be desirable at each device.
The invention is a selectable function that permits the impedance of an output driver or an addressable memory device to be configured without adding extra signal connections. The output driver impedance control function of the invention is achieved through the use of the data bus of a memory array for control. The data lines thus serve two purposes, one for normal use and the other for control of the impedance. In the invention, the output impedance of each DRAM in a subassembly array that drives a common data bus is individually separately adjusted.
As the performance of Dynamic Random Access Memories (DRAMS) in data processing systems moves to ever higher frequencies, precise control of the data input and output in the memory system assembly becomes crucial to ensure that there is reliable transfer into and out of each individual one of the assembly of DRAMS that make up the memory assembly. Included in that precise control is the ability to adjust the impedance of the drivers that move the data in the array. The drivers are separate units, known in the art as “off chip” drivers (OCD)s and receivers (OCR)s.
To calibrate the drive strength and impedance of an OCD, DC current measurements can be taken while the OCD is driving a known logical state load and the impedance is adjusted until the required I-V characteristic is obtained. To accomplish such an operation however, the memory controller must be able to establish a desired logical state for the OCD load and then communicate adjustment instructions to the DRAM. The situation is illustrated in connection with
In
In
Referring to
Therefore, with the ADJUST command active, data can be written onto the RWD bus as with a normal write command, but the data cannot be stored in the memory array. It will be apparent that if at the time it is desired to provide impedance calibration, there is no data in the memory array that it is desirable to remain undisturbed, then any arrangements to inhibit storage would not be required.
In accordance with the invention, under the ADJUST command, there is enablement of added control circuitry, labelled OCD IMPEDANCE CONTROL, that can receive programming instructions from any data on the RWD bus. The OCD IMPEDANCE CONTROL is clocked using the command control signal together with a delayed version of that signal. The OCD IMPEDANCE CONTROL element performs the functions of interpretation of the programming instructions and the generation of vector signals which drive the OCDs and set them to the desired pull up and pull down levels.
An example set of control settings are tabulated in Table 1.
In accordance with the invention, with the ADJUST signal activated, a normal write command becomes useable to program the OCD impedance through data received on the DQ inputs.
Referring to
An example protocol for achieving the impedance adjustment as described in connection with
An alternate option is to write impedance vectors directly to each OCD circuit utilizing the RWD bus to transfer the data to all OCDs and storing the value in a latch at each OCD. This would require that the clocking and mode signals PCAS and ADJUST be distributed to each OCD circuit. Since the existing RWD bus is available to transfer the data to all OCDs the vector bus from the OCD impedance would no longer be needed, thereby saving wiring space.
In
During a write command to the DRAM, the serial data is received by the off-chip receiver labeled OCR at each DQ and is stored in parallel at an element labeled DQ WRITE LATCH. The serial burst length would be four bits. For comparison, in a usual write command the data would be written in parallel over the RWD bus and stored in the memory array however, in this situation the ADJUST-PU or ADJUST-PD mode prevents it. Instead, in this situation, the parallel data is stored directly into the latches located near the OCD. This data contains the value as illustrated through TABLE 1 of the desired impedance for either the pullup or pulldown which is then decoded in selecting the desired OCD impedance.
Therefore with one of the ADJUST-PU or ADJUST-PD signals activated a normal write command can be used to program the OCD impedance with the impedance values provided in a serial burst fashion over the DQ inputs. It should be noted that each OCD receives the impedance values from a unique DQ so that independent programming of different OCDs is enabled. It should also be further noted that there is thus no restriction to a four bit burst length.
An example protocol for achieving the impedance adjustment as described in connection with
What has been described is a function for setting the strength or impedance of output data driver circuits in an addressable memory system. The function can be realized without the addition of external data, addresses, or control signals to the memory device.
This Application is a Continuation in Part Application of parent application, Ser. No. 10/072,346 Filed Feb. 6, 20002.
Number | Date | Country | |
---|---|---|---|
Parent | 10072346 | Feb 2002 | US |
Child | 10688744 | Oct 2003 | US |