Oxide-nitride-oxide stack having multiple oxynitride layers

Abstract
An embodiment of a semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are described. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer.
Description
TECHNICAL FIELD

This invention relates to semiconductor processing and, more particularly to an oxide-nitride-oxide stack having an improved oxide-nitride or oxynitride layer and methods of forming the same.


BACKGROUND

Non-volatile semiconductor memories, such as a split gate flash memory, typically use a stacked floating gate type field effect transistors, in which electrons are induced into a floating gate of a memory cell to be programmed by biasing a control gate and grounding a body region of a substrate on which the memory cell is formed.


An oxide-nitride-oxide (ONO) stack is used as either a charge storing layer, as in silicon-oxide-nitride-oxide-silicon (SONOS) transistor, or as an isolation layer between the floating gate and control gate, as in a split gate flash memory.



FIG. 1 is a partial cross-sectional view of an intermediate structure for a semiconductor device 100, such as a memory device, having a SONOS gate stack or structure 102 including a conventional ONO stack 104 formed over a surface 106 of a silicon substrate 108 according to a conventional method. In addition, the device 100 typically further includes one or more diffusion regions 110, such as source and drain regions, aligned to the gate stack and separated by a channel region 112. Briefly, the SONOS structure 102 includes a poly-silicon (poly) gate layer 114 formed upon and in contact with the ONO stack 104. The poly gate layer 114 is separated or electrically isolated from the substrate 108 by the ONO stack 104. The ONO stack 104 generally includes a lower oxide layer 116, a nitride or oxynitride layer 118 which serves as a charge storing or memory layer for the device 100, and a top, high-temperature oxide (HTO) layer 120 overlying the nitride or oxynitride layer.


One problem with conventional SONOS structures 102 and methods of forming the same is the poor data retention of the nitride or oxynitride layer 118 that limits the device 100 lifetime and/or its use in several applications due to leakage current through the layer.


Another problem with conventional SONOS structures 102 and methods of forming the same is the stoichiometry of the oxynitride layer 118 is neither uniform nor optimized across the thickness of the layer. In particular, the oxynitride layer 118 is conventionally formed or deposited in a single step using a single process gas mixture and fixed or constant processing conditions in an attempt to provide a homogeneous layer having a high nitrogen and high oxygen concentration across the thickness of the relatively thick layer. However, due to top and bottom effects this results in nitrogen, oxygen and silicon concentrations, which can vary throughout the conventional oxynitride layer 118. The top effect is caused by the order in which process gases are shut off following deposition. In particular, the silicon containing process gas, such as silane, is typically shut off first resulting in a top portion of the oxynitride layer 118 that is high in oxygen and/or nitride and low in silicon. Similarly, the bottom effect is caused by the order in which process gases are introduced to initiate deposition. In particular, the deposition of the oxynitride layer 118 typically follows an annealing step, resulting in a peak or relatively high concentration of ammonia (NH3) at the beginning of the deposition process and producing in a bottom portion of the oxynitride layer that is low in oxygen and silicon and high in nitrogen. The bottom effect is also due to surface nucleation phenomena in which that oxygen and silicon that is available in the initial process gas mixture preferentially reacts with silicon at the surface of the substrate and does not contribute to the formation of the oxynitride layer. Consequently, the charge storage characteristics, and in particular programming and erase speed and data retention of a memory device 100 made with the ONO stack 104, are adversely effected.


Accordingly, there is a need for a memory device having an ONO stack with an oxynitride layer as a memory layer that exhibits improved programming and erase speed and data retention. There is a further need for a method or process of forming an ONO stack having an oxynitride layer that exhibits improved oxynitride stoichiometry.


SUMMARY

A semiconductor memory device including a multi-layer charge storing layer and methods of forming the same are provided. Generally, the device includes a channel formed from a semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide layer overlying the channel; and a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which a stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which a stoichiometric composition of the second oxynitride layer results in it being trap dense. In one embodiment, the device comprises a non-planar transistor including a gate having multiple surfaces abutting the channel, and the gate comprises the tunnel oxide layer and the multi-layer charge storing layer. Other embodiments are also disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS

These and various other features and advantages of the present structure and method will be apparent upon reading of the following detailed description in conjunction with the accompanying drawings and the appended claims provided below, where:



FIG. 1 (prior art) is a block diagram illustrating a cross-sectional side view of an intermediate structure for a memory device for which a method having an oxide-nitride-oxide (ONO) stack formed according to conventional method;



FIG. 2 is a block diagram illustrating a cross-sectional side view of a portion of a semiconductor device having a silicon-oxide-oxynitride-oxide-silicon structure including a multi-layer charge storing layer according to an embodiment of the present disclosure;



FIG. 3 is flow chart of a method for forming an oxide-oxynitride-oxide structure including a multi-layer charge storing layer according to an embodiment of the present disclosure;



FIG. 4 is a graph showing an improvement in data retention for a memory device using a memory layer formed according to the present disclosure as compared to a memory device using a conventional memory layer;



FIG. 5 is flow chart of a method for forming an oxide-oxynitride-oxide structure including a multi-layer charge storing layer according to another embodiment of the present disclosure;



FIG. 6 is an energy band diagram of a programmed conventional memory device having an ONO structure;



FIGS. 7A and 7B are energy band diagrams of a memory device including a multi-layer charge storing layer according to an embodiment of the present disclosure prior to and following programming;



FIG. 8A illustrates a non-planar multigate device including a split charge-trapping region;



FIG. 8B illustrates a cross-sectional view of the non-planar multigate device of FIG. 8A;



FIGS. 9A and 9B illustrate a non-planar multigate device including a split charge-trapping region and a horizontal nanowire channel;



FIGS. 10A and 10B illustrate a non-planar multigate device including a split charge-trapping region and a vertical nanowire channel;



FIG. 11A through 11F illustrate a gate first scheme for fabricating the non-planar multigate device of FIG. 10A; and



FIG. 12A through 12F illustrate a gate last scheme for fabricating the non-planar multigate device of FIG. 10A.





DETAILED DESCRIPTION

The present invention is directed generally to a device comprising a silicon-oxide-oxynitride-oxide-silicon gate structure including a multi-layer charge storing layer and methods for making the same. The gate structure and method are particularly useful for forming a memory layer in a memory device, such as a memory transistor.


In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be evident, however, to one skilled in the art that the present structure and method may be practiced without these specific details. In other instances, well-known structures, and techniques are not shown in detail or are shown in block diagram form in order to avoid unnecessarily obscuring an understanding of this description.


Reference in the description to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase “in one embodiment” in various places in the specification do not necessarily all refer to the same embodiment. The term “to couple” as used herein may include both to directly connect and to indirectly connect through one or more intervening components.


Briefly, the method involves forming a multi-layer charge storing layer including multiple oxynitride layers, such as silicon oxynitride (Si2N2O) layers, having differing concentrations of Oxygen, Nitrogen and/or Silicon. The oxynitride layers are formed at higher temperatures than nitride or oxynitride layers in conventional ONO structures, and each of the layers are formed using differing process gases mixtures and/or at differing flow rates. Generally, the oxynitride layers include at least a top oxynitride layer and a bottom oxynitride layer. In certain embodiments, the stoichiometric compositions of the layers is tailored or selected such that the lower or bottom oxynitride has a high oxygen and silicon content, and the top oxynitride layer has high silicon and a high nitrogen concentration with a low oxygen concentration to produce an oxygen-lean, silicon-rich nitride or oxynitride. The silicon-rich and oxygen-rich bottom oxynitride layer reduces stored charge loss without compromising device speed or an initial (beginning of life) difference between program and erase voltages. The silicon-rich, oxygen-lean top oxynitride layer increases a difference between programming and erase voltages of memory devices, thereby improving device speed, increasing data retention, and extending the operating life of the device. In some embodiments, the silicon-rich, oxygen-lean top oxynitride layer can further include a concentration of carbon selected to increase the number of traps therein.


Optionally, the ratio of thicknesses between the top oxynitride layer and the bottom oxynitride layer can be selected to facilitate forming of the oxynitride layers over a tunneling or first oxide layer of a silicon-oxide-oxynitride-oxide-silicon gate structure following the forming of the first oxide layer using a dry or wet oxidation.


A silicon-oxide-oxynitride-oxide-silicon structure and methods for fabricating the same according to various embodiments of the present disclosure will now be described in greater detail with reference to FIGS. 2 through 4.



FIG. 2 is a block diagram illustrating a cross-sectional side view of a portion of a semiconductor memory device 200 having a silicon-oxide-oxynitride-oxide-silicon gate structure including a multi-layer charge storing layer according to one embodiment. Referring to FIG. 2, the memory device 200 includes a silicon-oxide-oxynitride-oxide-silicon gate structure or gate stack 202 including a multi-layer charge storing layer 204 formed over a surface 206 of silicon layer on a substrate or a silicon substrate 208. In addition, the device 200 further includes one or more diffusion regions 210, such as source and drain regions or structures, aligned to the gate stack 202 and separated by a channel region 212. Generally, the silicon-oxide-oxynitride-oxide-silicon gate structure includes a silicon containing gate layer, such as a poly-silicon or poly gate layer 214 formed upon and in contact with the multi-layer charge storing layer 204, and a portion of the silicon layer or substrate 208. The poly gate layer 214 is separated or electrically isolated from the substrate 208 by the multi-layer charge storing layer 204. The silicon-oxide-oxynitride-oxide-silicon structure includes a thin, lower oxide layer or tunneling oxide layer 216 that separates or electrically isolates the gate stack 202 from the channel region 212, a top or blocking oxide layer 218, and the multi-layer charge storing layer 204. As noted above and as shown in FIG. 2, the multi-layer charge storing layer 204 includes at least two oxynitride layers, including a top oxynitride layer 220A and a bottom oxynitride layer 220B.


The substrate 208 may include any known silicon-based semiconductor material including silicon, silicon-germanium, silicon-on-insulator, or silicon-on-sapphire substrate. Alternatively, the substrate 208 may include a silicon layer formed on a non-silicon-based semiconductor material, such as gallium-arsenide, germanium, gallium-nitride, or aluminum-phosphide. In certain embodiments, the substrate 208 is a doped or undoped silicon substrate.


The lower oxide layer or tunneling oxide layer 216 of the silicon-oxide-oxynitride-oxide-silicon structure generally includes a relatively thin layer of silicon dioxide (SiO2) of from about 15 angstrom (Å) to about 22 Å, and in some embodiments about 18 Å. The tunneling oxide layer 216 can be formed or deposited by any suitable means including, for example, being thermally grown or deposited using chemical vapor deposition (CVD). Generally, the tunnel oxide layer is formed or grown using a thermal oxidation in oxygen ambient. In one embodiment, the process involves a dry oxidation method in which the substrate 208 is placed in a in a deposition or processing chamber, heated to a temperature from about 700° C. to about 850° C., and exposed to oxygen for a predetermined period of time selected based on a desired thickness of the finished tunneling oxide layer 216. In another embodiment, the tunnel oxide layer is grown in an ISSG (In-Situ Steam Generation) chamber with a radical oxidation using a reaction between oxygen (O2) and hydrogen (H2) on the substrate at temperatures of at least 1000° C. Exemplary process times are from about 10 to about 100 minutes. The oxidation can be performed at atmospheric or at low pressure.


As noted above, the multi-layer charge storing layer generally includes at least two oxynitride layers having differing compositions of silicon, oxygen and nitrogen, and can have an overall thickness of from about 70 Å to about 150 Å, and in certain embodiments about 100 Å. In one embodiment, the oxynitride layers are formed or deposited in a low pressure CVD process using a silicon source, such as silane (SiH4), chlorosilane (SiH3Cl), dichlorosilane or DCS (SiH2Cl2), tetrachlorosilane (SiCl4) or Bis-TertiaryButylAmino Silane (BTBAS), a nitrogen source, such as nitrogen (N2), ammonia (NH3), nitrogen trioxide (NO3) or nitrous oxide (N2O), and an oxygen-containing gas, such as oxygen (O2) or N2O. Alternatively, gases in which hydrogen has been replaced by deuterium can be used, including, for example, the substitution of deuterated-ammonia (ND3) for NH3. The substitution of deuterium for hydrogen advantageously passivates Si dangling bonds at the silicon-oxide interface, thereby increasing an NBTI (Negative Bias Temperature Instability) lifetime of the devices.


For example, the lower or bottom oxynitride layer 220B can be deposited over the tunneling oxide layer 216 by placing the substrate 208 in a deposition chamber and introducing a process gas including N2O, NH3 and DCS, while maintaining the chamber at a pressure of from about 5 millitorr (mT) to about 500 mT, and maintaining the substrate at a temperature of from about 700° C. to about 850° C. and in certain embodiments at least about 760° C., for a period of from about 2.5 minutes to about 20 minutes. In particular, the process gas can include a first gas mixture of N2O and NH3 mixed in a ratio of from about 8:1 to about 1:8 and a second gas mixture of DCS and NH3 mixed in a ratio of from about 1:7 to about 7:1, and can be introduced at a flow rate of from about 5 to about 200 standard cubic centimeters per minute (sccm). It has been found that an oxynitride layer produced or deposited under these condition yields a silicon-rich, oxygen-rich, bottom oxynitride layer 220B, that decrease the charge loss rate after programming and after erase, which is manifested in a small voltage shift in the retention mode.


The top oxynitride layer 220A can be deposited over the bottom oxynitride layer 220B in a CVD process using a process gas including N2O, NH3 and DCS, at a chamber pressure of from about 5 mT to about 500 mT, and at a substrate temperature of from about 700° C. to about 850° C. and in certain embodiments at least about 760° C., for a period of from about 2.5 minutes to about 20 minutes. In particular, the process gas can include a first gas mixture of N2O and NH3 mixed in a ratio of from about 8:1 to about 1:8 and a second gas mixture of DCS and NH3 mixed in a ratio of from about 1:7 to about 7:1, and can be introduced at a flow rate of from about 5 to about 20 sccm. It has been found that an oxynitride layer produced or deposited under these condition yields a silicon-rich, nitrogen-rich, and oxygen-lean top oxynitride layer 220A, which improves the speed and increases of the initial difference between program and erase voltage without compromising a charge loss rate of memory devices made using an embodiment of the silicon-oxide-oxynitride-oxide-silicon structure, thereby extending the operating life of the device.


In some embodiments, the silicon-rich, nitrogen-rich, and oxygen-lean top oxynitride layer 220A can be deposited over the bottom oxynitride layer 220B in a CVD process using a process gas including BTBAS and ammonia (NH3) mixed at a ratio of from about 7:1 to about 1:7 to further include a concentration of carbon selected to increase the number of traps therein. The selected concentration of carbon in the second oxynitride layer can include a carbon concentration of from about 5% to about 15%.


In certain embodiments, the top oxynitride layer 220A is deposited sequentially in the same tool used to form the bottom oxynitride layer 220B, substantially without breaking vacuum on the deposition chamber. In certain embodiments, the top oxynitride layer 220A is deposited substantially without altering the temperature to which the substrate 208 was heated during deposition of the bottom oxynitride layer 220B. In one embodiment, the top oxynitride layer 220A is deposited sequentially and immediately following the deposition of the bottom oxynitride layer 220B by decreasing the flow rate of the N2O/NH3 gas mixture relative to the DCS/NH3 gas mixture to provide the desired ratio of the gas mixtures to yield the silicon-rich, nitrogen-rich, and oxygen-lean top oxynitride layer 220A.


In certain embodiments, another oxide or oxide layer (not shown in these figures) is formed after the formation of the gate stack 202 in a different area on the substrate 208 or in the device using a steam oxidation. In this embodiment, the top oxynitride layer 220A and top or blocking oxide layer 218 of the silicon-oxide-oxynitride-oxide-silicon structure are beneficially steam annealed during the steam oxidation process. In particular, steam annealing improves the quality of the top or blocking oxide layer 218 reducing the number of traps formed near a top surface of the blocking oxide layer and near a top surface of the underlying top oxynitride layer 220A, thereby reducing or substantially eliminating an electric field that could otherwise form across the blocking oxide layer, which could result in back streaming of charge carriers therethrough and adversely affecting data or charge retention in the charge storing layer.


A suitable thickness for the bottom oxynitride layer 220B has been found to be from about 10 Å to about 80 Å, and a ratio of thicknesses between the bottom layer and the top oxynitride layer has been found to be from about 1:6 to about 6:1, and in certain embodiments at least about 1:4.


The top or blocking oxide layer 218 of the silicon-oxide-oxynitride-oxide-silicon structure includes a relatively thick layer of SiO2 of from about 30 Å to about 70 Å, and in certain embodiments about 45 Å. The top or blocking oxide layer 218 can be formed or deposited by any suitable means including, for example, being thermally grown or deposited using CVD. In one embodiment, the top or blocking oxide layer 218 is a high-temperature-oxide (HTO) deposited using CVD process. Generally, the deposition process involves exposing the substrate 208 to a silicon source, such as silane, chlorosilane, or dichlorosilane, and an oxygen-containing gas, such as O2 or N2O in a deposition chamber at a pressure of from about 50 mT to about 1000 mT, for a period of from about 10 minutes to about 120 minutes while maintaining the substrate at a temperature of from about 650° C. to about 850° C.


In certain embodiments, the top or blocking oxide layer 218 is deposited sequentially in the same tool used to form the oxynitride layers 220A, 220B. In certain embodiments, the oxynitride layers 220A, 220B, and the top or blocking oxide layer 218 are formed or deposited in the same tool used to grow the tunneling oxide layer 216. Suitable tools include, for example, an ONO AVP, commercially available from AVIZA technology of Scotts Valley, Calif.


A method or forming or fabricating a silicon-oxide-oxynitride-oxide-silicon stack according to one embodiment will now be described with reference to the flowchart of FIG. 3.


Referring to FIG. 3, the method begins with forming a first oxide layer, such as a tunneling oxide layer 216, of the silicon-oxide-oxynitride-oxide-silicon gate stack 202 over a silicon containing layer on a surface of a substrate 208 (300). Next, the first or bottom oxynitride layer 220B of a multi-layer charge storing layer 204 including oxynitride is formed on a surface of the first oxide layer (302). As noted above, this first or bottom oxynitride layer 220B can be formed or deposited by a CVD process using a process gas including N2O/NH3 and DCS/NH3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich and oxygen-rich oxynitride layer. The second or top oxynitride layer 220A of the multi-layer charge storing layer 204 is then formed on a surface of the first or bottom oxynitride layer 220B (304). The second or top oxynitride layer 220A has a stoichiometric composition of oxygen, nitrogen and/or silicon different from that of the first or bottom oxynitride layer 220B. In particular, and as noted above, the second or top oxynitride layer 220A can be formed or deposited by a CVD process using a process gas including DCS/NH3 and N2O/NH3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich, oxygen-lean top oxynitride layer. Finally, a top or blocking oxide layer 218 of the silicon-oxide-oxynitride-oxide-silicon structure is formed on a surface of the second layer of the multi-layer charge storing layer (306). As noted above, this top or blocking oxide layer 218 can be formed or deposited by any suitable means, but in some embodiments is deposited in a CVD process. In one embodiment the top or blocking oxide layer 218 is a high temperature oxide deposited in a HTO CVD process. Alternatively, the top or blocking oxide layer 218 can be thermally grown, however it will be appreciated that in this embodiment the thickness of the top oxynitride 220A may be adjusted or increased as some of the top oxynitride will be effectively consumed or oxidized during the process of thermally growing the top or blocking oxide layer 218.


Optionally, the method may further include forming or depositing a silicon containing layer on a surface of the top or blocking oxide layer 218 to form a silicon-oxide-oxynitride-oxide-silicon stack or structure (308). The silicon containing layer can be, for example, a polysilicon layer deposited by a CVD process to form a control or poly gate layer 214 of the transistor or device 200.


A comparison of data retention for a memory device using a memory layer formed according to an embodiment of the present disclosure as compared to a memory device using a conventional memory layer will now be made with reference to FIG. 4. In particular, FIG. 4 illustrates the change in threshold voltage of devices in an electronically erasable programmable read-only memory (EEPROM) during programming (VTP) during erase (VTE) over device life for an EEPROM made using a conventional ONO structure and a silicon-oxide-oxynitride-oxide-silicon structure having a multi-layer oxynitride layer. In gathering data for this figure both devices were pre-cycled for 100K cycles at an ambient temperature of 85° C.


Referring to FIG. 4, the graph or line 402 illustrates the change over time of a VTP for an EEPROM made using a conventional ONO structure having a single oxynitride layer without refreshing the memory after the initial writing—program or erase. Actual data points on line 402 are shown by unfilled circles, the remainder of the line showing an extrapolation of VTP to a specified end-of-life (EOL) for the EEPROM. Graph or line 404 illustrates the change over time of a VTE for the EEPROM made using a conventional ONO structure. Actual data points on line 404 are shown by filled circles, and the remainder of the line shows an extrapolation of VTE to EOL for the EEPROM. Generally, the specified difference between the VTE and VTP for an EEPROM at EOL is at least 0.5 V to be able to identify or sense the difference between the program and erase state. As seen from this figure an EEPROM made using a conventional ONO structure has a difference between VTE and VTP of about 0.35V at a specified EOL of 20 years. Thus, an EEPROM made using a conventional ONO structure and operated under the conditions described above will fail to meet the specified operating life by at least about 17 years.


In contrast, the change in VTP and VTE over time for an EEPROM made using a silicon-oxide-oxynitride-oxide-silicon structure having a multi-layer oxynitride layer, illustrated by lines 406 and 408 respectively, shows a difference between VTE and VTP of at least about 1.96V at the specified EOL. Thus, an EEPROM made using a silicon-oxide-oxynitride-oxide-silicon structure according to an embodiment of the present disclosure will meet and exceed the specified operating life of 20 years. In particular, graph or line 406 illustrates the change over time of VTP for an EEPROM using a silicon-oxide-oxynitride-oxide-silicon structure according to an embodiment of the present disclosure. Actual data points on line 406 are shown by unfilled squares, the remainder of the line showing an extrapolation of VTP to the specified EOL. Graph or line 408 illustrates the change over time of VTE for the EEPROM, and actual data points on line 408 are shown by filled squares, the remainder of the line showing an extrapolation of VTE to EOL.


A method or forming or fabricating a semiconductor device according to another embodiment is now described with reference to the flowchart of FIG. 5.


Referring to FIG. 5, the method begins with forming a tunneling oxide layer 216 on a substrate (500). Next, an oxygen-rich, first or bottom oxynitride layer 220B of a multi-layer charge storing layer 204 is formed on a surface of the tunneling oxide layer 216 (502). As noted above, this oxygen-rich, first or bottom oxynitride layer 220B can be formed or deposited by a CVD process using a process gas comprising a dichlorosilane (SiH2Cl2)/ammonia (NH3) mixture at a ratio in the range of about 5:1 to 15:1; and a nitrous oxide (N2O)/NH3 mixture at a ratio in the range of about 2:1 to 4:1 and at flow rates tailored to provide a silicon-rich and oxygen-rich oxynitride layer which is substantially trap free. That is the stoichiometric composition of the first or bottom oxynitride layer 220B comprises a high concentration of oxygen selected to increase retention performance of the multi-layer charge storing layer by acting as a barrier between charge trapped in the second or top oxynitride layer 220A and the substrate 208. The selected concentration of oxygen in the first or bottom oxynitride layer 220B can include an oxygen concentration of from about 15% to about 40%, and, in certain embodiments about 35%.


An oxygen-lean, second or top oxynitride layer 220A is then formed on a surface of the first or bottom oxynitride layer 220B (504). The second or top oxynitride layer 220A has a stoichiometric composition of oxygen, nitrogen and/or silicon different from that of the first layer. In particular, and as noted above, the second or top oxynitride layer 220A can be formed or deposited by a CVD process using a process gas using a process gas comprising a N2O/NH3 mixture at a ratio in the range of about 1:6 to 1:8 and a SiH2Cl2/NH3 mixture at a ratio in the range of about 1.5:1 to 3:1 to provide a trap dense oxynitride layer having an oxygen concentration of about 5% or less. Thus, the second or top oxynitride layer 220A comprises a charge trap density at least 1000 times greater than the first or bottom oxynitride layer 220B.


Finally, a top or blocking oxide layer 218 is formed over the second or top oxynitride layer 220A of the multi-layer charge storing layer 204 (506). As noted above, this top or blocking oxide layer 218 can be formed or deposited by any suitable means. In one embodiment the second or blocking oxide layer 218 is formed a manner that results in thinning of the second or top oxynitride layer 220A to a predetermined thickness through oxidization of a portion of the second oxynitride layer. Finally, as noted above with respect to FIG. 4, the increased retention performance of the multi-layer charge storing layer 204 increases an end-of-life (EOL) for the semiconductor device at a specified difference between program voltage (VTP) and erase voltage (VTE) to at least about 20 years.


In another aspect, the multi-layer charge storing layer of the present disclosure has bandgap energy engineered to generate an electrical field opposing that built-up due to charge storage in the charge storing layer in a programmed state, thereby increasing data retention, without impacting programming voltages and/or device speed. An energy band diagram of a programmed conventional device including a channel in silicon substrate 602, a tunneling oxide layer 604, a homogeneous nitride or oxynitride charge storing layer 606, oxide blocking layer 608 and a polysilicon control gate 610 is illustrated in FIG. 6. Referring to FIG. 6, it is noted that large number of trapped charges located near the center of the charge storing layer 606 results in a build-up of a large electric field away from the tunneling oxide layer 604 towards the trapped charges, and which can cause or result in loss of stored charges


In contrast, in a memory device including the multi-layer charge storing layer of the present disclosure engineering the bandgap energy multi-layer charge storing layer results in a build-up of an electrical field pointing inward (from the charge storing layer toward the tunnel oxide), which opposes the build-up of the electric field due to the stored charge increasing charge retention. An unprogrammed memory device including a multi-layer charge storing layer 706 is shown in FIG. 7A. The device includes a channel in silicon substrate 702, a tunneling oxide layer 704, an oxygen-lean oxynitride layer 706A, an oxygen-rich bottom oxynitride layer 706B, an oxide blocking layer 708 and a polysilicon control gate 710. Referring to FIG. 7A, the trap sites in the oxygen-lean top oxynitride layer 706A, produces an electric field that will oppose the electric field produced by the trapped charges in the programmed device. The resultant bandgap diagram of a device including a multi-layer charge storing layer 706 in a programmed state is shown in FIG. 7A.


Implementations and Alternatives

In another aspect the present disclosure is directed to multigate or multigate-surface memory devices including charge-trapping regions overlying two or more sides of a channel formed on or above a surface of a substrate, and methods of fabricating the same. Multigate devices include both planar and non-planar devices. A planar multigate device (not shown) generally includes a double-gate planar device in which a number of first layers are deposited to form a first gate below a subsequently formed channel, and a number of second layers are deposited thereover to form a second gate. A non-planar multigate device generally includes a horizontal or vertical channel formed on or above a surface of a substrate and surrounded on three or more sides by a gate.



FIG. 8A illustrates one embodiment of a non-planar multigate memory device including a charge-trapping region. Referring to FIG. 8A, the memory device 800, commonly referred to as a finFET, includes a channel 802 formed from a thin film or layer of semiconducting material overlying a surface 804 on a substrate 806 connecting a source 808 and a drain 810 of the memory device. The channel 802 is enclosed on three sides by a fin which forms a gate 812 of the device. The thickness of the gate 812 (measured in the direction from source to drain) determines the effective channel length of the device.


In accordance with the present disclosure, the non-planar multigate memory device 800 of FIG. 8A can include a split charge-trapping region. FIG. 8B is a cross-sectional view of a portion of the non-planar memory device of FIG. 8A including a portion of the substrate 806, channel 802 and the gate 812 illustrating a multi-layer charge storing layer 814. The gate 812 further includes a tunnel oxide layer 816 overlying a raised channel 802, a blocking dielectric 818 and a metal gate layer 820 overlying the blocking layer to form a control gate of the memory device 800. In some embodiments a doped polysilicon may be deposited instead of metal to provide a polysilicon gate layer. The channel 802 and gate 812 can be formed directly on substrate 806 or on an insulating or dielectric layer 822, such as a buried oxide layer, formed on or over the substrate.


Referring to FIG. 8B, the multi-layer charge storing layer 814 includes at least one lower or bottom charge-trapping layer 824 including nitride closer to the tunnel oxide layer 816, and an upper or top charge-trapping layer 826 overlying the bottom charge-trapping layer. Generally, the top charge-trapping layer 826 includes a silicon-rich, oxygen-lean nitride layer and includes a majority of a charge traps distributed in multiple charge-trapping layers, while the bottom charge-trapping layer 824 includes an oxygen-rich nitride or silicon oxynitride, and is oxygen-rich relative to the top charge-trapping layer to reduce the number of charge traps therein. By oxygen-rich it is meant wherein a concentration of oxygen in the bottom charge-trapping layer 824 is from about 15 to about 40%, whereas a concentration of oxygen in top charge-trapping layer 826 is less than about 5%.


In one embodiment, the blocking dielectric 818 also includes an oxide, such as an HTO, to provide an ONNO structure. The channel 802 and the overlying ONNO structure can be formed directly on a silicon substrate 806 and overlaid with a doped polysilicon gate layer 820 to provide a SONNOS structure.


In some embodiments, such as that shown in FIG. 8B, the multi-layer charge storing layer 814 further includes at least one thin, intermediate or anti-tunneling layer 828 including a dielectric, such as an oxide, separating the top charge-trapping layer 826 from the bottom charge-trapping layer 824. The anti-tunneling layer 828 substantially reduces the probability of electron charge that accumulates at the boundaries of the upper nitride layer 826 during programming from tunneling into the bottom nitride layer 824, resulting in lower leakage current than for the structures illustrated in FIG. 1 and FIG. 6.


As with the embodiments described above, either or both of the bottom charge-trapping layer 824 and the top charge-trapping layer 826 can include silicon nitride or silicon oxynitride, and can be formed, for example, by a CVD process including N2O/NH3 and DCS/NH3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich and oxygen-rich oxynitride layer. The second nitride layer of the multi-layer charge storing structure is then formed on the middle oxide layer. The top charge-trapping layer 826 has a stoichiometric composition of oxygen, nitrogen and/or silicon different from that of the bottom charge-trapping layer 824, and may also be formed or deposited by a CVD process using a process gas including DCS/NH3 and N2O/NH3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich, oxygen-lean top nitride layer.


In those embodiments including an intermediate or anti-tunneling layer 828 including oxide, the anti-tunneling layer can be formed by oxidation of the bottom oxynitride layer, to a chosen depth using radical oxidation. Radical oxidation may be performed, for example, at a temperature of 1000-1100° C. using a single wafer tool, or 800-900° C. using a batch reactor tool. A mixture of H2 and O2 gasses may be employed at a pressure of 300-500 Tor for a batch process, or 10-15 Tor using a single vapor tool, for a time of 1-2 minutes using a single wafer tool, or 30 min-1 hour using a batch process.


Finally, in those embodiments including a blocking dielectric 818 including oxide the oxide may be formed or deposited by any suitable means. In one embodiment the oxide of the blocking dielectric 818 is a high temperature oxide deposited in a HTO CVD process. Alternatively, the blocking dielectric 818 or blocking oxide layer may be thermally grown, however it will be appreciated that in this embodiment the top nitride thickness may be adjusted or increased as some of the top nitride will be effectively consumed or oxidized during the process of thermally growing the blocking oxide layer. A third option is to oxidize the top nitride layer to a chosen depth using radical oxidation.


A suitable thickness for the bottom charge-trapping layer 824 may be from about 30 Å to about 80 Å (with some variance permitted, for example ±10 A), of which about 5-20 Å may be consumed by radical oxidation to form the anti-tunneling layer 828. A suitable thickness for the top charge-trapping layer 826 may be at least 30 Å. In certain embodiments, the top charge-trapping layer 826 may be formed up to 130 Å thick, of which 30-70 Å may be consumed by radical oxidation to form the blocking dielectric 818. A ratio of thicknesses between the bottom charge-trapping layer 824 and top charge-trapping layer 826 is approximately 1:1 in some embodiments, although other ratios are also possible.


In other embodiments, either or both of the top charge-trapping layer 826 and the blocking dielectric 818 may include a high K dielectric. Suitable high K dielectrics include hafnium based materials such as HfSiON, HfSiO or HfO, Zirconium based material such as ZrSiON, ZrSiO or ZrO, and Yttrium based material such as Y2O3.


In another embodiment, shown in FIGS. 9A and 9B, the memory device can include a nanowire channel formed from a thin film of semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device. By nanowire channel it is meant a conducting channel formed in a thin strip of crystalline silicon material, having a maximum cross-sectional dimension of about 10 nanometers (nm) or less, and more preferably less than about 6 nm. Optionally, the channel can be formed to have <100> surface crystalline orientation relative to a long axis of the channel.


Referring to FIG. 9A, the memory device 900 includes a horizontal nanowire channel 902 formed from a thin film or layer of semiconducting material on or overlying a surface on a substrate 906, and connecting a source 908 and a drain 910 of the memory device. In the embodiment shown, the device has a gate-all-around (GAA) structure in which the nanowire channel 902 is enclosed on all sides by a gate 912 of the device. The thickness of the gate 912 (measured in the direction from source to drain) determines the effective channel length of the device.


In accordance with the present disclosure, the non-planar multigate memory device 900 of FIG. 9A can include a split charge-trapping region. FIG. 9B is a cross-sectional view of a portion of the non-planar memory device of FIG. 9A including a portion of the substrate 906, nanowire channel 902 and the gate 912 illustrating a split charge-trapping region. Referring to FIG. 9B, the gate 912 includes a tunnel oxide layer 914 overlying the nanowire channel 902, a split charge-trapping region, a blocking dielectric 916 and a gate layer 918 overlying the blocking layer to form a control gate of the memory device 900. The gate layer 918 can include a metal or a doped polysilicon. The multi-layer charge storing layer includes at least one inner charge-trapping layer 920 including nitride closer to the tunnel oxide layer 914, and an outer charge-trapping layer 922 overlying the inner charge-trapping layer. Generally, the outer charge-trapping layer 922 includes a silicon-rich, oxygen-lean nitride layer and includes a majority of a charge traps distributed in multiple charge-trapping layers, while the inner charge-trapping layer 920 includes an oxygen-rich nitride or silicon oxynitride, and is oxygen-rich relative to the outer charge-trapping layer to reduce the number of charge traps therein.


In some embodiments, such as that shown, the multi-layer charge storing layer further includes at least one thin, intermediate or anti-tunneling layer 924 including a dielectric, such as an oxide, separating outer charge-trapping layer 922 from the inner charge-trapping layer 920. The anti-tunneling layer 924 substantially reduces the probability of electron charge that accumulates at the boundaries of outer charge-trapping layer 922 during programming from tunneling into the inner charge-trapping layer 920, resulting in lower leakage current.


As with the embodiment described above, either or both of the inner charge-trapping layer 920 and the outer charge-trapping layer 922 can include silicon nitride or silicon oxynitride, and can be formed, for example, by a CVD process including N2O/NH3 and DCS/NH3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich and oxygen-rich oxynitride layer. The second nitride layer of the multi-layer charge storing structure is then formed on the middle oxide layer. The outer charge-trapping layer 922 has a stoichiometric composition of oxygen, nitrogen and/or silicon different from that of the inner charge-trapping layer 920, and may also be formed or deposited by a CVD process using a process gas including DCS/NH3 and N2O/NH3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich, oxygen-lean top nitride layer.


In those embodiments including an intermediate or anti-tunneling layer 924 including oxide, the anti-tunneling layer can be formed by oxidation of the inner charge-trapping layer 920, to a chosen depth using radical oxidation. Radical oxidation may be performed, for example, at a temperature of 1000-1100° C. using a single wafer tool, or 800-900° C. using a batch reactor tool. A mixture of H2 and O2 gasses may be employed at a pressure of 300-500 Tor for a batch process, or 10-15 Tor using a single vapor tool, for a time of 1-2 minutes using a single wafer tool, or 30 min −1 hour using a batch process.


Finally, in those embodiments in which the blocking dielectric 916 includes oxide, the oxide may be formed or deposited by any suitable means. In one embodiment the oxide of blocking dielectric 916 is a high temperature oxide deposited in a HTO CVD process. Alternatively, the blocking dielectric 916 or blocking oxide layer may be thermally grown, however it will be appreciated that in this embodiment the thickness of the outer charge-trapping layer 922 may need to be adjusted or increased as some of the top nitride will be effectively consumed or oxidized during the process of thermally growing the blocking oxide layer.


A suitable thickness for the inner charge-trapping layer 920 may be from about 30 Å to about 80 Å (with some variance permitted, for example ±10 A), of which about 5-20 Å may be consumed by radical oxidation to form the anti-tunneling layer 924. A suitable thickness for the outer charge-trapping layer 922 may be at least 30 Å. In certain embodiments, the outer charge-trapping layer 922 may be formed up to 120 Å thick, of which 30-70 Å may be consumed by radical oxidation to form the blocking dielectric 916. A ratio of thicknesses between the inner charge-trapping layer 920 and the outer charge-trapping layer 922 is approximately 1:1 in some embodiments, although other ratios are also possible.


In other embodiments, either or both of the outer charge-trapping layer 922 and the blocking dielectric 916 may include a high K dielectric. Suitable high K dielectrics include hafnium based materials such as HfSiON, HfSiO or HfO, Zirconium based material such as ZrSiON, ZrSiO or ZrO, and Yttrium based material such as Y2O3.


In another embodiment, the memory device is or includes a non-planar device including a vertical nanowire channel formed in or from a semiconducting material projecting above or from a number of conducting, semiconducting layers on a substrate. In one version of this embodiment, shown in cut-away in FIG. 10A, the memory device 1000 includes a vertical nanowire channel 1002 formed in a cylinder of semiconducting material connecting a source 1004 and drain 1006 of the device. The channel 1002 is surrounded by a tunnel oxide layer 1008, a multi-layer charge storing layer 1110, a blocking layer 1012 and a gate layer 1014 overlying the blocking layer to form a control gate of the memory device 1000. The channel 1002 can include an annular region in an outer layer of a substantially solid cylinder of semiconducting material, or can include an annular layer formed over a cylinder of dielectric filler material. As with the horizontal nanowires described above, the channel 1002 can include polysilicon or recrystallized polysilicon to form a monocrystalline channel. Optionally, where the channel 1002 includes a crystalline silicon, the channel can be formed to have <100> surface crystalline orientation relative to a long axis of the channel.


In some embodiments, such as that shown in FIG. 10B, the multi-layer charge storing layer 1010 can be a multi-layer charge storing layer including at least a first or inner charge trapping layer 1016 closest to the tunnel oxide layer 1008, and a second or outer charge trapping layer 1018. Optionally, the first and second charge trapping layers can be separated by an intermediate oxide or anti-tunneling layer 1020.


As with the embodiments described above, either or both of the first charge trapping layer 1016 and the second charge trapping layer 1018 can include silicon nitride or silicon oxynitride, and can be formed, for example, by a CVD process including N2O/NH3 and DCS/NH3 gas mixtures in ratios and at flow rates tailored to provide a silicon-rich and oxygen-rich oxynitride layer.


Finally, either or both of the second charge trapping layer 1018 and the blocking layer 1012 may include a high K dielectric, such as HfSiON, HfSiO, HfO, ZrSiON, ZrSiO, ZrO, or Y2O3.


A suitable thickness for the first charge trapping layer 1016 may be from about 30 Å to about 80 Å (with some variance permitted, for example ±10 A), of which about 5-20 Å may be consumed by radical oxidation to form the anti-tunneling layer 1020. A suitable thickness for the second charge trapping layer 1018 may be at least 30 Å, and a suitable thickness for the blocking dielectric 1012 may be from about 30-70 Å.


The memory device 1000 of FIG. 10A can be made using either a gate first or a gate last scheme. FIG. 11A-F illustrate a gate first scheme for fabricating the non-planar multigate device of FIG. 10A. FIG. 12A-F illustrate a gate last scheme for fabricating the non-planar multigate device of FIG. 10A.


Referring to FIG. 11A, in a gate first scheme a first or lower dielectric layer 1102, such as a blocking oxide, is formed over a first, doped diffusion region 1104, such as a source or a drain, in a substrate 1106. A gate layer 1108 is deposited over the first dielectric layer 1102 to form a control gate of the device, and a second or upper dielectric layer 1110 formed thereover. As with embodiments described above, the first and second dielectric layers 1102, 1110, can be deposited by CVD, radical oxidation or be formed by oxidation of a portion of the underlying layer or substrate. The gate layer 1108 can include a metal deposited or a doped polysilicon deposited by CVD. Generally the thickness of the gate layer 1108 is from about 40-50 Å, and the first and second dielectric layers 1102, 1110, from about 20-80 Å.


Referring to FIG. 11B, a first opening 1112 is etched through the overlying gate layer 1108, and the first and second dielectric layers 1102, 1110, to the diffusion region 1104 in the substrate 1106. Next, layers including a tunnel oxide layer 1114, multi-layer charge storing layer 1116, and blocking dielectric 1118 are sequentially deposited in the opening and the surface of the upper dielectric layer 1110 planarize to yield the intermediate structure shown in FIG. 11C.


Although not shown, it will be understood that as in the embodiments described above the multi-layer charge storing layer 1116 can include a multi-layer charge storing layer including at least one lower or bottom charge-trapping layer closer to the tunnel oxide layer 1114, and an upper or top charge-trapping layer overlying the bottom charge-trapping layer. Generally, the top charge-trapping layer includes a silicon-rich, oxygen-lean nitride layer and includes a majority of a charge traps distributed in multiple charge-trapping layers, while the bottom charge-trapping layer includes an oxygen-rich nitride or silicon oxynitride, and is oxygen-rich relative to the top charge-trapping layer to reduce the number of charge traps therein. In some embodiments, the multi-layer charge storing layer 1116 further includes at least one thin, intermediate or anti-tunneling layer including a dielectric, such as an oxide, separating the top charge-trapping layer from the bottom charge-trapping layer.


Next, a second or channel opening 1120 is anisotropically etched through tunnel oxide layer 1114, multi-layer charge storing layer 1116, and blocking dielectric 1118, FIG. 11D. Referring to FIG. 11E, a semiconducting material 1122 is deposited in the channel opening to form a vertical channel 1124 therein. The vertical channel 1124 can include an annular region in an outer layer of a substantially solid cylinder of semiconducting material, or, as shown in FIG. 11E, can include a separate, layer semiconducting material 1122 surrounding a cylinder of dielectric filler material 1126.


Referring to FIG. 11F, the surface of the upper dielectric layer 1110 is planarized and a layer of semiconducting material 1128 including a second, doped diffusion region 1130, such as a source or a drain, formed therein deposited over the upper dielectric layer to form the device shown.


Referring to FIG. 12A, in a gate last scheme a dielectric layer 1202, such as an oxide, is formed over a sacrificial layer 1204 on a surface on a substrate 1206, an opening etched through the dielectric and sacrificial layers and a vertical channel 1208 formed therein. As with embodiments described above, the vertical channel 1208 can include an annular region in an outer layer of a substantially solid cylinder of semiconducting material 1210, such as polycrystalline or monocrystalline silicon, or can include a separate, layer semiconducting material surrounding a cylinder of dielectric filler material (not shown). The dielectric layer 1202 can include any suitable dielectric material, such as a silicon oxide, capable of electrically isolating the subsequently formed gate layer of the memory device 1000 from an overlying electrically active layer or another memory device. The sacrificial layer 1204 can include any suitable material that can be etched or removed with high selectivity relative to the material of the dielectric layer 1202, substrate 1206 and vertical channel 1208.


Referring to FIG. 12B, a second opening 1212 is etched through the etched through the dielectric and sacrificial layers 1202, 1204, to the substrate 1206, and the sacrificial layer 1204 etched or removed. The sacrificial layer 1204 can include any suitable material that can be etched or removed with high selectivity relative to the material of the dielectric layer 1202, substrate 1206 and vertical channel 1208. In one embodiment the sacrificial layer 1204 includes silicon dioxide that can be removed by buffered oxide etch (BOE etch).


Referring to FIGS. 12C and 12D, layers of a tunnel oxide layer 1214, multi-layer charge storing layer 1216, and blocking dielectric 1218 are sequentially deposited in the opening and the surface of the dielectric layer 1202 planarize to yield the intermediate structure shown in FIGS. 12C and 12D. In some embodiments, such as that shown in FIG. 12D, the multi-layer charge storing layer 1216 can be a multi-layer charge storing layer including at least a first or inner charge trapping layer 1216a closest to the tunnel oxide layer 1214, and a second or outer charge trapping layer 1216b. Optionally, the first and second charge trapping layers can be separated by an intermediate oxide or anti-tunneling layer 1220.


Next, a gate layer 1222 is deposited into the second opening 1212 and the surface of the upper dielectric layer 1202 planarized to yield the intermediate structure illustrated in FIG. 12E. As with embodiments described above, the gate layer 1222 can include a metal deposited or a doped polysilicon. Finally, an opening 1224 is etched through the gate layer 1222 to form control gate of separate memory devices 1226 as illustrated in FIG. 12F.


Embodiments of the charge retention devices described herein may be employed in logic circuits to function as machine-memory. Those having skill in the art will appreciate that there are various logic implementations that may embody the described structures, and that the preferred vehicle will vary with the context in which the processes are deployed. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a solely software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware. Hence, there are many vehicles that may employ the devices described herein, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations may involve optically-oriented hardware, software, and or firmware.


Although shown and described above as having only two oxynitride layer, i.e., a top and a bottom layer, the present disclosure is not so limited, and the multi-layer charge storing layer can include any number, n, of oxynitride layers, any or all of which may have differing stoichiometric compositions of oxygen, nitrogen and/or silicon. In particular, multi-layer charge storing layers having up to five oxynitride layers each with differing stoichiometric compositions have been produced and tested. However, as will be appreciated by those skilled in the art it is generally desirable to utilize as few layers as possible to accomplish a desired result, reducing the process steps necessary to produce the device, and thereby providing a much simpler and more robust manufacturing process. Moreover, utilizing as few layers as possible also results in higher yields as it is simpler to control the stoichiometric composition and dimensions of the fewer layers.


It will further be appreciated that although shown and described as part of a silicon-oxide-oxynitride-oxide-silicon stack in a memory device, the structure and method of the present disclosure is not so limited, and the silicon-oxide-oxynitride-oxide-silicon structure can be used in or with any semiconductor technology or in any device requiring a charge storing or dielectric layer or stack including, for example, in a split gate flash memory, a TaNOS stack, in a 1T (transistor) SONOS-type cell, a 2T SONOS-type cell, a 3T SONOS-type cell, a localized 2-bit cell, a multilevel programming or cell, and/or a 9T or 12T non-volatile semiconductor memory (NVSM) cells without departing from the scope of the disclosure.


The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood as notorious by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof


Embodiments of the structures described herein may be employed in Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), central processing units (CPUs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in dedicated memory circuits, for the purpose of storing digital information for data and/or programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof


In a general sense, those skilled in the art will recognize that the various structures described herein may be embodied, individually and/or collectively, by a wide range of electrical circuitry. As used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).


Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use standard engineering practices to integrate such described devices and/or processes into larger systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a network processing system without an undue amount of experimentation.

Claims
  • 1. A method of fabricating a semiconductor device over a semiconductor structure, comprising: forming a channel;forming a tunnel oxide layer adjacent to the channel, and a blocking oxide layer;forming a multi-layer charge storing layer between the tunnel oxide and blocking oxide layers, further comprising; forming a first charge storing layer adjacent to the tunnel oxide layer, the first charge storing layer comprising an oxygen-rich silicon-rich oxynitride layer, a stoichiometric composition of the oxygen-rich silicon-rich oxynitride layer resulting in the first charge storing layer having a low charge trap density; andforming a second charge storing layer directly on the first charge storing layer and adjacent to the blocking oxide layer, the second charge storing layer comprising an oxygen-lean oxynitride layer, a stoichiometric composition of the oxygen-lean oxynitride layer resulting in the second charge storing layer having a high charge trap density, wherein the charge density of the second charge storing layer is at least 1000 times greater than the charge trap density of the first charge storing layer; andforming a silicon containing gate layer on the blocking oxide layer.
  • 2. The method of claim 1, wherein the stoichiometric composition of the first charge storing layer comprises a concentration of oxygen selected to increase a retention performance of the multi-layer charge storing layer by acting as a barrier between charge trapped in the second charge storing layer and the channel.
  • 3. The method of claim 2, wherein the concentration of oxygen in the first charge storing layer is about 15% to about 40%.
  • 4. The method of claim 1, the second charge storing layer further comprises a concentration of carbon selected to increase the charge density.
  • 5. The method of claim 1, wherein a concentration of oxygen in the second charge storing layer is less than about 5%.
  • 6. The method of claim 2, wherein the retention performance of the multi-layer charge storing layer increases an end-of-life (EOL) for the semiconductor device at a specified difference between program and erase voltages to at least about 20 years.
  • 7. The method of claim 1, wherein the first charge storing layer is formed in a chemical vapor deposition (CVD) process using a process gas comprising a dichlorosilane (SiH2Cl2)/ammonia (NH3) mixture at a ratio in a range of about 5:1 to 15:1 and a nitrous oxide (N2O)/NH3 mixture at a ratio in a range of about 2:1 to 4:1, and wherein the second charge storing layer is formed in a CVD process using a process gas comprising a N2O/NH3 mixture at a ratio in a range of about 1:6 to 1:8 and a SiH2Cl2/NH3 mixture at a ratio in a range of about 1.5:1 to 3:1.
  • 8. The method of claim 7, wherein forming the first charge storing layer and the second charge storing layer are performed sequentially in a single CVD tool by changing the ratio of the N2O/NH3 and SiH2Cl2/NH3 mixtures.
  • 9. The method of claim 1, wherein the tunnel oxide layer is grown in an In-Situ Steam Generation (ISSG) chamber with a radical oxidation using a reaction between oxygen (O2) and hydrogen (H2) on the substrate at temperatures of at least 1000° C.
  • 10. The method of claim 1, wherein the blocking oxide layer is formed by high density plasma (HDP) oxidation of a portion of the second charge storing layer.
  • 11. The method of claim 1, wherein the second charge storing layer is formed in a CVD process using a process gas comprising Bis-TertiaryButylAminoSilane (BTBAS) and ammonia (NH3) mixed at a ratio of from about 7:1 to about 1:7.
  • 12. A multi-layer charge storing layer comprising: a first charge storing layer comprising an oxygen-rich oxynitride in which a stoichiometric composition of the oxygen-rich oxynitride results in the first charge storing layer being substantially trap free; anda second charge storing layer directly on the first charge storing layer comprising an oxygen-lean, silicon-rich and nitrogen-rich oxynitride in which a stoichiometric composition of the oxygen-lean, silicon-rich and nitrogen-rich oxynitride layer results in the second charge storing layer being trap dense;wherein a charge trap density of the second charge storing layer is at least 1000 times greater than a charge trap density of the first charge storing layer.
  • 13. The multi-layer charge storing layer of claim 12, wherein the second charge storing layer further comprises a concentration of carbon selected to increase a number of charge traps therein.
  • 14. The multi-layer charge storing layer of claim 12, wherein the first charge storing layer comprises a homogeneous composition.
  • 15. The multi-layer charge storing layer of claim 13, wherein the second charge storing layer comprises a concentration of carbon of from about 5% to about 15%.
  • 16. The multi-layer charge storing layer of claim 12, wherein a concentration of oxygen in the first charge storing layer is from about 15% to about 40%.
  • 17. The multi-layer charge storing layer of claim 16, wherein a concentration of oxygen in the second charge storing layer is less than about 5%.
  • 18. The multi-layer charge storing layer of claim 12, wherein the multi-layer charge storing layer is disposed between a tunnel dielectric layer adjacent to the first charge storing layer and a blocking dielectric layer adjacent to the second charge storing layer.
  • 19. The multi-layer charge storing layer of claim 12, further comprising at least one additional charge storing layer disposed between the first and second charge storing layers, wherein the first, the second, and the at least one additional charge storing layers have differing stoichiometric compositions of oxygen, nitrogen, and silicon.
  • 20. The multi-layer charge storing layer of claim 16, wherein the concentration of oxygen in the first charge storing layer is selected to increase a retention performance of the multi-layer charge storing layer by acting as a barrier between charge trapped in the second charge storing layer and a channel.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/189,668, filed Jun. 22, 2016, which is a continuation of U.S. application Ser. No. 13/436,872, filed Mar. 31, 2012, now U.S. Pat. No. 9,449,831, issued Sep. 20, 2016, which is a continuation-in-part of U.S. application Ser. No. 11/811,958, filed Jun. 13, 2007, now abandoned, which claims the benefit of priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application Ser. No. 60/931,947, filed May 25, 2007, all of which are incorporated by reference herein. This application is also related to U.S. application Ser. No. 13/007,533, filed Jan. 14, 2011, now U.S. Pat. No. 8,643,124, issued Feb. 4, 2014, and is hereby incorporated by reference in its entirety.

US Referenced Citations (347)
Number Name Date Kind
4257832 Schwabe et al. Mar 1981 A
4395438 Chiang Jul 1983 A
4490900 Chiu Jan 1985 A
4543707 Ito et al. Oct 1985 A
4667217 Janning May 1987 A
4843023 Chiu et al. Jun 1989 A
4870470 Bass et al. Sep 1989 A
5179038 Kinney et al. Jan 1993 A
5348903 Pfiester et al. Sep 1994 A
5404791 Kervagoret Apr 1995 A
5405791 Ahmad et al. Apr 1995 A
5408115 Chang Apr 1995 A
5464783 Kim et al. Nov 1995 A
5500816 Kobayashi Mar 1996 A
5543336 Enami et al. Aug 1996 A
5550078 Sung Aug 1996 A
5573963 Sung Nov 1996 A
5773343 Lee et al. Jun 1998 A
5793089 Fulford et al. Aug 1998 A
5817170 Desu et al. Oct 1998 A
5847411 Morii Dec 1998 A
5861347 Maiti et al. Jan 1999 A
5937323 Orczyk et al. Aug 1999 A
5939333 Hurley et al. Aug 1999 A
5972765 Clark et al. Oct 1999 A
5972804 Tobin et al. Oct 1999 A
6001713 Ramsbey et al. Dec 1999 A
6015739 Gardner et al. Jan 2000 A
6020606 Liao Feb 2000 A
6023093 Gregor et al. Feb 2000 A
6025267 Pey et al. Feb 2000 A
6074915 Chen et al. Jun 2000 A
6114734 Eklund Sep 2000 A
6127227 Lin et al. Oct 2000 A
6136654 Kraft et al. Oct 2000 A
6140187 Debusk et al. Oct 2000 A
6147014 Lyding et al. Nov 2000 A
6150286 Sun et al. Nov 2000 A
6153543 Chesire et al. Nov 2000 A
6157426 Gu Dec 2000 A
6162700 Hwang et al. Dec 2000 A
6174758 Nachumovsky Jan 2001 B1
6174774 Lee Jan 2001 B1
6214689 Lim et al. Apr 2001 B1
6217658 Orczyk et al. Apr 2001 B1
6218700 Papadas Apr 2001 B1
6268299 Jammy et al. Jul 2001 B1
6277683 Pradeep et al. Aug 2001 B1
6287913 Agnello et al. Sep 2001 B1
6297096 Boaz Oct 2001 B1
6297173 Tobin et al. Oct 2001 B1
6321134 Henley et al. Nov 2001 B1
6335288 Kwan et al. Jan 2002 B1
6348380 Weimer et al. Feb 2002 B1
6365518 Lee et al. Apr 2002 B1
6399484 Yamasaki et al. Jun 2002 B1
6406960 Hopper et al. Jun 2002 B1
6429081 Doong et al. Aug 2002 B1
6433383 Ramsbey et al. Aug 2002 B1
6440797 Wu et al. Aug 2002 B1
6444521 Chang et al. Sep 2002 B1
6445030 Wu et al. Sep 2002 B1
6461899 Kitakado et al. Oct 2002 B1
6462370 Kuwazawa Oct 2002 B2
6468927 Zhang et al. Oct 2002 B1
6469343 Miura et al. Oct 2002 B1
6518113 Buynoski Feb 2003 B1
6559026 Rossman et al. May 2003 B1
6573149 Kizilyalli et al. Jun 2003 B2
6586343 Ho et al. Jul 2003 B1
6586349 Jeon et al. Jul 2003 B1
6596590 Miura et al. Jul 2003 B1
6599795 Ogata Jul 2003 B2
6602771 Inoue et al. Aug 2003 B2
6610614 Niimi et al. Aug 2003 B2
6624090 Yu et al. Sep 2003 B1
6661065 Kunikiyo Dec 2003 B2
6670241 Kamal et al. Dec 2003 B1
6677213 Ramkumar et al. Jan 2004 B1
6709928 Jenne et al. Mar 2004 B1
6713127 Subramony et al. Mar 2004 B2
6717860 Fujiwara Apr 2004 B1
6730566 Niimi et al. May 2004 B2
6746968 Tseng et al. Jun 2004 B1
6768160 Li et al. Jul 2004 B1
6768856 Akwani et al. Jul 2004 B2
6774433 Lee et al. Aug 2004 B2
6787419 Chen et al. Sep 2004 B2
6818558 Rathor et al. Nov 2004 B1
6833582 Mine et al. Dec 2004 B2
6835621 Yoo et al. Dec 2004 B2
6867118 Noro Mar 2005 B2
6884681 Kamal et al. Apr 2005 B1
6903422 Goda et al. Jun 2005 B2
6906390 Nomoto et al. Jun 2005 B2
6912163 Zheng et al. Jun 2005 B2
6913961 Hwang Jul 2005 B2
6917072 Noguchi et al. Jul 2005 B2
6946349 Lee et al. Sep 2005 B1
6958511 Halliyal et al. Oct 2005 B1
7012299 Mahajani et al. Mar 2006 B2
7015100 Lee et al. Mar 2006 B1
7018868 Yang et al. Mar 2006 B1
7033890 Shone Apr 2006 B2
7033957 Shiraiwa et al. Apr 2006 B1
7042054 Ramkumar et al. May 2006 B1
7045424 Kim et al. May 2006 B2
7060594 Wang Jun 2006 B2
7084032 Crivelli et al. Aug 2006 B2
7098154 Yoneda Aug 2006 B2
7112486 Cho et al. Sep 2006 B2
7115469 Halliyal et al. Oct 2006 B1
7172940 Chen et al. Feb 2007 B1
7189606 Wang et al. Mar 2007 B2
7230294 Lee et al. Jun 2007 B2
7238990 Burnett et al. Jul 2007 B2
7250654 Chen et al. Jul 2007 B2
7253046 Higashi et al. Aug 2007 B2
7262457 Hsu et al. Aug 2007 B2
7279740 Bhattacharyya et al. Oct 2007 B2
7301185 Chen et al. Nov 2007 B2
7312496 Hazama Dec 2007 B2
7315474 Lue Jan 2008 B2
7323742 Georgescu Jan 2008 B2
7338869 Fukada et al. Mar 2008 B2
7365389 Jeon et al. Apr 2008 B1
7372113 Tanaka et al. May 2008 B2
7390718 Roizin et al. Jun 2008 B2
7410857 Higashi et al. Aug 2008 B2
7425491 Forbes Sep 2008 B2
7450423 Lai et al. Nov 2008 B2
7463530 Lue et al. Dec 2008 B2
7479425 Ang et al. Jan 2009 B2
7482236 Lee et al. Jan 2009 B2
7521751 Fujiwara Apr 2009 B2
7535053 Yamazaki May 2009 B2
7544565 Kwak et al. Jun 2009 B2
7576386 Lue et al. Aug 2009 B2
7588986 Jung Sep 2009 B2
7601576 Suzuki et al. Oct 2009 B2
7612403 Bhattacharyya Nov 2009 B2
7636257 Lue Dec 2009 B2
7642585 Wang et al. Jan 2010 B2
7646041 Chae et al. Jan 2010 B2
7646637 Liao Jan 2010 B2
7670963 Ramkumar et al. Mar 2010 B2
7688626 Lue et al. Mar 2010 B2
7692246 Dreeskornfeld et al. Apr 2010 B2
7713810 Hagemeyer et al. May 2010 B2
7714379 Lee May 2010 B2
7723789 Lin et al. May 2010 B2
7737488 Lai et al. Jun 2010 B2
7790516 Willer et al. Sep 2010 B2
7811890 Hsu et al. Oct 2010 B2
7879738 Wang Feb 2011 B2
7910429 Dong et al. Mar 2011 B2
7927951 Kim et al. Apr 2011 B2
7948799 Lue et al. May 2011 B2
7972930 Jang et al. Jul 2011 B2
7999295 Lai et al. Aug 2011 B2
8008713 Dobuzinsky et al. Aug 2011 B2
8063434 Polishchuk et al. Nov 2011 B1
8067284 Levy Nov 2011 B1
8071453 Ramkumar et al. Dec 2011 B1
8093128 Koutny et al. Jan 2012 B2
8143129 Ramkumar et al. Mar 2012 B2
8163660 Puchner et al. Apr 2012 B2
8222688 Jenne et al. Jul 2012 B1
8264028 Lue et al. Sep 2012 B2
8283261 Ramkumar Oct 2012 B2
8315095 Lue et al. Nov 2012 B2
8318608 Ramkumar et al. Nov 2012 B2
8482052 Lue et al. Jul 2013 B2
8633537 Polishchuk et al. Jan 2014 B2
8643124 Levy Feb 2014 B2
8710578 Jenne et al. Apr 2014 B2
8859374 Polishchuk et al. Oct 2014 B1
8860122 Polishchuk et al. Oct 2014 B1
8940645 Ramkumar et al. Jan 2015 B2
8993453 Ramkumar et al. Mar 2015 B1
9093318 Polishchuk et al. Jul 2015 B2
9306025 Polishchuk et al. Apr 2016 B2
9349824 Levy et al. May 2016 B2
9355849 Levy et al. May 2016 B1
9449831 Levy et al. Sep 2016 B2
9502543 Polishchuk et al. Nov 2016 B1
9929240 Polishchuk et al. Mar 2018 B2
20010052615 Fujiwara Dec 2001 A1
20020020890 Willer Feb 2002 A1
20020048200 Kuwazawa Apr 2002 A1
20020048893 Kizilyalli et al. Apr 2002 A1
20020109138 Forbes Aug 2002 A1
20020141237 Goda et al. Oct 2002 A1
20020154878 Akwani et al. Oct 2002 A1
20030030100 Lee et al. Feb 2003 A1
20030122204 Nomoto et al. Jul 2003 A1
20030123307 Lee et al. Jul 2003 A1
20030124873 Xing et al. Jul 2003 A1
20030169629 Goebel et al. Sep 2003 A1
20030183869 Crivelli et al. Oct 2003 A1
20030222293 Noro Dec 2003 A1
20030227049 Sakakibara Dec 2003 A1
20030227056 Wang et al. Dec 2003 A1
20040067619 Niimi et al. Apr 2004 A1
20040071030 Goda et al. Apr 2004 A1
20040094793 Noguchi et al. May 2004 A1
20040104424 Yamazaki Jun 2004 A1
20040129986 Kobayashi et al. Jul 2004 A1
20040129988 Rotondaro et al. Jul 2004 A1
20040173918 Kamal et al. Sep 2004 A1
20040183091 Hibino Sep 2004 A1
20040183122 Mine et al. Sep 2004 A1
20040207002 Ryu et al. Oct 2004 A1
20040227196 Yoneda Nov 2004 A1
20040227198 Mitani et al. Nov 2004 A1
20040251489 Jeon et al. Dec 2004 A1
20050026637 Fischer et al. Feb 2005 A1
20050056892 Seliskar Mar 2005 A1
20050062098 Mahajani et al. Mar 2005 A1
20050070126 Senzaki Mar 2005 A1
20050079659 Duan et al. Apr 2005 A1
20050088889 Lee et al. Apr 2005 A1
20050093054 Jung May 2005 A1
20050098839 Lee et al. May 2005 A1
20050110064 Duan et al. May 2005 A1
20050116279 Koh Jun 2005 A1
20050141168 Lee et al. Jun 2005 A1
20050186741 Roizin et al. Aug 2005 A1
20050205920 Jeon et al. Sep 2005 A1
20050224866 Higashi et al. Oct 2005 A1
20050227501 Tanabe et al. Oct 2005 A1
20050230766 Nomoto et al. Oct 2005 A1
20050236679 Hori et al. Oct 2005 A1
20050245034 Fukuda et al. Nov 2005 A1
20050266637 Wang Dec 2005 A1
20050275010 Chen et al. Dec 2005 A1
20050275012 Nara et al. Dec 2005 A1
20060008959 Hagemeyer et al. Jan 2006 A1
20060017092 Dong et al. Jan 2006 A1
20060022252 Doh et al. Feb 2006 A1
20060051880 Doczy et al. Mar 2006 A1
20060065919 Fujiwara Mar 2006 A1
20060081331 Campian Apr 2006 A1
20060111805 Yokoyama et al. May 2006 A1
20060113586 Wang Jun 2006 A1
20060113627 Chen et al. Jun 2006 A1
20060131636 Jeon et al. Jun 2006 A1
20060160303 Ang et al. Jul 2006 A1
20060192248 Wang Aug 2006 A1
20060202261 Lue et al. Sep 2006 A1
20060202263 Lee Sep 2006 A1
20060220106 Choi et al. Oct 2006 A1
20060226490 Burnett et al. Oct 2006 A1
20060228841 Kim et al. Oct 2006 A1
20060228899 Nansei et al. Oct 2006 A1
20060228907 Cheng et al. Oct 2006 A1
20060237803 Zhu et al. Oct 2006 A1
20060261401 Bhattacharyya Nov 2006 A1
20060281331 Wang Dec 2006 A1
20060284236 Bhattacharyya Dec 2006 A1
20070012988 Bhattacharyya Jan 2007 A1
20070022359 Katoh et al. Jan 2007 A1
20070029625 Lue et al. Feb 2007 A1
20070031999 Ho et al. Feb 2007 A1
20070048916 Suzuki et al. Mar 2007 A1
20070049048 Rauf et al. Mar 2007 A1
20070051306 Ivanov et al. Mar 2007 A1
20070066087 Jung Mar 2007 A1
20070121380 Thomas May 2007 A1
20070200168 Ozawa et al. Aug 2007 A1
20070202708 Luo et al. Aug 2007 A1
20070210371 Hisamoto et al. Aug 2007 A1
20070215940 Ligon Sep 2007 A1
20070231991 Willer et al. Oct 2007 A1
20070232007 Forbes Oct 2007 A1
20070246753 Chu et al. Oct 2007 A1
20070262451 Rachmady et al. Nov 2007 A1
20070267687 Lue Nov 2007 A1
20070268753 Lue et al. Nov 2007 A1
20070272916 Wang et al. Nov 2007 A1
20070272971 Lee et al. Nov 2007 A1
20080009115 Willer et al. Jan 2008 A1
20080020853 Ingebrigtson Jan 2008 A1
20080029399 Tomita et al. Feb 2008 A1
20080048237 Iwata Feb 2008 A1
20080054346 Saitoh et al. Mar 2008 A1
20080057644 Kwak et al. Mar 2008 A1
20080087942 Hsu et al. Apr 2008 A1
20080087946 Hsu et al. Apr 2008 A1
20080121932 Ranade May 2008 A1
20080135946 Yan Jun 2008 A1
20080146042 Kostamo et al. Jun 2008 A1
20080150003 Chen et al. Jun 2008 A1
20080175053 Lue et al. Jul 2008 A1
20080230853 Jang et al. Sep 2008 A1
20080237684 Specht et al. Oct 2008 A1
20080237694 Specht et al. Oct 2008 A1
20080258203 Happ et al. Oct 2008 A1
20080272424 Kim et al. Nov 2008 A1
20080286927 Kim et al. Nov 2008 A1
20080290398 Polishchuk et al. Nov 2008 A1
20080290399 Levy et al. Nov 2008 A1
20080290400 Jenne et al. Nov 2008 A1
20080291726 Lue et al. Nov 2008 A1
20080293207 Koutny et al. Nov 2008 A1
20080293254 Ramkumar et al. Nov 2008 A1
20080293255 Ramkumar Nov 2008 A1
20080296664 Ramkumar et al. Dec 2008 A1
20090011609 Ramkumar et al. Jan 2009 A1
20090039414 Lue et al. Feb 2009 A1
20090039416 Lai et al. Feb 2009 A1
20090045452 Lue et al. Feb 2009 A1
20090065849 Noda Mar 2009 A1
20090152618 Matsuo et al. Jun 2009 A1
20090152621 Polishchuk et al. Jun 2009 A1
20090179253 Levy et al. Jul 2009 A1
20090206385 Kim et al. Aug 2009 A1
20090227116 Joo et al. Sep 2009 A1
20090242969 Tanaka Oct 2009 A1
20090294828 Ozawa et al. Dec 2009 A1
20090294836 Kiyotoshi Dec 2009 A1
20090294844 Tanaka et al. Dec 2009 A1
20090302365 Bhattacharyya Dec 2009 A1
20100006922 Matsuoka et al. Jan 2010 A1
20100041222 Puchner et al. Feb 2010 A1
20100096687 Balseanu et al. Apr 2010 A1
20100117138 Huerta et al. May 2010 A1
20100117139 Lue May 2010 A1
20100155823 Lue et al. Jun 2010 A1
20100178759 Kim et al. Jul 2010 A1
20100252877 Nakanishi et al. Oct 2010 A1
20100270609 Olsen et al. Oct 2010 A1
20100283097 Endoh et al. Nov 2010 A1
20100295118 Bhattacharyya Nov 2010 A1
20110018053 Lo et al. Jan 2011 A1
20110163371 Song et al. Jul 2011 A1
20110233512 Yang et al. Sep 2011 A1
20110237060 Lee et al. Sep 2011 A1
20110248332 Levy et al. Oct 2011 A1
20120007167 Hung et al. Jan 2012 A1
20120061744 Hwang et al. Mar 2012 A1
20120068159 Fujiki et al. Mar 2012 A1
20120068250 Ino et al. Mar 2012 A1
20130175604 Polishchuk et al. Jul 2013 A1
20130309826 Ramkumar et al. Nov 2013 A1
20140264551 Polishchuk et al. Sep 2014 A1
20160300724 Levy et al. Oct 2016 A1
Foreign Referenced Citations (31)
Number Date Country
1107254 Aug 1995 CN
1801478 Jul 2006 CN
1832201 Sep 2006 CN
101517714 Aug 2009 CN
101859702 Oct 2010 CN
102142454 Aug 2011 CN
101558481 May 2012 CN
104254921 Dec 2014 CN
2004172616 Jun 2004 JP
2005183940 Jul 2005 JP
2005347679 Dec 2005 JP
2007515060 Jun 2007 JP
2007318112 Dec 2007 JP
2009535800 Oct 2009 JP
2009260070 Nov 2009 JP
2009272348 Nov 2009 JP
2010182939 Aug 2010 JP
2011507231 Mar 2011 JP
2011527824 Nov 2011 JP
2012004249 Jan 2012 JP
20040070669 Aug 2004 KR
20060100092 Sep 2006 KR
20110093746 Aug 2011 KR
200703671 Jan 2007 TW
200847343 Dec 2008 TW
2007064048 Jun 2007 WO
2008129478 Oct 2008 WO
2007022359 May 2009 WO
2011162725 Dec 2011 WO
2013148112 Oct 2013 WO
2013148343 Oct 2013 WO
Non-Patent Literature Citations (189)
Entry
Chinese Office Action for Application No. 200880000820.3 dated Jan. 26, 2011; 6 pages.
Hua-Ching Chien, Chin-Hsing Kao, Jui-Wen Chang and Tzung-Kuen Tsai_Two-bit SONOS type Flash using a band engineering in the nitride layer_Dated Jun. 17, 2005_4 pages.
Hung et al., High-performance gate-all-around polycrystalline silicon nanowire with silicon nanocrystals nonvolatile memory, Appl. Phys. Lett, 98 162108 (2011), pub date: Apr. 22, 2011.
International Search Report for International Application No. PCT/US08/06627 dated Aug. 26, 2008; 2 pages.
International Search Report for International Application No. PCT/US13/48876 dated Jul. 26, 2013; 5 pages.
Krishnaswamy Ramkumar_Cypress SONOS Technology_Dated Jul. 6, 2011_9 pages.
Lue et al., “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability,” IEEE, 2005; 4 pages.
Lue, Hang-Ting et al., “Reliability Model of Bandgap Engineered SONOS (be-SONOS)”, IEEE, 2006, 4 pgs.
Milton Ohring, “The Materials Science of Thin Films: Deposition and Structure,” 2nd Edition, Academic Press, 2002, pp. 336-337; 4 pages.
SIPO Office Action for Chinese Application No. 2013800319699 dated Jan. 29, 2018; 7 pages.
SIPO Office Action for Chinese Application No. 2013800319699 dated May 31, 2017; 17 pages.
SIPO Office Action for CN Application No. 201380031969.9 dated Aug. 19, 2016; 8 pages.
TIPO Office Action for Taiwan Patent Application No. 106121057 dated Jun. 1, 2018; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 12/197,466 dated Jan. 31, 2012; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 14/605,231 dated Mar. 9, 2016; 3 pages.
USPTO Advisory Action for U.S. Appl. No. 14/605,231 dated Jul. 5, 2016; 3 pages.
USPTO Final Rejection for U.S. Appl. No. 12/124,855 dated Jan. 31, 2012; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 12/124,855 dated May 10, 2010; 11 pages.
USPTO Final Rejection for U.S. Appl. No. 12/197,466 dated Nov. 17, 2011; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 14/605,231 dated Dec. 17, 2015; 15 pages.
USPTO Final Rejection for U.S. Appl. No. 14/605,231 dated Jul. 10, 2017; 8 pages.
USPTO Non Final Rejection for U.S. Appl. No. 13/539,458 dated Mar. 13, 2013; 5 pages.
USPTO Non Final Rejection for U.S. Appl. No. 13/539,458 dated Oct. 2, 2014; 5 pages.
USPTO Non Final Rejection for U.S. Appl. No. 13/620,071 dated Apr. 3, 2014; 12 pages.
USPTO Non Final Rejection for U.S. Appl. No. 13/620,071 dated Jul. 18, 2014; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/124,855 dated Jan. 18, 2011; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/124,855 dated Aug. 16, 2011; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/197,466 dated Jun. 1, 2011; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 14/605,231 dated Jul. 7, 2015; 13 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/124,855 dated May 1, 2012; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/124,855 dated May 3, 2011; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/124,855 dated Jul. 28, 2010; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/124,855 dated Aug. 1, 2012; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/197,466 dated Jun. 15, 2012; 4 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/197,466 dated Sep. 24, 2012; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/539,458 dated May 24, 2013; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/539,458 dated Aug. 4, 2014; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/539,458 dated Nov. 3, 2014; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/620,071 dated Jan. 23, 2015; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/620,071 dated Oct. 27, 2014; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 14/605,231 dated Oct. 18, 2017; 8 pages.
USPTO Requirement Restriction for U.S. Appl. No. 12/197,466 dated Mar. 11, 2011; 5 pages.
Wang, Szu-Yu et al., “Reliability and processing effects of bandgap engineered SONOS flash memory”, 2007 IEEE, International Reliability Symposium, Apr. 18, 2007, 5 pgs.
Written Opinion of the International Searching Authority for International Application No. PCT/US08/06627 dated Aug. 26, 2008; 5 pages.
Written Opinion of the International Searching Authority for International Application No. PCT/US13/48876 dated Jul. 26, 2013; 3 pages.
Wu et al., “SONOS Device with Tapered Bandgap Nitride Layer,” IEEE Transactions on Electron Devices, May 2005, vol. 52, No. 5, pp. 987-992; 6 pages.
Yang et al., “Reliability considerations in scaled SONOS nonvolatile memory devices, solid state Electronics”, 43(1999) 2025-2032.
“MAX 9000 Programmable Logic Device Family,” Altera, Jul. 1999, Version 6.01, pp. 1-40; 41 pages.
L. Richard Carley, “Trimming Analog Circuits Using Floating-Gate Analog MOS Memory,” IEEE Journal of Solid-State Circuits, vol. 24, No. 6, Dec. 1989, pp. 1569-1575; 7 pages.
“1.8V, 500-MHz, 10-Output JEDEC-Compliant Zero Delay Buffer,” Cypress Advance Information, Feb. 12, 2004; 9 pages.
“10 Gigabit Ethernet Technology Overview White Paper”, Revision 1.0, Retrieved from Internet: URL: http://www.10gea.org, May, 2001.
“16K x 8/9 Dual-Port Static RAM with Sem, Int, Busy,” Cypress Semiconductor Data Book, May 1995, CY7C006 and CY7C016, pp. 6:1-17; 10 pages.
“1K x 8 Dual-Port Static RAM,” Cypress Semiconductor Data Book, May 1995, CY7C130/CY7C131 and CY7C140/CY7C141, pp. 6:37-49; 8 pages.
“1kHz to 30MHz Resistor Set SOT-23 Oscillator”, Initial Release Final Electrical Specifications LTC1799, Linear Technology Corporation, Jan. 2001, pp. 1-4.
“200-MBaud HOTLink Transceiver,” Cypress Semiconductor Corporation, Revised Feb. 13, 2004, CY7C924ADX, Document #38-02008 Rev. *D; 62 pages.
“2K x 16 Dual-Port Static RAM,” Cypress Semiconductor Data Book, May 1995, CY7C133 and CY7C143, pp. 6:63-73; 7 pages.
“2K x 8 Dual-Port Static RAM,” Cypress Semiconductor Data Book, May 1995, CY7C132/CY7C136 and CY7C142/CY7C146, pp. 6:50-62; 8 pages.
“3.3V 64K x 18 Synchronous QuadPort Static RAM,” Cypress Preliminary CY7C0430BV, Cypress Semiconductor Corporation, Mar. 27, 2001; 36 pages.
“A Novel Integration Technology of EEPROM Embedded CMOS Logic VLSI Suitable for ASIC Applications”, by Masataka Takebuchi et al., IEEE 1992 Custom Integrated Circuits Conference, pp. 9.6.1-9.6.4.
“A Novel Robust and Low Cost Stack Chips Package and Its Thermal Performance”, by Soon-Jin Cho et al., IEEE Transaction on Advanced Packaging, vol. 23, No. 2, May 2000, pp. 257-265.
“A Planar Type EEPROM Cell Structure by Standard CMOS Process for Integration with Gate Array, Standard Cell, Microprocessor and for Neural Chips”, by Katsuhiko Ohsaki et al., IEEE 1993 Custom Integrated Circuits Conference, pp. 23.6.1-23.6.4.
“A Single Chip Sensor & Image Processor for Fingerprint Verification” Anderson, S., et al., IEEE Custom Integrated Circuits Conference, May 12-15, 1991.
“A Single Poly EPROM for Custom CMOS Logic Applications”, by Reza Kazerounian et al., IEEE 1986 Custom Integrated Circuits Conference, pp. 59-62.
“A Wide-Bandwidth Low-Voltage PLL for PowerPC.TM. Microprocessors”, by Jose Alvarez et al., IEEE Journal of Solid-State Circuits, vol. 30, No. 4, Apr. 1995, pp. 383-391.
“About SMaL Camera Technologies, Inc.”, SMaL Camera Technologies, 2001, 1 page.
“Achieving Uniform nMOS Device Power Distribution for Sub-micron ESD Reliability;” Charvaka Duvvuy, Carlos Diaz, and Tim Haddock; 1992; 92-131 through 92-134, no month.
“ADNS-2030 High Performance, Low Power Optical Mouse Sensor (Optimized for Cordless Mouse Applications),” Agilent Technologies, downloaded Oct. 10, 2005, <http://www.home.agilent.com/USeng/nav/-536893734,536883737/pd.html>; 2 pages.
“ADNS-2051 High-Performance Optical Mouse Sensor,” Agilent Technologies, downloaded Oct. 10, 2005, <http://www.home.agilent.com/USeng/nav/-536893734,536883737/pd.html>; 2 pages.
“Agilent ADNK-2030 Solid-State Optical Mouse Sensor,” Agilent Technologies Inc., Sample Kit, 2003; 1 page.
“Agilent ADNS-2030 Low Power Optical Mouse Sensor,” Agilent Technologies Inc., Data Sheet, 2005; 34 pages.
“Agilent ADNS-2051 Optical Mouse Sensor,” Agilent Technologies Inc., Product Overview, 2003; 2 pages.
“Agilent Optical Mouse Sensors,” Agilent Technologies Inc., Selection Guide, 2004; 3 pages.
“Algorithm for Managing Multiple First-In, First-Out Queues from a Single Shared Random-Access Memory,” IBM Technical Disclosure Bulletin, Aug. 1989; 5 pages.
SIPO Office Action for Application No. 200910134374.1 dated Jul. 30, 2015; 2 pages.
SIPO Office Action for Application No. 200910134374.1 dated Sep. 22, 2013; 4 pages.
SIPO Office Action for Application No. 20120000107.5 dated Apr. 1, 2015; 5 pages.
SIPO Office Action for Application No. 20120000107.5 dated May 12, 2016; 5 pages.
SIPO Office Action for Application No. 20120000107.5 dated Jul. 25, 2014; 4 pages.
SIPO Office Action for Application No. 20120000107.5 dated Sep. 20, 2017; 6 pages.
SIPO Office Action for Application No. 20120000107.5 dated Oct. 9, 2015; 2 pages.
SIPO Office Action for Application No. 201280000107.5 dated Nov. 29, 2016; 5 pages.
SIPO Office Action for Application No. 2013800168932 dated Sep. 1, 2016; 7 pages.
SIPO Office Action for Chinese Application No. 2013800168932 dated Jan. 26, 2018; 11 pages.
SIPO Office Action for Chinese Application No. 2013800168932 dated Jul. 4, 2018; 7 pages.
SIPO Office Action for International Application No. 2013800168932 dated Apr. 21, 2017; 7 pages.
TIPO Office Action for Application No. 102110223 dated Nov. 18, 2016; 10 pages.
TIPO Office Action for Taiwan Application No. 101101220 dated Oct. 15, 2015; 4 pages.
TIPO Office Action for Taiwan Application No. 106107213 dated Jul. 4, 2017; 12 pages.
USPTO Advisory Action for U.S. Appl. No. 11/811,958 dated Jun. 2, 2011; 5 pages.
USPTO Advisory Action for U.S. Appl. No. 13/436,872 dated Aug. 4, 2015; 2 pages.
KIPO Office Action for International Application No. 10-2012-7008106 dated Jan. 29, 2019; 3 pages.
Korean Intellectual Property Office Office Action for international application No. 10-2014-7025059 dated Mar. 29, 2019, 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 15/189,668 dated Mar. 21, 2019, 7 pages.
USPTO Final Rejection for U.S. Appl. No. 15/376,282 dated Dec. 5, 2018, 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 15/099,025 dated Dec. 31, 2018, 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 14/605,231 dated Nov. 16, 2018, 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 15/864,832 dated Jan. 18, 2019, 8 pages.
KIPO Office Action for International Application No. 10-2012-7008106 dated Oct. 5, 2018; 3 pages.
SIPO Office Action for Chinese Application No. 2013800319699 dated Aug. 20, 2018; 7 pages.
USPTO Final Rejection for U.S. Appl. No. 15/864,832 dated Nov. 1, 2018, 23 pages.
“Am99C10A 256.times.48 Content Addressable Memory”, Advanced Micro Devices, Dec. 1992.
“An Analog PPL-Based Clock and Data Recovery Circuit with High Input Jitter Tolerance;” Sun, Reprinted from IEEE Journal of Solid-State Circuits, 1989; 4 pages.
“An EEPROM for Microprocessors and Custom Logic”, by Roger Cuppens et al., IEEE Journal of Solid-State Circuits, vol. SC-20, No. 2, Apr. 1985, pp. 603-608.
“An EPROM Cell Structure foe EPLDs Compatible with Single Poly Gate Process”, by Kuniyushi Yoshikawa et al., Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials, Tokyo, 1986, pp. 323-326.
“An Experimental 5-V-Only 256-kbit CMOS EEPROM with a High-Performance Single-Polysilicon Cell”, by Jun-Ichi Miyamoto et al., IEEE Journal of Solid State Circuits, vol. SC-21, No. 5, Oct. 1986, pp. 852-860.
Chen et al., “Performance Improvement of SONOS Memory by Bandgap Engineering of Charge-Trapping Layer,” IEEE Electron Device Letters, Apr. 2004, vol. 25, No. 4, pp. 205-207; 3 pages.
International Search Report for International Application No. PCT/US13/48885 dated Nov. 14, 2013; 2 pages.
SIPO Office Action for Application No. 201380031840.8 dated Jan. 6, 2017; 8 pages.
SIPO Office Action for Application No. 201380031840.8 dated Sep. 25, 2017; 6 pages.
USPTO Final Rejection for U.S. Appl. No. 14/307,858 dated Oct. 8, 2015; 6 pages.
USPTO Final Rejection for U.S. Appl. No. 15/376,282 dated Dec. 19, 2017; 19 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/124,855 dated Oct. 29, 2009; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/152,518 dated Mar. 9, 2011; 4 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 12/152,518 dated Sep. 29, 2010; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 13/288,919 dated Jun. 19, 2014; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 13/288,919 dated Dec. 5, 2013; 4 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 13/539,466 dated Sep. 28, 2012; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 14/159,315 dated Oct. 21, 2014; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 14/307/858 dated Jun. 29, 2015; 5 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 15/376,282 dated Jun. 11, 2018; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 15/864,832 dated May 15, 2018; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 15/335,180 dated May 17, 2017; 20 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 15/376,282 dated Jul. 11, 2017; 16 pages.
USPTO Notice of Allowance for U.S. Appl. No. 12/152,518 dated Jul. 14, 2011; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/288,919 dated Apr. 28, 2014; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/288,919 dated Jul. 8, 2014; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/288,919 dated Aug. 26, 2014; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/539,466 dated Sep. 4, 2013; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/539,466 dated Nov. 13, 2013; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/539,466 dated Nov. 27, 2012; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 14/159,315 dated Feb. 18, 2015; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 14/159,315 dated Mar. 23, 2015; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 14/307,858 dated Nov. 27, 2015; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 14/811,346 dated Jul. 19, 2016; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 15/335,180 dated Oct. 4, 2017; 9 pages.
USPTO Requirement for Restriction for U.S. Appl. No. 12/152,518 dated Jun. 9, 2010; 5 pages.
USPTO Requirement for Restriction for U.S. Appl. No. 14/307,858 dated May 18, 2015; 7 pages.
Written Opinion of the International Searching Authority for International Application No. PCT/US2013/048885 dated Nov. 14, 2013; 7 pages.
Japanese Office Action for Japanese Application No. 2015-503338 dated Jan. 15, 2019; 11 pages.
SIPO Office Action for International Application No. 2016109914026 dated Jan. 24, 2019, 4 pages.
European Search Report for European Application No. 13767422.2 dated Mar. 30, 2017; 6 pages.
European Search Report for European Application No. 13767422.2 dated Oct. 20, 2015; 5 pages.
European Summons Oral Proceedings for European Application No. 13767422.2 dated May 23, 2018; 10 pages.
International Search Report for International Application No. PCT/US12/021583 dated May 8, 2012; 2 pages.
International Search Report for International Application No. PCT/US13/32339 dated May 30, 2013; 2 pages.
Japanese Office Action for Japanese Application No. 2013-549612 dated Aug. 4, 2015; 8 pages.
Japanese Office Action for Japanese Application No. 2015-503338 dated Feb. 21, 2017; 21 pages.
Japanese Office Action for Japanese Application No. 2015-503338 dated Dec. 5, 2017; 5 pages.
Japanese Office Action for Japanese Application No. 2016-123646 dated Jun. 13, 2017; 7 pages.
KIPO Office Action for International Application No. 10-2012-7008106 dated Mar. 20, 2018; 7 pages.
SIPO Office Action for Application No. 200910134374.1 dated Jan. 21, 2015; 5 pages.
SIPO Office Action for Application No. 200910134374.1 dated Feb. 3, 2016; 2 pages.
SIPO Office Action for Application No. 200910134374.1 dated Jul. 29, 2014; 5 pages.
USPTO Advisory Action for U.S. Appl. No. 11/811,958 dated Mar. 16, 2010; 4 pages.
USPTO Advisory Action for U.S. Appl. No. 11/811,958 dated Apr. 20, 2010; 6 pages.
USPTO Advisory Action for U.S. Appl. No. 11/811,958 dated May 14, 2013; 4 pages.
USPTO Final Rejection for U.S. Appl. No. 11/811,958 dated Jan. 6, 2010; 17 pages.
USPTO Final Rejection for U.S. Appl. No. 11/811,958 dated Mar. 13, 2013; 22 pages.
USPTO Final Rejection for U.S. Appl. No. 11/811,958 dated Mar. 15, 2011; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 13/007,533 dated Sep. 24, 2012; 13 pages.
USPTO Final Rejection for U.S. Appl. No. 13/436,872 dated May 27, 2015; 14 pages.
USPTO Final Rejection for U.S. Appl. No. 15/099,025 dated Apr. 30, 2018; 12 pages.
USPTO Non Final Rejection for U.S. Appl. No. 11/811,958 dated Dec. 7, 2011; 13 pages.
USPTO Non Final Rejection for U.S. Appl. No. 13/007,533 dated Apr. 12, 2012; 9 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/811,958 dated May 13, 2009; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/811,958 dated Oct. 1, 2012; 17 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 11/811,958 dated Oct. 7, 2010; 12 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 13/436,872 dated Dec. 19, 2014; 15 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 13/917,500 dated Jan. 5, 2015; 13 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 14/172,775 dated Jun. 22, 2015; 14 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 15/099,025 dated Oct. 6, 2017; 11 pages.
USPTO Non-Final Rejection for U.S. Appl. No. 15/189,668 dated Sep. 22, 2017; 11 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/007,533 dated Mar. 7, 2013; 8 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/007,533 dated Jun. 18, 2013; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/007,533 dated Sep. 6, 2013; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/007,533 dated Nov. 27, 2012; 13 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/007,533 dated Dec. 6, 2013; 10 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/436,872 dated Jan. 15, 2016; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/436,872 dated Sep. 15, 2015; 9 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/917,500 dated Jun. 1, 2015; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/917,500 dated Sep. 14, 2015; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/917,500 dated Dec. 31 , 2015; 5 pages.
USPTO Notice of Allowance for U.S. Appl. No. 14/172,775 dated Sep. 4, 2015; 7 pages.
USPTO Notice of Allowance for U.S. Appl. No. 14/172,775 dated Dec. 18, 2015; 6 pages.
USPTO Notice of Allowance for U.S. Appl. No. 15/189,668 dated Feb. 13, 2018; 12 pages.
USPTO Notice of Allowance for U.S. Appl. No. 13/436,872 dated May 11, 2016; 5 pages.
USPTO Requirement for Restriction for U.S. Appl. No. 13/007,533 dated Dec. 6, 2011; 7 pages.
Written Opinion of the International Searching Authority for International Application No. PCT/US13/32339 dated May 30, 2013; 7 pages.
Written Opinion of the International Searching Authority for International Application No. PCT/US2012/21583 dated May 8, 2012; 4 pages.
Related Publications (1)
Number Date Country
20180366564 A1 Dec 2018 US
Provisional Applications (1)
Number Date Country
60931947 May 2007 US
Continuations (2)
Number Date Country
Parent 15189668 Jun 2016 US
Child 15993224 US
Parent 13436872 Mar 2012 US
Child 15189668 US
Continuation in Parts (1)
Number Date Country
Parent 11811958 Jun 2007 US
Child 13436872 US