1. Field
Embodiments of the present invention relate to the electronics manufacturing industry and more particularly to the process of plasma etching, stripping or ashing of organic masks.
2. Discussion of Related Art
As the feature size of microelectronic devices gets smaller than 100 nm, the critical dimension (CD) requirement of features becomes a more important criterion for stable and repeatable device performance. Allowable CD variation across a substrate has also scaled with the scaling of feature CD. For example, across a 300 mm diameter substrate, some applications may demand a 3-sigma of less than 10 nm for a target CD averaging about 80 nm.
For back end of line (BEOL) etch processes, post-etch organic mask removal processes may enlarge the CD of etched openings (e.g., a via). As feature sizes are reduced, the proportion of dimensional change attributable to the post-etch organic mask removal process becomes an ever more significant limitation. One contributor to such dimensional change and/or “profile bowing” is a release of fluorocarbons as dielectric etch deposits (from fluorocarbon etchants employed in the dielectric etch) are removed by the post-etch mask removal process. Via profile bowing is particularly problematic with low-k (e.g., dielectric constants below about 3.0) and ultra-low-k (e.g., dielectric constants below about 2.5) materials because of their porous nature and mechanical fragility. Accelerated etch rates of such low-k/ultra low-k materials may lead to undercutting of a dielectric etch stack, which may prevent a via from being adequately filled with conductive material. The release of fluorocarbons during the post-etch plasma-based organic mask removal process may also deleteriously etch/undercut BEOL hard masks (e.g., non-carbonaceous masks), stop layers, or diffusion barriers exposed during the BEOL dielectric etch.
Embodiments of the present invention include plasma etching or stripping of organic mask materials, such as photo resist, with an etchant gas mixture including silicon fluoride. In certain embodiments, the etchant gas mixture comprises silicon fluoride and at least one other of: forming gas (H2:N2), molecular nitrogen (N2), ammonia (NH3), carbon monoxide (CO),carbon dioxide (CO2), oxygen (O2), sulfur dioxide (SO2), water vapor (H2O), ozone (O3), hydrogen peroxide (H2O2), or carbonyl sulfide (COS).
In a first embodiment, a substrate including an etched dielectric film disposed under an organic mask is provided to a plasma etch chamber. With a fluorocarbon etch product disposed on one or more of the plasma etch chamber, organic mask, or etched dielectric film, the etched dielectric film and organic mask is exposed to a plasma of a first etchant gas including silicon tetrafluoride (SiF4). The etched dielectric film and organic mask may be exposed to the plasma of the first etchant gas for a duration sufficient to remove at least a majority of the organic mask thickness remaining over the etched dielectric film. Addition of the SiF4 to the first etchant gas may reduce the lateral etch of the etched dielectric features (e.g., profile bowing) and reduce the damage of low-k dielectrics caused by the plasma etching/ashing process. Addition of the SiF4 to the first etchant gas may reduce over etch and/or undercut of exposed stop/barrier layers.
In a second embodiment, a plasma etch method is performed with a plasma etch chamber to form a feature (e.g., a via) in a first layer of a dielectric stack disposed under a first mask including a patterned photo resist layer. The feature may be etched with an etchant gas including a fluorocarbon species until a stop layer is exposed. The plasma etch method further includes removing the patterned photo resist layer with a plasma of a second etchant gas including silicon tetrafluoride (SiF4), and unloading the plasma etch chamber. The plasma etch method may then be continued upon receiving the substrate with the dielectric stack disposed under a second mask including a non-patterned organic layer filling in the feature. A second plasma dielectric etch is performed to form a second feature (e.g., a trench) in the first layer of the dielectric stack with a third etchant gas. The non-patterned organic layer is then removed from the feature (e.g., the via) with a plasma of a fourth etchant gas including silicon tetrafluoride (SiF4).
Embodiments of the invention are particularly pointed out and distinctly claimed in the concluding portion of the specification. Embodiments of the invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings.
In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. It will be apparent to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known features, such as specific lithographic patterning and etching techniques, are not described in detail in order to not unnecessarily obscure the present invention. Reference throughout this specification to “an embodiment” means that a particular feature, structure, material, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. Thus, the appearances of the phrase “in an embodiment” in various places throughout this specification are not necessarily referring to the same embodiment of the invention. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments. Also, it is to be understood that the various exemplary embodiments shown in the Figures are merely illustrative representations and are not necessarily drawn to scale.
The terms “over,” “under,” “between,” and “on” as used herein refer to a relative position of one layer with respect to other layers. As such, for example, one layer deposited or disposed over or under another layer may be directly in contact with the other layer or may have one or more intervening layers. Moreover, one layer deposited or disposed between layers may be directly in contact with the layers or may have one or more intervening layers. In contrast, a first layer “on” a second layer is in contact with that second layer. Additionally, the relative position of one layer with respect to other layers is provided assuming operations deposit, modify and remove films relative to a starting substrate without consideration of the absolute orientation of the substrate.
Depending on the material composition of the etched dielectric film and the nature of the mask removal process, the bowing delta may be more or less severe. For example, the dielectric layer 115 may be a silica hardmask having a first composition while the dielectric layer 110 may be an ultra low-k material such as a porous organosilicate. For such a structure, the dielectric layer 110 may be susceptible to significantly more lateral etching during the mask removal process than is the dielectric layer 115, increasing the bowing delta for a given mask removal process. Ultra low-k materials in particular are susceptible to incurring a damage layer when exposed to plasma conditions conventionally used for removing organic masks. The damage layer is generally attributed to a loss of terminating groups, leaving the damage layer susceptible to forming silanols.
In accordance with embodiments described herein, the profile bowing delta for dielectric films containing silicon is significantly reduced through the introduction of silicon fluoride, or more specifically silicon tetrafluoride (SiF4), to the etchant gas during a plasma-based organic mask removal process. As further described herein, the over etch delta for stop layers including silicon is significantly reduced through the introduction of silicon fluoride, or more specifically silicon tetrafluoride (SiF4), to the etchant gas during a plasma-based organic mask removal process. In a particular embodiment, for example, a plasma-based organic mask removal process without SiF4 resulted in a profile bowing delta of about 18 nm for a particular dielectric material (dashed line via profile 136 in
At operation 201, a masked silicon-containing dielectric film is plasma etched with an etchant gas including a fluorocarbon source gas. In the exemplary embodiment depicted in
The silicon-containing dielectric film may generally be any known in the art, such as, but not limited to, silicon nitride, silicon oxynitride, silicon dioxide (silica), and organosilicates (HSQ, MSQ, etc.). In certain embodiments, the silicon-containing dielectric film further includes oxygen and may be a low-k or ultra low-k material. In further embodiments, the silicon-containing dielectric film includes oxygen and carbon, such as a carbon-doped silicon oxide. In the exemplary embodiment depicted in
As further depicted in
Over the silicon-containing dielectric film(s) is disposed an organic mask which may also include a plurality of layers of differing composition. In the exemplary embodiment depicted in
Returning to
Following the dielectric etch operation 201, the fluorocarbon-based chemistries employed may be purged from the etch process chamber. For example, a high volumetric flow of an inert, such as Argon, is introduced to the etch chamber to purge any halogen-based gas from the etch chamber before proceeding to operation 202 where the organic mask is removed to prevent carryover of residual halogens into subsequent processes performed in the etch chamber. Nonetheless, even with such a gas purge, fluorocarbon etch products will remain deposited on one or more of the organic mask surfaces (e.g., on the top surface and sidewall of photo resist layer 425), dielectric sidewalls (e.g., on the etched SiCOH sidewalls of via 335), or surfaces of the etch chamber (e.g., 305 in
At operation 202, the organic mask is plasma etched (ashed) in an environment including SiF4. In an embodiment, operation 202 is performed in-situ within the same etch chamber which performs operation 202 and may be performed for a duration sufficient to remove at least a majority of the organic mask thickness remaining over the etched dielectric film after operation 201.
It has been found that both the etched dielectric (e.g., via sidewalls) and etch stop layer/barrier layer film surface etch rate during the organic mask removal process may be reduced by introducing SiF4 to the mask etchant chemistry. While not bound by theory, it is thought that reactant species such as fluorocarbon radicals resulting from fluorocarbon polymer etch deposits remaining after the operation 201, diffuse, and adsorb onto the exposed dielectric and etch stop /barrier layers. These reactant species are then energized (e.g., by ion bombardment) and react with the dielectric and stop/barrier layers to form etch products, such as SiF2, SiF3, and SiF4, which can then desorb from the surface of the dielectric and stop/barrier layers. Addition of SiF4 to the mask removal etchant chemistry is thought to increase the amount of such Si-containing etch products on the silicon-containing dielectric and/or etch stop/barrier layer surfaces to the point of saturation, reduce desorption of etch products, and reduce the removal of silicon from the silicon-containing dielectric and/or etch stop/barrier layers.
The SiF4 etchant source gas may be provided as an additive to, or in combination with, essentially any conventional organic mask etchant gas to provide the silicon-containing etch product species. In an embodiment, etchant gas comprising SiF4 is substantially free of any fluorocarbon source gases, such as any of those utilized in operation 201 (e.g., the fluorocarbon source gas used to etch the via 435 is discontinued before the introduction of the SiF4, or shortly thereafter). SiF4 may be combined with any of: O2, CO2, CO, COS, N2, SO2, H2O, 03, forming gas (N2:H2) or NH3 to form the organic mask etchant gas. Generally, higher partial pressures of SiF4 reduce both the profile bowing delta and stop/barrier layer loss as well as the organic mask removal rate. Total gas flow of the etchant gas mixture including SiF4 may vary widely, but will typically be relatively large (e.g., 300 to 1000 sccms or more) to maximize the organic mask removal rate. As one exemplary embodiment, at operation 202, the SiF4 is introduced into a plasma etch chamber at a volumetric flow rate of up to about 50% of the total volumetric flow of the first etchant gas. In one particular embodiment, at operation 202, the SiF4 is combined with CO2, N2 and provided into the plasma etch chamber at a CO2:SiF4 volumetric flow rate ratio of between about 2:1 and 10:1 and a total flow between 300 and 1000 sccm. Many other ratios and mixtures are of course readily achievable based on the embodiments described herein.
The positive effects of SiF4 on the via profile has been found across a wide range of process pressures and plasma powers. When energized with a high frequency RF (above about 100 MHz) source powers of 500-2000 W (for a chamber accommodating a 300 mm substrate) the organic mask may be removed at reasonably high rates. Generally, bias power for the organic mask etch operation 202 should be significantly lower than the source power, typically on the order of below 100 W (300 mm system). Depending on the embodiment, the process pressure may be varied over a wide range between about 8 mT and 50 mT with a preferred process pressure of approximately 10 mT when energized with a high frequency capacitive system, as described elsewhere herein in reference to
Returning to
It has also been found that by increasing the SiF4 partial pressure to a sufficient level during the removal operation 202, the overetch delta of the etch stop layer 405 may be significantly reduced. For example, a removal process with a 1:4:4 SiF4:CO2:N2 volumetric flow rate ratio was found to further reduce the overetch delta of a SiCN etch stop layer 405 from approximately 21 nm to approximately 11 nm.
Proceeding with the exemplary embodiment illustrated in
With the second organic mask complete, the substrate may again be placed in a plasma etch chamber to etch the masked silicon-containing dielectric a second time. In the exemplary embodiment, method 200 is repeated a second time with operation 201 opening the BARC 450 and the inorganic cap layer 445 (
At operation 202, the remainder of the second organic mask is then removed with a plasma etch process including SiF4, as depicted in
Embodiments of the organic mask removal methods described herein may be performed with a plasma etch apparatus, such as the EnablerTM etch chamber manufactured by Applied Materials, Inc. of CA, USA. In another embodiment, all the plasma etch processes of method 200 are performed in the EnablerTM etch chamber or a magnetically enhanced reactive ion etcher (MERIE) etch chamber, such as the MxP®, MxP+TM, Super-ETM or E-MAX® chamber also manufactured by Applied Materials, Inc. of CA, USA. Other types of high performance etch chambers known in the art may also be used, for example, chambers in which a plasma is formed using inductive techniques.
A cross-sectional view of an exemplary etch system 300 is shown in
When RF power is applied, a plasma is formed in chamber processing region over substrate 310. Bias power RF generator 325 is coupled to cathode 320. Bias power RF generator 325 provides bias power to further energize the plasma. Bias power RF generator 325 typically has a low frequency between about 2 MHz to 60 MHz, and in a particular embodiment, is in the 13.56 MHz band. In certain embodiments, the plasma etch system 300 includes a third bias power RF generator 326 at a frequency at about the 2 MHz band which is connected to the same RF match 327 as bias power RF generator 325. Source power RF generator 330 is coupled through a match (not depicted) to a plasma generating element 335 which may be anodic relative to cathode 320 to provide high frequency source power to energize the plasma. Source RF generator 330 typically has a higher frequency than the bias RF generator 325, such as between 100 and 180 MHz, and in a particular embodiment, is in the 162 MHz band. Bias power affects the bias voltage on substrate 310, controlling ion bombardment of the substrate 310, while source power affects the plasma density relatively independently of the bias on substrate 310. It is noted that the etch performance of a given set of input gases from which the plasma is generated varies significantly with a plasma density and wafer bias, thus both the amount and frequency of power energizing the plasma are important. Because substrate diameters have progressed over time, from 150 mm, 200 mm, 300 mm, etc., it is common in the art to normalize the source and bias power of a plasma etch system to the substrate area.
In particular embodiments, the plasma etch chamber includes a CSTU for a controlling inner and out diameter magnetic field strength ratio to control the density of charged species in the plasma across the diameter of the substrate 310. One exemplary CSTU includes the magnetic coil 340 proximate a periphery of the substrate 310 and the magnetic coil 341 proximate a center of the substrate 310 to provide a magnetic field of between 0 G and about 25 G in either or both of an inner zone and outer zone of the chamber 305.
In an embodiment of the present invention, system 300 is computer controlled by controller 370 to control the low frequency bias power, high frequency source power, CSTU inner to outer magnetic field ratio, etchant gas flows and NSTU inner to outer flow ratios, process pressure and cathode temperatures, as well as other process parameters. Controller 370 may be one of any form of general-purpose data processing system that can be used in an industrial setting for controlling the various subprocessors and subcontrollers. Generally, controller 370 includes a central processing unit (CPU) 372 in communication with memory 373 and input/output (I/O) circuitry 374, among other common components. Software commands executed by CPU 372, cause system 300 to, for example, load the substrate into a plasma etch chamber, introduce an etchant gas mixture including SiF4 into the plasma etch chamber and etch an organic mask with a plasma of the etchant gas mixture. Other processes, such as etching a mask silicon-containing dielectric layer, in accordance with the present invention, may also be executed by the controller 370.
Portions of the present invention may be provided as a computer program product, which may include a computer-readable medium having stored thereon instructions, which may be used to program a computer (or other electronic devices) to load a substrate into a plasma etch chamber, introduce an etchant gas mixture including SiF4 into the plasma etch chamber and etch an organic mask with a plasma of the etchant gas mixture, in accordance with the present invention. The computer-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs (compact disk read-only memory), and magneto-optical disks, ROMs (read-only memory), RAMs (random access memory), EPROMs (erasable programmable read-only memory), EEPROMs (electrically-erasable programmable read-only memory), magnet or optical cards, flash memory, or other commonly known type computer-readable storage medium suitable for storing electronic instructions. Moreover, the present invention may also be downloaded as a program file containing a computer program product, wherein the program file may be transferred from a remote computer to a requesting computer.
Although the present invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features and embodiments described.
This application is related to PROVISIONAL PATENT APPLICATION 61/247,902 filed Oct. 1, 2009, incorporated by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
61247902 | Oct 2009 | US |