Patterned silicide structures and methods of manufacture

Information

  • Patent Grant
  • 11107979
  • Patent Number
    11,107,979
  • Date Filed
    Friday, December 28, 2018
    6 years ago
  • Date Issued
    Tuesday, August 31, 2021
    3 years ago
Abstract
Aspects of the present technology are directed toward Integrated Circuits (IC) including a plurality of trenches disposed in a substrate about a set of silicide regions. The trenches can extend down into the substrate below the set of silicide regions. The silicide regions can be formed by implanting metal ions into portions of a substrate exposed by a mask layer with narrow pitch openings. The trenches can be formed by selectively etching the substrate utilizing the set of silicide regions as a trench mask. An semiconductor material with various degree of crystallinity can be grown from the silicide regions, in openings that extend through subsequently formed layers down to the silicide regions.
Description
BACKGROUND OF THE INVENTION

Computing systems have made significant contributions toward the advancement of modern society and are utilized in a number of applications to achieve advantageous results. Numerous devices, such as desktop personal computers (PCs), laptop PCs, tablet PCs, netbooks, smart phones, game consoles, servers, distributed computing systems, and the like have facilitated increased productivity and reduced costs in communicating and analyzing data in most areas of entertainment, education, business, and science. One common aspect of computing systems is the computing device readable memory. Computing devices may include one or more types of memory, such as volatile random-access memory, non-volatile flash memory, and the like.


An emerging non-volatile memory technology is Magnetoresistive Random Access Memory (MRAM). MRAM devices are characterized by densities similar to Dynamic Random-Access Memory (DRAM), power consumption similar to flash memory, and speed similar to Static Random-Access Memory (SRAM). Although MRAM devices exhibit favorable performance characteristics as compared to other memory technologies, there is a continuing need for improved MRAM devices and methods of manufacture thereof. The reduction of the minimum feature size of structures in the device is commonly utilized to increase the densities of MRAM and other similar devices. However, undesirable characteristics and affects can occur as the feature size of structures are continually reduced. One such instance can occur with the reduction in the feature size of silicide regions.


Referring to FIG. 1, an exemplary array of selectors, in accordance with the conventional art, is shown. The array of selectors can include a control gate formed by a conductive layer 105 such as polysilicon sandwiched between a first and second dielectric layers 110, 115. A set of openings can extend through the first and second dielectric layers 110, 115 and the conductive layer 105, and down to a set of buried doped regions 120 in a substrate 125. A third dielectric layer 130 can be disposed on the wall of the plurality of openings, and a layer of silicon 135 can fill the openings. A set of silicide regions 140 can be formed on the silicon layer 135 filling the plurality of openings. However, as the feature sizes are decreased, silicidation and post silicidation recrystallization can cause silicon void formation 145, structural deformation (e.g., surface rounding) 150, and the like. The formation of voids and or the degradation of the flatness of surfaces during the manufacture of a silicide can negatively impact the device. Accordingly, there is a continuing need for improved structures and methods of manufacturing of such ICs.


SUMMARY OF THE INVENTION

The present technology may best be understood by referring to the following description and accompanying drawings that are used to illustrate embodiments of the present technology directed toward improved patterned silicide structures and methods of manufacture.


In one embodiment, a method of forming an interconnect in an IC can include forming a set of silicide regions in portions of a substrate. The substrate can be selectively etched to form trenches into the substrate along-side the set of silicide regions and extending below the set of silicide regions. The trenches can be filled with a first dielectric layer. A second dielectric layer, a conductive layer and a third dielectric layer can be formed over the set of silicide regions and the first dielectric layer filling the trenches. The second dielectric layer, the conductive layer and the third dielectric layer can be selectively etched to form a plurality of openings substantially aligned to the set of silicide regions, wherein sets of the plurality of openings extend to corresponding ones of the silicide regions. A fourth dielectric layer can be formed on the exposed surfaces of the one or more conductive layers in the plurality of openings, and epitaxial semiconductor can be formed in the plurality of openings after formation of the fourth dielectric layer.


In another embodiment, a method of forming a Magnetic Tunnel Junction (MTJ) memory array can include forming a mask on a semiconductor substrate. The mask can include openings with a large length to width ratio used to define a set of source lines, bit lines or the like. A first set of silicide regions can be formed in portions of the semiconductor substrate exposed by the mask. The semiconductor substrate can be selectively etched to form a set of trenches into the semiconductor substrate self-aligned to the first set of silicide regions and extending below the first set of silicide regions. A nitride layer can be deposited on the walls of the trenches and a dielectric fill can be deposited in the trenches after formation of the nitride layer. A first dielectric layer can be deposited over the first set of silicide regions and the nitride and dielectric fill in the trenches. A conductive layer can be deposited over the first dielectric layer. A second dielectric layer can be deposited over the conductive layer. The second dielectric layer, the conductive layer and the third dielectric layers can be selectively etched to form a plurality of openings substantially extending to the first set of silicide regions, wherein sets of the openings extend to a corresponding ones of the silicide regions. A fourth dielectric layer can be formed on the exposes surfaces of the one or more conductive layers in the plurality of openings. A semiconductor can be epitaxially deposited in the plurality of openings after formation of the fourth dielectric layer.


In another embodiment, a method of forming a Magnetic Tunnel Junction (MTJ) memory array can include forming a first silicide region in a semiconductor substrate. A mask can then be formed on the substrate, wherein the mask includes openings with a large length to width ratio. The semiconductor substrate exposed by the mask can be etched to form a set of trenches into the semiconductor substrate and a first set of silicide regions disposed between the trenches. The trenches can extend below the first set of silicide regions. A nitride layer can be deposited on the walls of the trenches, and a dielectric fill can be deposited in the trenches after formation o the nitride layer. A first dielectric layer can be deposited over the first set of silicide regions and the nitride and dielectric fill in the trenches. A conductive layer can be deposited over the first dielectric layer. A second dielectric layer can be deposited over the conductive layer. The second dielectric layer, the conductive layer and the third dielectric layers can be selectively etched to form a plurality of openings substantially extending to the first set of silicide regions, wherein sets of the openings extend to a corresponding ones of the silicide regions. A fourth dielectric layer can be formed on the exposes surfaces of the one or more conductive layers in the plurality of openings. A semiconductor can be epitaxially deposited in the plurality of openings after formation of the fourth dielectric layer.


In yet another embodiment, an IC can include a plurality of silicide regions disposed in a substrate. A plurality of trenches can be disposed about the plurality of silicide regions and extend into the substrate below the plurality of silicide regions. A plurality of first dielectric regions can be disposed in the plurality of trenches and over the plurality of silicide regions. A plurality of first conductive regions can be disposed above the plurality of first dielectric regions. A plurality of second dielectric regions can be disposed above the plurality of conductive regions. A plurality of semiconductor material with various degree of crystallinity regions can be disposed in holes extending through the plurality of second dielectric regions, the plurality of conductive regions and the plurality of first dielectric regions and down to the plurality of silicide regions. Set of the selectors can be coupled to corresponding silicide regions. A third dielectric region can be disposed between the first conductive regions and the plurality of semiconductor material with various degree of crystallinity regions. A plurality of Magnetic Tunnel Junction (MTJ) cell pillars can be disposed on corresponding ones of the plurality of semiconductor material with various degree of crystallinity regions.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present technology are illustrated by way of example and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:



FIG. 1 shows a block diagram of an exemplary array of selectors, in accordance with the conventional art.



FIGS. 2A, 2B and 2C show a flow diagram of a method of manufacturing an Integrated Circuit (IC), in accordance with aspects of the present technology.



FIGS. 3A through 3L show a block diagram of partial views of an IC during manufacturing, in accordance with aspects of the present technology.



FIGS. 4A and 4B show a block diagram of partial views of an IC during manufacturing, in accordance with alternative aspects of the present technology.



FIGS. 5A, 5B and 5C show a flow diagram of a method of manufacturing an Integrated Circuit (IC), in accordance with aspects of the present technology.



FIGS. 6A through 6L show a block diagram of partial views of an IC during manufacturing, in accordance with aspects of the present technology.



FIGS. 7A, 7B and 7C show a block diagram of partial views of an IC during manufacturing, in accordance with alternative aspects of the present technology.



FIG. 8 shows a block diagram of a MRAM memory cell array, in accordance with aspects of the present technology.



FIG. 9 shows a circuit diagram of a MRAM memory cell array, in accordance with aspects of the present technology.



FIG. 10 shows a block diagram of a memory device, in accordance with aspects of the present technology.





DETAILED DESCRIPTION OF THE INVENTION

Reference will now be made in detail to the embodiments of the present technology, examples of which are illustrated in the accompanying drawings. While the present technology will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present technology, numerous specific details are set forth in order to provide a thorough understanding of the present technology. However, it is understood that the present technology may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present technology.


Some embodiments of the present technology which follow are presented in terms of routines, modules, logic blocks, and other symbolic representations of operations on data within one or more electronic devices. The descriptions and representations are the means used by those skilled in the art to most effectively convey the substance of their work to others skilled in the art. A routine, module, logic block and/or the like, is herein, and generally, conceived to be a self-consistent sequence of processes or instructions leading to a desired result. The processes are those including physical manipulations of physical quantities. Usually, though not necessarily, these physical manipulations take the form of electric or magnetic signals capable of being stored, transferred, compared and otherwise manipulated in an electronic device. For reasons of convenience, and with reference to common usage, these signals are referred to as data, bits, values, elements, symbols, characters, terms, numbers, strings, and/or the like with reference to embodiments of the present technology.


It should be borne in mind, however, that all of these terms are to be interpreted as referencing physical manipulations and quantities and are merely convenient labels and are to be interpreted further in view of terms commonly used in the art. Unless specifically stated otherwise as apparent from the following discussion, it is understood that through discussions of the present technology, discussions utilizing the terms such as “receiving,” and/or the like, refer to the actions and processes of an electronic device such as an electronic computing device that manipulates and transforms data. The data is represented as physical (e.g., electronic) quantities within the electronic device's logic circuits, registers, memories and/or the like, and is transformed into other data similarly represented as physical quantities within the electronic device.


In this application, the use of the disjunctive is intended to include the conjunctive. The use of definite or indefinite articles is not intended to indicate cardinality. In particular, a reference to “the” object or “a” object is intended to denote also one of a possible plurality of such objects. The use of the terms “first,” “second,” “third,” and so on are not intended to indicate a particular sequence or number of elements. Instead, the terms “first,” “second,” “third,” are utilized to differentiate between similar named elements. It is also to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.


Referring now to FIGS. 2A, 2B and 2C, a method of manufacturing an Integrated Circuit (IC), in accordance with aspects of the present technology, is shown. The method of manufacturing the IC will be further explained with reference to FIGS. 3A through 3L, and FIGS. 4A through 4B, which shows partial views of the IC during manufacturing, in accordance with aspects of the present technology. The method can include forming a first set of silicide regions in portions of a substrate. In one implementation, a mask 302 can be formed on a substrate 304, at 205. The mask can be an organic or inorganic hard mask or a photoresist adapted for an implantation blocking layer. In one implementation, the substrate can be a p-doped Silicon (Si) substrate. The mask 302 can include a set of elongated openings with a tight pitch, providing a large length to width ratio characteristic. One or more metals 306 can be implanted 308 in portions of the substrate 304 exposed by the openings in the mask 302, at 210. The one or more metals 306 can include Nickel (Ni), Cobalt (Co), or Titanium (Ti). The metal can be implanted in one or more sequences, such as implanting at different acceleration energies to achieve a predetermined precipitate concentration along the depth direction. At 215, the substrate 304 including the implanted metal 306 can be thermally cycled to form a first set of silicide regions 310 in the portions of the substrate 304. One or more thermal cycles can be utilized to achieve a predetermined specific phase of the metal silicide forming the first set of silicide regions 310. An acceleration energy of the implant process can be adjusted in order to achieve different projected ranges (Rp) and/or longitudinal straggle (ΔRp). In general higher Rp needs high acceleration energy and also results in higher (ΔRp). The implanted precipitates can exist inside silicon as small silicide nucleates as metal ions penetrate through the Silicon (Si) at very high energy and readily form silicide in a localized area. By thermal cycling after implantation, horizontally scattered ion-implanted precipitates can gather together (e.g., pull each other) to form a single-phase silicide, thereby creating a high fidelity very narrow/clean line and spaced silicide pattern. In one implementation, the first set of silicide regions 310 can form at least portions of a set of source lines. At 220, the mask 302 can be removed after implanting and thermally cycling the substrate 304.


In one implementation, the first set of silicide regions 310 can be formed proximate a surface of the semiconductor substrate 304, as illustrated in FIGS. 3A and 3B. In another implementation, the first set of silicide regions 410 can be formed buried in the semiconductor substrate 404, as illustrated in FIGS. 4A and 4B. To form the buried first set of silicide regions 410, the metal ions 406 can be implanted 408 below a predetermined depth from the surface of the substrate 404.


At 225, the substrate can be selectively etched to form trenches 312 into the substrate 304 along-side the first set of silicide regions 310 and extending below the first set of silicide regions 310. The substrate 304 can be etched using an etchant that is adapted to selectively etch the silicon substrate 304 over the silicide 310. By using an etchant that is selective to silicon over the silicide, the first set of silicide regions 310 can act as a mask resulting in trenches 312 that are self-aligned to the first set of silicide regions 310. The trenches 312 can extend relatively deep below the first set of silicide regions 310 to prevent leakage currents during operation of the IC.


At 230, a nitride layer 314 can optionally be formed on the walls of the trenches 312. In one implementation, a Silicon Nitride (Si3N4) liner can be conformally deposited on the substrate using Chemical Vapor Deposition (CVD), Plasma-Enhanced Vapor Deposition (PECVD) or the like. At 235, the trenches can be filled with a first dielectric layer 316. The first dielectric layer 316 can be Silicon Oxide (SiO2) deposited by CVD) or the like to form a layer over the substrate 304 that fills the trenches 312. A Chemical Mechanical Polishing (CMP) can be utilized to remove excess dielectric until the surface of the first set of silicide portions 310 are exposed and the trenches therebetween remain filled with the dielectric 318.


At 240, a second dielectric layer 320 can be formed on the first set of silicide regions 310 and the dielectric 318 filing the trenches. The second dielectric layer 320 can be Silicon Oxide (SiO2) deposited by CVD or the like. At 245, a first conductive layer 322 can be formed on the second dielectric layer 322. The first conductive layer 322 can be a polysilicon or metal layer. At 250, a third dielectric layer 324 can be formed over the first conductive layer 322. The third dielectric layer 324 can be Silicon Oxide (SiO2) deposited by CVD or the like.


At 255, a plurality of opening 326 through the third dielectric layer 324, the first conductive layer 322 and the second dielectric layer-320 can be formed. The opening 326 can be selectively etched through the third dielectric layer 324, the first conductive layer 322 and the second dielectric layer-320 and extending to corresponding ones of the silicide regions 310. The openings 326 can be holes of approximate 100 nanometer (nm) or less in diameter. In an exemplary implementation, the holes through the third dielectric layer 324, the first conductive layer 322 and the second dielectric layer 322 can be approximate 60 nm in diameter.


At 260, a fourth dielectric layer 328 can be formed on the walls of the openings 326. In one implementation, the fourth dielectric-328 can be a high-quality Silicon Oxide (SiO2), Silicon Oxynitride (SiON), Aluminium Oxide (Al2O3), or Hafnium Oxide (HfO2) characterized by a high-k value conformally grown or deposited (e.g. by atomic layer deposition (ALD)) in the plurality of openings. A sacrificial layer 330, such as amorphous Silicon (Si), can optionally be formed on the fourth dielectric 328. An anisotropic etch can then be performed to remove the sacrificial layer 330 and open up epitaxial growth locations on the set of silicide regions 310 at the bottom of the openings 326.


At 265, an epitaxial deposited semiconductor 332 can be formed in the plurality of openings 326. In one implementation, the semiconductor 332 can be heteroepitaxial deposited on the first set of silicide portions 310 exposed at the bottom of the plurality of openings 326. In another implementation, the semiconductor 332 can be homoepitaxial deposited on the surface of the substrate 404 exposed at the bottom of the plurality of openings 326, when the first set of silicide portions 310 are buried below the surface of the substrate. In one implementation, an epitaxial layer 332 can be grown as the material is being deposited. The degree of achievable crystallinity can depend on thermal timing, semiconductor materials, deposition chamber, gas species and their partial pressure in the chamber. The degree of crystallinity can be single crystalline, poly-crystalline, micro-crystalline, or nano-crystalline. In another implementation, a semiconductor can be deposited at low temperature and then followed by a low temperature thermal cycle in order to foster crystallization of deposited channel material. The degree of crystallinity can be single crystalline, poly-crystalline, micro-crystalline, or nano-crystalline. In yet another implementation, a high temperature slow deposition of semiconductor material can be performed using a Reduced Pressure Chemical Vapor Deposition (RPCVD) chamber. In one implementation, the epitaxial deposited semiconductor 332 can be Silicon (Si). In one implementation, first doped regions 334 can be formed in the epitaxial semiconductor 332 in the lower portion of the plurality of openings proximate the first set of silicide regions 310, by in-situ doping of the semiconductor during a first portion of the epitaxial deposition. Second doped regions 336 in the epitaxial semiconductor 332 can be formed proximate the upper portion of the plurality of openings. The first doped regions 334 can have a first doping concentration of a first type (n-type) of dopant such as phosphorus (P) or Arsenic (As), and the second doped regions 336 can have a second doping concentration of the first type of dopant. The first and second doping concentrations can be the same or different. The portion of the epitaxial deposited semiconductor 332 between the first and second doped regions 334, 336 can have a third doping concentration of a second type of dopant such as Boron (B) or Aluminum (Al). In another implementation, the first doped regions 324 in the lower portion of the plurality of opening proximate the first set of silicide regions 310 can be doped as a result of diffusion from the first set of silicide regions 310. In another implementation, the second doped regions 336 can be doped by implanting of the first type of dopant at a desired concentration, or can be doped as a result of diffusion from an optional second set of silicide regions described below. In one implementation, the first conductive layer 322 can form gates, the fourth dielectric layer 328 can form gate dielectrics, the first doped regions 334 can form sources, and the second doped regions 336 can form drains of a plurality of selectors. The doping of the channel portions between the sources and drains can be configured to achieve a predetermined threshold voltage (Vth), and or to mitigate Short Channel Effects (SCE), such as Drain Induced Barrier Lowering (DIBL) or punchthrough. In addition, the depth of the doping of the first and second doped regions 334, 336 forming the sources and drains should be aligned with the gates. If the sources and drains overlap the gates. Gated Induced Drain Leakage (GIDL) can be incurred, and or an increase in source/drain parasitic resistance can be incurred. After epitaxial deposition, the semiconductor 332 can be Chemical Mechanical Polished (CMP) to planarize the surface of the IC.


At 270, a second set of silicide regions 338 can optionally be formed on the surface of the epitaxial semiconductor 332 in the plurality of openings. In one implementation, one or more metals can be deposited or implanted on the surface of the epitaxial semiconductor 332. The one or more metals can include Nickel (Ni), Cobalt (Co), or Titanium (Ti). The IC including the deposited metal can be thermally cycled to form the second set of silicide regions 338 in the upper portions of the epitaxial deposited semiconductor 332 in the plurality of openings. One or more thermal cycles can be utilized to achieve a predetermined specific phase of the metal silicide forming the second set of silicide regions 338. After formation of the second set of silicide regions 338, unreacted material from deposition of the one or more metals can be removed. In one implementation, the second set of silicide regions 338 can provide for good electrical contact between the plurality of selectors and the plurality of Magnetic Tunnel Junction (MTJ) cells described below.


At 275, a plurality of MTJ cells can be formed. Each MTJ cell can be coupled to a respective epitaxial semiconductor in the plurality of openings. Forming the plurality of MTJ cells can include depositing one or more reference magnetic layers 340, one or more tunneling barrier layers 342 can be deposited on the one or more reference magnetic layers 340, and one or more free magnetic layers 344 can be deposited on the one or more tunneling barrier layers 342. Numerous other layers, such as one or more seed layers, one or more Synthetic Antiferromagnetic (SAF) layers, one or more anti-ferromagnetic (AFM) coupling layers, one or more ferromagnetic (FM) coupling layers, one or more Processional Spin Current (PSC) coupling layers, one or more Perpendicular Magnetic Anisotropy (PMA) layers, one or more capping layers, one or more hard mask layers 346, and or the like, can optionally be deposited. The one or more references layers 340, one or more tunneling barrier layers 342, one or more free magnetic layers 344, and the other optional layers can be patterned to form MTJ cell pillars 348 aligned with and coupled to respective ones of the plurality of selectors 322, 328, 332-336. The one or more references layers 340, one or more tunneling barrier layers 342, one or more free magnetic layers 344, and the other optional layers can be patterned by one or more etches. The one or more etches can be configured to proceed partially into the third dielectric layer 324 between the selectors 322, 328, 332-336 to disconnect the second set of silicide regions 338 to increase isolation between the MTJ cell pillars 348. One or more spacer dielectric layers 350, contact layers and the like can be formed proximate the MTJ cell pillars 348. One or more additional dielectric layers 352 can then be deposited to fill the space between and cover the MTJ cell pillars. Openings through the one or more additional dielectric layers 352 can be formed. One or more conductive layers can then be formed to fill the opening through the one or more additional dielectric layers 352 and also cover the additional dielectric layer. The one or more conductive layers can then be pattern to form top contacts 354 on respective MTJ cell pillars 348. In one implementation, the top contacts can comprise at least a portion of a plurality of bit lines, wherein the MTJ cell pillars 348 arranged in columns are coupled together by a respective source line.


The one or more reference magnetic layers 340 can have a fixed magnetization polarization, while the magnetization polarization of the one or more free magnetic layers 344 can switch between opposite directions. Typically, if the magnetic layers have the same magnetization polarization, the MTJ cell will exhibit a relatively low resistance value corresponding to a ‘1’ bit state; while if the magnetization polarization between the two magnetic layers is antiparallel, the MTJ cell will exhibit a relatively high resistance value corresponding to a ‘0’ bit state.


Referring now to FIGS. 5A, 5B and 5C, a method of manufacturing an Integrated Circuit (IC), in accordance with aspects of the present technology, is shown. The method of manufacturing the IC will be further explained with reference to FIGS. 6A through 6L, and FIGS. 7A, 7B and 7C, which shows partial views of the IC during manufacturing, in accordance with aspects of the present technology. The method can include forming a first set of silicide regions in portions of a substrate. In one implementation, one or more metals 602 can be implanted 604 in portions of the substrate 606, at 505. In one implementation, the substrate 606 can be a p-doped Silicon (Si) substrate. The one or more metals 602 can include Nickel (Ni), Cobalt (Co), or Titanium (Ti). The metal can be implanted in one or more sequences, such as implanting at different acceleration energies to achieve a predetermined precipitate concentration along the depth direction. At 510, the substrate 606 including the implanted metal 602 can be thermally cycled to form a first silicide region 608 in the substrate 606. One or more thermal cycles can be utilized to achieve a predetermined specific phase of the metal silicide forming the first silicide region 608.


In one implementation, the first silicide region 608 can be formed proximate a surface of the semiconductor substrate 606, as illustrated in FIGS. 6A, 6B and 6C. In another implementation, the first silicide region 708 can be formed buried in the semiconductor substrate 706, as illustrated in FIGS. 7A, 7B and 7C. To form the buried first silicide region 708, the metal ions 702 can be implanted 704 below a predetermined depth from the surface of the substrate 706. The additional details shown in FIGS. 7A, 7B and 7C not described herein are substantially similar to those in FIGS. 6A, 6B and 6C.


In this embodiment, metal ions are implanted without any pattern on the semiconductor substrate. The blank ion implantation can then be followed by a very high temperature thermal annealing, which can cure any amorphized silicon surface and can create a very high-quality silicide. Because this is still a bare wafer without any active junctions formed, there is not thermal constraint. After thermal cycling is finished, a hard mask can be formed with very dense lines and space for use in etching trenches.


At 515, a mask 610 can be formed on the substrate. The mask 610 can be an organic or inorganic hard mask or a photoresist adapted for etching. The mask 610 can include a set of elongated openings with a tight pitch, providing a large length to width ratio characteristic.


At 520, the substrate exposed by the mask 610 can be selectively etched to form trenches 612 into the substrate 606 through the first silicide region and extending below the first silicide region. The etching process results in the formation of a first set of silicide regions 614 disposed between the trenches 612. The trenches 612 can extend relatively deep below the first set of silicide regions 614 to prevent leakage currents during operation of the IC. In one implementation, the first set of silicide regions 614 can form at least portions of a set of source lines. At 525, the mask 610 can be removed after implanting and thermally cycling the substrate 304.


At 530, a nitride layer 616 can optionally be formed on the walls of the trenches 612. In one implementation, a Silicon Nitride (Si3N4) liner can be conformally deposited on the substrate using Chemical Vapor Deposition (CVD), Plasma-Enhanced Vapor Deposition (PECVD) or the like. At 535, the trenches can be filled with a first dielectric layer 618. The first dielectric layer 618 can be Silicon Oxide (SiO2) deposited by CVD or the like to form a layer over the substrate 606 that fills the trenches 612. A Chemical Mechanical Polishing (CMP) can be utilized to remove excess dielectric until the surface of the first set of silicide portions 614 are exposed and the trenches therebetween remain filled with the dielectric 620.


At 540, a second dielectric layer 622 can be formed on the first set of silicide regions 614 and the dielectric 620 filing the trenches. The second dielectric layer 622 can be Silicon Oxide (SiO2) deposited by CVD or the like. At 545, a first conductive layer 624 can be formed on the second dielectric layer 622. The first conductive layer 624 can be a polysilicon or metal layer. At 550, a third dielectric layer 626 can be formed over the first conductive layer 624. The third dielectric layer 626 can be Silicon Oxide (SiO2) deposited by CVD or the like.


At 555, a plurality of opening 628 through the third dielectric layer 626, the first conductive layer 624 and the second dielectric layer 622 can be formed. The opening 628 can be selectively etched through the third dielectric layer 626, the first conductive layer 624 and the second dielectric layer 622 and extending to corresponding ones of the silicide regions 614. The openings 628 can be holes of approximate 100 nanometer (nm) or less in diameter. In an exemplary implementation, the holes through the third dielectric layer 626, the first conductive layer 624 and the second dielectric layer 622 can be approximate 60 nm in diameter.


At 560, a fourth dielectric layer 630 can be formed on the walls of the openings 628. In one implementation, the fourth dielectric 630 can be a high-quality Silicon Oxide (SiO2). Silicon Oxynitride (SiON), Aluminium Oxide (Al2O3), or Hafnium Oxide (HfO2) characterized by a high-k value conformally grown or deposited (e.g. by atomic layer deposition (ALD)) in the plurality of openings. A sacrificial layer 632, such as amorphous Silicon (Si), can optionally be formed on the fourth dielectric 630. An anisotropic etch can then be performed to remove the sacrificial layer 632 and open up epitaxial growth locations on the set of silicide regions 614 at the bottom of the openings 628.


At 565, an epitaxial deposited semiconductor 634 can be formed in the plurality of openings 628. In one implementation, the semiconductor 634 can be heteroepitaxial deposited on the first set of silicide portions 614 exposed at the bottom of the plurality of openings 628. In another implementation, the semiconductor 634 can be homoepitaxial deposited on the surface of the substrate 404 exposed at the bottom of the plurality of openings 728, when the first set of silicide portions 710 are buried below the surface of the substrate 706. In one implementation, an epitaxial layer 634 can be grown as the material is being deposited. The degree of achievable crystallinity can depend on thermal timing, semiconductor materials, deposition chamber, gas species and their partial pressure in the chamber. The degree of crystallinity can be single crystalline, poly-crystalline, micro-crystalline, or nano-crystalline. In another implementation, a semiconductor 634 can be deposited at low temperature and then followed by a low temperature thermal cycle in order to foster crystallization of the deposited material. The degree of crystallinity can be single crystalline, poly-crystalline, micro-crystalline, or nano-crystalline. In yet another implementation, a high temperature slow deposition of semiconductor material 634 can be performed using a Reduced Pressure Chemical Vapor Deposition (RPCVD) chamber. In one implementation, the epitaxial deposited semiconductor 634 can be Silicon (Si). In one implementation, first doped regions 636 can be formed in the epitaxial semiconductor 634 in the lower portion of the plurality of openings proximate the first set of silicide regions 614, by in-situ doping of the semiconductor during a first portion of the epitaxial deposition. Second doped regions 638 in the epitaxial semiconductor 634 can be formed proximate the upper portion of the plurality of openings. The first doped regions 636 can have a first doping concentration of a first type (n-type) of dopant such as phosphorus (P) or Arsenic (As), and the second doped regions 638 can have a second doping concentration of the first type of dopant. The first and second doping concentrations can be the same or different. The portion of the epitaxial deposited semiconductor 634 between the first and second doped regions 636, 638 can have a third doping concentration of a second type of dopant such as Boron (B) or Aluminum (Al). In another implementation, the first doped regions 636 in the lower portion of the plurality of opening proximate the first set of silicide regions 614 can be doped as a result of diffusion from the first set of silicide regions 614. In another implementation, the second doped regions 638 can be doped by implanting of the first type of dopant at a desired concentration, or can be doped as a result of diffusion from an optional second set of silicide regions described below. In one implementation, the first conductive layer 624 can form gates, the fourth dielectric layer 630 can form gate dielectrics, the first doped regions 636 can form sources, and the second doped regions 638 can form drains of a plurality of selectors. The doping of the channel portions between the sources and drains can be configured to achieve a predetermined threshold voltage (Vth), and or to mitigate Short Channel Effects (SCE), such as Drain Induced Barrier Lowering (DIBL) or punchthrough. In addition, the depth of the doping of the first and second doped regions 636, 638 forming the sources and drains should be aligned with the gates. If the sources and drains overlap the gates, Gated Induced Drain Leakage (GIDL) can be incurred, and or an increase in source/drain parasitic resistance can be incurred. After epitaxial deposition, the semiconductor 634 can be Chemical Mechanical Polished (CMP) to planarize the surface of the IC.


At 570, a second set of silicide regions 640 can optionally be formed on the surface of the epitaxial semiconductor 634 in the plurality of openings. In one implementation, one or more metals can be deposited or implanted on the surface of the epitaxial semiconductor 634. The one or more metals can include Nickel (Ni), Cobalt (Co), or Titanium (Ti). The IC including the deposited metal can be thermally cycled to form the second set of silicide regions 640 in the upper portions of the epitaxial deposited semiconductor 634 in the plurality of openings. One or more thermal cycles can be utilized to achieve a predetermined specific phase of the metal silicide forming the second set of silicide regions 640. After formation of the second set of silicide regions 640, unreacted material from deposition of the one or more metals can be removed. In one implementation, the second set of silicide regions 640 can provide for good electrical contact between the plurality of selectors and the plurality of Magnetic Tunnel Junction (MTJ) cells described below.


At 575, a plurality of MTJ cells can be formed. Each MTJ cell can be coupled to a respective epitaxial semiconductor in the plurality of openings. Forming the plurality of MTJ cells can include depositing one or more reference magnetic layers 642, one or more tunneling barrier layers 644 can be deposited on the one or more reference magnetic layers 642, and one or more free magnetic layers 646 can be deposited on the one or more tunneling barrier layers 644. Numerous other layers, such as one or more seed layers, one or more Synthetic Antiferromagnetic (SAF) layers, one or more anti-ferromagnetic (AFM) coupling layers, one or more ferromagnetic (FM) coupling layers, one or more Processional Spin Current (PSC) coupling layers, one or more Perpendicular Magnetic Anisotropy (PMA) layers, one or more capping layers, one or more hard mask layers 648, and or the like, can optionally be deposited. The one or more references layers 642, one or more tunneling barrier layers 644, one or more free magnetic layers 646, and the other optional layers can be patterned to form MTJ cell pillars 650 aligned with and coupled to respective ones of the plurality of selectors 624, 630, 634-638. The one or more references layers 642, one or more tunneling barrier layers 644, one or more free magnetic layers 646, and the other optional layers can be patterned by one or more etches. The one or more etches can be configured to proceed partially into the third dielectric layer 626 between the selectors 624, 630, 634-638 to disconnect the second set of silicide regions 640 to increase isolation between the MTJ cell pillars 650. One or more spacer dielectric layers 652, contact layers and the like can be formed proximate the MTJ cell pillars 650. One or more additional dielectric layers 654 can then be deposited to fill the space between and cover the MTJ cell pillars. Openings through the one or more additional dielectric layers 654 can be formed. One or more conductive layers can then be formed to fill the opening through the one or more additional dielectric layers 654 and also cover the additional dielectric layer. The one or more conductive layers can then be pattern to form top contacts 656 on respective MTJ cell pillars 650. In one implementation, the top contacts can comprise at least a portion of a plurality of bit lines, wherein the MTJ cell pillars 650 arranged in columns are coupled together by a respective source line.


The one or more reference magnetic layers 642 can have a fixed magnetization polarization, while the magnetization polarization of the one or more free magnetic layers 646 can switch between opposite directions. Typically, if the magnetic layers have the same magnetization polarization, the MTJ cell will exhibit a relatively low resistance value corresponding to a ‘1’ bit state; while if the magnetization polarization between the two magnetic layers is antiparallel, the MTJ cell will exhibit a relatively high resistance value corresponding to a ‘0’ bit state.


Referring now to FIG. 8, a MRAM memory cell array, in accordance with aspects of the present technology, is shown. The MRAM memory cell array can include a first plurality of silicide regions 805 disposed in a substrate 810. In one implementation, the substrate 810 can be a Silicon (Si) substrate and the plurality of silicide region 805 can be Nickel Silicide (NiSi), Cobalt Silicide (CoSi2), or Titanium Silicide (TiSi2). A plurality of trenches can be disposed about the first plurality of silicide regions 805 and extend into the substrate 810 below the first plurality of silicide regions 805. The first plurality of silicide regions 805 can comprise elongated bars with a tight pitch. A plurality of a first dielectric regions 815 can be disposed in the plurality of trenches and extend above the first plurality of silicide regions 805. Optionally, a nitride layer 820 can be disposed between the first dielectric regions 815 and both the substrate and the first plurality of silicide regions 805. In one implementation the first dielectric regions 815 can be Silicon Oxide (SiO2) and the nitride layer 820 can be Silicon Nitride (Si3N4).


A plurality of first conductive regions 825 can be disposed above the plurality of first dielectric regions 815, and a plurality of second dielectric regions 830 can be disposed above the first conductive regions 825 in the plurality of trenches. In one implementation, the first conductive regions 825 can be polysilicon (Si) or a conductor, and the second dielectric regions can be Silicon Oxide (SiO2).


An semiconductor material with various degree of crystallinity 835-845 can be disposed in holes extending through the plurality of second dielectric regions 830, the plurality of conductive regions 825 and the plurality of first dielectric regions 815 and down to the plurality of silicide regions 805. Sets of the semiconductor material with various degree of crystallinity 835-845 can be coupled to corresponding silicide regions 805. In one implementation, the semiconductor material with various degree of crystallinity 835-845 can include first portions 835 doped with a first type of dopant, and can be disposed proximate the plurality of silicide regions 805. Second portions 840 can be doped with the first type of dopant, and can be disposed proximate the plurality of MTJ cell pillars described below. Third portions 845 can be doped with a second type of dopant, and can be disposed between the first and second portions 835, 840. In one implementation, the first and second portions 835, 840 of the semiconductor material with various degree of crystallinity can be Silicon (Si) doped with phosphorus (P) or Arsenic (As), and the third portions of the semiconductor material with various degree of crystallinity can be Silicon (Si) doped with Boron (B) or Aluminum (Al).


A third dielectric region 850 can be disposed between the first conductive regions 825 and the plurality semiconductor materials with various degree of crystallinity 835-845. In one implementation, the third dielectric region 850 can be a high-quality Silicon Oxide (SiO2), Silicon Oxynitride (SiON), Aluminium Oxide (Al2O3), or Hafnium Oxide (HfO2) characterized by a high-k value. In one implementation, the conductive layer 825, the third dielectric layer 850, and the plurality of semiconductor materials with various degree of crystallinity 835-845 can comprise a plurality of selectors. The conductive layer 825 can be configured as the gates, the third dielectric layer 805 can be configured as the gate oxides, the first portions of the semiconductor material with various degree of crystallinity 835 can be configured as the sources, the second portions of the semiconductor material with various degree of crystallinity 840 can be configured as the drains, and the third portions of the semiconductor material with various degree of crystallinity 845 can be configured as the channels of respective selector transistors. The conductive layer 825 can complete surround the semiconductor material with various degree of crystallinity 835 along rows to form portions of word lines. The conductive layer 825 between adjacent rows can be patterned and separated by a fourth dielectric layer 885 described below.


A plurality of Magnetic Tunnel Junction (MTJ) cell pillars 855-865 can be disposed on corresponding ones of the plurality of semiconductor material with various degree of crystallinity regions 835-845. The plurality of MTJ cell pillars can include a reference magnetic layer 855, a tunneling barrier layer 860 and a free magnetic layer 865. The reference magnetic layer 855 can have a fixed magnetization polarization, while the magnetization polarization of the free magnetic layer 865344 can switch between opposite directions. In one implementation, the reference magnetic layer 855 can be coupled to respective semiconductor material with various degree of crystallinity regions 835-845 by an optional second set of silicide regions 870. The second set of silicide regions 870 can be a Nickel Silicide (NiSi), Cobalt Silicide (CoSi2), or Titanium Silicide (TiSi2). The MTJ cells can also include a number of other layers such as one or more seed layers, one or more Synthetic Antiferromagnetic (SAF) layers, one or more anti-ferromagnetic (AFM) coupling layers, one or more ferromagnetic (FM) coupling layers, one or more Processional Spin Current (PSC) coupling layers, one or more Perpendicular Magnetic Anisotropy (PMA) layers, one or more capping layers, one or more hard mask layers 875, pillar spacers 880 and or the like. In addition, a fourth dielectric layer 885 can be disposed between and over (not shown) the MTJ cell pillars 855-865. In addition, a plurality of contacts (not shown) can be coupled to the free magnetic layer 865 through the optional second set of silicide regions 870. In one implementation, the fourth dielectric layer 885 can be an Oxide or Spin-on-Glass (SOG) layer.


Aspects of the above described present technology can advantageously reduce void formation and surface non-uniformity of the silicide. The reduction of void formation and improved surface uniformity can advantageously reduce leakage current and or enable further reduction in the minimum feature size of structures in the IC.


Referring now to FIG. 9, a circuit diagram of a MRAM memory cell array, in accordance with aspects of the present technology, is shown. The memory cell array 900 can include a plurality of MTJ memory cells 905, a plurality of word lines 910-920, a plurality of bit lines 925-935 and a plurality of source lines 940-950. The word lines 910-920 of the memory cell array 900 can be organized along columns of the array. The bit lines 925-935 and source lines 940-950 can be organized along rows of the array. The source lines 940-950 can comprise a first set of silicide regions as described above. Each memory cell 905 can comprise a MTJ cell and a selector. In one implementation, the gates of the selectors arranged along columns of the array can be coupled to respective word lines 910-920. The sources of the selectors arranged along rows of the array can be coupled to respective source lines 940-950. The free magnetic layer of the MTJ cells arranged along rows of the array can be coupled to a respective bit line 925-935.


In one example, to read data from a given MTJ cell 905, the respective bit line BL(m) 930 can be biased at a bit line read potential (e.g., VBLR) and the respective source line SL(m) 945 can be biased at ground (e.g., 0). When the respective word line WL(n) 915 is biased at a word line read voltage potential (e.g., VWLR) a current proportional to the resistance of the MTJ of the cell 905 will flow from the respective bit line BL(m) 930 to the respective source line SL(m) 945. In such case, the current sensed on the respective bit line BL(m) 930 can indicate the state of the selected cell 905.


To write a logic ‘0’ state to the given memory cell 905, the respective bit line BL(m) 930 can be biased at a bit line write potential (e.g., VBLW) and the respective source line SL(m) 945 can be biased at ground (e.g., 0). When the respective word line WL(n) 915 is biased at a word line write potential (e.g., VWLW) a resulting current flowing through the MTJ of the cell 905 in a first direction will cause the free magnetic layer into a state corresponding to a logic ‘0’ state. To write a logic ‘1’ state to the given memory cell 905, the respective bit line BL(m) 930 can be biased at ground (e.g., 0) and the respective source line SL(m) 945 can be biased at a source line write potential (e.g., VSLW). When the respective word line WL(n) 915 is biased at a word line write potential (e.g., VWLW) a resulting current flowing through the MTJ of the cell 905 in a second direction will cause the free magnetic layer into a state corresponding to a logic ‘1’ state.


In another example, to read data from a given memory cell 905, the respective bit line BL(m) 930 can be biased at ground (e.g., 0) and the respective source line SL(m) 945 can be biased at a bit line read potential (e.g., VBLR). When the respective word line WL(n) 915 is biased at a word line read potential (e.g., VWRL) a current proportional to the resistance of the MTJ of the given cell 905 will flow. In such case, the current sensed on the respective source line SL(m) 945 can indicate the state of the selected cell 905.


To write a logic ‘0’ state to the given memory cell 905, the respective bit line BL(m) 930 can be biased at a bit line write potential (e.g., VBLW) and the respective source line SL(m) 945 can be biased at ground (e.g., 0). When the respective word line WL(n) 915 is biased at a word line write potential (e.g., VWLW) a resulting current flowing through the MTJ of the cell 905 in a first direction will cause the free magnetic layer into a logic ‘0’ state. To write a logic ‘1’ state to a given memory cell 905, the respective bit line BL(m) 930 can be biased at ground (e.g., 0) and the respective source line SL(m) 945 can be biased at a source line write potential (e.g., VSLW). When the respective word line WL(n) 915 is biased at a word line write state (e.g., VWLW) a resulting current flowing through the MTJ of the cell 905 in a second direction will cause the free magnetic layer into a logic ‘1’ state.


Referring now to FIG. 10, a block diagram of a memory device, in accordance with aspects of the present technology, is shown. The memory device 1000 can be a Magnetoresistive Random Access Memory (MRAM), Spin Torque Magnetoresistive Random Access Memory (ST-MRAM), a Phase Change Memory (PCM), a stackable cross-gridded Phase Change Memory, Resistive Random Access Memory (Re-RAM), or similar memory device. In aspects, the memory device 1000 can include a memory cell array 1010, an address buffer 1020, an address decoder circuit 1030, a word line driver circuit 1040, a bit line driver circuit 1050, a sense circuit 1060, a data buffer 1070, and control circuit 1080. In one implementation, the memory cell array 1010 can include a plurality of MTJ memory cells as described above. The memory device 1000 can also include other well-known circuits that are not necessary for an understanding of the present technology and therefore are not discussed herein.


In aspects, the memory cell array 1010 can include a plurality of memory cells organized in rows and columns, with sets of word lines, bit lines and optionally source lines spanning the array of cells throughout the chip. The address buffer 1020 can be configured to receive and buffer a plurality of address signals. The address decoder 1030 can receive the plurality of address signals buffered by the address buffer 1020 and output a plurality of decoded address signals. The address decoder 1030 can map a given memory address to a particular row of memory cells in the array.


In aspects, the output of the address decoder 1030 can be input to the word line driver 1040 upon a first state of a clock signal. In one implementation, the word line driver 1040 can receive the plurality of decoded address signals upon receipt of a low state of a clock signal and latch the plurality of decoded address signal upon a high state of the clock signal. The word line driver 1040 can level shift the received decoded address signals to word line drive signals, and latch the plurality of word line drive signals. The output of the word line driver 1040 can drive the word lines to select a given word line of the array 1010 based on the plurality of word line drive signals.


In aspects, the bit line driver 1050 and the sense circuit 1060 utilize the bit lines, and/or optionally the source lines, of the array 1010 to read from and write to memory cells of a selected word line of the array 1010. The data read from and written to the memory cells can be buffered in the data buffer 1070. The control circuit 1080 can generate one or more control signals for the control of one or more of the address buffer 1020, the address decoder circuit 1030, the word line driver circuit 1040, the bit line driver circuit 1050, the sense circuit 1060, the data buffer 1070.


The foregoing descriptions of specific embodiments of the present technology have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, to thereby enable others skilled in the art to best utilize the present technology and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims
  • 1. A method of forming an interconnect in an Integrated Circuit (IC) comprising: forming a first set of silicide regions in portions of a substrate;selectively etching the substrate to form a plurality of trenches into the substrate along-side the first set of silicide regions and extending below the first set of silicide regions;filling the trenches with a first dielectric layer:forming a second dielectric layer, a conductive layer and a third dielectric layer over the first set of silicide regions and the first dielectric layer filling the trenches;selectively etching the second dielectric layer, the conductive layer and the third dielectric layer to form a plurality of openings substantially aligned to the first set of silicide regions, wherein sets of the plurality of openings extend to corresponding ones of the first set of silicide regions;forming a fourth dielectric layer on exposed surfaces of the one or more conductive layers in the plurality of openings; andforming an semiconductor material with various degree of crystallinity in the plurality of openings after formation of the fourth dielectric layer.
  • 2. The method of claim 1, further comprising forming a plurality of Magnetic Tunnel Junction (MTJ) cells respectively coupled to the semiconductor material with various degree of crystallinity in the plurality of opening.
  • 3. The method of claim 1, wherein the first set of silicide regions are formed proximate a surface of the substrate.
  • 4. The method of claim 1, wherein the first set of silicide regions are formed buried in the substrate.
  • 5. The method of claim 1, further comprising: forming a first doped region in the semiconductor material with various degree of crystallinity proximate the first set of silicide regions, wherein the first doped region has a first doping concentration of a first type of dopant;forming a second doped region in the semiconductor material with various degree of crystallinity, wherein the second dope region has a second doping concentration of the first type of dopant; andwherein the semiconductor material with various degree of crystallinity between the first and second doped regions has a third doping concentration of a second type of dopant.
  • 6. A method of forming a Magnetic Tunnel Junction (MTJ) memory array comprising: forming a mask on a semiconductor substrate, wherein the mask includes openings with a large length to width ratio;forming a first set of silicide regions in portions of the semiconductor substrate exposed by the openings in the mask;selectively etching the semiconductor substrate to form a set of trenches into the semiconductor substrate self-aligned to the first set of silicide regions and extending below the first set of silicide regions;depositing a nitride layer on the walls of the trenches;depositing a first dielectric layer in the trenches after formation of the nitride layer:depositing a second dielectric layer over the first set of silicide regions and the first dielectric layer in the trenches;depositing a first conductive layer over the second dielectric layer;depositing a third dielectric layer over the first conductive layer;selectively etching through the third dielectric layer, the first conductive layer and the second dielectric layer to form a plurality of holes substantially aligned to the first set of silicide regions;depositing a fourth dielectric layer on the walls of the plurality of holes; andepitaxially depositing a semiconductor in the plurality of holes after formation of the fourth dielectric layer on the walls of the plurality of holes.
  • 7. The method of claim 6, wherein forming the first set of silicide regions comprises: implanting one or more metals in the semiconductor substrate exposed by the mask; andthermally annealing the semiconductor substrate to cause the implanted one or metals to form the first set of silicide regions in the semiconductor substrate.
  • 8. The method of claim 7, wherein: the one or more metals are implanted proximate a surface of the semiconductor substrate; andthe first set of silicide regions are formed proximate a surface of the semiconductor substrate.
  • 9. The method of claim 7, wherein: the one or more metals are implanted below a surface of the semiconductor substrate; andthe first set of silicide regions are formed buried in the semiconductor substrate.
  • 10. The method of claim 6, wherein the first set of silicide regions comprise at least a portion of substantially parallel source lines arranged along columns of an array.
  • 11. The method of claim 6, further comprising: forming a sacrificial semiconductor material with various degree of crystallinity layer on the fourth dielectric layer on the walls of the plurality of holes; andanisotropy etching the sacrificial semiconductor material with various degree of crystallinity layer to open up epitaxial growth locations on the first set of silicide regions before formation of the epitaxial semiconductor in the plurality of holes.
  • 12. The method of claim 6, further comprising: forming drain regions of selectors having a first concentration of a first type of dopant in the epitaxial deposited semiconductor proximate the set of silicide regions;forming source regions of the selectors having a second concentration of the first type of dopant in the epitaxial deposited semiconductor; andforming body regions of the selectors having a first concentration of a second type of dopant in the epitaxial deposited semiconductor between the source regions and drain regions.
  • 13. The method of claim 6, further comprising: forming a second set of silicide regions on a surface of the epitaxial semiconductor;depositing a reference magnetic layer coupled to the second set of silicide regions;depositing a tunneling barrier layer on the reference magnetic layer; anddepositing a free magnetic layer on the tunneling barrier layer; andetching through the free magnetic layer, the tunneling barrier layer and the reference magnetic layer to form a plurality of Magnetic Tunnel Junction (MTJ) cell pillars coupled to the epitaxial semiconductor in corresponding ones of the plurality of holes by corresponding one of the second set of silicide regions.
  • 14. The method of claim 13, further comprising: depositing a fifth dielectric layer over the plurality of MTJ cell pillars;selective etching a plurality of bit line vias in the fifth dielectric layer aligned with the MTJ cell pillars;depositing a second conductive layer in the plurality of bit line vias and over the fifth dielectric layer; andselectively etching the second conductive layer to form a plurality of bit lines arranged along columns of an array and coupled to the MTJ cell pillars through the bit line vias.
  • 15. A method of forming a Magnetic Tunnel Junction (MTJ) memory array comprising: forming a first silicide region in a semiconductor substrate;forming a mask on a semiconductor substrate, wherein the mask includes openings with a large length to width ratio;selectively etching the semiconductor substrate exposed by the mask to form a set of trenches into the semiconductor substrate and a first set of silicide regions disposed between the trenches, wherein the trenches extend below the first set of silicide regions;depositing a nitride layer on the walls of the trenches;depositing a first dielectric layer in the trenches after formation of the nitride layer:depositing a second dielectric layer over the first set of silicide regions and the first dielectric layer in the trenches;depositing a first conductive layer over the second dielectric layer;depositing a third dielectric layer over the first conductive layer;selectively etching through the third dielectric layer, the first conductive layer and the second dielectric layer to form a plurality of holes substantially aligned to the first set of silicide regions;depositing a fourth dielectric layer on the walls of the plurality of holes; andepitaxially depositing a semiconductor in the plurality of holes after formation of the fourth dielectric layer on the walls of the plurality of holes.
  • 16. The method of claim 15, wherein forming the silicide region comprises: implanting one or more metals in the semiconductor substrate proximate a surface of the semiconductor substrate; andthermally annealing the semiconductor substrate to cause the implanted one or more metals to form the silicide region proximate the surface of the semiconductor substrate.
  • 17. The method of claim 15, wherein forming the silicide region comprises: implanting one or more metals in the semiconductor substrate below a surface of the semiconductor substrate; andthermally annealing the semiconductor substrate to cause the implanted one or more metals to form the silicide region buried in the semiconductor substrate.
  • 18. The method of claim 15, further comprising: forming drain regions of selectors having a first concentration of a first type of dopant in the epitaxial deposited semiconductor proximate the set of silicide regions;forming source regions of the selectors having a second concentration of the first type of dopant in the epitaxial deposited semiconductor; andforming body regions of the selectors having a first concentration of a second type of dopant in the epitaxial deposited semiconductor between the source regions and drain regions.
  • 19. The method of claim 15, further comprising: forming a second set of silicide regions on a surface of the epitaxial semiconductor;depositing a reference magnetic layer coupled to the second set of silicide regions;depositing a tunneling barrier layer on the reference magnetic layer; anddepositing a free magnetic layer on the tunneling barrier layer; andetching through the free magnetic layer, the tunneling barrier layer and the reference magnetic layer to form a plurality of Magnetic Tunnel Junction (MTJ) cell pillars coupled to the epitaxial semiconductor in corresponding ones of the plurality of holes by corresponding one of the second set of silicide regions.
  • 20. The method of claim 19, further comprising: depositing a fifth dielectric layer over the plurality of MTJ cell pillars;selective etching a plurality of bit line vias in the fifth dielectric layer aligned with the MTJ cell pillars;depositing a second conductive layer in the plurality of bit line vias and over the fifth dielectric layer; andselectively etching the second conductive layer to form a plurality of bit lines arranged along columns of an array and coupled to the MTJ cell pillars through the bit line vias.
US Referenced Citations (484)
Number Name Date Kind
4597487 Crosby et al. Jul 1986 A
5541868 Prinz Jul 1996 A
5559952 Fujimoto Sep 1996 A
5629549 Johnson May 1997 A
5640343 Gallagher et al. Jun 1997 A
5654566 Johnson Aug 1997 A
5691936 Sakakima et al. Nov 1997 A
5695846 Lange et al. Dec 1997 A
5695864 Zlonczewski Dec 1997 A
5732016 Chen et al. Mar 1998 A
5751647 O'Toole May 1998 A
5856897 Mauri Jan 1999 A
5896252 Kanai Apr 1999 A
5966323 Chen et al. Oct 1999 A
6016269 Peterson et al. Jan 2000 A
6055179 Koganei et al. Apr 2000 A
6064948 West May 2000 A
6075941 Itoh Jun 2000 A
6097579 Gill Aug 2000 A
6112295 Bhamidipati et al. Aug 2000 A
6124711 Tanaka et al. Sep 2000 A
6134138 Lu et al. Oct 2000 A
6140838 Johnson Oct 2000 A
6154139 Kanai et al. Nov 2000 A
6154349 Kanai et al. Nov 2000 A
6172902 Wegrowe et al. Jan 2001 B1
6233172 Chen et al. May 2001 B1
6233690 Choi et al. May 2001 B1
6243288 Ishikawa et al. Jun 2001 B1
6252798 Satoh et al. Jun 2001 B1
6256223 Sun Jul 2001 B1
6292389 Chen et al. Sep 2001 B1
6347049 Childress et al. Feb 2002 B1
6376260 Chen et al. Apr 2002 B1
6385082 Abraham et al. May 2002 B1
6436526 Odagawa et al. Aug 2002 B1
6442681 Ryan et al. Aug 2002 B1
6447935 Zhang et al. Sep 2002 B1
6458603 Kersch et al. Oct 2002 B1
6493197 Ito et al. Dec 2002 B2
6522137 Sun et al. Feb 2003 B1
6532164 Redon et al. Mar 2003 B2
6538918 Swanson et al. Mar 2003 B2
6545903 Savtchenko et al. Apr 2003 B1
6545906 Savtchenko et al. Apr 2003 B1
6563681 Sasaki et al. May 2003 B1
6566246 deFelipe et al. May 2003 B1
6603677 Redon et al. Aug 2003 B2
6608776 Hidaka Aug 2003 B2
6635367 Igarashi et al. Oct 2003 B2
6653153 Doan et al. Nov 2003 B2
6654278 Engel et al. Nov 2003 B1
6677165 Lu et al. Jan 2004 B1
6710984 Yuasa et al. Mar 2004 B1
6713195 Wang et al. Mar 2004 B2
6714444 Huai et al. Mar 2004 B2
6731537 Kanamori May 2004 B2
6744086 Daughton et al. Jun 2004 B2
6750491 Sharma et al. Jun 2004 B2
6751074 Inomata et al. Jun 2004 B2
6765824 Kishi et al. Jul 2004 B2
6772036 Eryurek et al. Aug 2004 B2
6773515 Li et al. Aug 2004 B2
6777730 Daughton et al. Aug 2004 B2
6785159 Tuttle Aug 2004 B2
6807091 Saito Oct 2004 B2
6812437 Levy Nov 2004 B2
6829161 Huai et al. Dec 2004 B2
6835423 Chen et al. Dec 2004 B2
6838740 Huai et al. Jan 2005 B2
6839821 Estakhri Jan 2005 B2
6842317 Sugita et al. Jan 2005 B2
6842366 Chan Jan 2005 B2
6847547 Albert et al. Jan 2005 B2
6879512 Luo Apr 2005 B2
6887719 Lu et al. May 2005 B2
6888742 Nguyen et al. May 2005 B1
6902807 Argitia et al. Jun 2005 B1
6906369 Ross et al. Jun 2005 B2
6920063 Huai et al. Jul 2005 B2
6933155 Albert et al. Aug 2005 B2
6936479 Sharma Aug 2005 B2
6938142 Pawlowski Aug 2005 B2
6956257 Zhu et al. Oct 2005 B2
6958507 Atwood et al. Oct 2005 B2
6958927 Nguyen et al. Oct 2005 B1
6967863 Huai Nov 2005 B2
6980469 Kent et al. Dec 2005 B2
6984529 Stojakovic et al. Jan 2006 B2
6985385 Nguyen et al. Jan 2006 B2
6992359 Nguyen et al. Jan 2006 B2
6995962 Saito et al. Feb 2006 B2
7002839 Kawabata et al. Feb 2006 B2
7005958 Wan Feb 2006 B2
7006371 Matsuoka Feb 2006 B2
7006375 Covington Feb 2006 B2
7009877 Huai et al. Mar 2006 B1
7033126 Van Den Berg Apr 2006 B2
7041598 Sharma May 2006 B2
7045368 Hong et al. May 2006 B2
7054119 Sharma et al. May 2006 B2
7057922 Fukumoto Jun 2006 B2
7095646 Slaughter et al. Aug 2006 B2
7098494 Pakala et al. Aug 2006 B2
7106624 Huai et al. Sep 2006 B2
7110287 Huai et al. Sep 2006 B2
7149106 Mancoff et al. Dec 2006 B2
7161829 Huai et al. Jan 2007 B2
7170778 Kent et al. Jan 2007 B2
7187577 Wang Mar 2007 B1
7190611 Nguyen et al. Mar 2007 B2
7203129 Lin et al. Apr 2007 B2
7203802 Huras Apr 2007 B2
7227773 Nguyen et al. Jun 2007 B1
7233039 Huai et al. Jun 2007 B2
7242045 Nguyen et al. Jul 2007 B2
7245462 Huai et al. Jul 2007 B2
7262941 Li et al. Aug 2007 B2
7273780 Kim Sep 2007 B2
7283333 Gill Oct 2007 B2
7307876 Kent et al. Dec 2007 B2
7313015 Bessho Dec 2007 B2
7324387 Bergemont et al. Jan 2008 B1
7324389 Cernea Jan 2008 B2
7335960 Han et al. Feb 2008 B2
7351594 Bae et al. Apr 2008 B2
7352021 Bae et al. Apr 2008 B2
7369427 Diao et al. May 2008 B2
7372722 Jeong May 2008 B2
7376006 Bednorz et al. May 2008 B2
7386765 Ellis Jun 2008 B2
7404017 Kuo Jul 2008 B2
7421535 Jarvis et al. Sep 2008 B2
7436699 Tanizaki Oct 2008 B2
7449345 Horng et al. Nov 2008 B2
7453719 Sakimura Nov 2008 B2
7476919 Hong et al. Jan 2009 B2
7502249 Ding Mar 2009 B1
7502253 Rizzo Mar 2009 B2
7508042 Gun Mar 2009 B2
7511985 Horii Mar 2009 B2
7515458 Hung et al. Apr 2009 B2
7515485 Lee Apr 2009 B2
7532503 Morise et al. May 2009 B2
7541117 Ogawa Jun 2009 B2
7542326 Yoshimura Jun 2009 B2
7573737 Kent et al. Aug 2009 B2
7576956 Huai Aug 2009 B2
7582166 Lampe Sep 2009 B2
7598555 Papworth-Parkin Oct 2009 B1
7602000 Sun et al. Oct 2009 B2
7619431 DeWilde et al. Nov 2009 B2
7633800 Adusumilli et al. Dec 2009 B2
7642612 Izumi et al. Jan 2010 B2
7660161 Van Tran Feb 2010 B2
7663171 Inokuchi et al. Feb 2010 B2
7675792 Bedeschi Mar 2010 B2
7696551 Xiao Apr 2010 B2
7733699 Roohparvar Jun 2010 B2
7739559 Suzuki et al. Jun 2010 B2
7773439 Do et al. Aug 2010 B2
7776665 Izumi et al. Aug 2010 B2
7796439 Arai Sep 2010 B2
7810017 Radke Oct 2010 B2
7821818 Dieny et al. Oct 2010 B2
7852662 Yang Dec 2010 B2
7861141 Chen Dec 2010 B2
7881095 Lu Feb 2011 B2
7911832 Kent et al. Mar 2011 B2
7916515 Li Mar 2011 B2
7936595 Han et al. May 2011 B2
7936598 Zheng et al. May 2011 B2
7983077 Park Jul 2011 B2
7986544 Kent et al. Jul 2011 B2
8008095 Assefa et al. Aug 2011 B2
8028119 Miura Sep 2011 B2
8041879 Erez Oct 2011 B2
8055957 Kondo Nov 2011 B2
8058925 Rasmussen Nov 2011 B2
8059460 Jeong et al. Nov 2011 B2
8072821 Arai Dec 2011 B2
8077496 Choi Dec 2011 B2
8080365 Nozaki Dec 2011 B2
8088556 Nozaki Jan 2012 B2
8094480 Tonomura Jan 2012 B2
8102701 Prejbeanu et al. Jan 2012 B2
8105948 Zhong et al. Jan 2012 B2
8120949 Ranjan et al. Feb 2012 B2
8143683 Warig et al. Mar 2012 B2
8144509 Jung Mar 2012 B2
8148970 Fuse Apr 2012 B2
8159867 Cho et al. Apr 2012 B2
8201024 Burger Jun 2012 B2
8223534 Chung Jul 2012 B2
8255742 Ipek Aug 2012 B2
8278996 Miki Oct 2012 B2
8279666 Dieny et al. Oct 2012 B2
8295073 Norman Oct 2012 B2
8295082 Chua-Eoan Oct 2012 B2
8334213 Mao Dec 2012 B2
8345474 Oh Jan 2013 B2
8349536 Nozaki Jan 2013 B2
8362580 Chen et al. Jan 2013 B2
8363465 Kent et al. Jan 2013 B2
8374050 Zhou et al. Feb 2013 B2
8386836 Burger Feb 2013 B2
8415650 Greene Apr 2013 B2
8416620 Zheng et al. Apr 2013 B2
8422286 Ranjan et al. Apr 2013 B2
8422330 Hatano et al. Apr 2013 B2
8432727 Ryu Apr 2013 B2
8441844 El Baraji May 2013 B2
8456883 Liu Jun 2013 B1
8456926 Ong et al. Jun 2013 B2
8477530 Ranjan et al. Jul 2013 B2
8492881 Kuroiwa et al. Jul 2013 B2
8495432 Dickens Jul 2013 B2
8535952 Ranjan et al. Sep 2013 B2
8539303 Lu Sep 2013 B2
8542524 Keshtbod et al. Sep 2013 B2
8549303 Fifield et al. Oct 2013 B2
8558334 Ueki et al. Oct 2013 B2
8559215 Zhou et al. Oct 2013 B2
8574928 Satoh et al. Nov 2013 B2
8582353 Lee Nov 2013 B2
8590139 Op DeBeeck et al. Nov 2013 B2
8592927 Jan Nov 2013 B2
8593868 Park Nov 2013 B2
8609439 Prejbeanu et al. Dec 2013 B2
8617408 Balamane Dec 2013 B2
8625339 Ong Jan 2014 B2
8634232 Oh Jan 2014 B2
8667331 Hori Mar 2014 B2
8687415 Parkin et al. Apr 2014 B2
8705279 Kim Apr 2014 B2
8716817 Saida May 2014 B2
8716818 Yoshikawa et al. May 2014 B2
8722543 Belen May 2014 B2
8737137 Choy et al. May 2014 B1
8755222 Kent et al. Jun 2014 B2
8779410 Sato et al. Jul 2014 B2
8780617 Kang Jul 2014 B2
8792269 Abedifard Jul 2014 B1
8802451 Malmhall Aug 2014 B2
8810974 Noel et al. Aug 2014 B2
8817525 Ishihara Aug 2014 B2
8832530 Pangal et al. Sep 2014 B2
8852760 Wang et al. Oct 2014 B2
8853807 Son et al. Oct 2014 B2
8860156 Beach et al. Oct 2014 B2
8862808 Tsukamoto et al. Oct 2014 B2
8867258 Rao Oct 2014 B2
8883520 Satoh et al. Nov 2014 B2
8902628 Ha Dec 2014 B2
8966345 Wilkerson Feb 2015 B2
8987849 Jan Mar 2015 B2
9019754 Bedeschi Apr 2015 B1
9025378 Tokiwa May 2015 B2
9026888 Kwok May 2015 B2
9030899 Lee May 2015 B2
9036407 Wang et al. May 2015 B2
9037812 Chew May 2015 B2
9043674 Wu May 2015 B2
9070441 Otsuka et al. Jun 2015 B2
9070855 Gan et al. Jun 2015 B2
9076530 Gomez et al. Jul 2015 B2
9082888 Kent et al. Jul 2015 B2
9104581 Fee et al. Aug 2015 B2
9104595 Sah Aug 2015 B2
9130155 Chepulskyy et al. Sep 2015 B2
9136463 Li Sep 2015 B2
9140747 Kim Sep 2015 B2
9165629 Chih Oct 2015 B2
9165787 Kang Oct 2015 B2
9166155 Deshpande Oct 2015 B2
9178958 Lindamood Nov 2015 B2
9189326 Kalamatianos Nov 2015 B2
9190471 Yi et al. Nov 2015 B2
9196332 Zhang et al. Nov 2015 B2
9229806 Mekhanik et al. Jan 2016 B2
9229853 Khan Jan 2016 B2
9231191 Huang et al. Jan 2016 B2
9245608 Chen et al. Jan 2016 B2
9250990 Motwani Feb 2016 B2
9250997 Kim et al. Feb 2016 B2
9251896 Ikeda Feb 2016 B2
9257483 Ishigaki Feb 2016 B2
9263667 Pinarbasi Feb 2016 B1
9286186 Weiss Mar 2016 B2
9298552 Leem Mar 2016 B2
9299412 Naeimi Mar 2016 B2
9317429 Ramanujan Apr 2016 B2
9324457 Takizawa Apr 2016 B2
9337412 Pinarbasi et al. May 2016 B2
9341939 Yu et al. May 2016 B1
9342403 Keppel et al. May 2016 B2
9349482 Kim et al. May 2016 B2
9351899 Bose et al. May 2016 B2
9362486 Kim et al. Jun 2016 B2
9378817 Kawai Jun 2016 B2
9379314 Park et al. Jun 2016 B2
9389954 Pelley et al. Jul 2016 B2
9396065 Webb et al. Jul 2016 B2
9396991 Arvin et al. Jul 2016 B2
9401336 Arvin et al. Jul 2016 B2
9406876 Pinarbasi Aug 2016 B2
9418721 Bose Aug 2016 B2
9431084 Bose et al. Aug 2016 B2
9449720 Lung Sep 2016 B1
9450180 Annunziata Sep 2016 B1
9455013 Kim Sep 2016 B2
9466789 Wang et al. Oct 2016 B2
9472282 Lee Oct 2016 B2
9472748 Kuo et al. Oct 2016 B2
9484527 Han et al. Nov 2016 B2
9488416 Englund et al. Nov 2016 B2
9490054 Jan Nov 2016 B2
9508456 Shim Nov 2016 B1
9520128 Bauer et al. Dec 2016 B2
9520192 Naeimi et al. Dec 2016 B2
9548116 Roy Jan 2017 B2
9548445 Lee et al. Jan 2017 B2
9553102 Wang Jan 2017 B2
9583167 Chung Feb 2017 B2
9594683 Dittrich Mar 2017 B2
9600183 Tornishima et al. Mar 2017 B2
9608038 Wang et al. Mar 2017 B2
9634237 Lee et al. Apr 2017 B2
9640267 Tani May 2017 B2
9646701 Lee May 2017 B2
9652321 Motwani May 2017 B2
9662925 Raksha et al. May 2017 B2
9697140 Kwok Jul 2017 B2
9720616 Yu Aug 2017 B2
9728712 Kardasz et al. Aug 2017 B2
9741926 Pinarbasi et al. Aug 2017 B1
9772555 Park et al. Sep 2017 B2
9773974 Pinarbasi et al. Sep 2017 B2
9780300 Zhou et al. Oct 2017 B2
9793319 Gan et al. Oct 2017 B2
9799751 Zhang Oct 2017 B1
9853006 Arvin et al. Dec 2017 B2
9853206 Pinarbasi et al. Dec 2017 B2
9853292 Loveridge et al. Dec 2017 B2
9858976 Ikegami Jan 2018 B2
9859333 Kim et al. Jan 2018 B2
9865806 Choi et al. Jan 2018 B2
9893207 Balakrishnan Feb 2018 B1
9935258 Chen et al. Apr 2018 B2
10008662 You Jun 2018 B2
10026609 Sreenivasan et al. Jul 2018 B2
10038137 Chuang Jul 2018 B2
10042588 Kang Aug 2018 B2
10043851 Shen Aug 2018 B1
10043967 Chen Aug 2018 B2
10062837 Kim et al. Aug 2018 B2
10115446 Louie et al. Oct 2018 B1
10134988 Fennimore et al. Nov 2018 B2
10163479 Berger et al. Dec 2018 B2
10186614 Asami Jan 2019 B2
20020090533 Zhang et al. Jul 2002 A1
20020105823 Redon et al. Aug 2002 A1
20030085186 Fujioka May 2003 A1
20030117840 Sharma et al. Jun 2003 A1
20030151944 Saito Aug 2003 A1
20030197984 Inomata et al. Oct 2003 A1
20030218903 Luo Nov 2003 A1
20040012994 Slaughter et al. Jan 2004 A1
20040026369 Ying Feb 2004 A1
20040061154 Huai et al. Apr 2004 A1
20040094785 Zhu et al. May 2004 A1
20040130936 Nguyen et al. Jul 2004 A1
20040173315 Leung Sep 2004 A1
20040257717 Sharma et al. Dec 2004 A1
20050041342 Huai et al. Feb 2005 A1
20050051820 Stojakovic et al. Mar 2005 A1
20050063222 Huai et al. Mar 2005 A1
20050104101 Sun et al. May 2005 A1
20050128842 Wei Jun 2005 A1
20050136600 Huai Jun 2005 A1
20050158881 Sharma Jul 2005 A1
20050180202 Huai et al. Aug 2005 A1
20050184839 Nguyen et al. Aug 2005 A1
20050201023 Huai et al. Sep 2005 A1
20050237787 Huai et al. Oct 2005 A1
20050280058 Pakala et al. Dec 2005 A1
20060018057 Huai Jan 2006 A1
20060049472 Diao et al. Mar 2006 A1
20060077734 Fong Apr 2006 A1
20060087880 Mancoff et al. Apr 2006 A1
20060092696 Bessho May 2006 A1
20060132990 Morise et al. Jun 2006 A1
20060227465 Inokuchi et al. Oct 2006 A1
20070019337 Apalkov et al. Jan 2007 A1
20070096229 Yoshikawa May 2007 A1
20070242501 Hung et al. Oct 2007 A1
20080049488 Rizzo Feb 2008 A1
20080079530 Weidman et al. Apr 2008 A1
20080112094 Kent et al. May 2008 A1
20080151614 Guo Jun 2008 A1
20080259508 Kent et al. Oct 2008 A2
20080297292 Viala et al. Dec 2008 A1
20090046501 Ranjan et al. Feb 2009 A1
20090072185 Raksha et al. Mar 2009 A1
20090091037 Assefa et al. Apr 2009 A1
20090098413 Kanegae Apr 2009 A1
20090146231 Kuper et al. Jun 2009 A1
20090161421 Cho et al. Jun 2009 A1
20090209102 Zhong et al. Aug 2009 A1
20090231909 Dieny et al. Sep 2009 A1
20100124091 Cowburn May 2010 A1
20100162065 Norman Jun 2010 A1
20100193891 Wang et al. Aug 2010 A1
20100246254 Prejbeanu et al. Sep 2010 A1
20100271870 Zheng et al. Oct 2010 A1
20100290275 Park et al. Nov 2010 A1
20100295009 Lung Nov 2010 A1
20110032645 Noel et al. Feb 2011 A1
20110058412 Zheng et al. Mar 2011 A1
20110061786 Mason Mar 2011 A1
20110089511 Keshtbod et al. Apr 2011 A1
20110133298 Chen et al. Jun 2011 A1
20120052258 Op DeBeeck et al. Mar 2012 A1
20120069649 Ranjan et al. Mar 2012 A1
20120155156 Watts Jun 2012 A1
20120155158 Higo Jun 2012 A1
20120280336 Watts Jun 2012 A1
20120181642 Prejbeanu et al. Jul 2012 A1
20120188818 Ranjan et al. Jul 2012 A1
20120280339 Zhang et al. Nov 2012 A1
20120294078 Kent et al. Nov 2012 A1
20120299133 Son et al. Nov 2012 A1
20130001506 Sato et al. Jan 2013 A1
20130001652 Yoshikawa et al. Jan 2013 A1
20130021841 Zhou et al. Jan 2013 A1
20130244344 Malmhall et al. Sep 2013 A1
20130267042 Satoh et al. Oct 2013 A1
20130270661 Yi et al. Oct 2013 A1
20130307097 Yi et al. Nov 2013 A1
20130341801 Satoh et al. Dec 2013 A1
20140009994 Parkin et al. Jan 2014 A1
20140042571 Gan et al. Feb 2014 A1
20140070341 Beach et al. Mar 2014 A1
20140103472 Kent et al. Apr 2014 A1
20140136870 Breternitz et al. May 2014 A1
20140151837 Ryu Jun 2014 A1
20140169085 Wang et al. Jun 2014 A1
20140177316 Otsuka et al. Jun 2014 A1
20140217531 Jan Aug 2014 A1
20140252439 Guo Sep 2014 A1
20140264671 Chepulskyy et al. Sep 2014 A1
20140281284 Block et al. Sep 2014 A1
20150056368 Wang et al. Feb 2015 A1
20150279904 Pinarbasi et al. Oct 2015 A1
20160087193 Pinarbasi et al. Mar 2016 A1
20160163973 Pinarbasi Jun 2016 A1
20160181509 Shin Jun 2016 A1
20160218278 Pinarbasi et al. Jul 2016 A1
20160283385 Boyd et al. Sep 2016 A1
20160315118 Kardasz et al. Oct 2016 A1
20160378592 Ikegami et al. Dec 2016 A1
20170062712 Choi et al. Mar 2017 A1
20170123991 Sela et al. May 2017 A1
20170133104 Darbari et al. May 2017 A1
20170199459 Ryu et al. Jul 2017 A1
20180033957 Zhang Feb 2018 A1
20180097006 Kim et al. Apr 2018 A1
20180114589 El-Baraji et al. Apr 2018 A1
20180119278 Kornmeyer May 2018 A1
20180121117 Berger et al. May 2018 A1
20180121355 Berger et al. May 2018 A1
20180121361 Berger et al. May 2018 A1
20180122446 Berger et al. May 2018 A1
20180122447 Berger et al. May 2018 A1
20180122448 Berger et al. May 2018 A1
20180122449 Berger et al. May 2018 A1
20180122450 Berger et al. May 2018 A1
20180130945 Choi et al. May 2018 A1
20180211821 Kogler Jul 2018 A1
20180233362 Glodde Aug 2018 A1
20180233363 Glodde Aug 2018 A1
20180248110 Kardasz et al. Aug 2018 A1
20180248113 Pinarbasi et al. Aug 2018 A1
20180331279 Shen Nov 2018 A1
Foreign Referenced Citations (27)
Number Date Country
2766141 Jan 2011 CA
105706259 Jun 2016 CN
1345277 Sep 2003 EP
2817998 Jun 2002 FR
2832542 May 2003 FR
2910716 Jun 2008 FR
H10-004012 Jan 1998 JP
H11-120758 Apr 1999 JP
H11-352867 Dec 1999 JP
2001-195878 Jul 2001 JP
2002-261352 Sep 2002 JP
2002-357489 Dec 2002 JP
2003-318461 Nov 2003 JP
2005-044848 Feb 2005 JP
2005-150482 Jun 2005 JP
2005-535111 Nov 2005 JP
2006128579 May 2006 JP
2008-524830 Jul 2008 JP
2009-027177 Feb 2009 JP
2013-012546 Jan 2013 JP
2014-039061 Feb 2014 JP
5635666 Dec 2014 JP
2015-002352 Jan 2015 JP
10-2014-015246 Sep 2014 KR
2009-080636 Jul 2009 WO
2011-005484 Jan 2011 WO
2014-062681 Apr 2014 WO
Non-Patent Literature Citations (11)
Entry
US 7,026,672 B2, 04/2006, Grandis (withdrawn)
US 2016/0218273 A1, 06/2016, Pinarbasi (withdrawn)
Bhatti Sabpreet et al., “Spintronics Based Random Access Memory: a Review,” Material Today, Nov. 2107, pp. 530-548, vol. 20, No. 9, Elsevier.
Helia Naeimi, et al., “STTRAM Scaling and Retention Failure,” Intel Technology Journal, vol. 17, Issue 1, 2013, pp. 54-75 (22 pages).
S. Ikeda, et al., “A Perpendicular-Anisotropy CoFeB—MgO Magnetic Tunnel Junction”, Nature Materials, vol. 9, Sep. 2010, pp. 721-724 (4 pages).
R.H. Kock, et al., “Thermally Assisted Magnetization Reversal in Submicron-Sized Magnetic Thin Films”, Physical Review Letters, The American Physical Society, vol. 84, No. 23, Jun. 5, 2000, pp. 5419-5422 (4 pages).
K.J. Lee, et al., “Analytical Investigation of Spin-Transfer Dynamics Using a Perpendicular-to-Plane Polarizer”, Applied Physics Letters, American Insitute of Physics, vol. 86, (2005), pp. 022505-1 to 022505-3 (3 pages).
Kirsten Martens, et al., “Thermally Induced Magnetic Switching in Thin Ferromagnetic Annuli”, NSF grants PHY-0351964 (DLS), 2005, 11 pages.
Kristen Martens, et al., “Magnetic Reversal in Nanoscropic Ferromagnetic Rings”, NSF grants PHY-0351964 (DLS) 2005, 23 pages.
“Magnetic Technology Spintronics, Media and Interface”, Data Storage Institute, R&D Highlights, Sep. 2010, 3 pages.
Daniel Scott Matic, “A Magnetic Tunnel Junction Compact Model for STT-RAM and MeRAM”, Master Thesis University of California, Los Angeles, 2013, pp. 43.
Related Publications (1)
Number Date Country
20200212296 A1 Jul 2020 US