This application claims under 35 U.S.C. §119(a) the benefit of Taiwanese Application No. 103118366, filed May 27, 2014, the entire contents of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to package structures and fabrication methods thereof, and more particularly, to a package structure having conductive bumps and a fabrication method thereof.
2. Description of Related Art
As electronic products are developed toward the trend of multi-function, high electrical performance and high operational speed, there have been developed various types of semiconductor package modules. For example, a multi-chip module (MCM) integrates a plurality of chips in a semiconductor device so as to meet the requirement of electronic products.
Accordingly, another type of semiconductor device is provided by U.S. Pat. No. 6,303,997. Referring to
However, to electrically connect the semiconductor chip 11 and the semiconductor package 12 to the substrate 10, a plurality of wire bonding pads and solder ball pads need to be formed on the substrate 10. As such, not only wiring on the substrate is limited, but also high density interconnect technologies, for example, built-up substrate technologies are required, thus incurring a high fabrication cost.
Accordingly, a further type of semiconductor device is disclosed by U.S. Pat. No. 5,783,870. Referring to
However, since a lower semiconductor package has a chip mounting area, the solder balls of an upper semiconductor package for electrically connecting the upper and lower semiconductor packages must be bonded to a region outside the chip mounting area, thereby limiting the electrically connecting area and wiring on the substrate as well as the I/O count and arrangement of the upper semiconductor package. Consequently, the design flexibility of the overall device is reduced.
Therefore, how to overcome the above-described drawbacks has become critical.
In view of the above-described drawbacks, the present invention provides a method for fabricating a package structure, which comprises the steps of: providing a substrate having opposite top and bottom surfaces, wherein the substrate has a plurality of conductive pads and a plurality of conductive posts formed therein, the conductive pads are exposed from the bottom surface of the substrate and the conductive posts are electrically connected to the conductive pads and exposed from the top surface of the substrate; forming a conductive layer on the top surface of the substrate; forming a plurality of first conductive bumps and a plurality of second conductive bumps on the conductive layer, wherein the second conductive bumps are higher than the first conductive bumps; removing the conductive layer exposed the first conductive bumps and the second conductive bumps; and disposing and electrically connecting at least a first electronic element to the first conductive bumps.
The present invention further provides a package structure, which comprises: a substrate having opposite top and bottom surfaces and a plurality of conductive pads and a plurality of conductive posts formed therein, wherein the conductive pads are exposed from the bottom surface of the substrate, and the conductive posts are electrically connected to the conductive pads and each of the conductive posts has an end surface exposed from the top surface of the substrate; a plurality of first conductive bumps formed on the end surfaces of the conductive posts; a plurality of second conductive bumps formed on the top surface of the substrate, wherein the second conductive bumps are higher than the first conductive bumps; and at least a first electronic element disposed on and electrically connected to the first conductive bumps.
According to the present invention, after the first electronic element is disposed on and electrically connected to the first conductive bumps, a second electronic element can be disposed on and electrically connected to the second conductive bumps. Since the second conductive bumps are higher than the first conductive bumps, the first electronic element can be received in a receiving space formed by the second electronic element, the second conductive bumps and the substrate. As such, the electrically connecting area is not limited and the height of the package structure is effectively reduced.
The following illustrative embodiments are provided to illustrate the disclosure of the present invention, these and other advantages and effects can be apparent to those in the art after reading this specification.
It should be noted that all the drawings are not intended to limit the present invention. Various modifications and variations can be made without departing from the spirit of the present invention. Further, terms such as “first”, “second”, “on”, “a” etc. are merely for illustrative purposes and should not be construed to limit the scope of the present invention.
Referring to
In the present embodiment, the release member 20 has a core layer 200 made of iron and another metal material 201 formed on the core layer 200.
Referring to
In the present embodiment, referring to
Referring to
In the present embodiment, the conductive material is made of, but not limited to, copper.
Referring to
In the present embodiment, after the dielectric layer 214 is formed to encapsulate the conductive posts 213 and the conductive pads 211, the top surface 21a of the dielectric layer 214 is ground to expose an end surface 213a of each of the conductive posts 213. As such, a substrate 21 having opposite top and bottom surfaces 21a, 21b is obtained.
Referring to
In the present embodiment, the polymer layer 22 is made of a lower-profile polymer dielectric material, for example, an epoxy resin.
Referring to
In the present embodiment, the conductive layer 23 is made of deposited copper. The polymer layer 22 facilitates to improve the bonding between the conductive layer 23 and the substrate 21.
Then, Referring to
Referring to
In the present embodiment, the third openings 24a are less in width than the fourth openings 24b.
Referring to
In the present embodiment, the first conductive bumps 25 and the support portions 270 have a same height, and the first conductive bumps 25 are less in width than the support portions 270.
Referring to
In the present embodiment, the width of the support portions 270 is greater than or equal to the corresponding bump portions 271.
Referring to
In the present embodiment, the second conductive bumps 27 are higher than the first conductive bumps 25, and greater in width than the first conductive bumps 25.
Referring to
In the present embodiment, the release member 21 is also removed to expose the conductive pads 211 and the bottom surface 21b of the substrate 21.
In another embodiment, referring to
Referring to
In the present embodiment, the second conductive bumps 27 are higher than the total height of the first conductive bumps 25 and the first electronic element 30. The first electronic element 30 is a semiconductor chip, or a packaged or unpackaged semiconductor element. Preferably, the first electronic element 30 is a semiconductor chip that is determined to be a good chip through a test.
Referring to
In the present embodiment, the second electronic element 3 is a substrate, a semiconductor chip, an interposer, or a packaged or unpackaged semiconductor element.
Referring to
In the present embodiment, the package structure further has a polymer layer 22 formed on the top surface 21a of the substrate 21, and the end surfaces 213a of the conductive posts 213 are exposed from the polymer layer 22. The package structure further has a conductive layer 23 formed between the end surfaces 213a of the conductive posts 213 and the first conductive bumps 25 and between the polymer layer 22 and the second conductive bumps 27.
In the present embodiment, each of the second conductive bumps 27 has a support portion 270 formed on the top surface 21a of the substrate 21 and a bump portion 271 formed on the support portion 270. The second conductive bumps 27 are higher than the total height of the first conductive bumps 25 and the first electronic element 30.
Further, a circuit layer (not shown) can be formed on the top surface 21a of the substrate 21 for electrically connecting the first and second conductive bumps 25, 27 to the conductive posts 213.
According to the present invention, after the first electronic element is disposed on and electrically connected to the first conductive bumps, a second electronic element, for example, an external element, can be disposed on and electrically connected to the second conductive bumps. Since the second conductive bumps are higher than the first conductive bumps, the first electronic element can be received in a receiving space formed by the second electronic element, the second conductive bumps and the substrate. Therefore, the present invention eliminates the limit on the electrically connecting area without changing existing machines and increases the wiring flexibility.
The above-described descriptions of the detailed embodiments are only to illustrate the preferred implementation according to the present invention, and it is not to limit the scope of the present invention. Accordingly, all modifications and variations completed by those with ordinary skill in the art should fall within the scope of present invention defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103118366 A | May 2014 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7180165 | Ellsberry | Feb 2007 | B2 |
7498668 | Kawabata | Mar 2009 | B2 |
7952182 | Watts | May 2011 | B2 |
20010028114 | Hosomi | Oct 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20150348929 A1 | Dec 2015 | US |