Package for microwave components

Information

  • Patent Grant
  • 6713867
  • Patent Number
    6,713,867
  • Date Filed
    Friday, November 1, 2002
    22 years ago
  • Date Issued
    Tuesday, March 30, 2004
    21 years ago
Abstract
A package for a printed circuit and a method for packaging a circuit including exposed components placed on a printed circuit, the circuit including microwave components. At least part of the circuit that contains microwave components is covered with a layer of syntactic foam including a matrix of epoxy resin or cyanate ester, filled with microballoons of glass or a ceramic material. Subsequently, the entire circuit is covered with a moisture-proof top layer.
Description




BACKGROUND OF THE INVENTION




Field of the Invention




The invention relates to a method for packaging a circuit containing microwave components or microwave components and digital components, the components being placed on a printed circuit.




DISCUSSION OF THE BACKGROUND




For packaging a circuit of the above type use is made in the art of a hermetic metal housing, with at least the microwave components being placed unencapsulated in an inert gas. It is actually an ideal package, but it is also an expensive one, because each connection must be realized via a glass bead in the housing wall. Especially if there are many connections, for example carrying digital control signals, the cost of the packaging becomes prohibitive and thus impractical.




A further drawback of the known packaging method is that the package is considerably heavier and bulkier than the circuit proper. This drawback is felt in particular with applications for aircraft.




Of exposed circuits with the exception of microwave components it is known that they can be protected against moisture and corrosion by providing them with a top layer of lacquer, for example a polymer lacquer. For the protection of microwave components this is not possible, because the top layer introduces dielectric losses, causing the circuit to function suboptimally or not at all. Besides, a circuit packaged in this way is very susceptible to moisture, as any moisture in the vicinity of the circuit occasions losses of such magnitude that the circuit no longer operates.




SUMMARY OF THE INVENTION




The method according to the invention meets these objections, and is characterized in that at least the microwave components are covered with a layer of syntactic foam comprising a matrix of epoxy resin or cyanate ester, filled with microballoons of glass or a ceramic material, the circuit subsequently being covered with a moisture-proof top layer. The syntactic foam layer reduces the dielectric losses as only very little dielectric is present in the vicinity of the microwave components, at the same time enlarging the distance between the microwave components and any moisture present in the top layer.




An advantageous realization of the inventive method is characterized in that in the syntactic foam 50-80% of the volume is occupied by microballoons. Syntactic foam of this composition is sufficiently robust, causes little dielectric losses and is exceptionally light. Compared with a circuit packaged hermetically in a known manner, the volume and weight are at least halved.




A further advantageous realization of the inventive method is characterized in that during curing of the matrix the circuit is held in a position such that an upward pressure due to the gravitational force or a centrifugal force will guide the microballoons to the microwave components. Thus, the relatively large concentration of microballoons in the matrix near the microwave components will reduce the dielectric losses further still, while the mechanical properties of the syntactic foam remain virtually the same.




A preferred realization of the inventive method, having as an additional advantage that on the one hand electromagnetic radiation cannot penetrate to the microwave components and on the other that the microwave components are prevented from emitting electromagnetic radiation, is characterized in that after application of the top layer, at least at the spots where the microwave components are situated the top layer is provided with a metallization.




A further advantageous realization of the inventive method is characterized in that the metallization is applied in the form of a conducting paint or by depositing metal particles through sputtering. An alternative advantageous realization is characterized in that the metallization is realized through fitting a metal plate over the syntactic foam layer.




The invention also relates to a package for a printed circuit comprising microwave components or microwave components and digital components. It is characterized in that the package for the microwave components includes a layer of syntactic foam, and that the printed circuit, including the syntactic foam layer is provided with a moisture-proof top layer.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will now be explained with reference to the following Figures, where:





FIG. 1

schematically represents a circuit according to the invention in top view;





FIG. 2

schematically represents a circuit according to the invention in cross-section;





FIG. 3

schematically represents a circuit according to the invention in cross-section, provided with a wall;





FIG. 4

schematically represents a circuit according to the invention in cross-section, provided with a cap.











DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

schematically represents a printed circuit


1


according to the invention, on which digital components


2




a


,


2




b


,


2




c


, . . . and microwave components


3




a


,


3




b


,


3




c


, . . . are placed. At the spots where the digital components


2




a


,


2




b


,


2




c


, . . . are situated, printed circuit


1


is implemented as a multilayer in a manner known in the art, and is also provided with a connector


4


for the leading in and out of digital information. At the spots where the microwave components


3




a


,


3




b


,


3




c


, . . . are situated, printed circuit


1


is implemented as microstrip line


5


in a manner known in the art, and is also provided with connectors


6




a


,


6




b


for the leading in and out of microwave signals.





FIG. 2

schematically represents a printed circuit


1


according to the invention in cross-section along the line AA′ in

FIG. 1

, where a digital component


2




h


, microwave components


3




d


,


3




g


, microstrip line


5


and a connector


4


are visible. According to the invention, microwave components


3




d


,


3




g


and microstrip line


5


are completely covered with a layer of syntactic foam


7


. Syntactic foam as such is known in the art, and is for example used to lend buoyancy to floating bodies. On the syntactic foam layer and on the rest of printed circuit


1


, a top layer


8


of, for example, polymer lacquer is applied.





FIG. 3

also schematically represents a printed circuit


1


according to the invention in cross-section along the line AA′ in

FIG. 1

, where around the microwave part a wall


9


of, for example, a synthetic material is applied, which may facilitate the filling with syntactic foam. In this realization a metallization


10


is moreover applied to top layer


8


with a conducting paint or through sputtering. Metallization


10


may also take the form of a metal plate over the layer of syntactic foam, and subsequently, for example using a soldered connection, be attached to an earth pad in printed circuit


1


.





FIG. 4

schematically represents a printed circuit


1


according to the invention in cross-section along the line AA′ in

FIG. 1

, where around the microwave part a cap


11


of a synthetic material or metal is fitted, provided with an aperture


12


, through which cap


11


can be filled with syntactic foam. With a metal cap, a suitable shield against microwave radiation is automatically effected, with a synthetic cap the top layer may additionally be provided with a metallization, if preferred.




Of course, the packaging method described above may also be profitably used if the circuit contains only microwave components, and particularly for packaging microwave elements on a substrate of, for example, ceramic material or duroid.



Claims
  • 1. Method for packaging a circuit including microwave components or microwave components and digital components, the components being placed on a printed circuit, comprising:covering at least the microwave components with a layer of syntactic foam comprising a matrix of epoxy resin or cyanate ester, filled with microballoons of glass or a ceramic material; and subsequently covering the circuit with a moisture-proof top layer.
  • 2. Method according to claim 1, wherein in the syntactic foam 50-80% of volume is occupied by the microballoons.
  • 3. Method according to claim 1, further comprising curing the matrix, and during the curing the printed circuit is held in a position such that an upward pressure due to a gravitational force or a centrifugal force guides the microballoons to the microwave components.
  • 4. Method according to claim 2, further comprising curing the matrix, and during the curing the printed circuit is held in a position such that an upward pressure due to a gravitational force or a centrifugal force guides the microballoons to the microwave components.
  • 5. Method according to claim 1, further comprising, after the covering with the top layer, providing the top layer, at least at spots where the microwave components are situated, with a metallization.
  • 6. Method according to claim 5, wherein the metallization is applied in a form of a conducting paint or by depositing metal particles through sputtering.
  • 7. Method according to claim 5, wherein the metallization is realized through fitting a metal plate over the syntactic foam layer.
  • 8. Package for a printed circuit comprising microwave components or microwave components and digital components, wherein the package for the microwave components includes a layer of syntactic foam, and wherein the printed circuit, including the syntactic foam layer, is provided with a moisture-proof top layer.
Priority Claims (2)
Number Date Country Kind
1014304 Feb 2000 NL
1016260 Sep 2000 NL
PCT Information
Filing Document Filing Date Country Kind
PCT/EP01/01092 WO 00
Publishing Document Publishing Date Country Kind
WO01/58227 8/9/2001 WO A
US Referenced Citations (13)
Number Name Date Kind
4293519 Knappenberger et al. Oct 1981 A
5276414 Fujimoto et al. Jan 1994 A
5359488 Leahy et al. Oct 1994 A
5550403 Carichner Aug 1996 A
5773121 Meteer et al. Jun 1998 A
5838551 Chan Nov 1998 A
6057600 Kitazawa et al. May 2000 A
6154372 Kalivas et al. Nov 2000 A
6229404 Hatanaka May 2001 B1
6281574 Drake et al. Aug 2001 B1
6333552 Kakimoto et al. Dec 2001 B1
6344609 Nakano Feb 2002 B1
6483186 Hsieh et al. Nov 2002 B1
Foreign Referenced Citations (5)
Number Date Country
43 26 825 Jun 1994 DE
0 308 676 Mar 1989 EP
0 807 971 Nov 1997 EP
2 688 940 Sep 1993 FR
05 206325 Aug 1993 JP