PECVD coating methods for capped syringes, cartridges and other articles

Information

  • Patent Grant
  • 9458536
  • Patent Number
    9,458,536
  • Date Filed
    Friday, October 12, 2012
    11 years ago
  • Date Issued
    Tuesday, October 4, 2016
    7 years ago
Abstract
A method is disclosed in which a vapor-deposited coating or layer is directly or indirectly applied to at least a portion of the internal wall of the barrel of a capped pre-assembly comprising a barrel, optionally a dispensing portion, and a cap. The cap is secured to the barrel and at least substantially isolates the distal opening of the dispensing portion from pressure conditions outside the cap. A vapor-deposited coating or layer is applied directly or indirectly to at least a portion of the internal wall of the barrel while the pre-assembly is capped. The coating or layer is applied under conditions effective to maintain communication from the barrel lumen to the exterior via the front opening, optionally further via the dispensing portion lumen if present, at the end of the applying step. The capped pre-assembly can be pressure tested easily and rapidly, for example with a test duration between 1 and 60 seconds, to determine whether it has container closure integrity.
Description
FIELD OF THE INVENTION

The present invention relates to the technical field of coated surfaces, for example interior surfaces of pharmaceutical packages or other vessels for storing or other contact with fluids. Examples of suitable fluids include foods or biologically active compounds or body fluids, for example blood. The present invention also relates to a pharmaceutical package or other vessel and to a method for coating or layer an inner or interior surface of a pharmaceutical package or other vessel. The present invention also relates more generally to medical devices, including devices other than packages or vessels, for example catheters.


The present disclosure also relates to improved methods for processing pharmaceutical packages or other vessels, for example multiple identical pharmaceutical packages or other vessels used for pharmaceutical preparation storage and delivery, venipuncture and other medical sample collection, and other purposes. Such pharmaceutical packages or other vessels are used in large numbers for these purposes, and must be relatively economical to manufacture and yet highly reliable in storage and use.


BACKGROUND OF THE INVENTION

One important consideration in manufacturing pre-filled syringes and cartridges or other vessels (such as vials) for storing or other contact with fluids, for example, is that the contents of the pharmaceutical package or other vessel desirably will have a substantial shelf life. During this shelf life, it is important to isolate the material filling the pharmaceutical package or other vessel from the vessel wall containing it, or from barrier coating or layers or other functional coating or layers applied to the pharmaceutical package or other vessel wall to avoid leaching material from the pharmaceutical package or other vessel wall, barrier coating or layer, or other functional coating or layers into the prefilled contents or vice versa.


Commonly, after it is filled, a prefilled syringe or cartridge is capped at the distal end, as with a needle shield or other type of cap, and is closed at the proximal end by its drawn plunger tip or piston. The prefilled syringe or cartridge can be wrapped in a sterile package before use. To use the prefilled syringe or cartridge, the packaging and needle shield or other type of cap are removed, optionally a hypodermic needle or other type of dispenser is attached (if not already present), the delivery conduit or syringe is moved to a use position (such as by inserting the hypodermic needle into a patient's blood vessel or into apparatus to be rinsed with the contents of the syringe), and the plunger tip or piston is advanced in the barrel to inject the contents of the barrel. If a cartridge is being used, it is also placed into a mechanism that mechanically advances the piston to make an injection, for example using an injection spring.


An important consideration regarding medical syringes and cartridges, in particular prefilled syringes and cartridges, is to ensure that the prefilled syringe or cartridge has container closure integrity, meaning that it has been determined to be sterile, and not subject to subsequent microbiological contamination, by a mechanical, non-destructive test method. Other important considerations are that when the syringe or cartridge is being manufactured and before it has been filled, it does not have defects that would prevent the filled package from having the necessary container closure integrity. It is also important to manufacture a medical syringe or cartridge that is economical to manufacture, yet will provide the necessary container closure integrity, which can be verified by a test performed on every piece manufactured (a concept sometimes referred to as “100% inspection”).


SUMMARY OF THE INVENTION

An aspect of the invention is a method in which a vapor-deposited coating or layer is directly or indirectly applied to at least a portion of the internal wall of the barrel of a capped pre-assembly.


A capped pre-assembly is provided comprising a barrel, optionally a dispensing portion, and a cap.


The barrel has an internal wall defining a barrel lumen and a front opening through the internal wall.


The optional dispensing portion can be secured to the barrel and includes a distal opening and a dispensing portion lumen. The distal opening is located outside the barrel. The dispensing portion lumen communicates between the front opening of the barrel and the distal opening of the dispensing portion.


The cap is secured to the barrel and at least substantially isolates the front opening of the barrel and (if a dispensing portion is present) the distal opening of the dispensing portion from pressure conditions outside the cap.


A vapor-deposited coating or layer is applied directly or indirectly to at least a portion of the internal wall of the barrel. The coating or layer is applied while the pre-assembly is capped. The coating or layer is applied under conditions effective to maintain communication between the barrel lumen and the exterior via the front opening at the end of the applying step.


In an optional further elaboration of the method, the capped pre-assembly can be pressure tested easily and rapidly, for example with a test duration between 1 and 60 seconds, to determine whether it has container closure integrity.


Other aspects of the invention will become apparent from the present description, claims, and drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an elevation view of a capped pre-assembly according to an embodiment of the disclosure.



FIG. 2 is a longitudinal section of the capped pre-assembly of FIG. 1.



FIG. 3 is an enlarged fragmentary view of the capped pre-assembly of FIGS. 1 and 2.



FIG. 4 is a schematic longitudinal section of the capped pre-assembly of FIGS. 1 and 2 seated on a chemical vapor deposition coating station.



FIG. 5 is a section taken along section lines A-A of FIG. 4.



FIG. 6 is a schematic view showing more details of the chemical vapor deposition coating station shown in FIGS. 4 and 5.



FIG. 7 is a view similar to FIG. 2 of the capped pre-assembly of FIGS. 1-6, filled with a pharmaceutical preparation and fitted with a plunger tip or piston to define a pre-filled syringe. In the option shown, a plunger tip and plunger are installed.



FIG. 8 is a plot of pressure decay for 14 different samples made according to the working example set out below.





The following reference characters are used in the drawing figures:















12
Capped pre-assembly


14
Barrel


16
Internal wall


18
Barrel lumen


20
Dispensing portion


22
Front opening


24
Distal opening


26
Dispensing portion lumen


27
Cap


30
(first) Vapor-deposited coating or layer


32
Opening


34
(second) vapor-deposited coating or layer


36
Plunger tip or piston


38
Plunger rod


40
Fluid material


42
Rib


44
Cylindrical surface


46
Barb


48
Catch


50
Vessel holder


52
Plot


54
Plot


60
coating station


82
Opening


84
Closed end


92
Vessel port


94
Vacuum duct


96
Vacuum port


98
Vacuum source


100
O-ring (of 92)


102
O-ring (of 96)


104
Gas inlet port


106
O-ring (of 100)


108
Probe (counter electrode)


110
Gas delivery port (of 108)


114
Housing (of 50 or 112)


116
Collar


118
Exterior surface (of 80)


144
PECVD gas source


152
Pressure gauge


160
Electrode


162
Power supply


164
Sidewall (of 160)


166
Sidewall (of 160)


168
Closed end (of 160)


200
Electrode


210
Pharmaceutical package


404
Exhaust


574
Main vacuum valve


576
Vacuum line


578
Manual bypass valve


580
Bypass line


582
Vent valve


584
Main reactant gas valve


586
Main reactant feed line


588
Organosilicon liquid reservoir


590
Organosilicon feed line (capillary)


592
Organosilicon shut-off valve


594
Oxygen tank


596
Oxygen feed line


598
Mass flow controller


600
Oxygen shut-off valve


602
Additional reservoir


604
Feed line


606
Shut-off valve


614
Headspace


616
Pressure source


618
Pressure line


620
Capillary connection









The present invention will now be described more fully, with reference to the accompanying drawings, in which several embodiments are shown. This invention can, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth here. Rather, these embodiments are examples of the invention, which has the full scope indicated by the language of the claims. Like numbers refer to like or corresponding elements throughout. The following disclosure relates to all embodiments unless specifically limited to a certain embodiment.


DEFINITION SECTION

In the context of the present invention, the following definitions and abbreviations are used:


In the present Figures, the capped pre-assembly 12 is configured as a syringe. The capped pre-assembly 12 can optionally be completed to form a syringe by adding a plunger tip or piston 36 (two interchangeable names for the same structure) and a plunger rod 38. The internal wall 16 can define at least a portion of the barrel 14. The plunger tip or piston 36 can be a relatively sliding part of the syringe, with respect to the barrel 14. The term “syringe,” however, is broadly defined to include cartridges, injection “pens,” and other types of barrels or reservoirs adapted to be assembled with one or more other components to provide a functional syringe. “Syringe” is also broadly defined to include related articles such as auto-injectors, which provide a mechanism for dispensing the contents.


RF is radio frequency.


The term “at least” in the context of the present invention means “equal or more” than the integer following the term. The word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality unless indicated otherwise. Whenever a parameter range is indicated, it is intended to disclose the parameter values given as limits of the range and all values of the parameter falling within said range.


“First” and “second” or similar references to, for example, coating or layers refer to the minimum number of coating or layers that are present, but do not necessarily represent the order or total number of coating or layers. These terms do not limit the number of coating or layers or the particular processing carried out at the respective stations.


For purposes of the present invention, a “precursor” is a compound having at least one of the linkages:




embedded image



which is a tetravalent silicon atom connected to an oxygen or nitrogen atom and an organic carbon atom (an organic carbon atom being a carbon atom bonded to at least one hydrogen atom). A volatile organosilicon precursor, defined as such a precursor that can be supplied as a vapor in a PECVD apparatus, is an optional organosilicon precursor. Optionally, the organosilicon precursor is selected from the group consisting of a linear siloxane, a monocyclic siloxane, a polycyclic siloxane, a polysilsesquioxane, an alkyl trimethoxysilane, a linear silazane, a monocyclic silazane, a polycyclic silazane, a polysilsesquiazane, and a combination of any two or more of these precursors.


The feed amounts of PECVD precursors, gaseous reactant or process gases, and carrier gas are sometimes expressed in “standard volumes” in the specification and claims. The standard volume of a charge or other fixed amount of gas is the volume the fixed amount of the gas would occupy at a standard temperature and pressure (without regard to the actual temperature and pressure of delivery). Standard volumes can be measured using different units of volume, and still be within the scope of the present disclosure and claims. For example, the same fixed amount of gas could be expressed as the number of standard cubic centimeters, the number of standard cubic meters, or the number of standard cubic feet. Standard volumes can also be defined using different standard temperatures and pressures, and still be within the scope of the present disclosure and claims. For example, the standard temperature might be 0° C. and the standard pressure might be 760 Torr (as is conventional), or the standard temperature might be 20° C. and the standard pressure might be 1 Torr. But whatever standard is used in a given case, when comparing relative amounts of two or more different gases without specifying particular parameters, the same units of volume, standard temperature, and standard pressure are to be used relative to each gas, unless otherwise indicated.


The corresponding feed rates of PECVD precursors, gaseous reactant or process gases, and carrier gas are expressed in standard volumes per unit of time in the specification. For example, in the working examples the flow rates are expressed as standard cubic centimeters per minute, abbreviated as sccm. As with the other parameters, other units of time can be used, such as seconds or hours, but consistent parameters are to be used when comparing the flow rates of two or more gases, unless otherwise indicated.


The term “at least” in the context of the present invention means “equal or more” than the integer following the term. Thus, a barrel and dispensing portion in the context of the present invention has one or more openings. One or two openings, like the openings of a sample tube (one opening) or a syringe barrel (two openings) are preferred. If the vessel has two openings, they can be of same or different size. If there is more than one opening, one opening can be used for the gas inlet for a PECVD coating or layer method according to the present invention, while the other openings are capped.


Empirical compositions represented by the formulas SiOx, SiOxCy, and SiOxCyHz are referred to in this specification. The values of x, y, and z used throughout this specification should be understood as ratios or an empirical formula (for example for a coating or layer), rather than as a limit on the number or type of atoms in a molecule. For example, octamethylcyclotetrasiloxane, which has the molecular composition Si4O4C8H24, can be described by the following empirical formula, arrived at by dividing each of w, x, y, and z in the molecular formula by 4, the largest common factor: SiO1C2H6. The values of x, y, and z are also not limited to integers. For example, (acyclic) octamethyltrisiloxane, molecular composition Si3O2C8H24, is reducible to SiO0.67C2.67H8. Also, although SiOxCyHz is described as equivalent to SiOxCy, it is not necessary to show the presence of hydrogen in any proportion to show the presence of SiOxCy.


A “protective coating or layer” according to the present invention is a coating or layer that protects an underlying surface, coating or layer from a fluid composition contacting the coating or layer. The present pH protective coating or layers optionally can have a composition according to the empirical composition SiwOxCyHz, (or its equivalent SiOxCy) as defined herein. It generally has an atomic ratio SiwOxCy (or its equivalent SiOxCy) wherein w is 1, x is from about 0.5 to about 2.4, y is from about 0.6 to about 3.


Typically, expressed as the formula SiwOxCy, the atomic ratios of Si, O, and C in the “protective coating or layer” are, as several options:


Si 100: O 50-150: C 90-200 (i.e. w=1, x=0.5 to 1.5, y=0.9 to 2);


Si 100: O 70-130: C 90-200 (i.e. w=1, x=0.7 to 1.3, y=0.9 to 2)


Si 100: O 80-120: C 90-150 (i.e. w=1, x=0.8 to 1.2, y=0.9 to 1.5)


Si 100: O 90-120: C 90-140 (i.e. w=1, x=0.9 to 1.2, y=0.9 to 1.4), or


Si 100: O 92-107: C 116-133 (i.e. w=1, x=0.92 to 1.07, y=1.16 to 1.33)


The atomic ratio can be determined by XPS (X-ray photoelectron spectroscopy). Taking into account the H atoms, which are not measured by XPS, the coating or layer may thus in one aspect have the formula SiwOxCyHz (or its equivalent SiOxCy), for example where w is 1, x is from about 0.5 to about 2.4, y is from about 0.6 to about 3, and z is from about 2 to about 9. Typically, such coating or layer would hence contain 36% to 41% carbon normalized to 100% carbon plus oxygen plus silicon.


One of the optional embodiments of the present invention is a syringe part, for example a syringe or cartridge barrel, particularly as part of a capped pre-assembly, coated with a pH protective coating or layer.


“Slidably” means that the plunger tip or piston, closure, or other movable part is permitted to slide in a syringe barrel, cartridge, or other vessel.


DETAILED DESCRIPTION

Referring to the Figures, an aspect of the invention is a method in which a vapor-deposited coating or layer 30 is directly or indirectly applied to at least a portion of the internal wall 16 of the barrel 14 of a capped pre-assembly 12.


A capped pre-assembly 12 is provided comprising a barrel 14, optionally a dispensing portion 20, and a cap 28. The capped pre-assembly 12 can be a complete article or it can be a portion of a complete article adapted to dispense fluid, such as a syringe, a cartridge, a catheter, or other article.


The barrel 14 has an internal wall 16 defining a barrel lumen 18 and a front opening 22 through the internal wall 16. Optionally in any embodiment, the barrel 14 can further include a another opening 32 spaced from the dispensing portion 20 and communicating through the internal wall 16. Such an opening is conventional, for example, in a syringe or cartridge, where a typical example is the back opening 32 of a prefilled syringe barrel, through which the piston or plunger 36 is inserted after the barrel lumen 18 is filled with a suitable pharmaceutical preparation or other fluid material 40 to be dispensed.


The barrel 14 is formed, for example, by molding, although the manner of its formation is not critical and it can also be formed, for example, by machining a solid preform. Preferably, the barrel is molded by injection molding thermoplastic material, although it can also be formed by blow molding or a combined method.


As one preferred example, the barrel 14 can be formed by placing a dispensing portion 20 as described below in an injection mold and injection molding thermoplastic material about the dispensing portion, thus forming the barrel and securing the dispensing portion to the barrel. Alternatively, the dispensing portion (if present) and the barrel can be molded or otherwise formed as a single piece, or can be formed separately and joined in other ways. The barrel of any embodiment can be made of any suitable material. Several barrel materials particularly contemplated are COC (cyclic olefin copolymer), COP (cyclic olefin polymer), PET (polyethylene terephthalate), and polypropylene.


The optional dispensing portion 20 of the capped pre-assembly 12 is provided to serve as an outlet for fluid dispensed from the barrel lumen 18 of a completed article made from the capped pre-assembly 12. One example of a suitable dispensing portion illustrated in the Figures is a hypodermic needle 20.


Alternatively, in any embodiment the dispensing portion 20 can instead be a needle-free dispenser. One example of a suitable needle-free dispenser is a blunt or flexible dispensing portion intended to be received in a complementary coupling to transfer fluid material 40. Such blunt or flexible dispensing portions are well known for use in syringes, intravenous infusion systems, and other systems and equipment to dispense material while avoiding the hazard of working with a sharp needle that may accidentally stick a health professional or other person. Another example of a needle-free dispenser is a fluid jet or spray injection system that injects a free jet or spray of fluid directly through a patient's skin, without the need for an intermediate needle. Any type of dispensing portion 20, whether a hypodermic needle or any form of needle-free dispenser, is contemplated for use according to any embodiment of the present invention.


The dispensing portion 20 is secured to the barrel 14 and includes a distal opening 24 and a dispensing portion lumen 26. The front opening 22 communicates with the barrel lumen 18. The distal opening 24 is located outside the barrel 14. The dispensing portion lumen 26 communicates between the front opening 22 and the distal opening 24 of the dispensing portion 20. In the illustrated embodiment, the distal opening 24 is at the sharpened tip of a hypodermic needle 20.


The cap 28 is secured to the barrel 14 and at least substantially isolates the front opening 22 and the distal opening 24 of the dispensing portion 20 from pressure conditions outside the cap 28. Optionally in any embodiment, the cap 28 sufficiently isolates portions of the assembly 12 to provide a sufficient bio-barrier to facilitate safe use of the capped pre-assembly 12 for transdermal injections.


The cap 28 can isolate the distal opening 24 in various ways. Effective isolation can be provided at least partially due to contact between the cap 28 and the distal opening 24, as shown in present FIGS. 2, 3, 4, and 7. In the illustrated embodiment, the tip of the dispensing portion 20 is buried in the material of the cap 28. Alternatively in any embodiment, effective isolation can be provided at least partially due to contact between the cap 28 and the barrel 14, as also shown in present FIGS. 2, 3, 4, and 7. In the illustrated embodiment, the primary line of contact between the cap 28 and the barrel 14 is at a rib 42 (best seen in FIG. 3) encircling and seated against a generally cylindrical surface 44 at the nose of the barrel 14. Alternatively in any embodiment, effective isolation can be provided due to both of these types of contact as illustrated in FIGS. 2-3, or in other ways, without limitation.


The cap 28 of any embodiment optionally has a latching mechanism, best shown in FIG. 3, including a barb 46 and a catch 48 which engage to hold the cap 28 in place. The catch 48 is made of sufficiently resilient material to allow the cap 28 to be removed and replaced easily.


If the dispensing portion 20 is a hypodermic needle, the cap 28 can be a specially formed needle shield. The original use of a needle shield is to cover the hypodermic needle before use, preventing accidental needle sticks and preventing contamination of the needle before it is injected in a patient or an injection port. A comparable cap preferably is used, even if the dispensing portion 20 is a needle-free dispenser, to prevent contamination of the dispenser during handling.


The cap 28 can be formed in any suitable way. For example, the cap 28 can be formed by molding thermoplastic material. Optionally in any embodiment, the thermoplastic material is elastomeric material or other material that is suitable for forming a seal. One suitable category of elastomeric materials is known generically as thermoplastic elastomer (TPE). An example of a suitable thermoplastic elastomer for making a cap 28 is Stelmi® Formulation 4800 (flexible cap formulation). Any other material having suitable characteristics can instead be used in any embodiment.


As another optional feature in any embodiment the cap 28 can be sufficiently permeable to a sterilizing gas to sterilize the portions of the assembly 12 isolated by the cap. One example of a suitable sterilizing gas is ethylene oxide. Caps 28 are available that are sufficiently permeable to the sterilizing gas that parts isolated by the cap can nonetheless be sterilized. An example of a cap formulation sufficiently permeable to accommodate ethylene oxide gas sterilization is Stelmi® Formulation 4800.


Thus, an optional step in the present methods is sterilizing the capped pre-assembly 12 using a sterilizing gas. Sterilization can be performed at any suitable step, such as sterilizing the capped pre-assembly 12 alone or sterilizing a complete pre-filled syringe assembly after it is filled with a suitable pharmaceutical preparation or other material.


When carrying out the present method, a vapor-deposited coating or layer 30 is applied directly or indirectly to at least a portion of the internal wall 16 of the barrel 14. The coating or layer 30 is applied while the pre-assembly 12 is capped. The coating or layer 30 is applied under conditions effective to maintain communication between the barrel lumen 18 and the dispensing portion lumen 26 via the front opening 22 at the end of the applying step.


In any embodiment the vapor-deposited coating or layer 30 optionally can be applied through the opening 32.


In any embodiment the vapor-deposited coating or layer 30 optionally can be applied by introducing a vapor-phase precursor material through the opening and employing chemical vapor deposition to deposit a reaction product of the precursor material on the internal wall of the barrel.


In any embodiment the vapor-deposited coating or layer (30) optionally can be applied by flowing a precursor reactant vapor material through the opening and employing chemical vapor deposition to deposit a reaction product of the precursor reactant vapor material on the internal wall of the barrel.


In any embodiment the reactant vapor material optionally can be a precursor.


In any embodiment the reactant vapor material optionally can be an organosilicon precursor.


In any embodiment the reactant vapor material optionally can be an oxidant gas.


In any embodiment the reactant vapor material optionally can be oxygen.


In any embodiment the reactant vapor material optionally can include a carrier gas.


In any embodiment the reactant vapor material optionally can include helium, argon, krypton, xenon, neon, or a combination of two or more of these.


In any embodiment the reactant vapor material optionally can include argon.


In any embodiment the reactant vapor material optionally can be a precursor material mixture with one or more oxidant gases in a partial vacuum through the opening and employing chemical vapor deposition to deposit a reaction product of the precursor material mixture on the internal wall of the barrel.


In any embodiment the reactant vapor material optionally can be passed through the opening at sub-atmospheric pressure.


In any embodiment the chemical vapor deposition optionally can be plasma-enhanced chemical vapor deposition.


In any embodiment the vapor-deposited coating or layer optionally can be a gas barrier coating or layer.


In any embodiment the vapor-deposited coating or layer optionally can be an oxygen barrier coating or layer.


In any embodiment the vapor-deposited coating or layer is a water vapor barrier coating or layer.


In any embodiment the vapor-deposited coating or layer optionally can be a solvent barrier coating or layer.


In any embodiment the vapor-deposited coating or layer optionally can be a water barrier coating or layer.


In any embodiment the vapor-deposited coating or layer optionally can be a solvent barrier coating or layer for a solvent comprising a co-solvent used to increase drug solubilization.


In any embodiment the vapor-deposited coating or layer optionally can be a barrier coating or layer for water, glycerin, propylene glycol, methanol, ethanol, n-propanol, isopropanol, acetone, benzyl alcohol, polyethylene glycol, cotton seed oil, benzene, dioxane, or combinations of any two or more of these.


In any embodiment the vapor-deposited coating or layer optionally can be a solute barrier coating or layer. Examples of solutes in drugs usefully excluded by a barrier layer in any embodiment include antibacterial preservatives, antioxidants, chelating agents, pH buffers, and combinations of any of these.


In any embodiment the vapor-deposited coating or layer optionally can be a metal ion barrier coating or layer.


In any embodiment the vapor-deposited coating or layer optionally can be a barrel wall material barrier coating or layer, to prevent or reduce the leaching of barrel material such as any of the base barrel resins mentioned previously and any other ingredients in their respective compositions.


The vapor deposited coating or layer for any embodiment defined in this specification (unless otherwise specified in a particular instance) optionally can be a coating or layer, optionally applied by PECVD as indicated in U.S. Pat. No. 7,985,188. The vapor deposited coating or layer can be a barrier coating or layer, optionally a barrier coating or layer characterized as an “SiOx” coating or layer containing silicon, oxygen, and optionally other elements, in which x, the ratio of oxygen to silicon atoms, optionally can be from about 1.5 to about 2.9, or 1.5 to about 2.6, or about 2. These alternative definitions of x apply to any use of the term SiOx in this specification. The barrier coating or layer optionally can be applied, for example to the interior of a pharmaceutical package or other vessel, for example a sample collection tube, a syringe barrel, a vial, or another type of vessel. The SiOx coating or layer is particularly contemplated as a barrier to oxygen ingress or egress and a solute barrier to prevent migration of drug constituents (as in the barrel lumen 18 of a prefilled syringe or cartridge) into the barrel wall or the migration of barrel wall constituents into the drug or other contents of the barrel lumen.


In any embodiment plasma optionally can be generated in the barrel lumen 18 by placing an inner electrode into the barrel lumen 18 through the opening 32, placing an outer electrode outside the barrel 14 and using the electrodes to apply plasma-inducing electromagnetic energy which optionally can be microwave energy, radio frequency energy, or both in the barrel lumen 18.


In any embodiment the electromagnetic energy optionally can be direct current.


In any embodiment the electromagnetic energy optionally can be alternating current. The alternating current optionally can be modulated at frequencies including audio, or microwave, or radio, or a combination of two or more of audio, microwave, or radio.


In any embodiment the electromagnetic energy optionally can be applied across the barrel lumen (18).


In any embodiment, in addition to applying a first coating or layer as described above, the method optionally can include applying second or further coating or layer of the same material or a different material. As one example useful in any embodiment, particularly contemplated if the first coating or layer is an SiOx barrier coating or layer, a further coating or layer can be placed directly or indirectly over the barrier coating or layer. One example of such a further coating or layer useful in any embodiment is a pH protective coating or layer


The pH protective coating or layer optionally can be applied over at least a portion of the SiOx coating or layer to protect the SiOx coating or layer from contents stored in a vessel, where the contents otherwise would be in contact with the SiOx coating or layer. The pH protective coating or layers or layers are particularly contemplated to protect an SiOx barrier layer of a prefilled syringe or cartridge that is exposed to contents, such as a pharmaceutical preparation, having a pH between 4 and 9, alternatively between 4 and 8, alternatively between 5 and 9. Such pharmaceutical preparations have been found to attack and remove the SiOx coating or layer if unprotected by a protective coating or layer.


Thus, in any embodiment, after the applying step, another vapor-deposited coating 34 optionally can be applied directly or indirectly over the coating 30, while the pre-assembly 12 is capped, under conditions effective to maintain communication between the barrel lumen 18 and the dispensing portion lumen 26 via the front opening 22 at the end of applying the second vapor-deposited coating 34.


In any embodiment, the other vapor-deposited coating 34 can be a pH protective coating or layer.


In any embodiment, the pH protective coating or layer can include or consist essentially of SiOxCy or SiNxCy wherein x is from about 0.5 to about 2.4, optionally about 1.1, and y is from about 0.6 to about 3, optionally about 1.1.


In any embodiment, the pH protective coating or layer can include or consist essentially of SiOxCyHz, in which x is from about 0.5 to about 2.4, optionally from about 0.5 to 1, y is from about 0.6 to about 3, optionally from about 2 to about 3, and z is from about 2 to about 9, optionally from 6 to about 9.


Optionally in any embodiment, the pH protective coating or layer can be applied as the first or sole vapor-deposited coating or layer (30), instead of or in addition to its application as a further layer. This expedient may be useful, for example, where the barrel is made of glass. The presently disclosed pH protective coating or layer also reduces the dissolution of glass by contents having the pH values indicated as attacking SiOx coatings or layers.


Surprisingly, it has been found that the above stated coatings or layers can be applied to the capped pre-assembly 12 with substantially no deposition of the vapor-deposited coating 30 in the dispensing portion lumen 26. This is shown by a working example below.


Precursors


The precursor for the SiOx barrier coating or layer or for the pH protective coating or layer can include any of the following precursors useful for PECVD. The precursor for the PECVD pH protective coating or layer of the present invention optionally can be broadly defined as an organometallic precursor. An organometallic precursor is defined in this specification as comprehending compounds of metal elements from Group III and/or Group IV of the Periodic Table having organic residues, for example hydrocarbon, aminocarbon or oxycarbon residues. Organometallic compounds as presently defined include any precursor having organic moieties bonded to silicon or other Group III/IV metal atoms directly, or optionally bonded through oxygen or nitrogen atoms. The relevant elements of Group III of the Periodic Table are Boron, Aluminum, Gallium, Indium, Thallium, Scandium, Yttrium, and Lanthanum, Aluminum and Boron being preferred. The relevant elements of Group IV of the Periodic Table are Silicon, Germanium, Tin, Lead, Titanium, Zirconium, Hafnium, and Thorium, with Silicon and Tin being preferred. Other volatile organic compounds can also be contemplated. However, organosilicon compounds are preferred for performing present invention.


An organosilicon precursor is contemplated, where an “organosilicon precursor” is defined throughout this specification most broadly as a compound having at least one of the linkages:




embedded image


The first structure immediately above is a tetravalent silicon atom connected to an oxygen atom and an organic carbon atom (an organic carbon atom being a carbon atom bonded to at least one hydrogen atom). The second structure immediately above is a tetravalent silicon atom connected to an —NH— linkage and an organic carbon atom (an organic carbon atom being a carbon atom bonded to at least one hydrogen atom). Optionally, the organosilicon precursor is selected from the group consisting of a linear siloxane, a monocyclic siloxane, a polycyclic siloxane, a polysilsesquioxane, a linear silazane, a monocyclic silazane, a polycyclic silazane, a polysilsesquiazane, and a combination of any two or more of these precursors. Also contemplated as a precursor, though not within the two formulas immediately above, is an alkyl trimethoxysilane.


If an oxygen-containing precursor (for example a Siloxane) is used, a representative predicted empirical composition resulting from PECVD under conditions forming a hydrophobic or lubricating pH protective coating or layer would be SiwOxCyHz or its equivalent SiOxCy as defined in the Definition Section, while a representative predicted empirical composition resulting from PECVD under conditions forming a barrier coating or layer would be SiOx, where x in this formula is from about 1.5 to about 2.9. If a nitrogen-containing precursor (for example a silazane) is used, the predicted composition would be Siw*Nx*Cy*Hz*, i.e. in SiwOxCyHz or its equivalent SiOxCy as specified in the Definition Section, O is replaced by N and the indices for H are adapted to the higher valency of N as compared to O (3 instead of 2. The latter adaptation will generally follow the ratio of w, x, y and z in a Siloxane to the corresponding indices in its aza counterpart. In a particular aspect of the invention, Siw.Nx.Cy.Hz. (or its equivalent SiNX*Cy*) in which w*, x*, y*, and z* are defined the same as w, x, y, and z for the siloxane counterparts, but for an optional deviation in the number of hydrogen atoms.


One type of precursor starting material having the above empirical formula is a linear siloxane, for example a material having the following formula:




embedded image



in which each R is independently selected from alkyl, for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, vinyl, alkyne, or others, and n is 1, 2, 3, 4, or greater, optionally two or greater. Several examples of contemplated linear siloxanes are

  • hexamethyldisiloxane (HMDSO),
  • octamethyltrisiloxane,
  • decamethyltetrasiloxane,
  • dodecamethylpentasiloxane,


    or combinations of two or more of these. The analogous silazanes in which —NH— is substituted for the oxygen atom in the above structure are also useful for making analogous pH protective coating or layers or coating or layers. Several examples of contemplated linear silazanes are octamethyltrisilazane, decamethyltetrasilazane, or combinations of two or more of these.


Another type of precursor starting material, among the preferred starting materials in the present context, is a monocyclic siloxane, for example a material having the following structural formula:




embedded image



in which R is defined as for the linear structure and “a” is from 3 to about 10, or the analogous monocyclic silazanes. Several examples of contemplated hetero-substituted and unsubstituted monocyclic siloxanes and silazanes include 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)methyl]cyclotrisiloxane 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane, pentamethylcyclopentasiloxane, pentavinylpentamethylcyclopentasiloxane, hexamethylcyclotrisiloxane, hexaphenylcyclotrisiloxane, octamethylcyclotetrasiloxane (OMCTS), octaphenylcyclotetrasiloxane, decamethylcyclopentasiloxane dodecamethylcyclohexasiloxane, methyl(3,3,3-trifluoropropl)cyclosiloxane, Cyclic organosilazanes are also contemplated, such as Octamethylcyclotetrasilazane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasilazane hexamethylcyclotrisilazane, octamethylcyclotetrasilazane, decamethylcyclopentasilazane, dodecamethylcyclohexasilazane, or combinations of any two or more of these.


Another type of precursor starting material, among the preferred starting materials in the present context, is a polycyclic siloxane, for example a material having one of the following structural formulas:




embedded image



in which Y can be oxygen or nitrogen, E is silicon, and Z is a hydrogen atom or an organic substituent, for example alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, vinyl, alkyne, or others. When each Y is oxygen, the respective structures, from left to right, are a Silatrane, a Silquasilatrane, and a Silproatrane. When Y is nitrogen, the respective structures are an azasilatrane, an azasilquasiatrane, and an azasilproatrane.


Another type of polycyclic siloxane precursor starting material, among the preferred starting materials in the present context, is a polysilsesquioxane, with the empirical formula RSiO1.5 and the structural formula:




embedded image



in which each R is a hydrogen atom or an organic substituent, for example alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, vinyl, alkyne, or others. Two commercial materials of this sort are SST-eM01 poly(methylsilsesquioxane), in which each R is methyl, and SST-3 MH1.1 poly(Methyl-Hydridosilsesquioxane), in which 90% of the R groups are methyl, 10% are hydrogen atoms. This material is available in a 10% solution in tetrahydrofuran, for example. Combinations of two or more of these are also contemplated. Other examples of a contemplated precursor are methylsilatrane, CAS No. 2288-13-3, in which each Y is oxygen and Z is methyl, methylazasilatrane, poly(methylsilsesquioxane) (for example SST-eM01 poly(methylsilsesquioxane)), in which each R optionally can be methyl, SST-3 MH1.1 poly(Methyl-Hydridosilsesquioxane) (for example SST-3 MH1.1 poly(Methyl-Hydridosilsesquioxane)), in which 90% of the R groups are methyl and 10% are hydrogen atoms, or a combination of any two or more of these.


The analogous polysilsesquiazanes in which —NH— is substituted for the oxygen atom in the above structure are also useful for making analogous pH protective coating or layer. Examples of contemplated polysilsesquiazanes are a poly(methylsilsesquiazane), in which each R is methyl, and a poly(Methyl-Hydridosilsesquiazane, in which 90% of the R groups are methyl, 10% are hydrogen atoms. Combinations of two or more of these are also contemplated.


One particularly contemplated precursor for the barrier coating or layer according to the present invention is a linear siloxane, for example is HMDSO. One particularly contemplated precursor for the pH protective coating or layer and the pH protective coating or layer according to the present invention is a cyclic siloxane, for example octamethylcyclotetrasiloxane (OMCTS).


It is believed that the OMCTS or other cyclic siloxane molecule provides several advantages over other siloxane materials. First, its ring structure results in a less dense pH protective coating or layer (as compared to pH protective coating or layer prepared from HMDSO). The molecule also allows selective ionization so that the final structure and chemical composition of the pH protective coating or layer can be directly controlled through the application of the plasma power. Other organosilicon molecules are readily ionized (fractured) so that it is more difficult to retain the original structure of the molecule.


In any of the PECVD methods according to the present invention, the applying step optionally can be carried out by vaporizing the precursor and providing it in the vicinity of the substrate. For example, OMCTS is usually vaporized by heating it to about 50° C. before applying it to the PECVD apparatus.


Cyclic organosilicon precursors, in particular monocyclic organosilicon precursors (like the monocyclic precursors listed elsewhere in present description), and specifically OMCTS, are particularly suitable to achieve a pH protective coating or layer.


Other Components of PECVD Reaction Mixture and Ratios of Components For pH Protective Coating or Layer


Generally, for a pH protective coating or layer, O2 can be present in an amount (which can, for example be expressed by the flow rate in sccm) which is less than one order of magnitude greater than the organosilicon amount. In contrast, in order to achieve a barrier coating or layer, the amount of O2 typically is at least one order of magnitude higher than the amount of organosilicon precursor. In particular, the volume ratio (in sccm) of organosilicon precursor to O2 for a pH protective coating or layer can be in the range from 0.1:1 to 10:1, optionally in the range from 0.3:1 to 8:1, optionally in the range from 0.5:1 to 5:1, optionally from 1:1 to 3:1. The presence of the precursor and O2 in the volume ratios as given in Tables 9-11 is specifically suitable to achieve a pH protective coating or layer.


In one aspect of the invention, a carrier gas is absent in the reaction mixture, in another aspect of the invention, it is present. Suitable carrier gases include Argon, Helium and other noble gases such as Neon and Xenon. When the carrier gas is present in the reaction mixture, it is typically present in a volume (in sccm) exceeding the volume of the organosilicon precursor. For example, the ratio of the organosilicon precursor to carrier gas can be from 1:1 to 1:50, optionally from 1:5 to 1:40, optionally from 1:10 to 1:30. One function of the carrier gas is to dilute the reactants in the plasma, encouraging the formation of a coating or layer on the substrate instead of powdered reaction products that do not adhere to the substrate and are largely removed with the exhaust gases.


Since the addition of Argon gas improves the pH protective performance (see the working examples below), it is believed that additional ionization of the molecule in the presence of Argon contributes to providing lubricity. The Si—O—Si bonds of the molecule have a high bond energy followed by the Si—C, with the C—H bonds being the weakest. pH protective appears to be achieved when a portion of the C—H bonds are broken. This allows the connecting (cross-linking) of the structure as it grows. Addition of oxygen (with the Argon) is understood to enhance this process. A small amount of oxygen can also provide C—O bonding to which other molecules can bond. The combination of breaking C—H bonds and adding oxygen all at low pressure and power leads to a chemical structure that is solid while providing lubricity.


In any of embodiments, one preferred combination of process gases includes octamethylcyclotetrasiloxane (OMCTS) or another cyclic siloxane as the precursor, in the presence of oxygen as an oxidizing gas and argon as a carrier gas. Without being bound to the accuracy of this theory, the inventors believe this particular combination is effective for the following reasons. The presence of O2, N2O, or another oxidizing gas and/or of a carrier gas, in particular of a carrier gas, for example a noble gas, for example Argon (Ar), is contemplated to improve the resulting pH protective coating or layer.


Some non-exhaustive alternative selections and suitable proportions of the precursor gas, oxygen, and a carrier gas are provided below.

  • OMCTS: 0.5-5.0 sccm
  • Oxygen: 0.1-5.0 sccm
  • Argon: 1.0-20 sccm


    PECVD Apparatus for Forming pH Protective Coating or Layer


The low-pressure PECVD process described in U.S. Pat. No. 7,985,188 can be used to provide the barrier, lubricity, and pH protective coating or layers described in this specification. A brief synopsis of that process follows, with reference to present FIGS. 4-6.


A PECVD apparatus suitable for performing the present invention includes a vessel holder 50, an inner electrode defined by the probe 108, an outer electrode 160, and a power supply 162. The pre-assembly 12 seated on the vessel holder 50 defines a plasma reaction chamber, which optionally can be a vacuum chamber. Optionally, a source of vacuum 98, a reactant gas source 144, a gas feed (probe 108) or a combination of two or more of these can be supplied.


The PECVD apparatus can be used for atmospheric-pressure PECVD, in which case the plasma reaction chamber defined by the pre-assembly 12 does not need to function as a vacuum chamber.


Referring to FIGS. 4-6, the vessel holder 50 comprises a gas inlet port 104 for conveying a gas into the pre-assembly 12 seated on the opening 82. The gas inlet port 104 has a sliding seal provided for example by at least one O-ring 106, or two O-rings in series, or three O-rings in series, which can seat against a cylindrical probe 108 when the probe 108 is inserted through the gas inlet port 104. The probe 108 can be a gas inlet conduit that extends to a gas delivery port at its distal end 110. The distal end 110 of the illustrated embodiment can be inserted deep into the pre-assembly 12 for providing one or more PECVD reactants and other precursor feed or process gases.



FIG. 6 shows additional optional details of the coating station 60 that are usable, for example, with all the illustrated embodiments. The coating station 60 can also have a main vacuum valve 574 in its vacuum line 576 leading to the pressure sensor 152. A manual bypass valve 578 is provided in the bypass line 580. A vent valve 582 controls flow at the vent 404.


Flow out of the PECVD gas or precursor source 144 is controlled by a main reactant gas valve 584 regulating flow through the main reactant feed line 586. One component of the gas source 144 is the organosilicon liquid reservoir 588. The contents of the reservoir 588 are drawn through the organosilicon capillary line 590, which is provided at a suitable length to provide the desired flow rate. Flow of organosilicon vapor is controlled by the organosilicon shut-off valve 592. Pressure is applied to the headspace 614 of the liquid reservoir 588, for example a pressure in the range of 0-15 psi (0 to 78 cm. Hg), from a pressure source 616 such as pressurized air connected to the headspace 614 by a pressure line 618 to establish repeatable organosilicon liquid delivery that is not dependent on atmospheric pressure (and the fluctuations therein). The reservoir 588 is sealed and the capillary connection 620 is at the bottom of the reservoir 588 to ensure that only neat organosilicon liquid (not the pressurized gas from the headspace 614 flows through the capillary tube 590. The organosilicon liquid optionally can be heated above ambient temperature, if necessary or desirable to cause the organosilicon liquid to evaporate, forming an organosilicon vapor. To accomplish this heating, the pH protective coating or layer apparatus can advantageously include heated delivery lines from the exit of the precursor reservoir to as close as possible to the gas inlet into the syringe. Preheating is useful, for example, when feeding OMCTS.


Oxygen is provided from the oxygen tank 594 via an oxygen feed line 596 controlled by a mass flow controller 598 and provided with an oxygen shut-off valve 600.


Optionally in any embodiment, other precursor, reactant, and/or carrier gas reservoirs such as 602 can be provided to supply additional materials if needed for a particular deposition process. Each such reservoir such as 602 has the appropriate feed line 604 and shut-off valve 606.


Referring especially to FIG. 4, the processing station 28 can include an electrode 160 fed by a radio frequency power supply 162 for providing an electric field for generating plasma within the pre-assembly 12 during processing. In this embodiment, the probe 108 is also electrically conductive and is grounded, thus providing a counter-electrode within the pre-assembly 12. Alternatively, in any embodiment the outer electrode 160 can be grounded and the probe 108 directly connected to the power supply 162.


In the embodiment of FIGS. 4-6, the outer electrode 160 can either be generally cylindrical as illustrated in FIGS. 4 and 5 or a generally U-shaped elongated channel as illustrated in FIG. 6 (FIG. 5 being an embodiment of the section taken along section line A-A of FIG. 4). Each illustrated embodiment has one or more sidewalls, such as 164 and 166, and optionally a top end 168, disposed about the pre-assembly 12 in close proximity.


Specific PECVD conditions for application of a pH protective coating or layer are provided below.


Plasma Conditions for pH Protective Coating or Layer


Typically, the plasma in the PECVD process is generated at RF frequency. For providing a pH protective coating or layer on the interior of a vessel by a plasma reaction carried out within the vessel, the plasma of any embodiment can be generated with an electric power of from 0.1 to 500 W, optionally from 0.1 to 400 W, optionally from 0.1 to 300 W, optionally from 1 to 250 W, optionally from 1 to 200 W, even optionally from 10 to 150 W, optionally from 20 to 150 W, for example of 40 W, optionally from 40 to 150 W, even optionally from 60 to 150 W. The ratio of the electrode power to the plasma volume can be less than 100 W/ml, optionally is from 5 W/ml to 75 W/ml, optionally is from 6 W/ml to 60 W/ml, optionally is from 10 W/ml to 50 W/ml, optionally from 20 W/ml to 40 W/ml. These power levels are suitable for applying pH protective coating or layers or coating or layers to syringes and cartridges and sample tubes and pharmaceutical packages or other vessels of similar geometry having a void volume of 5 mL in which PECVD plasma is generated. It is contemplated that for larger or smaller objects the power applied, in Watts, should be increased or reduced accordingly to scale the process to the size of the substrate.


Exemplary reaction conditions for preparing a pH protective coating or layer according to the present invention in a 3 ml sample size syringe with a ⅛″ diameter tube (open at the end) are as follows:


Flow Rate Ranges:




  • OMCTS: 0.5-10 sccm

  • Oxygen: 0.1-10 sccm

  • Argon: 1.0-200 sccm

  • Power: 0.1-500 watts


    Specific Flow Rates:

  • OMCTS: 2.0 sccm

  • Oxygen: 0.7 sccm

  • Argon: 7.0 sccm

  • Power: 3.5 watts



The pH protective coating or layer and its application are described in more detail below. A method for applying the coating or layer includes several steps. A vessel wall is provided, as is a reaction mixture comprising plasma forming gas, i.e. an organosilicon compound gas, optionally an oxidizing gas, and optionally a hydrocarbon gas.


Plasma is formed in the reaction mixture that is substantially free of hollow cathode plasma. The vessel wall is contacted with the reaction mixture, and the pH protective coating or layer of SiOx is deposited on at least a portion of the vessel wall.


In certain embodiments, the generation of a uniform plasma throughout the portion of the vessel to be coated is contemplated, as it has been found in certain instances to generate a better pH protective coating or layer. Uniform plasma means regular plasma that does not include a substantial amount of hollow cathode plasma (which has a higher emission intensity than regular plasma and is manifested as a localized area of higher intensity interrupting the more uniform intensity of the regular plasma).


Container Closure Integrity


Optionally in any embodiment, the container closure integrity of the capped pre-assembly can be measured before, during, or after the application of a vapor-deposited coating or layer.


A container closure integrity (CCI) test is a non-destructive leak test method intended for use in manufacturing as an in-process package integrity check. A CCI test is intended to determine the microbial barrier properties of a sterile container indirectly, as by measuring a physical property that is correlated with microbial barrier properties. Respecting the present capped pre-assemblies, the CCI test is a preliminary test that determines the package integrity of the front end of the syringe, in particular the barrel, dispensing portion, and cap. This CCI test can be carried out on the unfilled but capped pre-assembly to determine whether these components of the package have the appropriate barrier properties.


Since in the present method the dispensing portion and cap are already present and installed when the barrier coatings are applied to the barrel, the container closure integrity of the pre-assembly can be verified to assure, before the capped pre-assembly is filled with an expensive pharmaceutical preparation, that these components do not have any defects that would cause the filled package to be rejected.


Moreover, the test optionally can be carried out using the same equipment commonly used for many vapor deposition processes, in particular a vacuum arrangement to draw a vacuum on the syringe barrel and associated dispensing portion and cap, which can be combined with leak detection equipment as shown in the first working example below. Thus, the CCI test can be carried out quickly, which is very important to allow the test to be carried out on each package as it is manufactured.


Example 1 below shows a CCI test conducted on the pre-assembly in 20 seconds. More broadly, it is contemplated for any embodiment that the present CCI test can be carried out in a time between 1 second and 60 seconds, alternatively between 2 seconds and 60 seconds, alternatively between 3 seconds and 60 seconds, alternatively between 4 seconds and 60 seconds, alternatively between 5 seconds and 60 seconds, alternatively between 6 seconds and 60 seconds, alternatively between 7 seconds and 60 seconds, alternatively between 8 seconds and 60 seconds, alternatively between 9 seconds and 60 seconds, alternatively between 10 seconds and 60 seconds, alternatively between 11 second and 60 seconds, alternatively between 12 seconds and 60 seconds, alternatively between 13 seconds and 60 seconds, alternatively between 14 seconds and 60 seconds, alternatively between 15 seconds and 60 seconds, alternatively between 16 seconds and 60 seconds, alternatively between 17 seconds and 60 seconds, alternatively between 18 seconds and 60 seconds, alternatively between 19 seconds and 60 seconds, alternatively between 1 second and 20 seconds, alternatively between 2 seconds and 20 seconds, alternatively between 3 seconds and 20 seconds, alternatively between 4 seconds and 20 seconds, alternatively between 5 seconds and 20 seconds, alternatively between 6 seconds and 20 seconds, alternatively between 7 seconds and 20 seconds, alternatively between 8 seconds and 20 seconds, alternatively between 9 seconds and 20 seconds, alternatively between 10 seconds and 20 seconds, alternatively between 11 seconds and 20 seconds, alternatively between 12 seconds and 20 seconds, alternatively between 13 seconds and 20 seconds, alternatively between 14 seconds and 20 seconds, alternatively between 15 seconds and 20 seconds, alternatively between 16 seconds and 20 seconds, alternatively between 17 seconds and 20 seconds, alternatively between 18 seconds and 20 seconds, alternatively between 19 seconds and 20 seconds, alternatively between 20 seconds and 60 seconds, alternatively between 10 seconds and 50 seconds, alternatively between 10 seconds and 40 seconds, alternatively between 10 seconds and 30 seconds, alternatively between 10 seconds and 20 seconds, alternatively between 20 seconds and 50 seconds, alternatively between 20 seconds and 40 seconds, alternatively between 20 seconds and 30 seconds.


In any embodiment, the CCI test can be carried out, while drawing at least a partial vacuum through the barrel opening (32), by measuring the pressure decay of gas drawn from the barrel opening (32) and any leakage paths.


In any embodiment, the CCI test can be carried out by comparing the pressure decay of gas to a predetermined standard to determine the container closure integrity of the capped pre-assembly.


In any embodiment, the pressure decay can be measured with sufficient precision to detect a pressure decay due to an intact container versus a container having a single perforation in the cap having a diameter of 5 microns, alternatively 4 microns, alternatively 3 microns, alternatively 2 microns, alternatively 1.8 microns, alternatively 1 micron, alternatively 0.5 microns, alternatively 0.3 microns, alternatively 0.1 microns.


In any embodiment, the pressure decay can be measured within a time between 1 second and 60 seconds, alternatively between 2 seconds and 60 seconds, alternatively between 3 seconds and 60 seconds, alternatively between 4 seconds and 60 seconds, alternatively between 5 seconds and 60 seconds, alternatively between 6 seconds and 60 seconds, alternatively between 7 seconds and 60 seconds, alternatively between 8 seconds and 60 seconds, alternatively between 9 seconds and 60 seconds, alternatively between 10 seconds and 60 seconds, alternatively between 11 seconds and 60 seconds, alternatively between 12 seconds and 60 seconds, alternatively between 13 seconds and 60 seconds, alternatively between 14 seconds and 60 seconds, alternatively between 15 seconds and 60 seconds, alternatively between 16 seconds and 60 seconds, alternatively between 17 seconds and 60 seconds, alternatively between 18 seconds and 60 seconds, alternatively between 19 seconds and 60 seconds, alternatively between 20 seconds and 60 seconds, alternatively between 10 seconds and 50 seconds, alternatively between 10 seconds and 40 seconds, alternatively between 10 seconds and 30 seconds, alternatively between 10 seconds and 20 seconds.


In any embodiment, the pressure decay of gas drawn from the barrel opening (32) and any leakage paths can be measured before applying a vapor-deposited coating or layer.


In any embodiment, the pressure decay of gas drawn from the barrel opening (32) and any leakage paths can be measured while applying a vapor-deposited coating or layer.


In any embodiment, the pressure decay of gas drawn from the barrel opening (32) and any leakage paths can be measured after applying a vapor-deposited coating or layer.


Measurement of Coating or Layer Thickness


The thickness of a PECVD coating or layer such as the pH protective coating or layer, the barrier coating or layer, and/or a composite of any two or more of these coatings or layers can be measured, for example, by transmission electron microscopy (TEM). An exemplary TEM image for a pH protective coating or layer is shown in FIG. 21. An exemplary TEM image for an SiO2 barrier coating or layer is shown in FIG. 22.


The TEM can be carried out, for example, as follows. Samples can be prepared for Focused Ion Beam (FIB) cross-sectioning in two ways. Either the samples can be first coated with a thin coating or layer of carbon (50-100 nm thick) and then coated with a sputtered coating or layer of platinum (50-100 nm thick) using a K575X Emitech pH protective coating or layer system, or the samples can be coated directly with the pH protective sputtered Pt coating or layer. The coated samples can be placed in an FEI FIB200 FIB system. An additional coating or layer of platinum can be FIB-deposited by injection of an organometallic gas while rastering the 30 kV gallium ion beam over the area of interest. The area of interest for each sample can be chosen to be a location half way down the length of the syringe barrel. Thin cross sections measuring approximately 15 μm (“micrometers”) long, 2 μm wide and 15 μm deep can be extracted from the die surface using an in-situ FIB lift-out technique. The cross sections can be attached to a 200 mesh copper TEM grid using FIB-deposited platinum. One or two windows in each section, measuring about 8 μm wide, can be thinned to electron transparency using the gallium ion beam of the FEI FIB.


Cross-sectional image analysis of the prepared samples can be performed utilizing either a Transmission Electron Microscope (TEM), or a Scanning Transmission Electron Microscope (STEM), or both. All imaging data can be recorded digitally. For STEM imaging, the grid with the thinned foils can be transferred to a Hitachi HD2300 dedicated STEM. Scanning transmitted electron images can be acquired at appropriate magnifications in atomic number contrast mode (ZC) and transmitted electron mode (TE). The following instrument settings can be used.
















Scanning Transmission



Instrument
Electron Microscope








Manufacturer/Model
Hitachi HD2300



Accelerating Voltage
200 kV



Objective Aperture
#2



Condenser Lens 1 Setting
1.672



Condenser Lens 2 Setting
1.747



Approximate Objective Lens Setting
5.86



ZC Mode Projector Lens
1.149



TE Mode Projector Lens
0.7



Image Acquisition




Pixel Resolution
1280 × 960



Acquisition Time
20 sec.(x4









For TEM analysis the sample grids can be transferred to a Hitachi HF2000 transmission electron microscope. Transmitted electron images can be acquired at appropriate magnifications. The relevant instrument settings used during image acquisition can be those given below.













Instrument
Transmission Electron Microscope







Manufacturer/Model
Hitachi HF2000


Accelerating Voltage
200 kV


Condenser Lens 1
0.78


Condenser Lens 2
0


Objective Lens
6.34


Condenser Lens Aperture
#1


Objective Lens Aperture for imaging
#3


Selective Area Aperture for SAD
N/A









Any of the above methods can also include as a step forming a coating or layer on the exterior outer wall of a pre-assembly 12. The exterior coating or layer optionally can be a barrier coating or layer, optionally an oxygen barrier coating or layer, or optionally a water barrier coating or layer. The exterior coating or layer can also be an armor coating or layer that protects the outer wall of a pre-assembly 12. One example of a suitable exterior coating or layer is polyvinylidene chloride, which functions both as a water barrier and an oxygen barrier. Optionally, the exterior coating or layer can be applied as a water-based coating or layer. The exterior coating or layer optionally can be applied by dipping the vessel in it, spraying it on the pharmaceutical package or other vessel, or other expedients.


PECVD Treated Pharmaceutical Packages or Other Vessels


Coated Pharmaceutical Packages or Other Vessels


Pharmaceutical packages 210 or other vessels, such as a prefilled syringe (schematically shown in FIG. 7) or cartridge are contemplated having a barrier coating or layer such as 30 at least partially covered by a pH protective coating or layer such as 34.


The pharmaceutical package 210 as shown in any embodiment, for example FIG. 7, comprises a pre-assembly 12; optionally a barrier coating or layer such as 30 on the vessel or vessel part; a pH protective coating or layer such as 34 on the vessel, vessel part, or barrier coating or layer; and a pharmaceutical composition or other fluid material 40 contained within the vessel.


The barrier coating or layer such as 30 can be an SiOx barrier coating or layer applied as described in any embodiment of this specification or in U.S. Pat. No. 7,985,188. For example, the barrier coating or layer such as 30 of any embodiment can be applied at a thickness of at least 2 nm, or at least 4 nm, or at least 7 nm, or at least 10 nm, or at least 20 nm, or at least 30 nm, or at least 40 nm, or at least 50 nm, or at least 100 nm, or at least 150 nm, or at least 200 nm, or at least 300 nm, or at least 400 nm, or at least 500 nm, or at least 600 nm, or at least 700 nm, or at least 800 nm, or at least 900 nm. The barrier coating or layer can be up to 1000 nm, or at most 900 nm, or at most 800 nm, or at most 700 nm, or at most 600 nm, or at most 500 nm, or at most 400 nm, or at most 300 nm, or at most 200 nm, or at most 100 nm, or at most 90 nm, or at most 80 nm, or at most 70 nm, or at most 60 nm, or at most 50 nm, or at most 40 nm, or at most 30 nm, or at most 20 nm, or at most 10 nm, or at most 5 nm thick. Specific thickness ranges composed of any one of the minimum thicknesses expressed above, plus any equal or greater one of the maximum thicknesses expressed above, are expressly contemplated. The thickness of the SiOx or other barrier coating or layer can be measured, for example, by transmission electron microscopy (TEM), and its composition can be measured by X-ray photoelectron spectroscopy (XPS). The pH protective coating or layer described herein can be applied to a variety of pharmaceutical packages or other vessels made from plastic or glass, for example to plastic tubes, vials, and syringes and cartridges.


The pH protective coating or layer such as 34 can be an SiOxCy pH protective coating or layer applied as described in any embodiment of this specification. For example, the vapor deposited coating or layer, here a pH protective coating or layer such as 34, comprises or consists essentially of a coating or layer of SiOxCy applied over the barrier coating or layer 30 to protect at least a portion of the barrier coating or layer from the pharmaceutical preparation such as 40 in FIG. 7. The pH protective coating or layer such as 34 is provided, for example, by applying one of the described precursors on or in the vicinity of a substrate in a PECVD process, providing a pH protective coating or layer. The coating or layer can be applied, for example, at a thickness of 1 to 5000 nm, or 10 to 1000 nm, or 10 to 500 nm, or 10 to 200 nm, or 20 to 100 nm, or 30 to 1000 nm, or 30 to 500 nm thick, or 30 to 1000 nm, or 20 to 100 nm, or 80 to 150 nm, and crosslinking or polymerizing (or both) the pH protective coating or layer, optionally in a PECVD process, to provide a protected surface.


Although not intending to be bound according to the accuracy of the following theory, the inventors contemplate that the pH protective coating or layer, applied over an SiOx barrier coating or layer on a vessel wall, functions at least in part by passivating the SiOx barrier coating or layer surface against attack by the contents of the vessel, as well as providing a more resistant or sacrificial independent coating or layer to isolate the SiOx barrier coating or layer from the contents of the vessel. It is thus contemplated that the pH protective coating or layer can be very thin, and even so improve the shelf life of the pharmaceutical package.


Another expedient contemplated here, for adjacent coating or layers of SiOx and a pH protective coating or layer, is a graded composite of SiOx and SiwOxCy, or its equivalent SiOxCy, as defined in the Definition Section. A graded composite can be separate coating or layers of a pH protective and/or barrier coating or layer or coating or layer with a transition or interface of intermediate composition between them, or separate coating or layers of a pH protective and/or hydrophobic coating or layer and SiOx with an intermediate distinct pH protective coating or layer of intermediate composition between them, or a single coating or layer that changes continuously or in steps from a composition of a pH protective and/or hydrophobic coating or layer to a composition more like SiOx, going through the pH protective coating or layer in a normal direction.


The grade in the graded composite can go in either direction. For example, the composition of SiOx can be applied directly to the substrate and graduate to a composition further from the surface of a pH protective coating or layer, and optionally can further graduate to another type of coating or layer, such as a hydrophobic coating or layer or a pH protective coating or layer. Additionally, in any embodiment an adhesion coating or layer, for example SiwOxCy, or its equivalent SiOxCy, optionally can be applied directly to the substrate before applying the barrier coating or layer. A graduated pH protective coating or layer is particularly contemplated if a coating or layer of one composition is better for adhering to the substrate than another, in which case the better-adhering composition can, for example, be applied directly to the substrate. It is contemplated that the more distant portions of the graded pH protective coating or layer can be less compatible with the substrate than the adjacent portions of the graded pH protective coating or layer, since at any point the pH protective coating or layer is changing gradually in properties, so adjacent portions at nearly the same depth of the pH protective coating or layer have nearly identical composition, and more widely physically separated portions at substantially different depths can have more diverse properties. It is also contemplated that a pH protective coating or layer portion that forms a better barrier against transfer of material to or from the substrate can be directly against the substrate, to prevent the more remote pH protective coating or layer portion that forms a poorer barrier from being contaminated with the material intended to be barred or impeded by the barrier.


The applied coating or layers or coating or layers, instead of being graded, optionally can have sharp transitions between one coating or layer and the next, without a substantial gradient of composition. Such pH protective coating or layer can be made, for example, by providing the gases to produce a coating or layer as a steady state flow in a non-plasma state, then energizing the system with a brief plasma discharge to form a coating or layer on the substrate. If a subsequent pH protective coating or layer is to be applied, the gases for the previous pH protective coating or layer are cleared out and the gases for the next pH protective coating or layer are applied in a steady-state fashion before energizing the plasma and again forming a distinct coating or layer on the surface of the substrate or its outermost previous pH protective coating or layer, with little if any gradual transition at the interface.


Vessel Made Of Glass


Another embodiment is a pharmaceutical package 210 as shown in any embodiment, for example FIG. 7, comprising a barrel 14 and/or piston 36 and/or plunger rod 38 made of glass; optionally a barrier coating or layer such as 30, a pH protective coating or layer 30 (if a sole layer) or 34 (if formed over a barrier layer) and a pharmaceutical composition or preparation or other fluid material 40 contained within the vessel. In this embodiment a barrier coating or layer is optional because a glass vessel wall in itself is an extremely good barrier coating or layer. It is contemplated to optionally provide a barrier coating or layer primarily to provide isolation: in other words, to prevent contact and interchange of material of any kind, such as ions of the glass or constituents of the pharmaceutical composition or preparation between the vessel wall and the contents of the vessel. The pH protective coating or layer as defined in this specification is contemplated to perform the isolation function independently, at least to a degree. This protection coating or layer is contemplated to provide a useful function on glass in contact with the pharmaceutical composition or preparation, as the present working examples show that borosilicate glass, commonly used today for pharmaceutical packaging, is dissolved by a fluid composition having a pH exceeding 5. Particularly in applications where such dissolution is disadvantageous or perceived to be disadvantageous, the present pH protective coating or layers or coating or layers will find utility.


The vessel can be made, for example of glass of any type used in medical or laboratory applications, such as soda-lime glass, borosilicate glass, or other glass formulations. One function of a pH protective coating or layer on a glass vessel can be to reduce the ingress of ions in the glass, either intentionally or as impurities, for example sodium, calcium, or others, from the glass to the contents of the pharmaceutical package or other vessel, such as a reagent or blood in an evacuated blood collection tube. Alternatively, a dual functional pH protective/pH protective coating or layer can be used on a glass vessel in whole or in part, such as selectively at surfaces contacted in sliding relation to other parts, to provide lubricity, for example to ease the insertion or removal of a stopper or passage of a sliding element such as a piston in a syringe, as well as to provide the isolation of a pH protective coating or layer. Still another reason to coat a glass vessel, for example with a dual functional hydrophobic and pH protective coating or layer, is to prevent a reagent or intended sample for the pharmaceutical package or other vessel, such as blood, from sticking to the wall of the vessel or an increase in the rate of coagulation of the blood in contact with the wall of the vessel, as well as to provide the isolation of a pH protective coating or layer.


A related embodiment is a barrel 14 of a syringe, cartridge, or the like as described in the previous paragraphs, in which the barrier coating or layer is made of soda lime glass, borosilicate glass, or another type of glass coating or layer on a substrate.


II. Gaseous Reactant or Process Gas Limitations of any Embodiment


Deposition Conditions of any Embodiment


The plasma for PECVD, if used, can be generated at reduced pressure and the reduced pressure can be less than 300 mTorr, optionally less than 200 mTorr, even optionally less than 100 mTorr. The physical and chemical properties of the pH protective coating or layer can be set by setting the ratio of O2 to the organosilicon precursor in the gaseous reactant, and/or by setting the electric power used for generating the plasma.


Relative Proportions of Gases of any Embodiment


The process gas can contain this ratio of gases for preparing a pH protective coating or layer:

    • from 0.5 to 10 standard volumes of the precursor;
    • from 1 to 100 standard volumes of a carrier gas,
    • from 0.1 to 10 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 1 to 80 standard volumes of a carrier gas,
    • from 0.1 to 2 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 2 to 4 standard volumes, of the precursor;
    • from 1 to 100 standard volumes of a carrier gas,
    • from 0.1 to 2 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 3 to 70 standard volumes, of a carrier gas,
    • from 0.1 to 2 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 2 to 4 standard volumes, of the precursor;
    • from 3 to 70 standard volumes of a carrier gas,
    • from 0.1 to 2 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 1 to 100 standard volumes of a carrier gas,
    • from 0.2 to 1.5 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 2 to 4 standard volumes, of the precursor;
    • from 1 to 100 standard volumes of a carrier gas,
    • from 0.2 to 1.5 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 3 to 70 standard volumes of a carrier gas,
    • from 0.2 to 1.5 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 2 to 4 standard volumes of the precursor;
    • from 3 to 70 standard volumes of a carrier gas,
    • from 0.2 to 1.5 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 1 to 100 standard volumes of a carrier gas,
    • from 0.2 to 1 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 2 to 4 standard volumes of the precursor;
    • from 1 to 100 standard volumes of a carrier gas,
    • from 0.2 to 1 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 3 to 70 standard volumes of a carrier gas,
    • from 0.2 to 1 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • 2 to 4 standard volumes, of the precursor;
    • from 3 to 70 standard volumes of a carrier gas,
    • from 0.2 to 1 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 5 to 100 standard volumes of a carrier gas,
    • from 0.1 to 2 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 2 to 4 standard volumes, of the precursor;
    • from 5 to 100 standard volumes of a carrier gas,
    • from 0.1 to 2 standard volumes
    • of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 10 to 70 standard volumes, of a carrier gas,
    • from 0.1 to 2 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 2 to 4 standard volumes, of the precursor;
    • from 10 to 70 standard volumes of a carrier gas,
    • from 0.1 to 2 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 5 to 100 standard volumes of a carrier gas,
    • from 0.5 to 1.5 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 2 to 4 standard volumes, of the precursor;
    • from 5 to 100 standard volumes of a carrier gas,
    • from 0.5 to 1.5 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 10 to 70 standard volumes, of a carrier gas,
    • from 0.5 to 1.5 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 2 to 4 standard volumes of the precursor;
    • from 10 to 70 standard volumes of a carrier gas,
    • from 0.5 to 1.5 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 5 to 100 standard volumes of a carrier gas,
    • from 0.8 to 1.2 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 2 to 4 standard volumes of the precursor;
    • from 5 to 100 standard volumes of a carrier gas,
    • from 0.8 to 1.2 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • from 1 to 6 standard volumes of the precursor;
    • from 10 to 70 standard volumes of a carrier gas,
    • from 0.8 to 1.2 standard volumes of an oxidizing agent.


      alternatively this ratio:
    • 2 to 4 standard volumes, of the precursor;
    • from 10 to 70 standard volumes of a carrier gas,
    • from 0.8 to 1.2 standard volumes of an oxidizing agent.


      Carrier Gas of any Embodiment


The carrier gas can comprise or consist of an inert gas, for example argon, helium, xenon, neon, another gas that is inert to the other constituents of the process gas under the deposition conditions, or any combination of two or more of these.


Oxidizing Gas of any Embodiment


The oxidizing gas can comprise or consist of oxygen (O2 and/or O3 (commonly known as ozone)), nitrous oxide, or any other gas that oxidizes the precursor during PECVD at the conditions employed. The oxidizing gas comprises about 1 standard volume of oxygen. The gaseous reactant or process gas can be at least substantially free of nitrogen.


III. Plasma of any Embodiment


The plasma of any PECVD embodiment can be formed in the vicinity of the substrate. The plasma can in certain cases, especially when preparing a barrier coating or layer, be a non-hollow-cathode plasma. In other certain cases, especially when preparing a pH protective coating or layer, a non-hollow-cathode plasma is not desired. The plasma can be formed from the gaseous reactant at reduced pressure. Sufficient plasma generation power input can be provided to induce pH protective coating or layer formation on the substrate.


IV. RF Power of any Embodiment


The precursor can be contacted with a plasma made by energizing the vicinity of the precursor with electrodes powered at a frequency of 10 kHz to 2.45 GHz, alternatively from about 13 to about 14 MHz.


The precursor can be contacted with a plasma made by energizing the vicinity of the precursor with electrodes powered at radio frequency, optionally at a frequency of from 10 kHz to less than 300 MHz, optionally from 1 to 50 MHz, even optionally from 10 to 15 MHz, optionally at 13.56 MHz.


The precursor can be contacted with a plasma made by energizing the vicinity of the precursor with electrodes supplied with electric power at from 0.1 to 25 W, optionally from 1 to 22 W, optionally from 1 to 10 W, even optionally from 1 to 5 W, optionally from 2 to 4 W, for example of 3 W, optionally from 3 to 17 W, even optionally from 5 to 14 W, for example 6 or 7.5 W, optionally from 7 to 11 W, for example of 8 W, from 0.1 to 500 W, optionally from 0.1 to 400 W, optionally from 0.1 to 300 W, optionally from 1 to 250 W, optionally from 1 to 200 W, even optionally from 10 to 150 W, optionally from 20 to 150 W, for example of 40 W, optionally from 40 to 150 W, even optionally from 60 to 150 W.


The precursor can be contacted with a plasma made by energizing the vicinity of the precursor with electrodes supplied with electric power density at less than 10 W/ml of plasma volume, alternatively from 6 W/ml to 0.1 W/ml of plasma volume, alternatively from 5 W/ml to 0.1 W/ml of plasma volume, alternatively from 4 W/ml to 0.1 W/ml of plasma volume, alternatively from 2 W/ml to 0.2 W/ml of plasma volume, alternatively from 10 W/ml to 50 W/ml, optionally from 20 W/ml to 40 W/ml.


The plasma can be formed by exciting the reaction mixture with electromagnetic energy, alternatively microwave energy.


V. Other Process Options of any Embodiment


The applying step for applying a pH protective coating or layer to the substrate can be carried out by vaporizing the precursor and providing it in the vicinity of the substrate.


The chemical vapor deposition employed can be PECVD and the deposition time can be from 1 to 30 sec, alternatively from 2 to 10 sec, alternatively from 3 to 9 sec. The purposes for optionally limiting deposition time can be to avoid overheating the substrate, to increase the rate of production, and to reduce the use of process gas and its constituents. The purposes for optionally extending deposition time can be to provide a thicker pH protective coating or layer for particular deposition conditions.


VI. Protective Coating or Layer Properties of any Embodiment


Thickness of any Embodiment


Optionally, the pH protective coating or layer can have a thickness determined by transmission electron microscopy (TEM), of any amount stated in this disclosure.


Composition of any Embodiment


Optionally, the pH protective coating or layer can be composed of SiwOxCyHz (or its equivalent SiOxCy) or SiwNxCyHz or its equivalent SiNxCy), each as defined previously. The atomic ratio of Si:O:C can be determined by XPS (X-ray photoelectron spectroscopy). Taking into account the H atoms, the pH protective coating or layer may thus in one aspect have the formula SiwOxCyHz, or its equivalent SiOxCy, for example where w is 1, x is from about 0.5 to about 2.4, y is from about 0.6 to about 3, and z is from about 2 to about 9.


Typically, expressed as the formula SiwOxCy, the atomic ratios of Si, O, and C are, as several options:


Si 100: O 50-150: C 90-200 (i.e. w=1, x=0.5 to 1.5, y=0.9 to 2);


Si 100: O 70-130: C 90-200 (i.e. w=1, x=0.7 to 1.3, y=0.9 to 2)


Si 100: O 80-120: C 90-150 (i.e. w=1, x=0.8 to 1.2, y=0.9 to 1.5)


Si 100: O 90-120: C 90-140 (i.e. w=1, x=0.9 to 1.2, y=0.9 to 1.4), or


Si 100: O 92-107: C 116-133 (i.e. w=1, x=0.92 to 1.07, y=1.16 to 1.33).


Alternatively, the pH protective coating or layer can have atomic concentrations normalized to 100% carbon, oxygen, and silicon, as determined by X-ray photoelectron spectroscopy (XPS) of less than 50% carbon and more than 25% silicon. Alternatively, the atomic concentrations are from 25 to 45% carbon, 25 to 65% silicon, and 10 to 35% oxygen. Alternatively, the atomic concentrations are from 30 to 40% carbon, 32 to 52% silicon, and 20 to 27% oxygen. Alternatively, the atomic concentrations are from 33 to 37% carbon, 37 to 47% silicon, and 22 to 26% oxygen.


Optionally, the atomic concentration of carbon in the pH protective coating or layer, normalized to 100% of carbon, oxygen, and silicon, as determined by X-ray photoelectron spectroscopy (XPS), can be greater than the atomic concentration of carbon in the atomic formula for the organosilicon precursor. For example, embodiments are contemplated in which the atomic concentration of carbon increases by from 1 to 80 atomic percent, alternatively from 10 to 70 atomic percent, alternatively from 20 to 60 atomic percent, alternatively from 30 to 50 atomic percent, alternatively from 35 to 45 atomic percent, alternatively from 37 to 41 atomic percent.


Optionally, the atomic ratio of carbon to oxygen in the pH protective coating or layer can be increased in comparison to the organosilicon precursor, and/or the atomic ratio of oxygen to silicon can be decreased in comparison to the organosilicon precursor.


Optionally, the pH protective coating or layer can have an atomic concentration of silicon, normalized to 100% of carbon, oxygen, and silicon, as determined by X-ray photoelectron spectroscopy (XPS), less than the atomic concentration of silicon in the atomic formula for the feed gas. For example, embodiments are contemplated in which the atomic concentration of silicon decreases by from 1 to 80 atomic percent, alternatively by from 10 to 70 atomic percent, alternatively by from 20 to 60 atomic percent, alternatively by from 30 to 55 atomic percent, alternatively by from 40 to 50 atomic percent, alternatively by from 42 to 46 atomic percent.


As another option, a pH protective coating or layer is contemplated that can be characterized by a sum formula wherein the atomic ratio C:O can be increased and/or the atomic ratio Si:O can be decreased in comparison to the sum formula of the organosilicon precursor.


Other pH Protective Coating or Layer Properties of any Embodiment


The pH protective coating or layer can have a density between 1.25 and 1.65 g/cm3, alternatively between 1.35 and 1.55 g/cm3, alternatively between 1.4 and 1.5 g/cm3, alternatively between 1.4 and 1.5 g/cm3, alternatively between 1.44 and 1.48 g/cm3, as determined by X-ray reflectivity (XRR). Optionally, the organosilicon compound can be octamethylcyclotetrasiloxane and the pH protective coating or layer can have a density which can be higher than the density of a pH protective coating or layer made from HMDSO as the organosilicon compound under the same PECVD reaction conditions.


The pH protective coating or layer optionally can prevent or reduce the precipitation of a compound or component of a composition in contact with the pH protective coating or layer, in particular can prevent or reduce insulin precipitation or blood clotting, in comparison to the uncoated surface and/or to a barrier coated surface using HMDSO as precursor.


The substrate can be a pharmaceutical package or other vessel, for protecting a compound or composition contained or received in the vessel with a pH protective coating or layer against mechanical and/or chemical effects of the surface of the uncoated substrate.


The substrate can be a pharmaceutical package or other vessel, for preventing or reducing precipitation and/or clotting of a compound or a component of the composition in contact with the inner or interior surface of the vessel. The compound or composition can be a biologically active compound or composition, for example a medicament, for example the compound or composition can comprise insulin, wherein insulin precipitation can be reduced or prevented. Alternatively, the compound or composition can be a biological fluid, for example a bodily fluid, for example blood or a blood fraction wherein blood clotting can be reduced or prevented.


The pH protective coating or layer optionally can have an RMS surface roughness value (measured by AFM) of from about 5 to about 9, optionally from about 6 to about 8, optionally from about 6.4 to about 7.8. The Ra surface roughness value of the pH protective coating or layer, measured by AFM, can be from about 4 to about 6, optionally from about 4.6 to about 5.8. The Rmax surface roughness value of the pH protective coating or layer, measured by AFM, can be from about 70 to about 160, optionally from about 84 to about 142, optionally from about 90 to about 130.


VII. Product Made of Vessel Plus Contents, Optional for any Embodiment


In any embodiment, the substrate can be a vessel having an inner or interior surface defining a lumen and an exterior surface, the pH protective coating or layer can be on the inner or interior surface of the pharmaceutical package or other vessel, and the vessel can contain a compound or composition in its lumen, for example citrate or a citrate containing composition, or for example insulin or an insulin containing composition. A prefilled syringe or cartridge is especially considered which contains injectable or other liquid drugs like insulin.


Optionally for any of the embodiments, illustrated for example in FIG. 7, the capped pre-assembly of the Figures can be filled with a fluid material 40. Examples of a suitable fluid composition are any one or a combination of any two or more members selected from the group recited in the claims.


As several examples, the fluid material 40 can be an inhalation anesthetic, a drug, or a diagnostic test material. Any of these fluid materials 40 can be an injectable material, a volatile material capable of being inhaled, or otherwise capable of being introduced into a subject.


EXAMPLE 1
Container Closure Integrity

A test was performed using as samples commercially obtained capped pre-assemblies with staked needles (1 ml. capacity “long” style syringes without plungers) similar to those of the present FIGS. 1-5. The caps 28 were made of elastomeric material. Thus, the seated caps 28 of the pre-assemblies 12 isolated the distal openings 24 due to contact between the caps 28 and the barrels 14.


A test group of ten pre-assemblies was used as supplied, with intact caps 28. A control group of five pre-assemblies (“perforated caps”) was modified by intentionally providing one round aperture of controlled diameter through the wall of each cap 28. The apertures of controlled diameter were made by pushing one fused silica glass capillary of known inside diameter (2 microns) through each cap. The capillaries were inserted from inside the barrel lumen 18 out through the hypodermic needle distal opening 24 and through the end of the needle cap 28. The capillaries thus bypassed the seals created by the ribs 42 (per FIG. 3), as well as the seals created by burying the dispensing portions 20 in the material of the caps 28. The capillaries were then cut at both ends to ensure that the capillaries were not clogged. It is believed that the outside walls of the silica glass capillaries were essentially sealed against the material of the needle cap, thus effectively limiting leakage to flow through the internal passages of the capillaries of known internal diameter and round cross-section. This test primarily evaluated the ability of the cap 28 to prevent leakage of material from the barrel lumen.


The test was conducted using an ATC (Advanced Test Concepts, Inc.) Leak Tek mass flow leak detector. The flange end or opening 32 of each pre-assembly was sealed on a test fixture comprising a seat with an O-ring seal connected in series via the conical flow cell of the ATC mass flow leak detector to a vacuum pump, with a side passage 386 provided to bypass the ATC machine when initially pumping down the barrel lumen 18 from ambient pressure. This test set-up is illustrated schematically in FIG. 30 of U.S. Pat. No. 7,985,188, with the pre-assembly 12 serving as the vessel 358.


The following testing conditions were used for test runs. A pre-assembly 12 was clamped against the O-ring of the test fixture using a clamping pressure of 40 psi to seat the pre-assembly on the test fixture. Then, the vacuum pump was operated for 5 sec. with the side passage 386 open to pump down the barrel lumen 18 to its initial vacuum. The side passage 386 was closed at an elapsed time set equal to zero seconds while the vacuum pump remained in operation to induce flow through the ATC machine. The test was started at an elapsed time of one second by measuring the vacuum level a first time as reported in the tables below in millibars, using the ATC machine. At an elapsed time of 21 seconds, providing a total test time of 20 sec., the test was concluded by measuring the vacuum level a second time as reported in the tables below in millibars, using the ATC machine. The difference between the 1st and 2nd measurements was determined for each test, reported in Tables 1 and 2, and plotted in FIG. 8 as pressure decay.


Referring to Table 1 and plot 52 presenting the data for the intact caps, the average pressure decay (in this case, more precisely, vacuum decay) was 4.8 millibars, with a maximum decay of 5.1 millibars and a standard deviation of 0.2 millibars. This maximum decay was used as a standard against which to measure the effect of introducing apertures into the intact caps.


Referring to Table 2 and plot 54 presenting the data for the perforated caps, the average pressure decay was 13.5 millibars, with a minimum decay of 11.6 millibars and a standard deviation of 2.4 millibars. Since the perforated caps clearly had a statistically significant, higher pressure decay than the intact caps, the two were easily distinguished in a 20-second test.


The pressure decay is believed to have occurred (although the invention is not limited according to the accuracy of this theory) because the initial pressure was measured after a brief period of time (one second) to allow the unit to reach a quasi-steady state. At this time, the mass flow had the indicated baseline value, believed to be related to the amount of mass extracted from the surface of container. When there was a hole in the container, by the second measurement time ambient atmosphere outside the container was pulled into the container by the vacuum, creating a larger mass flow. The amount of mass flow was related to the size of the hole. By this means a non-integral container was easily detected because it had a greater pressure decay than a predetermined standard (in this case, the standard was established by the tests on intact caps).


This method used sensitive pressure transducers to measure a pressure differential, which optionally can be converted to a mass flow rate. The mass flow rate was determined very quickly after a few seconds of drawing a vacuum on the container to be tested. This method is amenable to high speed, on-line, high sensitivity container closure integrity (CCI) testing. In every case the mass flow detector was off scale when capillaries down to 1.8 microns ID were tested. This indicates that the test can be carried out more quickly and/or with smaller capillaries than those used in this test.


A second container closure integrity test can be conducted, in which the caps 28 are perforated between the rib 42 and the portion of the cap 28 in contact with the dispensing portion 20. This test provides a failure bypassing just the seal created by the rib 42, thus testing the ability of the caps 28 to prevent contamination of the outside of the needle or other dispensing portion 20. Using both the former and the latter tests, one can completely test the container closure integrity of the seal.


EXAMPLE 2
Deposition of Coating Products in Dispensing Portion Lumen 26

The following example was carried out as described below, and shows that there was no significant increase in Si on the syringe needle based on the PECVD coating process. This example demonstrates that the interior portion of the needle did not get significantly coated during the PECVD coating process, if coated with the needle cap applied.


Two studies were untaken with 100 needles in each study.


In the first study, 96 staked-needle 1 ml capacity long style syringes, which were only coated with a barrier coating or layer 30, and 100 uncoated but otherwise similar syringes were obtained. The needles were removed from syringes by heating the plastic needle hub and needle with a flame, then pulling the needle from the syringe with tweezers. Care was taken to secure the needle with the tweezers immediately next to the plastic hub. This ensured that if the needle was collapsed by the tweezers, the collapsed area was in the middle of the needle and both ends remained open to allow solution to access the needle. The needles were removed cleanly with little to no plastic.


The needles from the coated syringes were cut into two sections, one near the needle tip approximately 11 mm long and the other section closest to the syringe body approximately 9 mm long. This was done to determine, if Si was present, where it was in the needle. The needles were placed in labeled 5 ml COP vials with 0.1 N KOH (2.0 ml coated syringe needles and 6.0 ml uncoated syringe needles). The vials were placed in a vacuum of approximately 28 inches Hg for one minute, to remove any air which was trapped in the needles. The vials were sealed with a 20 mm washed plastic stopper and crimped with an aluminum crimp cap. The vials were autoclaved at 121° C. for 60 minutes. After the vials had cooled to room temperature the solutions were transferred into 15 ml polypropylene tubes until testing was performed. Si in solution was performed by ICP/OES (inductively coupled plasma-optical emission spectroscopy).


The second tested utilized 97 coated staked-needle 1 ml. capacity long style syringes, tri-layer PECVD coated (with a barrier coating or layer 30, a pH protective coating or layer 34, and a lubricity layer as discussed in U.S. Pat. No. 7,985,188). These syringes were ethylene oxide sterilized. 100 uncoated COP 1 ml long staked needle syringes were used as a comparison. Testing was performed in the same manner as above. The results are shown in Tables 3 and 4.


The results from the first study are shown in Table 3. In that study the coated syringes had received only barrier coating. The needles from the uncoated syringes (0.155 μg/syringe) had more Si present than the needles from the coated syringes (0.102 μg/syringe) demonstrating that the coating process did not add any coating. The absence of Si from coated syringe needles is further demonstrated by the Si per unit length of needle (μg Si/mm). If a coating was present it would be expected that the portion of the needle closest to the syringe would have a higher Si per unit length than the portion of the needle furthest from the syringe. This was not observed.


The results from the second study in Table 4 again show that the difference in Si found in needles from coated syringes and needles from uncoated syringes was not significant. The amount of Si per unit length of needle was essentially the same regardless of the location of the needle.


The presence of some Si in needles was expected as stainless steel contains approximately 1% Si by weight. The weight of the needles used in these syringes was approximately 11 mg (11000 μg), therefore a Si result of 0.1-0.2 μg/syringe is not unreasonable.


It was concluded from these studies that there is no coating, or at a minimum essentially no coating, in the internal diameters of the needles of syringes coated by any of the coating processes used for the syringes tested in this study.













TABLE 1







1st
2nd
Delta



Sample
(mbar)
(mbar)
(mbar)




















1
990.7
985.8
4.9



2
990.7
985.6
5.1



3
990.7
985.7
5.0



4
991.0
986.4
4.6



5
991.5
986.8
4.7



6
991.9
987.2
4.7



7
991.2
986.2
5.0



8
991.3
986.5
4.8



9
991.8
987.4
4.4



10 
992.1
987.6
4.5



Avg
991.3
986.5
4.8



Max
992.1
987.6
5.1



Min
990.7
985.6
4.4



StDev
0.5
0.7
0.2




















TABLE 2







1st
2nd
Delta



Sample
(mbar)
(mbar)
(mbar)




















#1Known Failure
988.3
976.3
12.0



(2 μm)






#2Known Failure
987.6
974.9
12.7



(2 μm)






#3Known Failure
987.4
969.9
17.5



(2 μm)






#4Known Failure
987.4
973.9
13.5



(2 μm)






#5Known Failure
987.7
976.1
11.6



(2 μm)






Avg
987.7
974.2
13.5



Max
988.3
976.3
17.5



Min
987.4
969.9
11.6



StDev
0.4
2.6
2.4
















TABLE 3







First Test (1-PECVD coating cycle)











# of
Result



Syringe Sample
syringes
(μg Si/syringe)
(μg Si/mm needle)













Uncoated syringe
100
0.155
0.078


Total coated needles
96
0.102
0.050


Coated needle tip end
96
0.064
0.058


Coated syringe end
96
0.038
0.051
















TABLE 4







Second Test (3- PECVD coating cycles)











# of
Result



Syringe Sample
syringes
(μg Si/syringe)
(μg Si/mm needle)













Uncoated syringe
100
0.220
0.011


Total coated needles
97
0.244
0.012


Coated needle tip end
97
0.123
0.011


Coated syringe end
97
0.121
0.013








Claims
  • 1. A method comprising: providing a capped pre-assembly comprising: a barrel comprising an internal wall defining a barrel lumen and a front opening through the internal wall;a dispensing portion comprising a hypodermic needle secured to the barrel, the hypodermic needle comprising a distal opening located outside the barrel and a dispensing portion lumen communicating between the front opening of the barrel and the distal opening of the dispensing portion; anda cap secured to the barrel and at least substantially isolating the front opening from pressure conditions outside the cap, the cap being sufficiently permeable to a sterilizing gas to sterilize the portions of the assembly isolated by the cap; andapplying a plasma enhanced chemical vapor deposition (PECVD) coating or layer directly or indirectly to at least a portion of the internal wall of the barrel, while the pre-assembly is capped and the dispensing portion lumen of the hypodermic needle is communicating between the front opening and the distal opening of the dispensing portion, under conditions effective to maintain communication between the barrel lumen and the exterior via the front opening at the end of the applying step, in which essentially no PECVD coating is formed in the dispensing portion lumen of the hypodermic needle.
  • 2. The method of claim 1, further comprising, before the providing step, assembling the capped pre-assembly.
  • 3. The method of claim 2, further comprising, before the assembling step, forming the barrel.
  • 4. The method of claim 3, in which the barrel is formed by placing the dispensing portion in an injection mold and injection molding thermoplastic material about the dispensing portion, thus forming the barrel and securing the dispensing portion to the barrel.
  • 5. The method of claim 1, in which the cap is made of a thermoplastic elastomer.
  • 6. The method of claim 1, in which the cap of the pre-assembly isolates the distal opening at least partially due to: contact between the cap and the distal opening, contact between the cap and the barrel, or both.
  • 7. The method of claim 1, in which the barrel further comprises an opening spaced from the dispensing portion and communicating through the internal wall.
  • 8. The method of claim 7, in which the vapor-deposited coating or layer is applied through the opening.
  • 9. The method of claim 8, in which the PECVD coating or layer is applied by flowing a reactant vapor material through the opening and employing plasma enhanced chemical vapor deposition to deposit a reaction product of the reactant vapor material on the internal wall of the barrel.
  • 10. The method of claim 1, further comprising, while drawing at least a partial vacuum through the barrel opening, measuring the pressure decay of gas drawn from the barrel opening and any leakage paths.
  • 11. The method of claim 10, further comprising comparing the pressure decay of gas to a predetermined standard to determine the container closure integrity of the capped pre-assembly.
  • 12. The method of claim 11, in which the pressure decay is measured with sufficient precision to detect a pressure decay due to an intact container versus a container having a single perforation in the cap having a diameter of 5 microns, to 0.5 microns.
  • 13. The method of claim 12, in which the pressure decay is measured within a time between 1 second and 60 seconds.
  • 14. The method of claim 10, in which the pressure decay of gas drawn from the barrel opening and any leakage paths is measured after applying a vapor-deposited coating or layer.
  • 15. The method of claim 1, in which the vapor-deposited coating or layer is a barrier coating or layer.
Parent Case Info

This application is a continuation in part of U.S. Ser. No. 13/169,811, filed Jun. 27, 2011, now pending; which is a divisional ofU.S. Ser. No. 12/779,007, filed May 12, 2010, now U.S. Pat. No. 7,985,188; which claims the priority of:U.S. Provisional Ser. No. 61/222,727, filed Jul. 2, 2009;U.S. Provisional Ser. No. 61/213,904, filed Jul. 24, 2009;U.S. Provisional Ser. No. 61/234,505, filed Aug. 17, 2009;U.S. Provisional Ser. No. 61/261,321, filed Nov. 14, 2009;U.S. Provisional Ser. No. 61/263,289, filed Nov. 20, 2009;U.S. Provisional Ser. No. 61/285,813, filed Dec. 11, 2009;U.S. Provisional Ser. No. 61/298,159, filed Jan. 25, 2010;U.S. Provisional Ser. No. 61/299,888, filed Jan. 29, 2010;U.S. Provisional Ser. No. 61/318,197, filed Mar. 26, 2010; andU.S. Provisional Ser. No. 61/333,625, filed May 11, 2010; and this application claims the priority of: U.S. Provisional Ser. No. 61/636,377, filed Apr. 20, 2012. All of the above patent applications and patent are incorporated here by reference in their entirety, including the applications they incorporate by reference.

US Referenced Citations (923)
Number Name Date Kind
3274267 Chow Sep 1966 A
3297465 Connell Jan 1967 A
3355947 Karlby Dec 1967 A
3442686 Jones May 1969 A
3448614 Muger Jun 1969 A
3590634 Pasternak Jul 1971 A
3838598 Tompkins Oct 1974 A
3957653 Blecher May 1976 A
4111326 Percarpio Sep 1978 A
4118972 Goeppner Oct 1978 A
4134832 Heimreid Jan 1979 A
4136794 Percarpio Jan 1979 A
4162528 Maldonado Jul 1979 A
4168330 Kaganowicz Sep 1979 A
4186840 Percarpio Feb 1980 A
4187952 Percarpio Feb 1980 A
4226333 Percarpio Oct 1980 A
4289726 Potoczky Sep 1981 A
4290534 Percarpio Sep 1981 A
4293078 Percarpio Oct 1981 A
4338764 Percarpio Jul 1982 A
4391128 McWorter Jul 1983 A
4392218 Plunkett, Jr. Jul 1983 A
4422896 Class Dec 1983 A
4452679 Dunn Jun 1984 A
4478873 Masso Oct 1984 A
4481229 Suzuki Nov 1984 A
4483737 Mantei Nov 1984 A
4484479 Eckhardt Nov 1984 A
4486378 Hirata Dec 1984 A
4522510 Rosencwaig Jun 1985 A
4524616 Drexel Jun 1985 A
4552791 Hahn Nov 1985 A
4576204 Smallborn Mar 1986 A
4609428 Fujimura Sep 1986 A
4610770 Saito Sep 1986 A
4648107 Latter Mar 1987 A
4648281 Morita Mar 1987 A
4652429 Konrad Mar 1987 A
4664279 Obrist May 1987 A
4667620 White May 1987 A
4668365 Foster May 1987 A
4683838 Kimura Aug 1987 A
4697717 Grippi Oct 1987 A
4703187 Hofling Oct 1987 A
4716491 Ohno Dec 1987 A
4721553 Saito Jan 1988 A
4725481 Ostapchenko Feb 1988 A
4741446 Miller May 1988 A
4756964 Kincaid Jul 1988 A
4767414 Williams Aug 1988 A
4778721 Sliemers Oct 1988 A
4799246 Fischer Jan 1989 A
4808453 Romberg Feb 1989 A
4809876 Tomaswick Mar 1989 A
4810752 Bayan Mar 1989 A
4824444 Nomura Apr 1989 A
4841776 Kawachi Jun 1989 A
4842704 Collins Jun 1989 A
4844986 Karakelle Jul 1989 A
4846101 Montgomery Jul 1989 A
4853102 Tateishi Aug 1989 A
4869203 Pinkhasov Sep 1989 A
4872758 Miyazaki Oct 1989 A
4874497 Matsuoka Oct 1989 A
4880675 Mehta Nov 1989 A
4883686 Doehler Nov 1989 A
4886086 Etchells Dec 1989 A
4894256 Gartner Jan 1990 A
4894510 Nakanishi Jan 1990 A
4897285 Wilhelm Jan 1990 A
4926791 Hirose May 1990 A
4948628 Montgomery Aug 1990 A
4973504 Romberg Nov 1990 A
4978714 Bayan Dec 1990 A
4991104 Miller Feb 1991 A
4999014 Gold Mar 1991 A
5000994 Romberg Mar 1991 A
5009646 Sudo Apr 1991 A
5016564 Nakamura May 1991 A
5021114 Saito Jun 1991 A
5028566 Lagendijk Jul 1991 A
5030475 Ackermann Jul 1991 A
5032202 Tsai Jul 1991 A
5039548 Hirose Aug 1991 A
5041303 Wertheimer Aug 1991 A
5042951 Gold Aug 1991 A
5044199 Drexel Sep 1991 A
5064083 Alexander Nov 1991 A
5067491 Taylor Nov 1991 A
5079481 Moslehi Jan 1992 A
5082542 Moslehi Jan 1992 A
5084356 Deak Jan 1992 A
5085904 Deak Feb 1992 A
5099881 Nakajima Mar 1992 A
5113790 Geisler May 1992 A
5120966 Kondo Jun 1992 A
5131752 Yu Jul 1992 A
5144196 Gegenwart Sep 1992 A
5154943 Etzkorn Oct 1992 A
5189446 Barnes Feb 1993 A
5192849 Moslehi Mar 1993 A
5198725 Chen Mar 1993 A
5203959 Hirose Apr 1993 A
5204141 Roberts Apr 1993 A
5209882 Hattori et al. May 1993 A
5216329 Pelleteir Jun 1993 A
5224441 Felts Jul 1993 A
5225024 Hanley Jul 1993 A
5232111 Burns Aug 1993 A
5252178 Moslehi Oct 1993 A
5260095 Affinito Nov 1993 A
5266398 Hioki Nov 1993 A
5271274 Khuri-Yakub Dec 1993 A
5272417 Ohmi Dec 1993 A
5272735 Bryan Dec 1993 A
5275299 Konrad Jan 1994 A
5286297 Moslehi Feb 1994 A
5288560 Sudo Feb 1994 A
5292370 Tsai Mar 1994 A
5294011 Konrad Mar 1994 A
5294464 Geisler Mar 1994 A
5298587 Hu Mar 1994 A
5300901 Krummel Apr 1994 A
5302266 Grabarz Apr 1994 A
5308649 Babacz May 1994 A
5314561 Komiya May 1994 A
5320875 Hu Jun 1994 A
5321634 Obata Jun 1994 A
5330578 Sakama Jul 1994 A
5333049 Ledger Jul 1994 A
5338579 Ogawa et al. Aug 1994 A
5346579 Cook Sep 1994 A
5354286 Mesa Oct 1994 A
5356029 Hogan Oct 1994 A
5361921 Burns Nov 1994 A
5364665 Felts Nov 1994 A
5364666 Williams Nov 1994 A
5372851 Ogawa et al. Dec 1994 A
5374314 Babacz Dec 1994 A
5378510 Thomas Jan 1995 A
5395644 Affinito Mar 1995 A
5396080 Hannotiau Mar 1995 A
5397956 Araki Mar 1995 A
5413813 Cruse May 1995 A
5423915 Murata Jun 1995 A
5429070 Campbell Jul 1995 A
5433786 Hu Jul 1995 A
5434008 Felts Jul 1995 A
5439736 Nomura Aug 1995 A
5440446 Shaw Aug 1995 A
5443645 Otoshi Aug 1995 A
5444207 Sekine Aug 1995 A
5449432 Hanawa Sep 1995 A
5452082 Sanger Sep 1995 A
5468520 Williams Nov 1995 A
5470388 Goedicke Nov 1995 A
5472660 Fortin Dec 1995 A
5485091 Verkuil Jan 1996 A
5486701 Norton Jan 1996 A
5494170 Burns Feb 1996 A
5494712 Hu Feb 1996 A
5495958 Konrad Mar 1996 A
5508075 Roulin Apr 1996 A
5510155 Williams Apr 1996 A
5513515 Mayer May 1996 A
5514276 Babock May 1996 A
5521351 Mahoney May 1996 A
5522518 Konrad Jun 1996 A
5531060 Fayet Jul 1996 A
5531683 Kriesel Jul 1996 A
5536253 Haber Jul 1996 A
5543919 Mumola Aug 1996 A
5545375 Tropsha Aug 1996 A
5547508 Affinito Aug 1996 A
5547723 Williams Aug 1996 A
5554223 Imahashi Sep 1996 A
5555471 Xu Sep 1996 A
5565248 Piester Oct 1996 A
5569810 Tsuji Oct 1996 A
5571366 Ishii Nov 1996 A
5578103 Araujo Nov 1996 A
5591898 Mayer Jan 1997 A
5593550 Stewart Jan 1997 A
5597456 Maruyama Jan 1997 A
5616369 Williams Apr 1997 A
5620523 Maeda Apr 1997 A
5632396 Burns May 1997 A
5633711 Nelson May 1997 A
5643638 Otto Jul 1997 A
5652030 Delperier Jul 1997 A
5654054 Tropsha Aug 1997 A
5656141 Betz Aug 1997 A
5658438 Givens Aug 1997 A
5665280 Tropsha Sep 1997 A
5667840 Tingey Sep 1997 A
5674321 Pu Oct 1997 A
5677010 Esser Oct 1997 A
5679412 Kuehnle Oct 1997 A
5679413 Petrmichl Oct 1997 A
5683771 Tropsha Nov 1997 A
5686157 Harvey Nov 1997 A
5690745 Grunwald Nov 1997 A
5691007 Montgomery Nov 1997 A
5693196 Stewart Dec 1997 A
5699923 Burns Dec 1997 A
5702770 Martin Dec 1997 A
5704983 Thomas et al. Jan 1998 A
5716683 Harvey Feb 1998 A
5718967 Hu Feb 1998 A
5725909 Shaw Mar 1998 A
5733405 Taki Mar 1998 A
5736207 Walther Apr 1998 A
5737179 Shaw Apr 1998 A
5738233 Burns Apr 1998 A
5738920 Knors Apr 1998 A
5744360 Hu Apr 1998 A
5750892 Huang May 1998 A
5763033 Tropsha Jun 1998 A
5766362 Montgomery Jun 1998 A
5769273 Sasaki Jun 1998 A
5779074 Burns Jul 1998 A
5779716 Cano Jul 1998 A
5779802 Borghs Jul 1998 A
5779849 Blalock Jul 1998 A
5788670 Reinhard Aug 1998 A
5792550 Phillips Aug 1998 A
5792940 Ghandhi Aug 1998 A
5798027 Lefebvre Aug 1998 A
5800880 Laurent Sep 1998 A
5807343 Tucker Sep 1998 A
5807605 Tingey Sep 1998 A
5812261 Nelson Sep 1998 A
5814257 Kawata Sep 1998 A
5814738 Pinkerton Sep 1998 A
5820603 Tucker Oct 1998 A
5823373 Sudo Oct 1998 A
5824198 Williams Oct 1998 A
5824607 Trow Oct 1998 A
5833752 Martin Nov 1998 A
5837888 Mayer Nov 1998 A
5837903 Weingand Nov 1998 A
5840167 Kim Nov 1998 A
5853833 Sudo Dec 1998 A
5855686 Rust Jan 1999 A
5861546 Sagi Jan 1999 A
5871700 Konrad Feb 1999 A
5877895 Shaw Mar 1999 A
5880034 Keller Mar 1999 A
5888414 Collins Mar 1999 A
5888591 Gleason Mar 1999 A
5897508 Konrad Apr 1999 A
5900284 Hu May 1999 A
5900285 Walther May 1999 A
5902461 Xu May 1999 A
5904952 Lopata May 1999 A
5913140 Roche Jun 1999 A
5914189 Hasz Jun 1999 A
5919328 Tropsha Jul 1999 A
5919420 Niermann Jul 1999 A
5935391 Nakahigashi Aug 1999 A
5945187 Buch-Rasmussen Aug 1999 A
5951527 Sudo Sep 1999 A
5952069 Tropsha Sep 1999 A
5955161 Tropsha Sep 1999 A
5961911 Hwang Oct 1999 A
5968620 Harvey Oct 1999 A
5972297 Niermann Oct 1999 A
5972436 Walther Oct 1999 A
5985103 Givens Nov 1999 A
6001429 Martin Dec 1999 A
6009743 Mayer Jan 2000 A
6013337 Knors Jan 2000 A
6017317 Newby Jan 2000 A
6018987 Mayer Feb 2000 A
6020196 Hu Feb 2000 A
6027619 Cathey Feb 2000 A
6032813 Niermann Mar 2000 A
6035717 Carodiskey Mar 2000 A
6050400 Taskis Apr 2000 A
6051151 Keller Apr 2000 A
6054016 Tuda Apr 2000 A
6054188 Tropsha Apr 2000 A
6068884 Rose May 2000 A
6077403 Kobayashi Jun 2000 A
6081330 Nelson Jun 2000 A
6082295 Lee Jul 2000 A
6083313 Venkatraman et al. Jul 2000 A
6085927 Kusz Jul 2000 A
6090081 Sudo Jul 2000 A
6093175 Gyure Jul 2000 A
6106678 Shufflebotham Aug 2000 A
6110395 Gibson, Jr. Aug 2000 A
6110544 Yang Aug 2000 A
6112695 Felts Sep 2000 A
6116081 Ghandhi Sep 2000 A
6117243 Walther Sep 2000 A
6118844 Fischer Sep 2000 A
6125687 McClelland Oct 2000 A
6126640 Tucker Oct 2000 A
6129712 Sudo Oct 2000 A
6129956 Morra Oct 2000 A
6136275 Niermann Oct 2000 A
6139802 Niermann Oct 2000 A
6143140 Wang Nov 2000 A
6149982 Plester Nov 2000 A
6153269 Gleason Nov 2000 A
6156152 Ogino Dec 2000 A
6156399 Spallek Dec 2000 A
6156435 Gleason Dec 2000 A
6160350 Sakemi Dec 2000 A
6161712 Savitz Dec 2000 A
6163006 Doughty Dec 2000 A
6165138 Miller Dec 2000 A
6165542 Jaworowski Dec 2000 A
6165566 Tropsha Dec 2000 A
6171670 Sudo Jan 2001 B1
6175612 Sato Jan 2001 B1
6177142 Felts Jan 2001 B1
6180185 Felts Jan 2001 B1
6180191 Felts Jan 2001 B1
6188079 Juvinall Feb 2001 B1
6189484 Yin Feb 2001 B1
6190992 Sandhu Feb 2001 B1
6193853 Yumshtyk Feb 2001 B1
6196155 Setoyama Mar 2001 B1
6197166 Moslehi Mar 2001 B1
6200658 Walther Mar 2001 B1
6200675 Neerinck Mar 2001 B1
6204922 Chalmers Mar 2001 B1
6210791 Skoog Apr 2001 B1
6214422 Yializis Apr 2001 B1
6217716 Fai Lai Apr 2001 B1
6223683 Plester May 2001 B1
6236459 Negahdaripour May 2001 B1
6245190 Masuda Jun 2001 B1
6248219 Wellerdieck Jun 2001 B1
6248397 Ye Jun 2001 B1
6251792 Collins Jun 2001 B1
6254983 Namiki Jul 2001 B1
6261643 Hasz Jul 2001 B1
6263249 Stewart Jul 2001 B1
6271047 Ushio Aug 2001 B1
6276296 Plester Aug 2001 B1
6277331 Konrad Aug 2001 B1
6279505 Plester Aug 2001 B1
6284986 Dietze Sep 2001 B1
6306132 Moorman Oct 2001 B1
6308556 Sagi Oct 2001 B1
6322661 Bailey, III Nov 2001 B1
6331174 Reinhard et al. Dec 2001 B1
6344034 Sudo Feb 2002 B1
6346596 Mallen Feb 2002 B1
6348967 Nelson Feb 2002 B1
6350415 Niermann Feb 2002 B1
6351075 Barankova Feb 2002 B1
6352629 Wang Mar 2002 B1
6354452 DeSalvo Mar 2002 B1
6355033 Moorman Mar 2002 B1
6365013 Beele Apr 2002 B1
6375022 Zurcher Apr 2002 B1
6376028 Laurent Apr 2002 B1
6379757 Iacovangelo Apr 2002 B1
6382441 Carano May 2002 B1
6394979 Sharp May 2002 B1
6396024 Doughty May 2002 B1
6399944 Vasilyev Jun 2002 B1
6402885 Loewenhardt Jun 2002 B2
6410926 Munro Jun 2002 B1
6413645 Graff Jul 2002 B1
6432494 Yang Aug 2002 B1
6470650 Lohwasser Oct 2002 B1
6471822 Yin Oct 2002 B1
6475622 Namiki Nov 2002 B2
6482509 Buch-Rasmussen et al. Nov 2002 B2
6486081 Ishikawa Nov 2002 B1
6500500 Okamura Dec 2002 B1
6503579 Murakami Jan 2003 B1
6518195 Collins Feb 2003 B1
6524282 Sudo Feb 2003 B1
6524448 Brinkmann Feb 2003 B2
6539890 Felts Apr 2003 B1
6544610 Minami Apr 2003 B1
6551267 Cohen Apr 2003 B1
6558679 Flament-Garcia et al. May 2003 B2
6562010 Gyure May 2003 B1
6562189 Quiles May 2003 B1
6565791 Laurent May 2003 B1
6582426 Moorman Jun 2003 B2
6582823 Sakhrani et al. Jun 2003 B1
6584828 Sagi Jul 2003 B2
6595961 Hetzler Jul 2003 B2
6597193 Lagowski Jul 2003 B2
6599569 Humele Jul 2003 B1
6599594 Walther Jul 2003 B1
6602206 Niermann Aug 2003 B1
6616632 Sharp Sep 2003 B2
6620139 Plicchi Sep 2003 B1
6620334 Kanno Sep 2003 B2
6623861 Martin Sep 2003 B2
6638403 Inaba Oct 2003 B1
6638876 Levy Oct 2003 B2
6645354 Gorokhovsky Nov 2003 B1
6645635 Muraki Nov 2003 B2
6651835 Iskra Nov 2003 B2
6652520 Moorman Nov 2003 B2
6656540 Sakamoto Dec 2003 B2
6658919 Chatard Dec 2003 B2
6662957 Zurcher Dec 2003 B2
6663601 Hetzler Dec 2003 B2
6663603 Gyure Dec 2003 B1
6670200 Ushio Dec 2003 B2
6673199 Yamartino Jan 2004 B1
6680091 Buch-Rasmussen et al. Jan 2004 B2
6680621 Savtchouk Jan 2004 B2
6683308 Itagaki Jan 2004 B2
6684683 Potyrailo Feb 2004 B2
6702898 Hosoi Mar 2004 B2
6706412 Yializis Mar 2004 B2
6746430 Lubrecht Jun 2004 B2
6749078 Iskra Jun 2004 B2
6752899 Singh Jun 2004 B1
6753972 Hirose Jun 2004 B1
6757056 Meeks Jun 2004 B1
6764714 Wei Jul 2004 B2
6765466 Miyata Jul 2004 B2
6766682 Engle Jul 2004 B2
6774018 Mikhael Aug 2004 B2
6796780 Chatard Sep 2004 B1
6800852 Larson Oct 2004 B2
6808753 Rule Oct 2004 B2
6810106 Sato Oct 2004 B2
6815014 Gabelnick Nov 2004 B2
6818310 Namiki Nov 2004 B2
6822015 Muraki Nov 2004 B2
6837954 Carano Jan 2005 B2
6844075 Saak Jan 2005 B1
6853141 Hoffman Feb 2005 B2
6858259 Affinito Feb 2005 B2
6863731 Elsayed-Ali Mar 2005 B2
6864773 Perrin Mar 2005 B2
6866656 Tingey Mar 2005 B2
6872428 Yang Mar 2005 B2
6876154 Appleyard Apr 2005 B2
6885727 Tamura Apr 2005 B2
6887578 Gleason May 2005 B2
6891158 Larson May 2005 B2
6892567 Morrow May 2005 B1
6899054 Bardos May 2005 B1
6905769 Komada Jun 2005 B2
6910597 Iskra Jun 2005 B2
6911779 Madocks Jun 2005 B2
6919107 Schwarzenbach Jul 2005 B2
6919114 Darras Jul 2005 B1
6933460 Vanden Brande Aug 2005 B2
6946164 Huang Sep 2005 B2
6952949 Moore Oct 2005 B2
6960393 Yializis Nov 2005 B2
6962671 Martin Nov 2005 B2
6965221 Lipcsei Nov 2005 B2
6981403 Ascheman Jan 2006 B2
6989675 Kesil Jan 2006 B2
6995377 Darr Feb 2006 B2
7029755 Terry Apr 2006 B2
7029803 Becker Apr 2006 B2
7039158 Janik May 2006 B1
7052736 Wei May 2006 B2
7052920 Ushio May 2006 B2
7059268 Russell Jun 2006 B2
7067034 Bailey, III Jun 2006 B2
7074501 Czeremuszkin Jul 2006 B2
7098453 Ando Aug 2006 B2
7109070 Behle Sep 2006 B2
7112352 Schaepkens Sep 2006 B2
7112541 Xia Sep 2006 B2
7115310 Jacoud Oct 2006 B2
7118538 Konrad Oct 2006 B2
7119908 Nomoto Oct 2006 B2
7121135 Moore Oct 2006 B2
7130373 Omote Oct 2006 B2
7150299 Hertzler Dec 2006 B2
7160292 Moorman Jan 2007 B2
7183197 Won Feb 2007 B2
7186242 Gyure Mar 2007 B2
7188734 Konrad Mar 2007 B2
7189290 Hama Mar 2007 B2
7193724 Isei Mar 2007 B2
7198685 Hetzler Apr 2007 B2
7206074 Fujimoto Apr 2007 B2
7214214 Sudo May 2007 B2
7244381 Chatard Jul 2007 B2
7253892 Semersky Aug 2007 B2
7286242 Kim Oct 2007 B2
7288293 Koulik Oct 2007 B2
7297216 Hetzler Nov 2007 B2
7300684 Boardman Nov 2007 B2
7303789 Saito Dec 2007 B2
7303790 Delaunay Dec 2007 B2
7306852 Komada Dec 2007 B2
7332227 Hardman Feb 2008 B2
7338576 Ono Mar 2008 B2
7339682 Aiyer Mar 2008 B2
7344766 Sorensen Mar 2008 B1
7348055 Chappa Mar 2008 B2
7348192 Mikami Mar 2008 B2
7362425 Meeks Apr 2008 B2
7381469 Moelle Jun 2008 B2
7390573 Korevaar Jun 2008 B2
7399500 Bicker Jul 2008 B2
7405008 Domine Jul 2008 B2
7409313 Ringermacher Aug 2008 B2
7411685 Takashima Aug 2008 B2
RE40531 Graff Oct 2008 E
7431989 Sakhrani Oct 2008 B2
7438783 Miyata Oct 2008 B2
7444955 Boardman Nov 2008 B2
7455892 Goodwin Nov 2008 B2
7480363 Lasiuk Jan 2009 B2
7488683 Kobayashi Feb 2009 B2
7494941 Kasahara Feb 2009 B2
7507378 Reichenbach Mar 2009 B2
7513953 Felts Apr 2009 B1
7520965 Wei Apr 2009 B2
7521022 Konrad Apr 2009 B2
7534615 Havens May 2009 B2
7534733 Bookbinder May 2009 B2
RE40787 Martin Jun 2009 E
7541069 Tudhope Jun 2009 B2
7547297 Brinkhues Jun 2009 B2
7552620 DeRoos Jun 2009 B2
7553529 Sakhrani Jun 2009 B2
7555934 DeRoos Jul 2009 B2
7569035 Wilmot Aug 2009 B1
7579056 Brown Aug 2009 B2
7582868 Jiang Sep 2009 B2
7595097 Iacovangelo Sep 2009 B2
7608151 Tudhope Oct 2009 B2
7618686 Colpo Nov 2009 B2
7624622 Mayer Dec 2009 B1
7625494 Honda Dec 2009 B2
7645696 Dulkin Jan 2010 B1
7648481 Geiger Jan 2010 B2
7682816 Kim Mar 2010 B2
7691308 Brinkhues Apr 2010 B2
7694403 Moulton Apr 2010 B2
7704683 Wittenberg Apr 2010 B2
7713638 Moelle May 2010 B2
7736689 Chappa Jun 2010 B2
7740610 Moh Jun 2010 B2
7744567 Glowacki Jun 2010 B2
7744790 Behle Jun 2010 B2
7745228 Schwind Jun 2010 B2
7745547 Auerbach Jun 2010 B1
7749202 Miller Jul 2010 B2
7749914 Honda Jul 2010 B2
7754302 Yamasaki Jul 2010 B2
7766882 Sudo Aug 2010 B2
7780866 Miller Aug 2010 B2
7785862 Kim Aug 2010 B2
7790475 Galbraith Sep 2010 B2
7798993 Lim Sep 2010 B2
7803305 Ahern Sep 2010 B2
7807242 Sorensen Oct 2010 B2
7815922 Chaney Oct 2010 B2
7846293 Iwasaki Dec 2010 B2
7854889 Perot Dec 2010 B2
7867366 McFarland Jan 2011 B1
7887891 Rius Feb 2011 B2
7905866 Haider Mar 2011 B2
7922880 Pradhan Apr 2011 B1
7922958 D'Arrigo Apr 2011 B2
7927315 Sudo Apr 2011 B2
7931955 Behle Apr 2011 B2
7932678 Madocks Apr 2011 B2
7934613 Sudo May 2011 B2
7943205 Schaepkens May 2011 B2
7947337 Kuepper May 2011 B2
7955986 Hoffman Jun 2011 B2
7960043 Harris Jun 2011 B2
7964438 Roca I Cabarrocas Jun 2011 B2
7967945 Glukhoy Jun 2011 B2
7975646 Rius Jul 2011 B2
7985188 Felts Jul 2011 B2
8002754 Kawamura Aug 2011 B2
8025915 Haines Sep 2011 B2
8038858 Bures Oct 2011 B1
8039524 Chappa Oct 2011 B2
8056719 Porret Nov 2011 B2
8062266 McKinnon Nov 2011 B2
8066663 Sudo Nov 2011 B2
8066854 Storey Nov 2011 B2
8070917 Tsukamoto Dec 2011 B2
8075995 Zhao Dec 2011 B2
8092605 Shannon Jan 2012 B2
8101246 Fayet Jan 2012 B2
8101674 Kawauchi Jan 2012 B2
8105294 Araki Jan 2012 B2
8197452 Harding Jun 2012 B2
8227025 Lewis Jul 2012 B2
8258486 Avnery Sep 2012 B2
8268410 Moelle Sep 2012 B2
8273222 Wei Sep 2012 B2
8313455 DiGregorio Nov 2012 B2
8323166 Haines Dec 2012 B2
8389958 Vo-Dinh Mar 2013 B2
8397667 Behle Mar 2013 B2
8409441 Wilt Apr 2013 B2
8418650 Goto Apr 2013 B2
8435605 Aitken et al. May 2013 B2
8475886 Chen et al. Jul 2013 B2
8512796 Felts Aug 2013 B2
8524331 Honda Sep 2013 B2
8592015 Bicker Nov 2013 B2
8603638 Liu Dec 2013 B2
8618509 Vo-Dinh Dec 2013 B2
8623324 Diwu Jan 2014 B2
8633034 Trotter Jan 2014 B2
8747962 Bicker et al. Jun 2014 B2
8802603 D'Souza Aug 2014 B2
8816022 Zhao Aug 2014 B2
9068565 Alarcon Jun 2015 B2
20010000279 Daniels Apr 2001 A1
20010021356 Konrad Sep 2001 A1
20010038894 Komada Nov 2001 A1
20010042510 Plester Nov 2001 A1
20010043997 Uddin Nov 2001 A1
20020006487 O'Connor Jan 2002 A1
20020007796 Gorokhovsky Jan 2002 A1
20020070647 Ginovker Jun 2002 A1
20020117114 Ikenaga Aug 2002 A1
20020125900 Savtchouk Sep 2002 A1
20020130674 Logowski Sep 2002 A1
20020141477 Akahori Oct 2002 A1
20020153103 Madocks Oct 2002 A1
20020155218 Meyer Oct 2002 A1
20020170495 Nakamura Nov 2002 A1
20020176947 Darras et al. Nov 2002 A1
20020182101 Koulik Dec 2002 A1
20020185226 Lea Dec 2002 A1
20020190207 Levy Dec 2002 A1
20030010454 Bailey, III Jan 2003 A1
20030013818 Hakuta Jan 2003 A1
20030029837 Trow Feb 2003 A1
20030031806 Jinks Feb 2003 A1
20030046982 Chartard Mar 2003 A1
20030102087 Ito Jun 2003 A1
20030119193 Hess Jun 2003 A1
20030159654 Arnold Aug 2003 A1
20030215652 O'Connor Nov 2003 A1
20030219547 Arnold Nov 2003 A1
20030232150 Arnold Dec 2003 A1
20040024371 Plicchi Feb 2004 A1
20040039401 Chow Feb 2004 A1
20040040372 Plester Mar 2004 A1
20040045811 Wang Mar 2004 A1
20040050744 Hama Mar 2004 A1
20040055538 Gorokhovsky Mar 2004 A1
20040071960 Weber Apr 2004 A1
20040082917 Hetzler Apr 2004 A1
20040084151 Kim May 2004 A1
20040125913 Larson Jul 2004 A1
20040135081 Larson Jul 2004 A1
20040149225 Weikart Aug 2004 A1
20040177676 Moore Sep 2004 A1
20040195960 Czeremuszkin Oct 2004 A1
20040206309 Bera Oct 2004 A1
20040217081 Konrad Nov 2004 A1
20040247948 Behle Dec 2004 A1
20040267194 Sano Dec 2004 A1
20050000962 Crawford Jan 2005 A1
20050010175 Beedon Jan 2005 A1
20050019503 Komada Jan 2005 A1
20050037165 Ahern Feb 2005 A1
20050039854 Matsuyama Feb 2005 A1
20050045472 Nagata Mar 2005 A1
20050057754 Smith Mar 2005 A1
20050073323 Kohno Apr 2005 A1
20050075611 Hetzler et al. Apr 2005 A1
20050075612 Lee Apr 2005 A1
20050161149 Yokota Jul 2005 A1
20050169803 Betz Aug 2005 A1
20050190450 Becker Sep 2005 A1
20050196629 Bariatinsky Sep 2005 A1
20050199571 Geisler Sep 2005 A1
20050206907 Fujimoto Sep 2005 A1
20050211383 Miyata Sep 2005 A1
20050223988 Behle Oct 2005 A1
20050227002 Lizenberg Oct 2005 A1
20050227022 Domine Oct 2005 A1
20050229850 Behle Oct 2005 A1
20050233077 Lizenberg Oct 2005 A1
20050233091 Kumar Oct 2005 A1
20050236346 Whitney Oct 2005 A1
20050260504 Becker Nov 2005 A1
20050284550 Bicker Dec 2005 A1
20060005608 Kitzhoffer Jan 2006 A1
20060013997 Kuepper Jan 2006 A1
20060014309 Sachdev Jan 2006 A1
20060024849 Zhu Feb 2006 A1
20060042755 Holmberg Mar 2006 A1
20060046006 Bastion Mar 2006 A1
20060051252 Yuan Mar 2006 A1
20060051520 Behle Mar 2006 A1
20060076231 Wei Apr 2006 A1
20060086320 Lizenberg Apr 2006 A1
20060099340 Behle May 2006 A1
20060121222 Audrich Jun 2006 A1
20060121613 Havens Jun 2006 A1
20060121623 He Jun 2006 A1
20060127699 Moelle Jun 2006 A1
20060135945 Bankiewicz Jun 2006 A1
20060138326 Jiang Jun 2006 A1
20060150909 Behle Jul 2006 A1
20060169026 Kage Aug 2006 A1
20060178627 Geiger Aug 2006 A1
20060183345 Nguyen Aug 2006 A1
20060192973 Aiyer Aug 2006 A1
20060196419 Tudhope Sep 2006 A1
20060198903 Storey Sep 2006 A1
20060198965 Tudhope Sep 2006 A1
20060200078 Konrad Sep 2006 A1
20060200084 Ito Sep 2006 A1
20060210425 Mirkarimi Sep 2006 A1
20060228497 Kumar Oct 2006 A1
20060260360 Dick Nov 2006 A1
20070003441 Wohleb Jan 2007 A1
20070009673 Fukazawa et al. Jan 2007 A1
20070017870 Belov Jan 2007 A1
20070048456 Keshner Mar 2007 A1
20070049048 Rauf Mar 2007 A1
20070051629 Donlik Mar 2007 A1
20070065680 Schultheis Mar 2007 A1
20070076833 Becker Apr 2007 A1
20070102344 Konrad May 2007 A1
20070123920 Inokuti May 2007 A1
20070148326 Hatings Jun 2007 A1
20070166187 Song Jul 2007 A1
20070184657 Iijima Aug 2007 A1
20070187229 Aksenov Aug 2007 A1
20070187280 Haines Aug 2007 A1
20070205096 Nagashima Sep 2007 A1
20070215009 Shimazu Sep 2007 A1
20070215046 Lupke et al. Sep 2007 A1
20070218265 Harris Sep 2007 A1
20070224236 Boden Sep 2007 A1
20070231655 Ha Oct 2007 A1
20070232066 Bicker Oct 2007 A1
20070235890 Lewis Oct 2007 A1
20070243618 Hatchett Oct 2007 A1
20070251458 Mund Nov 2007 A1
20070258894 Melker et al. Nov 2007 A1
20070259184 Martin Nov 2007 A1
20070281108 Weikart Dec 2007 A1
20070281117 Kaplan Dec 2007 A1
20070287950 Kjeken Dec 2007 A1
20070287954 Zhao Dec 2007 A1
20070298189 Straemke Dec 2007 A1
20080011232 Ruis Jan 2008 A1
20080017113 Goto Jan 2008 A1
20080023414 Konrad Jan 2008 A1
20080027400 Harding Jan 2008 A1
20080045880 Kjeken Feb 2008 A1
20080050567 Kawashima Feb 2008 A1
20080050932 Lakshmanan Feb 2008 A1
20080069970 Wu Mar 2008 A1
20080071228 Wu Mar 2008 A1
20080081184 Kubo Apr 2008 A1
20080090039 Klein Apr 2008 A1
20080093245 Periasamy Apr 2008 A1
20080102206 Wagner May 2008 A1
20080109017 Herweck May 2008 A1
20080110852 Kuroda May 2008 A1
20080113109 Moelle May 2008 A1
20080118734 Goodwin May 2008 A1
20080131628 Abensour Jun 2008 A1
20080131638 Hutton Jun 2008 A1
20080139003 Pirzada Jun 2008 A1
20080145271 Kidambi Jun 2008 A1
20080187681 Hofrichter Aug 2008 A1
20080195059 Sudo Aug 2008 A1
20080202414 Yan Aug 2008 A1
20080206477 Rius Aug 2008 A1
20080210550 Walther et al. Sep 2008 A1
20080220164 Bauch Sep 2008 A1
20080223815 Konrad Sep 2008 A1
20080233355 Henze Sep 2008 A1
20080260966 Hanawa Oct 2008 A1
20080268252 Garces Oct 2008 A1
20080277332 Liu Nov 2008 A1
20080289957 Takigawa Nov 2008 A1
20080292806 Wei Nov 2008 A1
20080295772 Park Dec 2008 A1
20080303131 Mcelerea Dec 2008 A1
20080312607 Delmotte Dec 2008 A1
20080314318 Han Dec 2008 A1
20090004363 Keshner Jan 2009 A1
20090017217 Hass Jan 2009 A1
20090022981 Yoshida Jan 2009 A1
20090029402 Papkovsky Jan 2009 A1
20090031953 Ingle Feb 2009 A1
20090032393 Madocks Feb 2009 A1
20090039240 Van Nijnatten Feb 2009 A1
20090053491 Laboda Feb 2009 A1
20090061237 Gates Mar 2009 A1
20090065485 O'Neill Mar 2009 A1
20090081797 Fadeev Mar 2009 A1
20090099512 Digregorio Apr 2009 A1
20090104392 Takada Apr 2009 A1
20090117268 Lewis May 2009 A1
20090117389 Amberg-Schwab May 2009 A1
20090122832 Feist May 2009 A1
20090134884 Bosselmann May 2009 A1
20090137966 Rueckert May 2009 A1
20090142227 Fuchs Jun 2009 A1
20090142514 O'Neill Jun 2009 A1
20090147719 Kang Jun 2009 A1
20090149816 Hetzler Jun 2009 A1
20090155490 Bicker Jun 2009 A1
20090162571 Haines Jun 2009 A1
20090166312 Giraud Jul 2009 A1
20090176031 Armellin Jul 2009 A1
20090220948 Oviso et al. Sep 2009 A1
20090263668 David Oct 2009 A1
20090280268 Glukhoy Nov 2009 A1
20090297730 Glukhoy Dec 2009 A1
20090306595 Shih Dec 2009 A1
20090326517 Bork Dec 2009 A1
20100021998 Sanyal Jan 2010 A1
20100028238 Maschwitz Feb 2010 A1
20100034985 Krueger Feb 2010 A1
20100042055 Sudo Feb 2010 A1
20100075077 Bicker Mar 2010 A1
20100089097 Brack Apr 2010 A1
20100105208 Winniczek Apr 2010 A1
20100132762 Graham, Jr. Jun 2010 A1
20100145284 Togashi Jun 2010 A1
20100174239 Yodfat Jul 2010 A1
20100174245 Halverson Jul 2010 A1
20100178490 Cerny Jul 2010 A1
20100185157 Kawamura Jul 2010 A1
20100186740 Lewis et al. Jul 2010 A1
20100190036 Komvopoulos Jul 2010 A1
20100193461 Boutroy Aug 2010 A1
20100198554 Skliar Aug 2010 A1
20100204648 Stout Aug 2010 A1
20100230281 Park Sep 2010 A1
20100231194 Bauch Sep 2010 A1
20100237545 Haury Sep 2010 A1
20100264139 Kawachi Oct 2010 A1
20100273261 Chen Oct 2010 A1
20100275847 Yamasaki Nov 2010 A1
20100279397 Crawford Nov 2010 A1
20100298738 Felts Nov 2010 A1
20100298779 Hetzler Nov 2010 A1
20110037159 Mcelerea Feb 2011 A1
20110046570 Stout Feb 2011 A1
20110056912 Matsuyama Mar 2011 A1
20110062047 Haines Mar 2011 A1
20110065798 Hoang Mar 2011 A1
20110079582 Yonesu Apr 2011 A1
20110093056 Kaplan Apr 2011 A1
20110111132 Wei May 2011 A1
20110117202 Bourke, Jr. May 2011 A1
20110117288 Honda May 2011 A1
20110137263 Ashmead Jun 2011 A1
20110152820 Chattaraj Jun 2011 A1
20110159101 Kurdyumov et al. Jun 2011 A1
20110160662 Stout Jun 2011 A1
20110160663 Stout Jun 2011 A1
20110174220 Laure Jul 2011 A1
20110186537 Rodriguez San Juan et al. Aug 2011 A1
20110220490 Wei Sep 2011 A1
20110252899 Felts Oct 2011 A1
20110253674 Chung Oct 2011 A1
20110313363 D'Souza Dec 2011 A1
20110319758 Wang Dec 2011 A1
20110319813 Kamen Dec 2011 A1
20120003497 Handy Jan 2012 A1
20120004339 Chappa Jan 2012 A1
20120021136 Dzengeleski Jan 2012 A1
20120031070 Slough Feb 2012 A1
20120035543 Kamen Feb 2012 A1
20120052123 Kurdyumov et al. Mar 2012 A9
20120053530 Zhao Mar 2012 A1
20120058351 Zhao Mar 2012 A1
20120065612 Stout Mar 2012 A1
20120097527 Kodaira Apr 2012 A1
20120097870 Leray Apr 2012 A1
20120108058 Ha May 2012 A1
20120109076 Kawamura May 2012 A1
20120123345 Felts May 2012 A1
20120143148 Zhao Jun 2012 A1
20120149871 Saxena Jun 2012 A1
20120171386 Bicker Jul 2012 A1
20120175384 Greter Jul 2012 A1
20120183954 Diwu Jul 2012 A1
20120205374 Klumpen Aug 2012 A1
20120231182 Stevens Sep 2012 A1
20120234720 Digregorio Sep 2012 A1
20120252709 Felts Oct 2012 A1
20130041241 Felts Feb 2013 A1
20130057677 Weil Mar 2013 A1
20130072025 Singh Mar 2013 A1
20130081953 Bruna et al. Apr 2013 A1
20130190695 Wu Jul 2013 A1
20130209704 Krueger Aug 2013 A1
20130296235 Alarcon Nov 2013 A1
20140010969 Bicker Jan 2014 A1
20140052076 Zhao Feb 2014 A1
20140054803 Chen Feb 2014 A1
20140099455 Stanley Apr 2014 A1
20140110297 Trotter Apr 2014 A1
20140135708 Lewis May 2014 A1
20140147654 Walther May 2014 A1
20140151320 Chang Jun 2014 A1
20140151370 Chang Jun 2014 A1
20140187666 Aizenberg Jul 2014 A1
20140190846 Belt Jul 2014 A1
20140221934 Janvier Aug 2014 A1
20140251856 Larsson Sep 2014 A1
20140305830 Bicker Oct 2014 A1
20150165125 Foucher Jun 2015 A1
20150224263 Dugand Aug 2015 A1
Foreign Referenced Citations (307)
Number Date Country
414209 Oct 2006 AT
504533 Jun 2008 AT
2002354470 May 2007 AU
2085805 Dec 1992 CA
2277679 Jul 1997 CA
2355681 Jul 2000 CA
2571380 Jul 2006 CA
2718253 Sep 2009 CA
2268719 Aug 2010 CA
2546041 Apr 2003 CN
1711310 Dec 2005 CN
2766863 Mar 2006 CN
1898172 Jan 2007 CN
201002786 Jan 2008 CN
101147813 Mar 2008 CN
201056331 May 2008 CN
102581274 Jul 2012 CN
1147836 Apr 1969 DE
1147838 Apr 1969 DE
3632748 Apr 1988 DE
3908418 Sep 1990 DE
4214401 Mar 1993 DE
4204082 Aug 1993 DE
4316349 Nov 1994 DE
4438359 May 1996 DE
19707645 Aug 1998 DE
19830794 Jan 2000 DE
19912737 Jun 2000 DE
10010831 Sep 2001 DE
10154404 Jun 2003 DE
10201110 Oct 2003 DE
10242698 Mar 2004 DE
10246181 Apr 2004 DE
10353540 May 2004 DE
102004017236 Oct 2005 DE
102006061585 Feb 2008 DE
102008023027 Nov 2009 DE
0121340 Oct 1984 EP
0251812 Jan 1988 EP
0275965 Jul 1988 EP
0284867 Oct 1988 EP
0306307 Mar 1989 EP
0329041 Aug 1989 EP
0343017 Nov 1989 EP
0396919 Nov 1990 EP
0482613 Oct 1991 EP
0484746 Oct 1991 EP
0495447 Jul 1992 EP
0520519 Dec 1992 EP
0535810 Apr 1993 EP
0375778 Sep 1993 EP
0571116 Nov 1993 EP
0580094 Jan 1994 EP
0603717 Jun 1994 EP
0619178 Oct 1994 EP
0645470 Mar 1995 EP
0697378 Feb 1996 EP
0709485 May 1996 EP
0719877 Jul 1996 EP
0728676 Aug 1996 EP
0787824 Aug 1997 EP
0787828 Aug 1997 EP
0814114 Dec 1997 EP
0833366 Apr 1998 EP
0879611 Nov 1998 EP
0940183 Sep 1999 EP
0962229 Dec 1999 EP
0992610 Apr 2000 EP
1119034 Jul 2001 EP
0954272 Mar 2002 EP
1245694 Oct 2002 EP
1388594 Jan 2003 EP
1317937 Jun 2003 EP
1365043 Nov 2003 EP
1367145 Dec 2003 EP
1388593 Feb 2004 EP
1439241 Jul 2004 EP
1447459 Aug 2004 EP
1990639 Feb 2005 EP
1510595 Mar 2005 EP
1522403 Apr 2005 EP
1901067 Aug 2005 EP
1507894 Dec 2005 EP
1507723 Mar 2006 EP
1653192 May 2006 EP
1810758 Jul 2007 EP
1356260 Dec 2007 EP
1870117 Dec 2007 EP
1881088 Jan 2008 EP
1507887 Jul 2008 EP
1415018 Oct 2008 EP
2199264 Nov 2009 EP
1388594 Jan 2010 EP
2178109 Apr 2010 EP
1507895 Jul 2010 EP
2218465 Aug 2010 EP
2243751 Oct 2010 EP
2251671 Nov 2010 EP
2261185 Dec 2010 EP
2369038 Sep 2011 EP
1960279 Oct 2011 EP
2602354 Jun 2013 EP
2639330 Sep 2013 EP
891892 Nov 1942 FR
752822 Jul 1956 GB
1363762 Aug 1974 GB
1513426 Jun 1978 GB
1566251 Apr 1980 GB
2210826 Jun 1989 GB
2231197 Nov 1990 GB
2246794 Feb 1992 GB
2246795 Feb 1992 GB
2387964 Oct 2003 GB
56027330 Mar 1981 JP
58154602 Sep 1983 JP
59087307 May 1984 JP
59154029 Sep 1984 JP
S61183462 Aug 1986 JP
S62180069 Aug 1987 JP
S62290866 Dec 1987 JP
63124521 May 1988 JP
1023105 Jan 1989 JP
H01225775 Sep 1989 JP
1279745 Nov 1989 JP
2501490 May 1990 JP
3183759 Aug 1991 JP
H03260065 Nov 1991 JP
H03271374 Dec 1991 JP
4000373 Jan 1992 JP
4000374 Jan 1992 JP
4000375 Jan 1992 JP
4014440 Jan 1992 JP
H04124273 Apr 1992 JP
H0578844 Mar 1993 JP
05-006688 Apr 1993 JP
H05263223 Oct 1993 JP
6010132 Jan 1994 JP
6289401 Oct 1994 JP
7041579 Feb 1995 JP
7068614 Mar 1995 JP
7126419 May 1995 JP
8025244 Jan 1996 JP
8084773 Apr 1996 JP
H08296038 Nov 1996 JP
9005038 Jan 1997 JP
10008254 Jan 1998 JP
11-108833 Apr 1999 JP
11106920 Apr 1999 JP
H11256331 Sep 1999 JP
11344316 Dec 1999 JP
2000064040 Feb 2000 JP
2000109076 Apr 2000 JP
2001033398 Feb 2001 JP
2001231841 Aug 2001 JP
2002177364 Jun 2002 JP
2002206167 Jul 2002 JP
2002371364 Dec 2002 JP
2003171771 Jun 2003 JP
2003-268550 Sep 2003 JP
2003294431 Oct 2003 JP
2003305121 Oct 2003 JP
200400298 Jan 2004 JP
2004008509 Jan 2004 JP
2004043789 Feb 2004 JP
2004100036 Apr 2004 JP
2004156444 Jun 2004 JP
2004168359 Jun 2004 JP
2004169087 Jun 2004 JP
2004203682 Jul 2004 JP
2004-253683 Sep 2004 JP
2004307935 Nov 2004 JP
2005035597 Feb 2005 JP
2005043285 Feb 2005 JP
2005132416 May 2005 JP
2005160888 Jun 2005 JP
2005200044 Jul 2005 JP
2005-241524 Sep 2005 JP
2005271997 Oct 2005 JP
2005290561 Oct 2005 JP
2006-064416 Mar 2006 JP
2006111967 Apr 2006 JP
2006160268 Jun 2006 JP
2006-224992 Aug 2006 JP
2006249577 Sep 2006 JP
2007050898 Mar 2007 JP
2007231386 Sep 2007 JP
2007246974 Sep 2007 JP
2008174793 Jul 2008 JP
2009-062620 Mar 2009 JP
2009062620 Mar 2009 JP
2009079298 Apr 2009 JP
2009084203 Apr 2009 JP
2009185330 Aug 2009 JP
2010155134 Jul 2010 JP
2012210315 Nov 2012 JP
10-2005-0100367 Oct 2005 KR
10-2006-0029694 Apr 2006 KR
10-0685594 Feb 2007 KR
1530913 Dec 1989 SU
200703536 Jan 2007 TW
WO9324243 Dec 1993 WO
WO9400247 Jan 1994 WO
WO9426497 Nov 1994 WO
WO9524275 Sep 1995 WO
WO9624392 Aug 1996 WO
WO9711482 Mar 1997 WO
WO9713802 Apr 1997 WO
WO98-27926 Jul 1998 WO
WO9845871 Oct 1998 WO
WO9917334 Apr 1999 WO
WO9941425 Aug 1999 WO
WO9950471 Oct 1999 WO
WO0038566 Jul 2000 WO
WO0104668 Jan 2001 WO
WO0125788 Apr 2001 WO
WO0154816 Aug 2001 WO
WO0156706 Aug 2001 WO
WO0170403 Sep 2001 WO
WO0243116 May 2002 WO
WO0249925 Jun 2002 WO
WO02056333 Jul 2002 WO
WO02072914 Sep 2002 WO
WO02076709 Oct 2002 WO
WO03014415 Feb 2003 WO
WO03033426 Apr 2003 WO
WO03038143 May 2003 WO
WO03040649 May 2003 WO
WO03044240 May 2003 WO
WO2005035147 Apr 2005 WO
WO2005052555 Jun 2005 WO
WO2005051525 Jun 2005 WO
WO2005103605 Nov 2005 WO
WO2006012881 Feb 2006 WO
WO2006027568 Mar 2006 WO
WO2006029743 Mar 2006 WO
WO2006044254 Apr 2006 WO
WO2006048276 May 2006 WO
WO2006048277 May 2006 WO
WO2006069774 Jul 2006 WO
WO2006135755 Dec 2006 WO
WO2007028061 Mar 2007 WO
WO2007035741 Mar 2007 WO
WO2007036544 Apr 2007 WO
WO2007081814 Jul 2007 WO
WO2007089216 Aug 2007 WO
WO2007112328 Oct 2007 WO
WO2007120507 Oct 2007 WO
WO2007133378 Nov 2007 WO
WO2007134347 Nov 2007 WO
WO2008014438 Jan 2008 WO
WO2008024566 Feb 2008 WO
WO2008040531 Apr 2008 WO
WO2008047541 Apr 2008 WO
WO2008067574 Jun 2008 WO
WO2008071458 Jun 2008 WO
WO2008093335 Aug 2008 WO
2008121478 Oct 2008 WO
WO2009015862 Feb 2009 WO
WO2009020550 Feb 2009 WO
WO2009021257 Feb 2009 WO
WO2009030974 Mar 2009 WO
WO2009030975 Mar 2009 WO
WO2009030976 Mar 2009 WO
WO2009031838 Mar 2009 WO
WO2009040109 Apr 2009 WO
WO2009053947 Apr 2009 WO
WO2009112053 Sep 2009 WO
WO2009117032 Sep 2009 WO
WO2009118361 Oct 2009 WO
WO2009158613 Dec 2009 WO
WO2010047825 Apr 2010 WO
WO2010095011 Aug 2010 WO
WO2010132579 Nov 2010 WO
WO2010132581 Nov 2010 WO
WO2010132584 Nov 2010 WO
WO2010132585 Nov 2010 WO
WO2010132591 Nov 2010 WO
WO2010135289 Nov 2010 WO
WO2010034004 Nov 2010 WO
WO2010132579 Nov 2010 WO
WO2011029628 Mar 2011 WO
WO2011007055 Jun 2011 WO
WO2011080543 Jul 2011 WO
WO2011082296 Jul 2011 WO
WO2011090717 Jul 2011 WO
WO2011143329 Nov 2011 WO
WO2011143509 Nov 2011 WO
WO2011143509 Nov 2011 WO
WO2011137437 Nov 2011 WO
WO2011143329 Nov 2011 WO
WO2011159975 Dec 2011 WO
WO2012003221 Jan 2012 WO
WO2012009653 Jan 2012 WO
WO2013045671 Apr 2013 WO
WO2013071138 May 2013 WO
WO2013071138 May 2013 WO
WO2013170044 Nov 2013 WO
WO2013170052 Nov 2013 WO
WO2014008138 Jan 2014 WO
WO2014059012 Apr 2014 WO
WO2014071061 May 2014 WO
WO2014078666 May 2014 WO
WO2014085346 Jun 2014 WO
WO2014085348 Jun 2014 WO
WO2014134577 Sep 2014 WO
WO2014144926 Sep 2014 WO
WO2014164928 Oct 2014 WO
Non-Patent Literature Citations (193)
Entry
Hanlon, Adriene Lepiane, Pak, Chung K., Pawlikowski, Beverly A., Decision on Appeal, Appeal No. 2005-1693, U.S. Appl. No. 10/192,333, dated Sep. 30, 2005.
Coating Syringes, http://www.triboglide.com/syringes.htm, printed Aug. 31, 2009.
Coating/Production Process, http://www.triboglide.com/process.htm, printed Aug. 31, 2009.
Munich Exp, Materialica 2005: Fundierte Einblicke in den Werkstofsektor, Seite 1, von 4, ME095-6.
Schott Developing Syringe Production in United States, Apr. 14, 2009, http://www.schott.com/pharmaceutical—packaging, printed Aug. 31, 2009.
Sterile Prefillable Glass and Polymer Syringes, Schott forma vitrum, http://www.schott.com/pharmaceutical—packaging.
Transparent und recyclingfähig, neue verpackung, Dec. 2002, pp. 54-57.
European Patent Office, Communication with European Search Report, in Application No. 10162758.6, dated Aug. 19, 2010.
Griesser, Hans J., et al., Elimination of Stick-Slip of Elastomeric Sutures by Radiofrequency Glow Discharge Deposited Coatings, Biomed Mater. Res. Appl Biomater, 2000, vol. 53, 235-243, John Wiley & Sons, Inc.
European Patent Office, Communication with extended Search Report, in Application No. EP 10162761.0, dated Feb. 10, 2011.
European Patent Office, Communication with partial Search Report, in Application No. EP 10162758.6, dated Aug. 19, 2010.
European Patent Office, Communication with extended Search Report, in Application No. EP 10162758.6, dated Dec. 21, 2010.
Yang, et al., Microstructure and tribological properties of SiOx/DLC films grown by PECVD, Surface and Coatings Technology, vol. 194 (2005), Apr. 20, 2005, pp. 128-135.
European Patent Office, Communication with extended European search report, in Application No. EP10162756.0, dated Nov. 17, 2010.
Prasad, G.R. et al., “Biocompatible Coatings with Silicon and Titanium Oxides Deposited by PECVD”, 3rd Mikkeli International Industrial Coating Seminar, Mikkeli, Finland, Mar. 16-18, 2006.
European Patent Office, Communication with extended European search report, in Application No. EP10162757.8, dated Nov. 10, 2010.
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034568, dated Jan. 21, 2011.
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034571, dated Jan. 26, 2011.
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034576, dated Jan. 25, 2011.
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034577, dated Jan. 21, 2011.
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2010/034582, dated Jan. 24, 2011.
European Patent Office, Communication with Extended Search Report, in Application No. EP 10162755.2, dated Nov. 9, 2010.
European Patent Office, Communication with Extended Search Report, in Application No. EP 10162760.2, dated Nov. 12, 2010.
PCT, Written Opinion of the International Searching Authority with International Search Report in Application No. PCT/US2010/034586, dated Mar. 15, 2011.
Shimojima, Atsushi et al., Structure and Properties of Multilayered Siloxane-Organic Hybrid Films Prepared Using Long-Chain Organotrialkoxysilanes Containing C═C Double Bonds, Journal of Materials Chemistry, 2007, vol. 17, pp. 658-663, © The Royal Society of Chemistry, 2007.
Sone, Hayato et al., Picogram Mass Sensor Using Resonance Frequency Shift of Cantilever, Japanese Journal of Applied Physics, vol. 43, No. 6A, 2004, pp. 3648-3651, © The Japan Society of Applied Physics.
Sone, Hayato et al., Femtogram Mass Sensor Using Self-Sensing Cantilever for Allergy Check, Japanese Journal of Applied Physics, vol. 45, No. 3B, 2006, pp. 2301-2304, © The Japan Society of Applied Physics.
Mallikarjunan, Anupama et al, The Effect of Interfacial Chemistry on Metal Ion Penetration into Polymeric Films, Mat. Res. Soc. Symp. Proc. vol. 734, 2003, © Materials Research Society.
Schonher, H., et al., Friction and Surface Dynamics of Polymers on the Nanoscale by AFM, STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld. Topics in Current Chemistry, 2008, vol. 285, pp. 103-156, © Springer-Verlag Berlin Heidelberg.
Lang, H.P., Gerber, C., Microcantilever Sensors, STM and AFM Studies on (Bio)molecular Systems: Unravelling the Nanoworld. Topics in Current Chemistry, 2008, vol. 285, pp. 1-28, © Springer-Verlag Berlin Heidelberg.
Patent Cooperation Treaty, Written Opinion of the International Searching Authority with International Search Report in Application No. PCT/US2012/064489, dated Jan. 25, 2013.
Danish Patent and Trademark Office, Singapore Written Opinion, in Application No. 201108308-6, dated Dec. 6, 2012.
Danish Patent and Trademark Office, Singapore Search Report, in Application No. 201108308-6, dated Dec. 12, 2012.
Japanese Patent Office, Notice of Reason(s) for Rejection in Patent application No. 2012-510983, dated Jan. 7, 2014. (6 pages).
Chinese Patent Office, Notification of the Second Office Action in Application No. 201080029190.0, dated Jan. 6, 2014. (26 pages).
Chinese Patent Office, Notification of the First Office Action in Application No. 201180023474.2, dated Dec. 23, 2013. (18 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/067852, dated Jan. 22, 2014. (9 pages).
US 5,645,643, Jul. 8, 1997, Thomas (withdrawn).
Allison, H.L., The Real Markets for Transparent Barrier Films, 37th Annual Technical Conference Proceedings, 1994, ISBN 1-878068-13-X, pp. 458.
Bailey, R. et al., Thin-Film Multilayer Capacitors Using Pyrolytically Deposited Silicon Dioxide, IEEE Transactions on Parts, Hybrids, and Packaging, vol. PHP-12, No. 4, Dec. 1976, pp. 361-364.
Banks, B.A., et al., Fluoropolymer Filled SiO2 Coatings; Properties and Potential Applications, Society of Vacuum Coaters, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 89-93.
Baouchi, W., X-Ray Photoelectron Spectroscopy Study of Sodium Ion Migration through Thin Films of SiO2 Deposited on Sodalime Glass, 37th Annual Technical Conference Proceedings, 1994, ISBN 1-878068-13-X, pp. 419-422.
Boebel, F. et al., Simultaneous In Situ Measurement of Film Thickness and Temperature by Using Multiple Wavelengths Pyrometric Interferometry (MWPI), IEEE Transaction on Semiconductor Manufacturing, vol. 6, No. 2, May 1993, pp. 112-118.
Bush, V. et al., The Evolution of Evacuated Blood Collection Tubes, BD Diagnostics—Preanalytical Systems Newsletter, vol. 19, No. 1, 2009.
Chahroudi, D., Deposition Technology for Glass Barriers, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 212-220.
Chahroudi, D., et al., Transparent Glass Barrier Coatings for Flexible Film Packaging, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 130-133.
Chahroudi, D., Glassy Barriers from Electron Beam Web Coaters, 32nd Annual Technical Conference Proceedings, 1989, pp. 29-39.
Czeremuszkin, G. et al., Ultrathin Silicon-Compound Barrier Coatings for Polymeric Packaging Materials: An Industrial Perspective, Plasmas and Polymers, vol. 6, Nos. 1/2, Jun. 2001, pp. 107-120.
Ebihara, K. et al., Application of the Dielectric Barrier Discharge to Detect Defects in a Teflon Coated Metal Surface, 2003 J. Phys. D: Appl. Phys. 36 2883-2886, doi: 10.1088/0022-3727/36/23/003, IOP Electronic Journals, http://www.iop.org/EJ/abstract/0022-3727/36/23/003, printed Jul. 14, 2009.
Egitto, F.D., et al., Plasma Modification of Polymer Surfaces, Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 10-21.
Erlat, A.G. et al., SIOx Gas Barrier Coatings on Polymer Substrates: Morphology and Gas Transport Considerations, ACS Publications, Journal of Physical Chemistry, published Jul. 2, 1999, http://pubs.acs.org/doi/abs/10.1021/jp990737e, printed Jul. 14, 2009.
Fayet, P., et al., Commercialism of Plasma Deposited Barrier Coatings for Liquid Food Packaging, 37th Annual Technical Conference Proceedings, 1995, ISBN 1-878068-13-X, pp. 15-16.
Felts, J., Hollow Cathode Based Multi-Component Depositions, Vacuum Technology & Coating, Mar. 2004, pp. 48-55.
Felts, J.T., Thickness Effects on Thin Film Gas Barriers: Silicon-Based Coatings, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 99-104.
Felts, J.T., Transparent Barrier Coatings Update: Flexible Substrates, Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 324-331.
Felts, J.T., Transparent Gas Barrier Technologies, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 184-193.
Finson, E., et al., Transparent SiO2 Barrier Coatings: Conversion and Production Status, 37th Annual Technical Conference Proceedings, 1994, ISBN 1-878068-13-X, pp. 139-143.
Flaherty, T. et al., Application of Spectral Reflectivity to the Measurement of Thin-Film Thickness, Opto-Ireland 2002: Optics and Photonics Technologies and Applications, Proceedings of SPIE vol. 4876, 2003, pp. 976-983.
Hora, R., et al., Plasma Polymerization: A New Technology for Functional Coatings on Plastics, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 51-55.
Izu, M., et al., High Performance Clear CoatTM Barrier Film, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 333-340.
Jost, S., Plasma Polymerized Organosilicon Thin Films on Reflective Coatings, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 344-346.
Kaganowicz, G., et al., Plasma-Deposited Coatings—Properties and Applications, 23rd Annual Technical Conference Proceedings, 1980, pp. 24-30.
Kamineni, V. et al., Thickness Measurement of Thin Metal Films by Optical Metrology, College of Nanoscale Science and Engineering, University of Albany, Albany, NY.
Klemberg-Sapieha, J.E., et al., Transparent Gas Barrier Coatings Produced by Dual Frequency PECVD, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 445-449.
Krug, T., et al., New Developments in Transparent Barrier Coatings, 36th Annual Technical Conference Proceedings, 1993, ISBN 1-878068-12-1, pp. 302-305.
Kuhr, M. et al., Multifunktionsbeschichtungen für innovative Applikationen von Kunststoff-Substraten, HiCotec Smart Coating Solutions.
Kulshreshtha, D.S., Specifications of a Spectroscopic Ellipsometer, Department of Physics & Astrophysics, University of Delhi, Delhi-110007, Jan. 16, 2009.
Krug, T.G., Transparent Barriers for Food Packaging, 33rd Annual Technical Conference Proceedings, 1990, ISBN 1-878068-09-1, pp. 163-169.
Lee, K. et al., The Ellipsometric Measurements of a Curved Surface, Japanese Journal of Applied Physics, vol. 44, No. 32, 2005, pp. L1015-L1018.
Lelait, L. et al., Microstructural Investigations of EBPVD Thermal Barrier Coatings, Journal De Physique IV, Colloque C9, supplément au Journal de Physique III, vol. 3, Dec. 1993, pp. 645-654.
Masso, J.D., Evaluation of Scratch Resistant and Antireflective Coatings for Plastic Lenses, 32nd Annual Technical Conference Proceedings, 1989, p. 237-240.
Misiano, C., et al., New Colourless Barrier Coatings (Oxygen & Water Vapor Transmission Rate) on Plastic Substrates, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 28-40.
Misiano, C., et al., Silicon Oxide Barrier Improvements on Plastic Substrate, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 105-112.
Mount, E., Measuring Pinhole Resistance of Packaging, Corotec Corporation website, http://www.convertingmagazine.com, printed Jul. 13, 2009.
Murray, L. et al., The Impact of Foil Pinholes and Flex Cracks on the Moisture and Oxygen Barrier of Flexible Packaging.
Nelson, R.J., et al., Double-Sided QLF® Coatings for Gas Barriers, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings, 1991, ISBN 1-878068-10-5, pp. 113-117.
Nelson, R.J., Scale-Up of Plasma Deposited SiOx Gas Diffusion Barrier Coatings, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 75-78.
Novotny, V. J., Ultrafast Ellipsometric Mapping of Thin Films, IBM Technical Disclosure Bulletin, vol. 37, No. 02A, Feb. 1994, pp. 187-188.
Rüger, M., Die Pulse Sind das Plus, PICVD-Beschichtungsverfahren.
Schultz, A. et al., Detection and Identification of Pinholes in Plasma-Polymerised Thin Film Barrier Coatings on Metal Foils, Surface & Coatings Technology 200, 2005, pp. 213-217.
Stchakovsky, M. et al., Characterization of Barrier Layers by Spectroscopic Ellipsometry for Packaging Applications, Horiba Jobin Yvon, Application Note, Spectroscopic Ellipsometry, SE 14, Nov. 2005.
Teboul, E., Thi-Film Metrology: Spectroscopic Ellipsometer Becomes Industrial Thin-Film Tool, LaserFocusWorld, http://www.laserfocusworld.com/display—article, printed Jul. 14, 2009.
Teyssedre, G. et al., Temperature Dependence of the Photoluminescence in Poly(Ethylene Terephthalate) Films, Polymer 42, 2001, pp. 8207-8216.
Tsung, L. et al., Development of Fast CCD Cameras for In-Situ Electron Microscopy, Microsc Microanal 14(Supp 2), 2008.
Wood, L. et al., A Comparison of SiO2 Barrier Coated Polypropylene to Other Coated Flexible Substrates, 35th Annual Technical Conference Proceedings, 1992, ISBN 1-878068-11-3, pp. 59-62.
Yang, et al., Microstructure and tribological properties of SiOx/DLC films grown by PECVD, Surface and Coatings Technology, vol. 194, Issue 1, Apr. 20, 2005, pp. 128-135.
AN 451, Accurate Thin Film Measurements by High-Resoluiton Transmission Electron Microscopy (HRTEM), Evans Alalytical Group, Version 1.0, Jun. 12, 2008, pp. 1-2.
Benefits of TriboGlide, TriboGlide Silicone-Free Lubrication Systems, http://www.triboglide.com/benfits.htm, printed Aug. 31, 2009.
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 10 162 758.6-1234, dated May 8, 2012 (6 pages).
Patent Cooperation Treaty, International Preliminary Examining Authority, Notification of Transmittal of International Preliminary Report on Patentability, in international application No. PCT/US2010/034571, dated Jun. 13, 2011.
Patent Cooperation Treaty, International Preliminary Examining Authority, Written Opinion of the International Preliminary Examining Authority, in international application No. PCT/US2010/034586, dated Aug. 23, 2011.
Patent Cooperation Treaty, International Preliminary Examining Authority, Written Opinion of the International Preliminary Examining Authority, in international application No. PCT/US2010/034568, dated May 30, 2011.
State Intellectual Property Office of the People's Republic of China, Notification of the Third Office Action, in Application No. 201080029201.4, dated Jul. 7, 2014 (15 pages).
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2011252925, dated Sep. 6, 2013 (3 pages).
Silicone Oil Layer, Contract Testing, webpage, http://www.siliconization.com/downloads/siliconeoillayercontracttesting.pdf, retrieved from the internet Oct. 28, 2011.
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in PCT/US2010/034577, dated Nov. 24, 2011.
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in PCT/US2010/034582, dated Nov. 24, 2011.
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in PCT/US2010/034586, dated Dec. 20, 2011.
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2011/036097, dated Dec. 29, 2011.
“Oxford instruments plasmalab 80plus”, XP55015205, retrieved from the Internet on Dec. 20, 2011, URL:http://www.oxfordplasma.de/pdf—inst/plas—80.pdf.
Patent Cooperation Treaty, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, in PCT/US2011/044215, dated Dec. 29, 2011.
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in Application No. PCT/US2010/034576, dated Sep. 14, 2011.
Patent Cooperation Treaty, Notification of Transmittal of International Preliminary Report on Patentability, in Application No. PCT/US2010/034568, dated Sep. 14, 2011.
Patent Cooperation Treaty, International Search Report and Written Opinion, in Application No. PCT/US2011/036358, dated Sep. 9, 2011.
Patent Cooperation Treaty, International Search Report and Written Opinion, in Application No. PCT/US2011/036340, dated Aug. 1, 2011.
MacDonald, Gareth, “West and Daikyo Seiko Launch Ready Pack”, http://www.in-pharmatechnologist.com/Packaging/West-and-Daikyo-Seiko-launch-Ready-Pack, 2 pages, retrieved from the internet Sep. 22, 2011.
Kumer, Vijai, “Development of Terminal Sterilization Cycle for Pre-Filled Cyclic Olefin Polymer (COP) Syringes”, http://abstracts.aapspharmaceutica.com/ExpoAAPS09/CC/forms/attendee/index.aspx?content=sessionInfo&sessionId=401, 1 page, retrieved from the internet Sep. 22, 2011.
Quinn, F.J., “Biotech Lights Up the Glass Packaging Picture”, http://www.pharmaceuticalcommerce.com/frontEnd/main.php?idSeccion=840, 4 pages, retrieved from the Internet Sep. 21, 2011.
Wen, Zai-Qing et al., Distribution of Silicone Oil in Prefilled Glass Syringes Probed with Optical and Spectroscopic Methods, PDA Journal of Pharmaceutical Science and Technology 2009, 63, pp. 149-158.
ZebraSci—Intelligent Inspection Products, webpage, http://zebrasci.com/index.html, retrieved from the internet Sep. 30, 2011.
Google search re “cyclic olefin polymer resin” syringe or vial, http://www.google.com/search?sclient=psy-ab&hl=en&lr=&source=hp&q=%22cyclic+olefin+polymer+resin%22+syringe+OR+vial&btnG=Search&pbx=1&oq=%22cyclic+olefin+polymer+resin%22+syringe+OR+vial&aq, 1 page, retrieved from the internet Sep. 22, 2011.
Taylor, Nick, “West to Add CZ Vials as Glass QC Issues Drive Interest”, ttp://twitter.com/WestPharma/status/98804071674281986, 2 pages, retrieved from the internet Sep. 22, 2011.
Patent Cooperation Treaty, International Preliminary Examining Authority, Notification of Transmittal of International Preliminary Report on Patentability, in international application No. PCT/US2011/036097, dated Nov. 13, 2012.
Sahagian, Khoren; Larner, Mikki; Kaplan, Stephen L., “Altering Biological Interfaces with Gas Plasma: Example Applications”, Plasma Technology Systems, Belmont, CA, In SurFACTS in Biomaterials, Surfaces in Biomaterials Foundation, Summer 2013, 18(3), p. 1-5.
Daikyo Cyrystal Zenith Insert Needle Syringe System, West Delivering Innovative Services, West Pharmaceutical Services, Inc., 2010.
Daikyo Crystal Zenigh Syringes, West Pharmaceutical Services, Inc., www. WestPFSsolutions.com, #5659, 2011.
Zhang, Yongchao and Heller, Adam, Reduction of the Nonspecific Binding of a Target Antibody and of Its Enzyme-Labeled Detection Probe Enabling Electrochemical Immunoassay of Antibody through the 7 pg/mL—100 ng/mL (40 fM-400 pM) Range, Department of Chemical Engineering and Texas Materials Institute, University of Texas at Austin, Anal. Chem. 2005, 7, 7758-7762. (6 pages).
Principles and Applications of Liquid Scintillation Counting, LSC Concepts—Fundamentals of Liquid Scintillation Counting, National Diagnostics, 2004, pp. 1-15.
Chikkaveeraiah, Bhaskara V. and Rusling, Dr. James, Non Specific Binding (NSB) in Antigen-Antibody Assays, University of Connecticut, Spring 2007. (13 pages).
Sahagian, Khoren; Larner, Mikki; Kaplan, Stephen L., “Cold Gas Plasma in Surface Modification of Medical Plastics”, Plasma Technology Systems, Belmont, CA, Publication pending. Presented at SPE Antec Medical Plastics Division, Apr. 23, 2013, Ohio.
Lipman, Melissa, “Jury Orders Becton to Pay $114M in Syringe Antitrust Case”, © 2003-2013, Portfolio Media, Inc., Law360, New York (Sep. 20, 2013, 2:53 PM ET), http://www.law360.com/articles/474334/print?section=ip, [retrieved Sep. 23, 2013].
Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Birefringence, page last modified Sep. 18, 2013 at 11:39. [retrieved on Oct. 8, 2013]. (5 pages).
Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Confocal—microscopy, page last modified Aug. 28, 2013 at 11:12. [retrieved on Oct. 8, 2013]. (4 pages).
Wang, Jun et al., “Fluorocarbon thin film with superhydrophobic property prepared by pyrolysis of hexafluoropropylene oxide”, Applied Surface Science, vol. 258, 2012, pp. 9782-9784 (4 pages).
Wang, Hong et al., “Ozone-Initiated Secondary Emission Rates of Aldehydes from Indoor surfaces in Four Homes”, American Chemical Society, Environmental Science & Technology, vol. 40, No. 17, 2006, pp. 5263-5268 (6 pages).
Lewis, Hilton G. Pryce, et al., “HWCVD of Polymers: Commercialization and Scale-Up”, Thin Solid Films 517, 2009, pp. 3551-3554.
Wolgemuth, Lonny, “Challenges With Prefilled Syringes: The Parylene Solution”, Frederick Furness Publishing, www.ongrugdelivery.com, 2012, pp. 44-45.
History of Parylene (12 pages).
SCS Parylene HTX brochure, Stratamet Thin Film Corporation, Fremont, CA, 2012, retrieved from the Internet Feb. 13, 2013, http://www.stratametthinfilm.com/parylenes/htx. (2 pages).
SCS Parylene Properties, Specialty Coating Systems, Inc., Indianapolis, IN, 2011. (12 pages).
Werthheimer, M.R., Studies of the earliest stages of plasma-enhanced chemical vapor deposition of SiO2 on polymeric substrates, Thin Solid Films 382 (2001) 1-3, and references therein, United States Pharmacopeia 34. In General Chapters <1>, 2001.
Gibbins, Bruce and Warner, Lenna, The Role of Antimicrobial Silver Nanotechnology, Medical Device & Diagnostic Industry, Aug. 205, pp. 2-6.
MTI CVD Tube Furnace w Gas Delivery & Vacuum Pump, http://mtixtl.com/MiniCVDTubeFurnace2ChannelsGasVacuum-OTF-1200X-S50-2F.aspx (2 pages).
Lab-Built HFPO CVD Coater, HFPO Decomp to Give Thin Fluorocarbon Films, Applied Surface Science 2012 258 (24) 9782.
Technical Report No. 10, Journal of Parenteral Science and Technology, 42, Supplement 1988, Parenteral Formulation of Proteins and Peptides: Stability and Stabilizers, Parenteral Drug Association, 1988.
Technical Report No. 12, Journal of Parenteral Science and Technology, 42, Supplement 1988, Siliconization of Parenteral Drug Packaging Components, Parenteral Drug Association, 1988.
European Patent Office, Communication under Rule 71(3) EPC, in Application No. 10 162 760.2-1353, dated Oct. 25, 2013. (366 pages).
Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Difluorocarbene, page last modified Feb. 20, 2012 at 14:41. [retrieved on Sep. 7, 2012]. (4 pages).
O'Shaughnessy, W.S., et al., “Initiated Chemical Vapor Deposition of a Siloxane Coating for Insulation of Neutral Probes”, Thin Solid Films 517 (2008) 3612-3614. (3 pages).
Denler, et al., Investigations of SiOx-polymer “interphases” by glancing angle RBS with Li+ and Be+ ions, Nuclear Instruments and Methods in Physical Research B 208 (2003) 176-180, United States Pharmacopeia 34. In General Chapters <1>, 2003.
PCT, Invitation to Pay Additional Fees and Annex to Form PCT/ISA/206 Communication relating to the results of the partial international search in International application No. PCT/US2013/071750, dated Feb. 14, 2014. (6 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/62247, dated Dec. 20, 2013. (13 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/043642, dated Dec. 5, 2013. (21 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/064121, dated Mar. 24, 2014. (8 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/070325, dated Mar. 24, 2014. (16 pages).
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2010249031, dated Mar. 13, 2014. (4 pages).
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2013202893, dated Mar. 13, 2014. (4 pages).
European Patent Office, Communication pursuant to Article 93(3) EPC, in Application No. 11 731 554.9 dated Apr. 15, 2014. (7 pages).
PCT, Notification Concerning Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US2012/064489, dated May 22, 2014. (10 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/071750, dated Apr. 4, 2014. (13 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2014/019684, dated May 23, 2014. (16 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2014/023813, dated May 22, 2014. (11 pages).
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 11 736 511.4, dated Mar. 28, 2014.
PCT, Notification Concerning Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US2011/042387, dated Jan. 17, 2013. (7 pages).
State Intellectual Property Office of the People's Republic of China, Notification of the First Office Action, in Application No. 201180032145.4, dated Jan. 30, 2014. (16 pages).
PCT, Notification Concerning Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US2011/044215, dated Jan. 31, 2013. (14 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2014/029531, dated Jun. 20, 2014 (12 pages).
State Intellectual Property Office of the People's Republic of China, Notification of the Third Office Action, with translation, in Application No. 201080029199.0, dated Jun. 27, 2014 (19 pages).
Intellectual Property Office of Singapore, Invitation to Respond to Written Opinion, in Application No. 2012083077, dated Jun. 30, 2014 (12 pages).
PCT, Notification of Transmittal of International Preliminary Report on Patentability, in International application No. PCT/US13/40368, dated Jul. 16, 2014 (6 pages).
State Intellectual Property Office of teh People's Republic of China, Notification of First Office Action in Application No. 201080029201.4, dated Mar. 37, 2013. (15 pages).
Tao, Ran et al., Condensationand Polymerization of Supersaturated Monomer Vapor, ACS Publications, 2012 American Chemical Society, ex.doi.org/10.1021/la303462q/Langmuir 2012, 28, 16580-16587.
Arganguren, Mirta I., Macosko, Christopher W., Thakkar, Bimal, and Tirrel, Matthew, “Interfacial Interactions in Silica Reinforced Silicones,” Materials Research Society Symposium Proceedings, vol. 170, 1990, pp. 303-308.
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2012318242, dated Apr. 30, 2014. (6 pages).
State Intellectual Property Office of the People's Republic of China, Notification of the First Office Action, in Application No. 201180023461.5, dated May 21, 2014. (25 pages).
European Patent Office, Communication pursuant to Article 94(3) EPC, in Application No. 10162758.6 dated May 27, 2014. (7 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/040380, dated Sep. 3, 2013. (13 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/040368, dated Oct. 21, 2013. (21 pages).
PCT, Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, in International application No. PCT/US2013/048709, dated Oct. 2, 2013. (7 pages).
Coclite A.M. et al., “On the relationship between the structure and the barrier performance of plasma deposited silicon dioxide-like films”, Surface and Coatings Technology, Elsevier, Amsterdam, NL, vol. 204, No. 24, Sep. 15, 2010, pp. 4012-4017, XPO27113381, ISSN: 0257-8972 [retrieved on Jun. 16, 2010] abstract, p. 4014, right-hand column-p. 4015, figures 2, 3.
Brunet-Bruneau A. et al., “Microstructural characterization of ion assisted Sio2 thin films by visible and infrared ellipsometry”, Journal of Vacuum Science and Technology: Part A, AVS/AIP, Melville, NY, US, vol. 16, No. 4, Jul. 1, 1998, pp. 2281-2286, XPO12004127, ISSN: 0734-2101, DOI: 10.1116/1.581341, p. 2283, right-hand column-p. 2284, left-hand column, figures 2, 4.
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/USUS13/048709, dated Sep. 30, 2014 (4 pages).
PCT, Notification of Transmittal of the International Preliminary Report on Patentability, in International application No. PCT/USUS13/048709, dated Oct. 15, 2014 (7 pages).
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/USUS13/064121, dated Nov. 19, 2014 (8 pages).
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/USUS13/064121, dated Nov. 21, 2014 (7 pages).
Intellectual Property Corporation of Malaysia, Substantive Examintion Adverse Report (section 30(1)/30(2)), in Application No. PI 2011005486, dated Oct. 31, 2014 (3 pages).
Patent Office of the Russian Federation, Official Action, in Application No. 2011150499, dated Sep. 25, 2014 (4 pages).
Instituto Mexicano de la Propiedad Indutrial, Official Action, in Appilcation No. MX/a/2012/013129, dated Sep. 22, 2014 (5 pages).
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/US2013/071750, dated Jan. 20, 2015 (9 pages).
PCT, Written Opinion of the International Preliminary Examining Authority, in International application No. PCT/US2013/064121, dated Nov. 21, 2014 (7 pages).
Japanese Patent Office, Decision of Rejection in Application No. 2012-510983, dated Jan. 20, 2015 (4 pages).
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2010249033, dated Dec. 19, 2014 (7 pages).
Australian Government, IP Australia, Patent Examination Report No. 1, in Application No. 2011252925, dated Dec. 2, 2014 (3 pages).
Reh, et al., Evaluation of stationary phases for 2-dimensional HPLC of Proteins—Validation of commercial RP-columns, Published by Elsevier B.V., 2000.
State Intellectual Property Office of the People's Republic of China, Notification of the Fourth Office Action in Application No. 201080029199.0, dated Mar. 18, 2015 (15 pages).
Hlobik, Plastic Pre-Fillable Syringe Systems (http://www.healthcarepackaging.com/package-type/Containers/plastic-prefillablesyringe-systems, Jun. 8, 2010).
PCT, Written Opinion of the International Preliminary Examining Authority, International application No. PCT/SU2013/071752, dated May 6, 2015.
Hopwood J Ed—CRC Press: “Plasma-assisted deposition”, Aug. 17, 1997, Handbook of Nanophase Materials, Chapter 6, pp. 141-197, XP008107730, ISBN: 978-0-8247-9469-9.
Bose, Sagarika and Constable, Kevin, Advanced Delivery Devices, Design & Evaluation of a Polymer-Based Prefillable Syringe for Biopharmaceuticals With Improved Functionality & Performance, JR Automation Technologies, May 2015.
Australian Government, Patent Examination Report No. 2 in Application No. 2010249031 dated Apr. 21, 2015.
Japanese Patent Office, Notice of Reasons for Refusal in application No. 2013-510276, dated Mar. 31, 2015.
Mexican Patent Office, Office Action dated Jun. 7, 2016 in Patent Application No. MX/a/2011/012038 (3 pages).
Korean Patent Office, Office Action dated Jun. 21, 2016 in Patent Application No. 10-2011-7028713 (23 pages).
Related Publications (1)
Number Date Country
20130041241 A1 Feb 2013 US
Provisional Applications (11)
Number Date Country
61222727 Jul 2009 US
61213904 Jul 2009 US
61234505 Aug 2009 US
61261321 Nov 2009 US
61263289 Nov 2009 US
61285813 Dec 2009 US
61298159 Jan 2010 US
61299888 Jan 2010 US
61318197 Mar 2010 US
61333625 May 2010 US
61636377 Apr 2012 US
Divisions (1)
Number Date Country
Parent 12779007 May 2010 US
Child 13169811 US
Continuation in Parts (1)
Number Date Country
Parent 13169811 Jun 2011 US
Child 13651299 US