The present invention relates to a plasma processing apparatus for converting a processing gas into a plasma by applying a high frequency power between an upper electrode and a mounting table and performing a plasma processing on a substrate mounted on the mounting table, and a mounting unit thereof.
In manufacturing semiconductor devices, a plasma processing apparatus is employed to perform a dry etching, a film forming process or the like and, especially, a parallel plate type plasma processing apparatus, wherein a high frequency voltage is applied between an upper electrode and a lower electrode to generate a plasma, is widely used.
In this case, units for controlling and detecting temperature of the wafer W are necessary in order to maintain the temperature of the wafer W at a specified process temperature. For instance, Reference Patent 1 discloses a single-wafer thermal CVD apparatus, wherein a signal line having a temperature detection terminal unit provided in a surface portion of the mounting table and a power feed rod for supplying power to a heater are installed side by side on a central bottom surface of the mounting table and inserted in a shaft, which is a protection pipe extracted downward from the processing chamber, to pass therethrough.
Further, a power feed rod for applying a high frequency voltage to the mounting table 96 is necessary in the plasma processing apparatus shown in
However, as a design rule of semiconductor devices is getting stricter, the temperature of the wafer W should be still more strictly controlled. Accordingly, a fluorescent optical fiber thermometer is favorably studied as a candidate for a temperature sensor of the wafer. Such a thermometer, wherein brightness of a light from a fluorescent material provided in a leading end of an optical fiber is detected by the optical fiber, will be described in detail in a preferred embodiment. But, when both the optical fiber and the power feed rod for applying a high frequency voltage are inserted in the shaft and a high frequency current flows in the power feed rod, the bar type conductive lead for a heater practically functions as if it is grounded with respect to the high frequency current. Thus, a high frequency electric field is formed, wherein electric lines of force originate from the power feed rod and end on the conductive rod of a heater.
Meanwhile, a fluorescent material disposed in a leading end of the fluorescent optical fiber thermometer is a dielectric material and will emit dielectric heat (Joule heat) in the high frequency electric field. Moreover, Joule heating level becomes high in a plasma processing apparatus using high frequency, causing a detected temperature value to be increased such that a measured temperature value will be different from an actual temperature of the wafer. Further, when the fluorescent material provided at the leading end of the fluorescent optical fiber thermometer is covered with a protection cap made of a metal, an induction heat is generated by a magnetic field formed around the power feed rod to further increase a temperature measurement error.
[Reference Patent 1] U.S. Pat. No. 6,617,553 B2 (
It is, therefore, an object of the present invention to provide a plasma processing apparatus and a mounting unit thereof capable of accurately detecting a substrate's temperature by reducing an effect that an electric field or magnetic field generated by supplying a high frequency power to power feed path members has on detection of the substrate's temperature.
In accordance with one aspect of the present invention, there is provided a plasma processing apparatus for converting a processing gas into a plasma by applying a high frequency power between a mounting table and an upper electrode installed to face each other in a processing chamber and performing a plasma processing on a substrate mounted on the mounting table, the plasma processing apparatus including: a protection pipe having one end portion disposed at the mounting table; a temperature detection unit for detecting a substrate's temperature, which is formed of a dielectric material, wherein the temperature detection unit has one end portion disposed at the mounting table and the other end thereof is extracted to outside through the protection pipe; power feed path members, provided in the protection pipe, for supplying a high frequency voltage to the mounting table; a heating unit, disposed at the mounting table, for heating the substrate; and conductive path members, provided in the protection pipe, for supplying a power to the heating unit, wherein the power feed rods and the conductive path members are disposed such that the region having therein the temperature detection unit is an electromagnetic wave-free region where the electromagnetic waves traveling from the power feed rods to the conductive path members are offset with each other.
When there are even numbers of the power feed path members, for example, when there are even numbers of the power feed path members, the power feed path members and the conductive path members are arranged symmetrically with respect to any straight lines perpendicularly intersecting each other at a center of the temperature detection unit. Further, when there are odd numbers of the power feed path members, for example, the power feed rods and the same number of conductive path members as the power feed rods are alternately arranged at equal intervals in a circumferential direction on a circle having the temperature detection unit at the center thereof.
Preferably, the temperature detection unit may include dielectric and conductive materials. For instance, the temperature detection unit may include a dielectric layer disposed at a leading end of an optical fiber. In this case, the dielectric layer may be covered with a conductive protection member. Further, a mounting surface portion of the mounting table may be formed of an electrostatic chuck, having an electrode embedded in a dielectric material, for electrostatically attracting a substrate, and the power feed path members may be configured to apply an electrostatic chuck DC voltage and a high frequency voltage for generating plasma to the electrode.
In accordance with another aspect of the present invention, there is provided a plasma processing apparatus for converting a processing gas into a plasma by applying a high frequency power between a mounting table and an upper electrode installed to face each other in a processing chamber and performing a plasma processing on a substrate mounted on the mounting table, the plasma processing apparatus including: a protection pipe having one end portion disposed at the mounting table; a temperature detection unit for detecting a substrate's temperature, which is formed of a conductive material, wherein the temperature detection unit has one end portion disposed at the mounting table and the other end thereof is extracted to outside through the protection pipe; and power feed path members, provided in the protection pipe, for supplying a high frequency voltage to the mounting table, wherein in the region having therein the temperature detection unit formed of a conductive material, the power feed path members are alternately arranged at equal intervals in a circumferential direction on a circle having the temperature detection unit at the center thereof.
In accordance with still another aspect of the present invention, there is provided a mounting unit used in a parallel plate type plasma processing apparatus for performing a plasma processing on a substrate and having a mounting table main body to which a high frequency voltage is applied, including: a protection pipe having one end portion disposed at the mounting table main body; a temperature detection unit for detecting a substrate's temperature, which is formed of a dielectric material, wherein the temperature detection unit has one end portion disposed at the mounting table main body and the other end thereof is extracted to outside through the protection pipe; power feed path members, provided in the protection pipe, for supplying a high frequency voltage to the mounting table main body; a heating unit, disposed at the mounting table main body, for heating the substrate; and conductive path members, provided in the protection pipe, for supplying a power to the heating unit, wherein the power feed path members and the conductive path members are disposed such that the region having therein temperature detection unit is an electromagnetic wave-free region where the electromagnetic waves traveling from the power feed path members to the conductive path members are offset with each other.
In accordance with the present invention, a temperature detection unit formed of a dielectric material, power feed path members for supplying a high frequency voltage to the mounting table, and conductive path members for supplying a power to the heating unit are provided in a protection pipe having one end portion disposed at the mounting table, wherein the power feed rods and the conductive path members are disposed such that the region having therein the temperature detection unit is an electromagnetic wave-free region where electromagnetic waves traveling from the power feed rods to the conductive path members are offset with each other. Consequently, dielectric heating caused by electromagnetic waves is suppressed in the temperature detection unit formed of a dielectric material, thereby reducing a noise component caused by heating in a detected temperature value. As a result, the temperature of substrate can be precisely measured and a favorable process can be performed on the substrate.
Further, similarly in a case that the temperature detection unit is formed of a conductive material, a magnetic field generated around one power feed path member becomes weakened by a magnetic field generated around the other power feed path member. Accordingly, in this case, magnetic force lines generated in the region having therein temperature detection unit become weaker than those generated when only one power feed path member is provided. As a result, generation of induction heating is suppressed in the temperature detection unit, thereby reducing a noise component caused by heating in a detected temperature value.
There will be described a plasma processing apparatus used for an etching apparatus in accordance with preferred embodiments of the present invention.
A susceptor 4 for mounting the wafer W thereon is disposed in a lower portion of the processing chamber 2, and a vacuum exhaust unit, i.e., a vacuum pump 22, is connected to the bottom surface of the processing chamber 2 via a gas exhaust pipe 21. Further, as shown in
The susceptor 4 includes a cylindrical support portion 41 formed of a conductive member such as aluminum. Installed on the top surface of the support portion 41 is a flat circular mounting unit 42 for mounting the wafer W thereon. Further, an elevating pin (not shown) for loading the wafer W from a transfer arm (not shown) is provided inside the susceptor 4.
The mounting unit 42 includes therein a foil-shaped electrode 44 at a top surface side of a dielectric plate 43 formed of a ceramic (e.g., aluminum nitride (AlN)) plate, and a heater 45 (having, e.g., a mesh shape) serving as a heating unit under the electrode 44. The electrode 44 functions as an electrostatic chuck electrode as well as an electrode for applying a high frequency voltage. Thus, the electrode 44 and an upper dielectric portion of the mounting unit 42 serve as an electrostatic chuck for electrostatically attracting the wafer W. Further, a focus ring 20 is disposed to surround the wafer W which is attracted and held on the surface of the dielectric plate 43.
Connected to the central bottom surface of the mounting unit 42 is an upper end of a shaft 5 which is a protection pipe formed of a dielectric material, e.g., ceramic such as aluminum nitride (AlN). An opening 26 is formed in the central bottom portion of the processing chamber 2, and a cylindrical part 51 is formed through the opening 26 to be extended from the lower portion of the susceptor 4. Further, the shaft 5 is inserted to be fitted onto the cylindrical part 51 via the opening 26 while passing through the support portion 41 to be extended upward to a lower end portion of the cylindrical part 51.
Installed inside the shaft 5 are plural (two in this embodiment) RF (radio-frequency) feed rods 6A and 6B (power feed path members) for supplying a high frequency voltage and an electrostatic chuck DC voltage to the electrode 44. Respective upper ends of the RF feed rods 6A and 6B are inserted into the dielectric plate 43 to be electrically connected to the electrode 44, and respective lower ends thereof are protruded downward from the lower end portion of the shaft 5. Reference numeral 52 is a spacer made of an insulating material.
Further, an optical fiber 7 is inserted in the shaft 5. An upper end of the optical fiber 7 is configured to vertically pass through the dielectric plate 43 via a through hole to directly absorb radiant heat from the wafer W mounted on the top surface, i.e., mounting surface, of the dielectric plate 43. A lower end of the optical fiber 7 is protruded downward from the lower end portion of the shaft 5 to be drawn out to outside. As shown in
The leading end portion of the protection cap 70a is approximately level with the heater 45. Further, the foil-shaped electrostatic chuck electrode 44 is placed very near the surface of the susceptor 4, and the leading end of the protection cap 70a disposed at the leading end portion of the optical fiber 7 is also placed near the surface of the susceptor 4, although shown differently in
In this embodiment, the fluorescent material 70, the protection cap 70a and the optical fiber 7 functionally correspond to a temperature detection unit and form a fluorescent optical fiber thermometer together with the temperature detection/control unit 71. The thermometer works on a measurement principle that when a flash light is illuminated on the fluorescent material, the attenuation pattern of fluorescent lightness almost completely corresponds to the temperature of fluorescent material. Thus, the temperature of the wafer W can be detected by analyzing the attenuation pattern.
There will be described arrangement layout of parts in the shaft 5 with reference to
Under the shaft 5, a first power feed path unit 61 including power feed paths, which are electrically connected to the RF feed rods 6A and 6B and bar type conductive leads 46 and 47 and bent in an “L” character shape, is coupled to the outer cylindrical part 51. As shown in
Disposed at the other end of the second power feed path unit 62 are a cylindrical connector 63 and a flange portion 64, which is formed at a base side of the cylindrical connector 63. The connector 63 is inserted into an opening 81 on the matching box 8 to be connected to a connector 82 (see
In order to attach the second power feed path unit 62 to the matching box 8, when the connectors 63 and 82 are connected to each other, the flange portion 64 should be disposed on the matching box 8 such that screw holes 65 coincide to be matched with the screw holes 83. Here, the second power feed path unit 62 includes a conductive cylindrical member 66 and power feed paths, which are formed in the cylindrical member 66 while electrically isolated therefrom. But, it is difficult to install the first power feed path unit 61 and matching box 8 at respective sides of the second power feed path unit 62 to be perfectly aligned with each other. Further, as for the second power feed path unit 62, it is hard to properly position the power feed paths in the cylindrical part 66. Thus, in general, for the case of using the cylindrical part 66, it becomes difficult to attach or detach the second power feed unit 62 to or from the matching box 8.
Therefore, one portion of the cylindrical part 66, e.g., the cylindrical part 66's leading end portion connected to the flange portion 64, is formed of a bellows member 67 in this embodiment. Accordingly, the bellows member 67 can accommodate the misalignment in the above position relationship, thereby relieving load stress applied to the cylindrical part 66 and the power feed paths when attaching or detaching the second power feed path unit 62, so that attachment or detachment thereof becomes easy.
Hereinafter, the functions of the plasma processing apparatus (etching processing apparatus) fully described above are explained. First, the gate valve 25 is opened and the wafer W having a mask pattern formed of a resist film on its surface is loaded into the processing chamber 2 by a transfer arm (not shown) from a load-lock chamber (not shown). Then, the wafer w is mounted on the susceptor 4 via the elevating pin (not shown) and a DC voltage is applied to the electrode 44 from the chuck power supply unit 85 via a switch (not shown) and the RF feed rods 6A and 6B, whereby the wafer W is electrostatically attracted and held on the surface of the susceptor 4.
Thereafter, the gate valve 25 is closed to seal the processing chamber 2. The processing chamber 2 is vacuum exhausted via the vacuum pump 22. Further, processing gas, i.e., etching gas, e.g., halogen-based corrosion gas such as HBr, Cl2 and HCl; oxygen gas; and nonreactive gas (Ne, Ar, Kr, Xe etc.), is introduced at a specified flow rate into the processing chamber 2 through the gas supply line 34. The processing gas is discharged uniformly on the surface of the wafer W through the gas supply holes 32, thereby maintaining a specified vacuum level in the processing chamber 2. Further, a high frequency voltage is applied from the high frequency power supply unit 84 to the electrode 44 via the matching circuit 83 and the RF feed rods 6A and 6B, and a high frequency power is applied between the susceptor 4 and the upper electrode 3. Accordingly, the processing gas, i.e., the etching gas, is converted into plasma, whereby the surface of wafer W is etched by plasma.
Meanwhile, AC or DC voltage of a common frequency is applied to the heater 45 in the susceptor 4 from the heater power supply unit 87 via the bar type conductive leads 46 and 47, whereby the heater 45 emits heat. Further, flash light is illuminated on the fluorescent material 70 (see
Additionally, when high frequency current flows in the RF feed rods 6A and 6B, the bar type conductive leads 46 and 47 to be used for applying a DC voltage practically function as if they are grounded with respect to the high frequency current, thereby forming an electric field where electromagnetic waves travel from the RF feed rods 6A and 6B to the bar type conductive leads 46 and 47, respectively. Here, the RF feed rods 6A and 6B and the bar type conductive leads 46 and 47 are alternately arranged at equal intervals (divided into four parts) in a circumferential direction on a circle having the optical fiber 7 at the center thereof. Accordingly, as shown in
Further, a magnetic field is generated around the RF feed rods 6A and 6B due to the high frequency current flowing therein, and an eddy current is generated in the protection cap 70a made of a conductive material such as aluminum. However, the protection cap 70a is placed at the midpoint of a line that links the two RF feed rods 6A and 6B, and magnetic force lines MA and MB whose magnitudes are same in theory are generated, e.g., clockwise around the respective RF feed rods 6A and 6B as shown in
The susceptor 4 in the above-described embodiment corresponds to a mounting table main body of another embodiment of the invention. Further, the shaft 5, the RF feed rods 6A and 6B, the bar type conductive leads 46 and 47, and the temperature detection unit in the above-described embodiment correspond to a mounting unit of another embodiment of the invention.
Further, in order to obtain the effect of the present invention, the number of the RF feed rods to be used for applying a high frequency power is not limited to two, and can be equal to or more than three. When there are even numbers of the power feed path members, the RF feed rods 6A and 6B and the bar type conductive leads 46 and 47 are disposed on the same circle in a circumferential direction in the above description, but a circle including the RF feed rods 6A and 6B at its periphery may be different in size from a circle including the bar type conductive leads 46 and 47 at its periphery. In other words, the power feed path members and the conductive path members may be arranged symmetrically with respect to any straight lines perpendicularly intersecting each other at a center of the temperature detection unit. For instance,
Further, the above-mentioned arrangement layout can be applied to a case where a temperature detection unit is formed of a conductive material. But, in the case, bar type conductive leads for supplying power to a heater can be arranged without any restriction.
A plasma processing apparatus of the present invention can be a CVD apparatus without being limited to an etching apparatus.
W: wafer
2: processing chamber
3: upper electrode
4: susceptor
41: support portion
42: mounting unit
43: dielectric plate
44: electrode
45: heater
46, 47: bar type conductive lead for a heater
5: shaft
6A, 6B, 6C: RF feed rod for supplying a high frequency power
61: first power feed path unit
62: second power feed path unit
67: bellows
7: optical fiber
70: fluorescent material
70
a
8: matching box
Number | Date | Country | Kind |
---|---|---|---|
2004-167106 | Jun 2004 | JP | national |
Number | Date | Country | |
---|---|---|---|
60589829 | Jul 2004 | US |