PECVD methods for producing ultra low-k dielectric films using UV treatment

Information

  • Patent Grant
  • 7906174
  • Patent Number
    7,906,174
  • Date Filed
    Thursday, December 7, 2006
    18 years ago
  • Date Issued
    Tuesday, March 15, 2011
    13 years ago
Abstract
Methods of preparing low-k carbon-doped oxide (CDO) films having high mechanical strength are provided. The methods involve contacting the substrate with a CDO precursor to deposit the film typically using a plasma-enhanced chemical vapor deposition (PECVD) method. After the film is deposited, it is exposed to ultraviolet radiation in a manner that increases cross-linking and/or lowers the dielectric constant of the film. The resulting films have ultra-low dielectric constants, e.g., about 2.5, but also high mechanical strength, e.g., a modulus of at least about 7.5 GPa. In certain embodiments, a single hydrocarbon precursor is used, resulting in an improved process for obtaining ULK films that does not require dual (porogen and backbone) precursors.
Description
FIELD OF THE INVENTION

This invention relates to methods for preparing dielectric films having low dielectric constants and high mechanical strength.


BACKGROUND

There is a general need for materials with low dielectric constants (low-k) in the integrated circuit manufacturing industry. Using low-k materials as the interlayer dielectric of conductive interconnects reduces the delay in signal propagation and signal crosstalk due to capacitive effects. The lower the dielectric constant of the dielectric, the lower the capacitance of the dielectric and the RC delay in the lines and signal crosstalk between electrical lines of the IC. Further, the use of low k materials as interlayer dielectrics will reduce power consumption of complex integrated circuits.


Low-k dielectrics are conventionally defined as those materials that have a dielectric constant (k) lower than that of silicon dioxide (SiO2), that is k<˜4. Generally, they have a dielectric constant of 3 or less. Typical methods of obtaining low-k materials include introducing pores into the dielectric matrix and/or doping silicon dioxide with various hydrocarbons or fluorine. In technology nodes of 90 nanometers and beyond (e.g., 65 nanometers), carbon doped oxide dielectric materials look extremely promising. However, wide spread deployment of these materials in modern integrated circuit fabrication processes is hindered by increasing demands for high mechanical strength coupled with lower dielectric constants. For certain applications, it is now necessary to use dielectric materials having k values below about 2.7.


The International Technology Road Map for Semiconductors (ITRS) specifies that materials with dielectric constants (k) of 2.4 to 2.7 will be required for the 45 nm technology node. Plasma Enhanced Chemical Vapor Deposition (PECVD) carbon doped silicon oxide (CDO) is used for 90 nm and 65 nm technology nodes with k ranging between 2.8 and 3.2. Further reduction of the dielectric constant to below 2.7 is achievable through incorporation of additional methyl groups and/or free space. Typically, this is accomplished through co-deposition of a backbone precursor and a porogen. The porogen is driven out during a cure step, leaving the backbone and increased free space behind. This free space can lead to degraded mechanical properties of the film relative to fully dense materials. It also allows penetration of moisture and solvents during integration, potentially lowering the interconnect performance.


SUMMARY

The present invention provides methods of preparing low-k carbon-doped oxide (CDO) films having high mechanical strength. The methods involve contacting the substrate with a CDO precursor to deposit the film typically using a plasma-enhanced chemical vapor deposition (PECVD) method. After the film is deposited, it is exposed to ultraviolet radiation in a manner that increases cross-linking and/or lowers the dielectric constant of the film. The resulting films have ultra-low dielectric constants, e.g., about 2.5, but also high mechanical strength, e.g., a modulus of at least about 7.5 GPa. In certain embodiments, a single hydrocarbon precursor is used, resulting in an improved process for obtaining ULK films that does not require dual (porogen and backbone) precursors.


These and other features and advantages of the invention will be presented in more detail below with reference to the associated drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a flowchart illustrating the basic method for creating ultra low-k CDO dielectric layers with high hardness/modulus.



FIG. 2 is a graph showing film modulus as a function of film dielectric constant for single precursor ULK materials.



FIG. 3 shows FTIR spectra of a single-precursor as-deposited and post UV cured films.



FIG. 4 is a graph showing pore size distribution of two single precursor ULK films produced, one having a k-value of 2.5 and one having a k-value of 2.7.



FIG. 5 is a graph showing methanol diffusion as a function of pore size.



FIG. 6 is a graph showing hydrocarbon out-gassing of ULK as a function of deposition temperature.



FIG. 7 is mass spectra showing out-gassed species.



FIG. 8 is a simple block diagram depicting various reactor components arranged as in a conventional reactor.



FIG. 9 is an example of UV cure chamber that may be used in accordance with certain embodiments of the invention.





DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
Introduction and Overview

The present invention relates to ultra low-k (ULK) CDO films, with significantly improved chemical and mechanical properties. The methods of the invention involve depositing CDO films via plasma enhanced chemical vapor deposition (PECVD) using a precursor having one or more functional groups. UV-assisted Thermal Processing (UVTP) is applied to produce ULK CDO films with desirable chemical bond and structure. In specific embodiments, the UVTP increases cross-linking and lower the dielectric constant of the deposited film.


Generally, CDO film refers to a material whose compositional elements include Si, O, C and H, which may be crosslinked to form the CDO matrix. It may contain traces of other elements, including fluorine (F) or germanium (Ge). “Ultra low-k”, in the context of this invention means that the dielectric constant of the CDO layer is not greater than about 2.7. In particular embodiments, the CDO layer has a dielectric constant of about 2.5.


Insulating materials with ultra low dielectric constants are needed to minimize signal propagation delay, crosstalk and power consumption as inter-metal spacing decreases in advanced integrated interconnects. In order to meet these escalating performance demands, the industry has begun to replace SiO2 and fluorinated silicate glass (FSG) with alternative dielectrics in full-scale production at the 90 nm and 65 nm technology nodes with CDO films deposited using PECVD, typically containing only carbon and hydrogen atoms in addition to silicon and oxygen atoms. Because they share many similarities with SiO2 and FSG in composition and thermo-mechanical properties, PECVD CDO films offers an evolutionary approach to solving the low k IMD challenge.


The bulk dielectric constant (k) of CDO films being implemented at 90 nm typically ranges from 3.2 to as low as 2.85, which is significantly lower than those of SiO2 (k˜4.1) and FSG (k˜3.6). As the k value lowers, the mechanical properties of dielectric films gradually degrade due to incorporation of more methyl (—CH3) groups and free space. Many device failures can often be ultimately traced to the poor mechanical properties of the CDO films. The introduction of more free space, i.e., pores, within the film could result in a number of undesirable properties such as a reduction in mechanical strength and penetration of chemicals. The gas-phase precursors used during subsequent chemical vapor deposition or atomic layer deposition may have a tendency to infiltrate the porous dielectric. The penetration of metallic species or solvents during integration could damage the electric properties of the ULK dielectrics.


The challenge then is to create ultra-low k films having good mechanical strength and resistance to penetration by foreign species. Current methods of depositing ULK films typically require using two precursors—a backbone network former and a porogen. The backbone network former is typically a silicon-containing compound and the porogen a separate organic compound. The porogen is typically driven out with a cure process, leaving the backbone behind, thereby creating a porous dielectric film. Porogens are typically organic materials such as a polymers that typically exist as a separate phase from the backbone network former within the deposited precursor layer. The porogen is such that it is able to be removed from the deposited layer by the application of energy, e.g., heat, plasma, ultra-violet radiation, etc.


In certain embodiments, the methods of the present invention use a single precursor and hence eliminate the porogen removal step. Use of a single precursor and elimination of the porogen removal operation has advantages in certain applications˜for example, out-gassing of species in the deposited film during subsequent operations is reduced, thereby easing integration. In addition, the single precursor films have improved chemical inertness relative to the dual precursor films as there is no organic porogen in the matrix; porogen-based films may contain unstable organic species that remain in the matrix. (For purposes of discussion, dual precursor films refers to films deposited with a backbone network former precursor and a porogen precursor as described above).


Importantly, the films produced by the methods of the present invention have performance comparable to the dual precursor films. For example, film having a k-value of 2.5 and a modulus of 7.5 GPa can be achieved using the single precursor methods of the present invention—film performance previously achievable only with the dual precursor methods. (Hardness and modulus are well defined within the art and will not be discussed in detail herein. Measures of film hardness and modulus presented herein may be made with any suitable apparatus including a nano-indentation device.)



FIG. 1 is a flowchart illustrating a high level method for creating ultra low-k CDO dielectric layers with high hardness/modulus. The operations are described briefly here and in further detail below. First, in an operation 105a wafer is supplied to a PECVD reactor. In an operation 110, a single silicon-containing precursor is introduced in a process gas. Precursor selection has strong effects on the material properties of the film. Generally, precursors are chosen to have a high carbon content and one or more functional groups, including in some embodiments triple bonds. The process gas may also contain an oxidant and typically contains a carrier gas. Precursor selection is described further below. After process gas is introduced to the PECVD reactor, a plasma is ignited under conditions that promote incorporation of desired compositional bond structure in the CDO film in an operation 115. Process conditions for the PECVD deposition are described further below. Once the film is deposited to a desired thickness, the as-deposited film is exposed to UV radiation in an operation 120. This is typically a UV-assisted thermal processing (UVTP) operation, also discussed further below. The purpose of UV curing is increase mechanical strength, and in certain embodiments, lower the dielectric constant. Choice of the CDO precursor(s) is also important to this operation as UV radiation has different effects on different film compositions. For most CDO film compositions and/or under certain UV exposure conditions, dielectric constant may rise as a result of UV curing. It has been found, however, that UV cure is able to lower the k-value of CDO films deposited using certain precursors having carbon-carbon triple bonds, e.g., TMSA and BTMSA, and other functional groups as discussed below. Operation 120 may occur in the same chamber as the deposition if equipped with a UV source, or the wafer may be transferred to another chamber equipped with a UV source. Also, in certain embodiments, the PECVD/UVTP process may be repeated to produce an ultra low-k film of a certain thickness in stages.


PECVD processes for producing high quality, low-k films with high mechanical strength using precursors having unsaturated bonds is discussed in the following commonly-assigned U.S. patent applications, which are hereby incorporated by reference in their entireties and for all purposes: U.S. patent application Ser. Nos. 10/789,103 and 10/820,525, both titled “METHODS FOR PRODUCING LOW-K CDO FILMS WITH LOW RESIDUAL STRESS”; U.S. patent application Ser. No. 10/800,409, titled METHODS FOR PRODUCING LOW-K CDO FILMS; and U.S. patent application Ser. No. 10/941,502, titled “METHODS FOR IMPROVING INTEGRATION PERFORMANCE OF LOW STRESS CDO FILMS.” The methods of this invention use a UV cure process to increase the mechanical strength. In addition to increasing the mechanical strength of the film, in certain embodiments, the UV cure process of the methods of the invention lowers the dielectric constant. In certain embodiments, dielectric constants lower than or equal to about 2.5 may be achieved using the methods of the invention. As indicated above, current technology to prepare ULK films uses two precursors—a backbone network former and a porogen. The porogen is typically driven out with a cure process, leaving the backbone behind. The methods of the present invention may be implemented using only a single CDO precursor without the need for a porogen removal step.


As discussed in above-referenced U.S. patent application Ser. No. 10/800,409, it has been found that rigid chemical bonds such as carbon-carbon triple bonds strengthen a solid's matrix and generate additional free space (a nanometer scale pore space), thereby lowering the k value of the solid's dielectric constant. The advantages gained by introducing these unsaturated groups can be understood as follows. There are four major structural configurations for carbon in CDO films. The tetrahedral sp3 structure has the most degrees of freedom while the other three structures (the triangular sp2 structure and linear sp structures —C≡ and ═C═) have fewer degrees of freedom and thus have more rigidity. Due to the reactive nature of deposition process and carbon-carbon triple bonds, not only triple bonds themselves but also their derivative forms will be present in CDO films. These derivative forms result from the opening of one or two of the triple bond to form carbon-carbon double bond or carbon-carbon bond, and/or crosslinking to Si—O—Si network. The sp2 and sp structures comprise C═C and C≡C bonds and have significantly different atom-atom of distance than C—C, C—O, Si—O, or Si—C bonds do. Nominal bond length of C—C bond is ˜1.5 Angstroms, that of C═C bond is ˜1.3 Angstroms and that of CC bond is ˜1.2 Angstroms, that of C—O bond is ˜1.1 Angstroms while the nominal bond length of Si—O bond is ˜1.6 Angstroms and that of Si—C bond is ˜1.9 Angstroms. Because of their rigidity and bond lengths, the C═C or C≡C bonds (and their derivative forms) provide means to alter the Si—O—Si matrix structure and increase the nanometer scale pore space in the CDO matrix.


The deposition of CDO films using certain precursors containing unsaturated bonds results in low k films that also have high mechanical strength. It has been found that the addition of a post-deposition UVTP operation to the PECVD process described in that application improves cross-linking (thereby improving hardness and modulus) and lowers the dielectric constant.


Precursor Optimization


Both process optimization and precursor selection can have strong effects on the material properties of the film. Precursors of interest are generally carbon-rich organosilicon compounds containing functional groups such as Si—CxHy (cyclic or linear), Si—CxHyOz (cyclic or linear), Si—CH═ (cyclic or linear) and Si—C≡ (cyclic or linear) groups. In particular, precursors containing triple bonds have been shown to produce ULK films having high modulus according to the methods of the invention.


Precursors having carbon-carbon triple bonds found in various classes of compound including, for example, silanes having at least one hydrocarbon group with a carbon-carbon triple bond and at least one alkyl group or at least one oxy-hydrocarbon group, bis(alkylsilyl)acetylenes, bis(alkylsilyl)ethylenes, and siloxanes having pendant hydrocarbon groups with a carbon-carbon triple bond.


Several silicon-containing, C≡C containing, hydrocarbons (with or without oxygen) have been identified as precursors that may be used in a deposition process to form CDO films having low dielectric constants. These include the following:


Trimethylsilaneacetylene (SiC5H10): TMSA, also known as ethynyltrimethylsilane (ETMS), (CH3)3Si—C≡C—H


Propargyltrimethylsilane (SiC6H12): PTMS, (CH3)3Si—CH2—C≡C—H


Propargyloxytrimethylsilane (SiC6H12O): POTMS, (CH3)3Si—O—CH2—C═C—H


Bis(trimethylsilyl)acetylene (Si2C8H18): BTMSA, (CH3)3Si—C≡C—Si(CH3)3


1,3-Diethynyltetramethyldisiloxane (Si2C8H14O): DTDS, HC═C—Si(CH3)2—O—Si(CH3)2—C≡C—H


Dimethylmethoxysilaneacetylene (SiC5H11O): DMMOSA, (CH3O)(CH3)2Si—C≡CH


Methyldimethoxysilaneacetylene (SiC5H11O2): MDMOSA, (CH3O)2(CH3)Si—C≡CH


Dimethylethoxysilaneacetylene (SiC6H13O): DMEOSA, (C2HSO)(CH3)2Si—C≡CH


Methyldiethoxysilaneacetylene (SiC7H15O2): MDEOSA, (C2HSO)2(CH3)Si—C≡CH


Ethyldiethoxysilaneacetylene (SiC8H17O2): EDEOSA, (C2HSO)2(C2H5)Si—C≡CH


Dimethylsilane-diacetylene (SiC6H8): DMSDA, (CH3)2Si(C≡CH)2


Methylsilane-triacetylene (SiC7H6): MSTA, (CH3)Si(C≡CH)3; and


Tetraacetylene Silane (SiC8H4): TAS, Si(C≡CH)4


The functional groups are C≡C (triple bonds), which may be pendant or embedded within other functionalities. During deposition, these special functional groups become integrated in the CDO film on the substrate. Rigid C≡C bonds, and their derivative bonding structures through crosslinking with Si, O, and C, when embedded in the CDO film, strengthen the material matrix and alter Si—O—Si backbone structure of CDO films, resulting in a more rigid lattice, thus lowering the tensile stress of the CDO film. As presented below, the incorporation of C═C and C≡C bond and their derivative forms within the Si—O—Si structure was observed by FTIR and other analytical methods. Such films may be formed from a single organosilicon containing precursor or multiple precursors in combination. If a single precursor is used, then it contains at least one carbon-carbon triple bond. Also, in certain embodiments, the functional groups are C═C bonds, contained in a single precursor if used. But if multiple precursors are used in combination, it is not necessary for each of them to include an unsaturated group. Various primary precursors may be employed which have no double bonds or triple bonds.


It should be noted that the use of multiple precursors is distinct from the “dual precursor”˜backbone network former and porogen˜methods used to deposit porous ULK films. As noted above, in certain embodiments, the methods of the present invention eliminate the need for a porogen removal operation. In some cases, a single hydrocarbon precursor (i.e., the organosilicon precursor) is used in the process gas. In certain embodiments, however, multiple organic precursors (e.g., multiple organosilicon precursors) none of which is a porogen, may also be used.


Examples of precursors having Si—CxHy and/or Si—CxHyOz and/or Si—CH=functional groups include 3-(trimethylsilyl)cyclopentene, 1,3-Divinyltetramethyldisiloxane (Si2C8H18O): DVDS, H2C═CH—Si(CH3)2—O—Si(CH3)2—CH═CH2, Vinylmethyldimethoxysilane (SiC5H12O2): VMDEOS, (CH3O)2(CH3)Si—CH═CH2, Divinyldimethylsilane (SiC6H12): DVDMS, (CH3)2Si(CH═CH2)2, Phenoxytrimethylsilane and Phenyldimethylethoxysilane.


In addition to the CDO precursor(s), the process gas may also contain carrier gases and a source of oxygen (the oxygen source may also be used as the carrier gas). Generally, the carrier gas is provided in much greater volumes than the precursor gases. It is used as a delivery vehicle and a means for sweeping precursor materials and byproducts through the reactor. Various oxygen containing gases such as molecular oxygen (O2), ozone (O3), hydrogen peroxide (H2O2), nitrous oxide (N2O) and carbon dioxide (CO2) may be used. Carbon dioxide is preferred for many applications of this invention. In some embodiments hydrogen is used as the carrier gas. In still other embodiments, inert gases such as helium, argon, nitrogen, etc. are used.


In one example, the process gas employs a carrier gas but no separate oxygen source (e.g., molecular oxygen, ozone, hydrogen peroxide or carbon dioxide). Examples of the carrier gas include inert gases and hydrogen. In this example, a single precursor provides all the necessary oxygen, silicon, and carbon, including the carbon-carbon triple bonds and other functional groups if present. As indicated, siloxanes and various silanes or compounds having silyl groups with hydrocarbon oxy moieties are suitable for this purpose. Examples of precursors that may be used in such process gases are POTMS, DTDS, DMMOSA, MDMOSA, DMEOSA, MDEOSA and EDEOSA.


In a second process gas example, the carrier gas supplies some or all of the oxygen. As indicated, examples of suitable oxygenated carrier gases are carbon dioxide, ozone, hydrogen peroxide, molecular oxygen or other oxygen containing molecules. In this third example, only a single precursor is employed. It may or may not include oxygen. In cases where no oxygen is used, it could simply be a hydrocarbon silane material involving one carbon-carbon triple bond. Examples of suitable precursors for this embodiment include ETMS or TMSA, PTMS, BTMSA, TAS, MSTA, MDEOSA, DMEOSA, DMSDA and VTMS. Any one of these single precursors may be used in conjunction with a carrier gas.


In a third example of a process gas, oxygen is again supplied in a carrier gas such as carbon dioxide, oxygen, ozone, nitrous oxide, or hydrogen peroxide. However, in this case two or more precursors are employed. At least one of these may be similar to those identified in the second example. However, it is not necessary for oxygen to be present in either the primary or secondary precursors. However, in some embodiments, some amount of oxygen may be present in one or more of these molecules. Many relatively simple hydrocarbon silanes and/or silyl compounds may be employed as the primary precursor.


The methods of the present invention are not limited to the above examples of process gas compositions. In general, the process gas includes a carrier gas, an optional oxidant(s) (if not included in the carrier gas or the silicon-containing precursor) and the desired silicon and organic functional groups in one or more precursors. In particular embodiments, the process gas consists essentially of a carrier gas of CO2 and inert gas (e.g., CO2+He), a small amount of oxygen and a single organic precursor.


As indicated above, in certain embodiments, the process gas employs a single silicon-containing precursor in addition to the carrier gas and an optional oxidant, e.g., the process gas may consist essentially of a silicon-containing precursor that also contains the desired functional group(s), an optional oxidant (if necessary) and a carrier gas. In a particular embodiment, the process gas comprises a silicon-containing precursor that also contains a carbon-carbon triple bond, an optional oxidant, and a carrier gas. The process gas may consist essentially of these gases. Particular examples include TMSA/oxidant/carrier gas and BTMSA/oxidant/carrier gas. Of course, as explained above, the carrier gas may include the oxidant. As discussed above, the methods of the invention produce ULK films deposited using a single precursor that have properties comparable to porous ULK films deposited using dual (backbone and porogen) precursors.


PECVD Deposition


Various deposition techniques may be employed to form the CDO dielectric materials of this invention. These include various other forms of chemical vapor deposition (CVD) including plasma enhanced CVD (PECVD) and high-density plasma CVD (HDP CVD). HDP CVD of dielectric materials is described in various sources including U.S. Pat. No. 6,596,654, which is incorporated herein by reference for all purposes. Additionally, other techniques such as spin on techniques and deposition from supercritical solutions may be employed. But for many applications of this invention, a plasma based CVD process is employed.


Further the deposition conditions may be optimized to promote the crosslinking of incorporated bonds. Without this crosslinking, the film mechanical strength will generally be low due to the fact that an increase in content of methyl group CH3 as a terminating group in the CDO film will reduce the bonding density per volume thus the bonding integrity of the film. With crosslinking, the Si—O—Si matrix structure is strengthened. As a result, the mechanical strength, or the fracture toughness, of the as deposited CDO film will be high.


Compositional bonds formed in CDO film of particular interest to this invention include Si—CH2—Si, Si—C═C—Si, Si—CH═CH—S1, Si—CH2—CH2—Si and other derivatives of these bonds due to Si, C or O crosslinking, such as Si—O—C═C—Si, Si—O—CH═CH—Si, Si—C(—H, —OSi)—CH2—Si, etc. It is noted that the chemical bond length and angle varies with the degree of saturation and crosslinking. Nominal bond length of the C—C bond is ˜1.5 Å, that of the C═C bond is ˜1.3 Å, that of the CC bond is ˜1.2 Å, and that of the C—O bond is ˜1.1 Å while the nominal bond length of the Si—O bond is ˜1.6 Å and that of the Si—C bond is ˜1.9 Å. It is evident that the incorporation of C≡C bond and its derivatives (C═C, C—C) and their crosslinking within the CDO film will greatly influence the Si—O—Si matrix structure. More specifically, the Si—O—Si bond angle will change significantly as the desired C related bonds are incorporated and crosslinked. Since the Si—O—Si matrix is the backbone structure of the CDO film, the change in Si—O—Si bond angle will increase the nanometer scale pore space in the matrix and thereby decrease the dielectric constant in the matrix.


Residual stress can be reduced by incorporating C≡C bonds and its derivatives and promoting cross-linking/bridging in the CDO film. To further enhance its incorporation and its crosslinking within the CDO film, one method is to increase ion bombardment during the PECVD deposition. Process conditions that increase ion bombardment may be chosen to increase one or both of (a) the mean energy of ion striking the substrate and (b) the flux of ions reaching the substrate. Physically, these results may be achieved by selecting process conditions that accomplish one of the following: (i) increasing the mean free path of the ions in the plasma, (ii) reducing the distance that an ion must travel before striking the substrate, and (iii) increasing the mean energy or momentum of the ions that strike the substrate surface.


To increase the momentum or energy of ions striking the substrate surface, at least two different process conditions may be manipulated. First, using a dual-frequency reactor of the type described below, one can increase the relative amount of the low frequency component of the RF energy supplied to the reactor. This has the effect of increasing the length of time in a given oscillation during which ions are accelerated in a single direction (toward the wafer surface). Because the ions are exposed to a field in this direction for a longer period of time, they can accelerate to higher speeds and hence strike the substrate with greater momentum. Second, one can pulse the high frequency component of the RF power to accomplish a similar result.


As is well known in the art, in general, high frequency components of the RF power delivered to a reactor control the plasma density and low frequency components produce ion bombardment of the film. The high and low frequency components can be provided at any of a number of suitable frequencies. In a typical process, the LF component is provided in a frequency range of about 100 to 600 kHz, more preferably about 200-500 kHz, for example about 300 kHz. The High Frequency HF component is generally between 2-60 MHz˜in one process example, an HF frequency of 13.156 MHz is used.


In one embodiment, the low frequency component of delivered RF power is between about 0 and 90 percent of the total power, and more preferably between about 0 and 60 percent of the total power (e.g., between about 5 and 40 percent). The optimal value will vary depending upon the mean free path of the ions and the various conditions that impact mean free path. In a specific example, the total power delivered is about 800 Watts on 6 200 mm wafers or 0.42 W/cm2 in area density. This value can be varied depending upon the specific application and plasma reactor employed. In many cases, the low frequency component has a power area density of between about 0 W/cm2 and 20 W/cm2, and more preferably between 0 W/cm2 and 1 W/cm2.


In addition to varying the ratio of HFRF to LFRF, the HFRF power may be pulsed at a certain duty cycle, for example pulsing at between 500 Hz and 10 kHz and varying the HFRF duty cycle from 20-80%. This effectively superimposes a low frequency component on the plasma generation power.


Another method that may be used to increase ion bombardment during film deposition is to alter the deposition pressure. This simply increases the mean free path of ions in the deposition chamber. In one embodiment of the invention the deposition pressure is maintained at a pressure of between about 0.5 to 20 Torr, more preferably in the range of about 2-10 Torr.


Still another adjustment that may be used involves varying the gap between the two capacitor plates of the plasma reactor. In the apparatus described below, this involves choosing an appropriate gap between the showerhead (one capacitor plate) and a thermal block (a second capacitor plate) on which the wafer is positioned, thereby reducing the distance between the plasma source and the substrate. This reduces the distance that an ion must travel before striking the substrate. The ideal gap depends on the type of reactor employed and the process conditions. For many situations, the gap is preferably between about 3 and 20 millimeters.


Process optimization also includes setting the proper flow rates of the various compounds in the process gases. Note that the flow rates are chosen depending upon the amount of surface area to be covered. One can scale the flow rates chosen depending upon variations in the area to be deposited, including in situations where the reactor employs fewer or greater number of wafers and possibly employs 300 millimeter wafers as opposed to 200 millimeter wafers. For example, in experiments where six 200 millimeter wafers were used, the total precursor flow rate was 0.5 ml/min to about 10 ml/min. Note that this comprises the total flow rate of all precursors.


The deposition temperature can be tailored to meet the application. For some IC fabrication applications involving copper lines, for example, temperatures below 425 C may be required for intermetal dielectric deposition. In some embodiments, the substrate temperature is maintained between about 300 and 425 C (preferably between about 300 and 350 C) during CDO film deposition.


It should be noted that many dual precursor ULK deposition processes require relatively low temperatures so that the porogen may be deposited. Another advantage of single precursor ULK deposition is that high temperature deposition may be used. As discussed further below, this reduces or eliminates post-deposition out-gassing.


UVTP Process


After the film is deposited as described above, the as-deposited film undergoes a UV cure to produce the ULK films of the present invention. The UV source employed may be of any type, including lasers and lamps. Examples of lamps include a mercury lamp and a xenon arc lamp. These generally emit UV radiation over a relatively wide range of wavelengths. Lasers, on the other hand, typically emit UV radiation at a single wavelength or a very narrow band of wavelengths. Examples of lasers include excimer lasers and tunable variations. In the reactor or UVTP chamber, the UV radiation should be directed onto the wafer. Various lenses, filters, and other optical elements may be employed for this purpose. In some embodiments, the optical elements will expand a beam of UV light to cover an entire wafer. In other embodiments, the UV radiation will form a line or patch that illuminates only a portion of the wafer. In such cases, the light and the wafer can be moved with respect to one another to ensure that the whole wafer surface is illuminated over a relatively short period of time. In a particular embodiment, a thin strip of light from a laser or other source is directed onto the wafer. Then the wafer and the strip of light are moved with respect to one another to ensure that the entire wafer is illuminated. An example of a suitable apparatus in accordance with the invention will be presented below.


In general, temperatures below about 450 degrees C. are preferable, more preferably ≦400 degrees C., as higher temperatures can damage a partially fabricated device, particularly one that employs copper lines. Typical temperatures range between about room temperature (i.e., 20 degrees C.) up to 450 degrees C., and typically between about 25° C. to 450 C. It should be noted that exposure to UV radiation can itself contribute to substrate heating.


Chamber pressures also can range broadly depending on the precursor and the nature of the UV treatment. For example, appropriate pressures may span a range of between about 10−6 Torr (high vacuum) to 1000 Torr. In the higher pressure ranges, it is important to ensure that moisture, oxygen, or any other undesirable species is kept out of the chamber, with the exception of processes that may want ozone or excited oxygen. In a particular pressure range when using inert gas, the pressure ranges from about 1 mTorr to 100 Torr.


UV exposure time is largely a function of both the lamp intensity and thickness of the precursor layer, as well as the desired modulus. Lamp intensities range from about 1 mW/cm2-50 mW/cm2 (with 50 mW/cm2 at about 100% intensity).


For example, for a 2 kÅ film, curing times may range from about 1-10 minutes, e.g., about 3 minutes, at 100% UV intensity. A typical 3 minute cure process for a 2 kÅ film will result in a modulus of about 10 GPa.


It is also important not to overexpose the film to UV radiation; as discussed further below, the UV cure lowers the dielectric constant, e.g., by increasing the amount of Si—CH2—Si and Si—CH3 but overexposure will result in higher dielectric constants because of reduction of Si—CH3. For commercial applications, shorter exposure times are preferred. In a preferred embodiment, the exposure time ranges from about 1 second up to 5 minutes, e.g., 1-2 minutes.


Dielectric Constant and Mechanical Strength


As discussed above, it desirable to have low dielectric constant without sacrificing mechanical strength. One approach to reducing the dielectric constant is to introduce more free space (pores) within the film; however, at a certain point, the introduction of too many pores results undesirable properties such as a reduction in mechanical strength and penetration of chemicals.


In addition to porosity, dielectric constant is a function of the degree of dipolarization. The dielectric constant is a frequency-dependent, intrinsic material property. The constant can be contributed from three components that result from electronic, ionic and dipolar contributions. Si—CH3 and Si—CH2—Si bonds terminate the O—Si—O bonding network, causing a decrease in film density. In addition, Si—CH3 and Si—CH2—Si reduce the ionic and dipolar contributions to lower the dielectric constant. In general, dielectric constant decreases with increasing Si—CH3 and Si—CH2—Si content.


UV curing improves cross-linking and lowers the dielectric constant, producing ULK films that have high mechanical strength. This is significant as UV curing does not lower the dielectric constant for all materials˜for materials with different bonding structures, the dielectric constant would be raised by the application of UV radiation. Reduced dielectric constant is observed for the particular precursors described above, e.g., organosilicon precursors having carbon-carbon triple bonds. It is believed that this is due to several factors. First, there is an increase in free space and pore size due to UV cure. In particular, an increase in pore size from about 1.0 nm to about 1.27 nm is observed for a film deposited using TMSA. Pore size is believed to increase from the conversion of Si—CH3 groups. In depositing TMSA-based films, for example, some of the deposited Si—CH3 bonds are cross-linked to form Si—CH2—Si, which is believed to the lower the dielectric constant by enlarging the pore size. Further, there may be organic compounds in the matrix that are driven out by UV cure. For example, in depositing TMSA (Si—C≡ functional group), some CC may remain in OSG matrix that can be removed by UV treatment, creating more free space. Similarly, in depositing 3-(trimethylsilyl)cyclopentene (Si—CxHy) functional group), a certain amount of cyclopentene remaining in OSG matrix may be removed by UV treatment; in depositing phenoxytrimethylsilane (Si—CxHyOz functional group) may be removed by UV treatment; and in depositing phenyldimethylethoxysilane (Si—C═), some phenyl groups may remain in OSG matrix that can be removed by UV treatment.


Finally, as explained above, the introduction of Si—CH2—Si and Si—CH3 (as opposed to Si—O bonds) bonds reduces the dipolar and ionic contributions to the dielectric constant.


From an integration point view, introducing more Si—CH2—Si and Si—CH3 to reach k of less than or equal to about 2.50 is preferable to increasing porosity after a certain point due to the effects of increased porosity on mechanical strength and diffusion. This is one reason that the single precursor methods of producing ULK films described herein are advantageous for some applications over dual precursor backbone network former+porogen methods.


According to various embodiments the methods of the invention may be used to fabricate ULK CDO films having k values of between about 2.5 and 2.7, e.g., about 2.5, 2.55, 2.6, 2.65 and 2.7.



FIG. 2 presents film modulus as a function of k value for single-precursor based dense films deposited by PECVD and cured by UVTP in accordance with a method of the invention. To deposit these films, a TMSA, CO2 and O2 process gas was used, followed by a UVTP process using 80-100% UV intensity and a substrate temperature of 360-400 C. The films were exposed to the UV radiation for times ranging from 3-30 minutes depending on film thickness.


Films ranging with dielectric constants between about 2.5 and 2.75 and modulus between about 7.5 and 12 GPa can be achieved using the methods of the present invention as shown in FIG. 2. Also as observed, modulus increases with the dielectric constant. However, at a dielectric constant of 2.5, modulus of 7.5 GPa can be achieved—film performance is comparable to that of dual precursor ULK methods.



FIG. 3 shows FTIR spectra of the single-precursor, k of 2.5 film with a spectral comparison of the as-deposited and post UV cured in the range of 1325-1475 cm−1 (inset). The spectra were normalized by film thickness. The absorption at 1359 cm−1 is assigned to the bonding of C—H in Si—CH2—Si crosslinks while the absorption at 1411 cm−1 is assigned to the bending of C—H in Si(CH3)x as shown inset of FIG. 3. Calculations presented in Table 1 show that Si—CH2—Si peak area increases by 189% compared with that of the as-deposited film while Si—CH3 peak area decreases by 19% after UV curing, which indicates that crosslinks increase significantly after UVTP. Moreover, the peak area ratio of Si—CH2—Si/SiCH3 increases from 9.8% to 34.9% after UVTP, which is believed to cause significant improvement of film mechanical strength.









TABLE 1







Difference in FTIR peak area of SiCH3 and Si—CH2—Si


without and with UV Curing











SiCH3(1)
Si—CH2—Si(2)
2/1 (%)





Without UV (Peak area)
0.184
0.018
 9.8%


With UV (Peak area)
0.149
0.052
34.9%


Difference

−19%
+189%









Pore Size and Interconnectivity


Pore size of the films produced by methods of the invention typically range from about 0.75-1.75 nm in diameter, with average pore size between about 1.15-1.27 nm in diameter. As indicated above, dielectric constant is related to the porosity of the film, including pore size. FIG. 4 shows pore size distributions for two films produced by methods of the invention using TMSA as a precursor, one having a k of 2.5 and one having a k of 2.7 as measured by a Positronium Annihilation Lifetime Spectroscopy (PALS) analysis. As can be seen from the figure, the film having a k of 2.5 has larger pores, with a peak in the distribution of about 1.27 nm compared to the peak of the k2.7 film of about 1.15 nm. Without UV curing, the distribution peaks at about 1.0 nm.


The methods of the present invention produce films having zero interconnectivity. Interconnectivity refers to the degree to which the pores are interconnected. In most cases, porogen-based films have high interconnectivity (typical interconnectivities of porogen-based films range from about 5-20 nm) while films of the produced by the PECVD/UVTP methods described herein have zero interconnectivity as measured by a PALS analysis of the low-k films. The films produced by the methods of the invention also have lower average pore size, with average pore size of porogen-based films around 1.5 nm. Zero interconnectivity and lower pore size results in mechanically stronger films, as well as low diffusion coefficients, as explained below.


Diffusion Coefficient


The introduction of more pores within film (e.g., using a porogen) could result in penetration of chemicals addition the reduction in mechanical strength discussed above. Gas-phase precursors have a tendency to infiltrate the porous dielectric during chemical vapor deposition or atomic layer deposition processes of subsequent IC fabrication operations. The penetration of metallic species or solvents during integration could damage the electric properties of the ULK dielectrics.


The ULK films of the present invention have low diffusion coefficients. This is due to several factors. First, the films of the present invention are closed pore (zero interconnectivity). Porogen based processes of producing ULK films may produce open pore films with channels that connect pores. The films also have smaller pores.


Organic solvent molecular probes were used for characterizing the single precursor ULK films of the present invention through ellipsometirc porosimetry. Due to the relative lower density and larger free space compared to the to dense CDO (k of 3.0) films, the solvent coefficient for single precursor ULK films is higher than that of k3.0 CDO films. However, experimental results show that solvent diffusion coefficient of the single precursor ULK film is much lower than that of the porogen based ULK film. At least some of this effect may be attributed to the shorter or zero interconnection length and smaller pore size for single-precursor ULK films. FIG. 5 is a graph showing methanol diffusion as a function of pore size. Reference number 501 indicates dense CDO film (HM-Coral), reference number 503 indicates k2.7 film produced by a PECVD/UVTP method, reference number 505 indicates k2.5 film produced by a PECVD/UVTP method, and reference number 507 indicates k2.5 film deposited by a dual precursor porogen-based process.


As can be seen from the figure, while the SP-ULK film has a higher diffusion coefficient than that of the denser films. However, it favorably compares to the dual precursor film having the same dielectric constant.


Out-Gassing


Another advantage to the single precursor ULK methods described herein is reduced out-gassing. Out-gassing refers to gaseous species that the leave the dielectric film subsequent to deposition—oftentimes at the high temperatures required in subsequent processing steps. FIG. 6 shows out-gassing as a function of deposition temperature for ULK films formed by single precursor PECVD/UVTP methods (out-gassing was measured subsequent to deposition and cure). As shown in the figure, large decreases in hydrocarbon out-gassing were observed for films deposited at higher temperatures. Very little or no out-gassing was observed for the single precursor CDO films deposited at 350-400 C was observed. FIG. 7 is a mass spectra showing the out-gassed species. Most species are —CnH2n+1 groups, which are bonded to the backbone during plasma polymerization at relatively low deposition temperatures, e.g., during porogen based deposition processes. However, these hydrocarbon groups are not stable enough to stay inside the matrix if using high deposition temperatures, resulting in a much lower level of out-gassing for films deposited at high temperature.


EXAMPLES

As indicated above, the methods of the invention may be used to deposit CDO films having various dielectric constants, e.g., ranging from 2.5 to 2.7. An example of a single precursor process gas and conditions that may be used to deposit a film having k2.5 and a film having k2.7 follow:















k2.5
k2.7







Organosilicon Precusor
TMSA vapor
TMSA vapor (low


(single precursor)

TMSA flow)


PECVD Deposition
350 C. and 7 Torr
350 C. and 7 Torr


Temperature and Pressure




UV Cure Intensity
100%
100%


UV Cure Temperature
400 C.
400 C.


UV Cure Time
3-20 min (2-10 k
2-15 min (2-10 k



Angstrom film)
Angstrom film)


Resulting Modulus
7.5 GPa
11 GPa









As can be seen from the table above, k-value may be controlled in part by adjusting the flow rate of precursor used, with high TMSA flow resulting a lower k-value.


Apparatus


The present invention can be implemented in many different types of apparatus, such as chemical vapor deposition (CVD) reactors and spin-coating systems. Generally, the apparatus will include one or more chambers or “reactors” (sometimes including multiple stations) that house one or more wafers and are suitable for wafer processing. Each chamber may house one or more wafers for processing. The one or more chambers maintain the wafer in a defined position or positions (with or without motion within that position, e.g. rotation, vibration, or other agitation). In one embodiment, a wafer undergoing dielectric deposition is transferred from one station to another within the reactor during the process. While in process, each wafer is held in place by a pedestal, wafer chuck and/or other wafer holding apparatus. For certain operations in which the wafer is to be heated, the apparatus may include a heater such a heating plate. In a preferred embodiment of the invention, a PE-CVD (Plasma Enhanced Chemical Vapor Deposition) system may be used as well as, for example, an HDP CVD (High Density Plasma Chemical Vapor Deposition) system.



FIG. 8 provides a simple block diagram depicting various reactor components arranged for implementing the present invention. As shown, a reactor 800 includes a process chamber 824, which encloses other components of the reactor and serves to contain the plasma generated by a capacitor type system including a showerhead 814 working in conjunction with a grounded heater block 820. A high-frequency RF generator 802 and a low-frequency RF generator 804 are connected to a matching network 806 that, in turn is connected to showerhead 814. The power and frequency supplied by matching network 806 is sufficient to generate a plasma from the process gas, for example 800 W total energy.


Within the reactor, a wafer pedestal 818 supports a substrate 816. The pedestal typically includes a chuck, a fork, or lift pins to hold and transfer the substrate during and between the deposition reactions. The chuck may be an electrostatic chuck, a mechanical chuck or various other types of chuck as are available for use in the industry and/or research.


The process gases are introduced via inlet 812. Multiple source gas lines 810 are connected to manifold 808. The gases may be premixed or not. Appropriate valving and mass flow control mechanisms are employed to ensure that the correct gases are delivered during the deposition and plasma treatment phases of the process. In case the chemical precursor(s) is delivered in the liquid form, liquid flow control mechanisms are employed. The liquid is then vaporized and mixed with other process gases during its transportation in a manifold heated above its vaporization point before reaching the deposition chamber.


Process gases exit chamber 800 via an outlet 822. A vacuum pump 826 (e.g., a one or two stage mechanical dry pump and/or a turbomolecular pump) typically draws process gases out and maintains a suitably low pressure within the reactor by a close loop controlled flow restriction device, such as a throttle valve or a pendulum valve.



FIG. 9 is a schematic diagram of an example UVTP chamber 901 in accordance with the invention. Chamber 901 is capable of holding a vacuum and/or containing gases at pressures above atmospheric pressure. For simplicity, only one chamber 901 is shown. It is noted that in many embodiments, chamber 901 is one chamber in a multi-chambered apparatus (entire apparatus not shown), although chamber 901 could alternatively be part of a stand-alone single chambered apparatus. Suitable multi-chambered apparatus, for example, include the modified Novellus Sequel and Vector systems.


A substrate holder 903 secures a wafer 905 in a position such that light from a UV light source array 907 can irradiate wafer 905. Substrate holder 903 can have a heater (not shown) that can heat the substrate to defined temperatures, or could be cooled using a chiller and can be controlled by a temperature controller (not shown). Chamber 901 is configured with a gas inlet 915, which is connected to a gas source (not shown), and with a vacuum outlet 913, which is connected to a vacuum pump (not shown). The amount of gas introduced into the chamber 901 can be controlled by valves and mass flow controller (not shown) and pressure is measured by pressure gauge (not shown).


In this example, the UV light source array 907 is mounted outside the chamber 901. In alternate embodiments, the UV light source array may be housed inside the chamber 901. UV light source array 907 includes an array of individual UV sources such as mercury vapor or xenon lamps. Note that the invention is not limited to mercury vapor or xenon lamps as UV light sources and other suitable light sources include deuterium lamps or lasers (e.g., excimer lasers and tunable variations of various lasers). Various optical elements, such as reflectors, may be required to direct the UV light toward portions of the substrate. Methods for directing the light at different portions of the substrate at different times may be required as well. A scanning mechanism may be used for this purpose. A window 911 made of quartz, sapphire or other suitable material is positioned between UV light source array 907 and wafer 905 to provide vacuum isolation. Filters can also be used to remove unwanted spectral components from particular sources to “tune” the sources.


The UV light source array 907 may be comprised of one or more types of UV sources, for example an array of three types of UV sources, each type providing UV radiation with a different wavelength distribution. The UV sources are electrically connected to each other (909a, 909b and 909c) and controlled by control system 910, which controls when each of the various UV sources is illuminated. Control system 910 is typically, but not limited to, a computer processing system such as a PC or workstation. Of course, any number and types of individual light sources in any suitable configuration can be used.


Note that the light source array and control configuration of FIG. 9 is only an example of a suitable configuration. In general, it is preferable that the lamps are arranged to provide uniform UV radiation to the wafer. For example, other suitable lamp arrangements can include circular lamps concentrically arranged or lamps of smaller length arranged at 90 degree and 180 degree angles with respect to each other may be used. The light source(s) can be fixed or movable so as to provide light in appropriate locations on the wafer. Alternatively, an optical system, including for example a series of movable lenses, filters, and/or mirrors, can be controlled to direct light from different sources to the substrate at different times.


The UV light intensity can be directly controlled by the type of light source and by the power applied to the light source or array of light sources. Factors influencing the intensity of applied power include, for example, the number or light sources (e.g., in an array of light sources) and the light source types (e.g., lamp type or laser type). Other methods of controlling the UV light intensity on the wafer sample include using filters that can block portions of light from reaching the wafer sample. As with the direction of light, the intensity of light at the wafer can be modulated using various optical components such as minors, lenses, diffusers and filters. The spectral distribution of individual sources can be controlled by the choice of sources (e.g., mercury vapor lamp vs. xenon lamp vs. deuterium lamp vs. excimer laser, etc.) as well as the use of filters that tailor the spectral distribution. In addition, the spectral distributions of some lamps can be tuned by doping the gas mixture in the lamp with particular dopants such as iron, gallium, etc.


It should be understood that the apparatus depicted in FIG. 9 is only an example of a suitable apparatus and other designs for other methods involved in previous and/or subsequent processes may be used. Other examples of apparatus suitable for implementing the present invention are described in commonly assigned co-pending application Ser. Nos. 11/115,576 filed Apr. 26, 2005, 10/800,377 filed Mar. 11, 2004, and 10/972,084 filed Oct. 22, 2004, incorporated by reference herein.


Other Embodiments

While this invention has been described in terms of certain embodiments, there are various alterations, modifications, permutations, and substitute equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. Further, there are numerous applications of the present invention, both inside and outside the integrated circuit fabrication arena. It is therefore intended that the following appended claims be interpreted as including all such alterations, modifications, permutations, and substitute equivalents as fall within the true spirit and scope of the present invention.

Claims
  • 1. A method of preparing a low-k doped silicon oxide (CDO) film on a substrate, the method comprising: providing the substrate to a deposition chamber;contacting the substrate with a process gas comprising a silicon-containing precursor having a carbon-carbon triple bond and a carrier gas to thereby deposit a solid CDO film containing carbon-carbon triple bonds on the substrate via a dual RF frequency PECVD reaction, wherein the process gas contains no more than one hydrocarbon-containing precursor; andexposing the deposited film to UV radiation in a manner that improves cross-linking and lowers the dielectric constant of the film.
  • 2. The method of claim 1 wherein the dielectric constant of the film is between about 2.5 and 2.7.
  • 3. The method of claim 1 wherein the dielectric constant of the film is less than or equal to about 2.5.
  • 4. The method of claim 1 wherein after exposing the deposited film to UV radiation, the deposition film has a pore diameter distribution having a peak between about 1.15-1.30 nm.
  • 5. The method of claim 1 wherein the process gas consists essentially of an organo-silicon precursor, an optional oxidant and a carrier gas.
  • 6. The method of claim 5 wherein the process gas contains an oxidant selected from: molecular oxygen (O2), ozone (O3), hydrogen peroxide (H2O2), nitrous oxide (N2O) and carbon dioxide (CO2).
  • 7. The method of claim 1 wherein the silicon-containing precursor is selected from: Trimethylsilaneacetylene (TMSA), Bis(trimethylsilyl)acetylene, (BTMSA), Propargyltrimethylsilane (PTMS), Propargyloxytrimethylsilane (POTMS), 1,3-Diethynyltetramethyldisiloxane (DTDS), Dimethylmethoxysilaneacetylene (DMMOSA), Methyldimethoxysilaneacetylene (MDMOSA), Dimethylethoxysilaneacetylene (DMEOSA), Methyldiethoxysilaneacetylene (MDEOSA), Ethyldiethoxysilaneacetylene (EDEOSA), Dimethylsilane-diacetylene DMSDA, Methylsilane-triacetylene (MSTA) and Tetraacetylene Silane (TAS).
  • 8. The method of claim 1 wherein in the silicon-containing precursor is selected from Trimethylsilaneacetylene (TMSA), Bis(trimethylsilyl)acetylene, (BTMSA).
  • 9. The method of claim 1 wherein a CH2—Si—CH2/Si—CH3 FTIR peak area ratio of the deposited film is at least about 15% after exposing the film to UV radiation.
  • 10. The method of claim 1 wherein a CH2—Si—CH2/Si—CH3 FTIR peak area ratio of the deposited film is at least about 20% after exposing the film to UV radiation.
  • 11. The method of claim 1 wherein a CH2—Si—CH2/Si—CH3 FTIR peak area ratio of the deposited film is at least about 30% after exposing the film to UV radiation.
  • 12. The method of claim 1 wherein the deposited film has a pore interconnectivity of about zero.
  • 13. The method of claim 1 wherein there is substantially no out-gassing for the deposited film.
  • 14. The method of claim 1 wherein the methanol diffusion coefficient is less than about 100 μm2/sec.
  • 15. A method of preparing a low-k doped silicon oxide (CDO) film on a substrate, the method comprising: providing the substrate to a deposition chamber;contacting the substrate with a process gas comprising a silicon-containing precursor having a carbon-carbon triple bond and a carrier gas to thereby deposit a CDO film containing carbon-carbon triple bonds on the substrate via a dual RF frequency PECVD reaction; andexposing the deposited film to UV radiation to thereby lower the dielectric constant to no more than about 2.7 and increase a Young's modulus of the film.
  • 16. The method of claim 15 wherein the modulus is increased to at least about 12 GPa.
  • 17. The method of claim 15 wherein the dielectric constant is lowered to no more than about 2.6 and the modulus is increased to at least about 9 GPa.
  • 18. The method of claim 15 wherein the dielectric constant is lowered to no more than about 2.5 and the modulus is increased to at least about 7 GPa.
  • 19. The method of claim 15 wherein the process gas contains no more than one hydrocarbon precursor.
  • 20. The method of claim 15 wherein the process gas does not contain a porogen.
  • 21. The method of claim 15 wherein the film is deposited at a temperature of about 350-400 C.
  • 22. The method of claim 15 wherein the precursor is selected from BTMSA and TMSA.
  • 23. The method of claim 15 wherein exposing the film to UV radiation increases the CH2—Si—CH2/Si—CH3 FTIR peak area ratio by at least about 100%.
US Referenced Citations (196)
Number Name Date Kind
3983385 Troue Sep 1976 A
4357451 McDaniel Nov 1982 A
4391663 Hutter, III Jul 1983 A
4563589 Scheffer Jan 1986 A
4837185 Yau et al. Jun 1989 A
4885262 Ting et al. Dec 1989 A
5178682 Tsukamoto et al. Jan 1993 A
5268320 Holler et al. Dec 1993 A
5282121 Bornhorst et al. Jan 1994 A
5504042 Cho et al. Apr 1996 A
5582880 Mochizuki et al. Dec 1996 A
5686054 Barthel et al. Nov 1997 A
5700844 Hedrick et al. Dec 1997 A
5789027 Watkins et al. Aug 1998 A
5840600 Yamazaki et al. Nov 1998 A
5851715 Barthel et al. Dec 1998 A
5858457 Brinker et al. Jan 1999 A
5876798 Vassiliev Mar 1999 A
5877095 Tamura et al. Mar 1999 A
6132814 Livesay et al. Oct 2000 A
6136680 Lai et al. Oct 2000 A
6140252 Cho et al. Oct 2000 A
6150272 Liu et al. Nov 2000 A
6228563 Starov et al. May 2001 B1
6232658 Catabay et al. May 2001 B1
6258735 Xia et al. Jul 2001 B1
6268288 Hautala et al. Jul 2001 B1
6270846 Brinker et al. Aug 2001 B1
6271273 You et al. Aug 2001 B1
6329017 Liu et al. Dec 2001 B1
6340628 Van Cleemput et al. Jan 2002 B1
6365266 MacDougall et al. Apr 2002 B1
6365528 Sukharev et al. Apr 2002 B1
6383466 Domansky et al. May 2002 B1
6383955 Matsuki et al. May 2002 B1
6386466 Ozawa et al. May 2002 B1
6387453 Brinker et al. May 2002 B1
6391932 Gore et al. May 2002 B1
6392017 Chandrashekar May 2002 B1
6394797 Sugaya et al. May 2002 B1
6399212 Sakai et al. Jun 2002 B1
6407013 Li et al. Jun 2002 B1
6410462 Yang et al. Jun 2002 B1
6413583 Moghadam et al. Jul 2002 B1
6420441 Allen et al. Jul 2002 B1
6436824 Chooi et al. Aug 2002 B1
6444715 Mukherjee et al. Sep 2002 B1
6465366 Nemani et al. Oct 2002 B1
6467491 Sugiura et al. Oct 2002 B1
6479374 Ioka et al. Nov 2002 B1
6479409 Shioya et al. Nov 2002 B2
6485599 Glownia et al. Nov 2002 B1
6531193 Fonash et al. Mar 2003 B2
6548113 Birnbaum et al. Apr 2003 B1
6558755 Berry et al. May 2003 B2
6563092 Shrinivasan et al. May 2003 B1
6566278 Harvey et al. May 2003 B1
6570256 Conti et al. May 2003 B2
6572925 Zubkov et al. Jun 2003 B2
6576300 Berry et al. Jun 2003 B1
6596654 Bayman et al. Jul 2003 B1
6610362 Towle Aug 2003 B1
6632478 Gaillard et al. Oct 2003 B2
6635575 Xia et al. Oct 2003 B1
6644786 Leben Nov 2003 B1
6662631 Baklanov et al. Dec 2003 B2
6677251 Lu et al. Jan 2004 B1
6713407 Cheng et al. Mar 2004 B1
6740602 Hendriks et al. May 2004 B1
6740605 Shiraiwa et al. May 2004 B1
6756085 Waldfried et al. Jun 2004 B2
6759098 Han et al. Jul 2004 B2
6770866 Retschke et al. Aug 2004 B2
6797643 Rocha-Alvarez et al. Sep 2004 B2
6805801 Humayun et al. Oct 2004 B1
6812043 Bao et al. Nov 2004 B2
6815373 Singh et al. Nov 2004 B2
6831284 Demos et al. Dec 2004 B2
6835417 Saenger et al. Dec 2004 B2
6848458 Shrinivasan et al. Feb 2005 B1
6856712 Fauver et al. Feb 2005 B2
6867086 Chen et al. Mar 2005 B1
6884738 Asai et al. Apr 2005 B2
6890850 Lee et al. May 2005 B2
6903004 Spencer et al. Jun 2005 B1
6914014 Li et al. Jul 2005 B2
6921727 Chiang et al. Jul 2005 B2
6958301 Kim et al. Oct 2005 B2
7018918 Kloster et al. Mar 2006 B2
7030041 Li et al. Apr 2006 B2
7064088 Hyodo et al. Jun 2006 B2
7087271 Rhee et al. Aug 2006 B2
7094713 Niu et al. Aug 2006 B1
7098149 Lukas et al. Aug 2006 B2
7132334 Lin Nov 2006 B2
7148155 Tarafdar et al. Dec 2006 B1
7166531 van den Hoek et al. Jan 2007 B1
7176144 Wang et al. Feb 2007 B1
7208389 Tipton et al. Apr 2007 B1
7235459 Sandhu Jun 2007 B2
7241704 Wu et al. Jul 2007 B1
7247582 Stern et al. Jul 2007 B2
7253125 Bandyopadhyay et al. Aug 2007 B1
7265061 Cho et al. Sep 2007 B1
7288292 Gates et al. Oct 2007 B2
7326444 Wu et al. Feb 2008 B1
7332445 Lukas et al. Feb 2008 B2
7341761 Wu et al. Mar 2008 B1
7381659 Nguyen et al. Jun 2008 B2
7381662 Niu et al. Jun 2008 B1
7390537 Wu et al. Jun 2008 B1
7473653 Wu et al. Jan 2009 B1
7481882 Won et al. Jan 2009 B2
7504663 Yamazaki et al. Mar 2009 B2
7510982 Draeger et al. Mar 2009 B1
7611757 Bandyopadhyay et al. Nov 2009 B1
7622162 Schravendijk et al. Nov 2009 B1
20010001501 Lee et al. May 2001 A1
20010014512 Lyons et al. Aug 2001 A1
20020001973 Wu et al. Jan 2002 A1
20020016085 Huang et al. Feb 2002 A1
20020034626 Liu et al. Mar 2002 A1
20020064341 Fauver et al. May 2002 A1
20020106500 Albano et al. Aug 2002 A1
20020117109 Hazelton et al. Aug 2002 A1
20020123240 Gallagher et al. Sep 2002 A1
20020132496 Ball et al. Sep 2002 A1
20020172766 Laxman et al. Nov 2002 A1
20020195683 Kim et al. Dec 2002 A1
20030013280 Yamanaka Jan 2003 A1
20030064607 Leu et al. Apr 2003 A1
20030068881 Xia et al. Apr 2003 A1
20030111263 Fornof et al. Jun 2003 A1
20030134038 Paranjpe Jul 2003 A1
20030157248 Watkins et al. Aug 2003 A1
20030203652 Bao et al. Oct 2003 A1
20030224156 Kirner et al. Dec 2003 A1
20030228770 Lee et al. Dec 2003 A1
20040018319 Waldfried et al. Jan 2004 A1
20040018717 Fornof et al. Jan 2004 A1
20040023513 Aoyama et al. Feb 2004 A1
20040029391 Kirkpatrick et al. Feb 2004 A1
20040033662 Lee et al. Feb 2004 A1
20040058090 Waldfried et al. Mar 2004 A1
20040069410 Moghadam et al. Apr 2004 A1
20040096593 Lukas et al. May 2004 A1
20040096672 Lukas et al. May 2004 A1
20040099952 Goodner et al. May 2004 A1
20040101633 Zheng et al. May 2004 A1
20040102031 Kloster et al. May 2004 A1
20040161532 Kloster et al. Aug 2004 A1
20040166240 Rhee et al. Aug 2004 A1
20040170760 Meagley et al. Sep 2004 A1
20040185679 Ott et al. Sep 2004 A1
20040213911 Misawa et al. Oct 2004 A1
20040224496 Cui et al. Nov 2004 A1
20040249006 Gleason et al. Dec 2004 A1
20050025892 Satoh et al. Feb 2005 A1
20050064698 Chang et al. Mar 2005 A1
20050064726 Reid et al. Mar 2005 A1
20050095840 Bhanap et al. May 2005 A1
20050112282 Gordon et al. May 2005 A1
20050156285 Gates et al. Jul 2005 A1
20050170104 Jung et al. Aug 2005 A1
20050191803 Matsuse et al. Sep 2005 A1
20050194619 Edelstein et al. Sep 2005 A1
20050230834 Schmitt et al. Oct 2005 A1
20050260357 Olsen et al. Nov 2005 A1
20050260420 Collins et al. Nov 2005 A1
20050272220 Waldfried et al. Dec 2005 A1
20060024976 Waldfried et al. Feb 2006 A1
20060027929 Cooney et al. Feb 2006 A1
20060040507 Mak et al. Feb 2006 A1
20060105106 Balseanu et al. May 2006 A1
20060105566 Waldfried et al. May 2006 A1
20060110931 Fukazawa et al. May 2006 A1
20060118817 Haisma Jun 2006 A1
20060145304 Boyanov et al. Jul 2006 A1
20060145305 Boyanov et al. Jul 2006 A1
20060178006 Xu et al. Aug 2006 A1
20060220251 Kloster Oct 2006 A1
20060246672 Chen et al. Nov 2006 A1
20060260538 Ye et al. Nov 2006 A1
20070054504 Chen et al. Mar 2007 A1
20070132054 Arghavani et al. Jun 2007 A1
20070134907 Ikeda et al. Jun 2007 A1
20070275569 Moghadam et al. Nov 2007 A1
20070281497 Liu et al. Dec 2007 A1
20070287240 Chen et al. Dec 2007 A1
20080009141 Dubois et al. Jan 2008 A1
20080020591 Balseanu et al. Jan 2008 A1
20080132055 Nguyen et al. Jun 2008 A1
20080194105 Dominguez et al. Aug 2008 A1
20080199977 Weigel et al. Aug 2008 A1
20080305600 Liao et al. Dec 2008 A1
20090017640 Huh et al. Jan 2009 A1
Foreign Referenced Citations (7)
Number Date Country
01-107519 Apr 1989 JP
63-307740 Dec 2008 JP
2000-0043888 Jul 2000 KR
WO 03005429 Jan 2003 WO
WO 03052794 Jun 2003 WO
2006104583 Oct 2006 WO
2006127463 Nov 2006 WO