Plasma processing of semiconductor wafers in the manufacture of microelectronic integrated circuits is used in dielectric etching, metal etching, chemical vapor deposition and other processes. Such plasma processes require precise control of process parameters, such as the amount of plasma power delivered to the plasma, for example. This parameter is affected by a number of variables, including the ability of the impedance matching device between the plasma source power generator and the reactor's RF power applicator to provide an impedance match over a widely varying plasma load impedance. The wide range of plasma load impedance is attributable to changing conditions within the reactor chamber. As described in U.S. Pat. No. 6,528,751 referenced above, this problem is addressed by a fixed impedance match device, such as a coaxial tuning stub or a strip line circuit, that couples source power to the ceiling electrode and has a wide match space. As described in the referenced patent, the reactance of the electrode is selected so that the electrode and plasma resonate at a plasma electrode resonant frequency. Further, the resonant frequency of the fixed match device, the electrode-plasma resonance and the source power frequency are all nearly equal and lie in the VHF range. One advantage is that the fixed match device has a very wide match space, so that the system is less sensitive to variations in plasma load impedance (so that such variations do not greatly affect the amount of source power delivered to the plasma). Even greater imperviousness to variations in plasma load impedance is obtained by providing a slight deviation between these three frequencies, as described in the above-referenced patent.
A problem limiting the process window of such a reactor is that the electrode-plasma resonance frequency varies widely with chamber pressure. What is desired is a plasma reactor that can perform a process, such as a reactive ion etch process, over a wide process window, including a wide range of chamber pressures from about 5 mT to about 1000 mT. The problem is that such a wide variation in pressure creates changes in the plasma-electrode resonant frequency that cause an impedance mismatch and consequent loss of control over delivered plasma source power. As described below in the detailed description, the fixed impedance match (i.e., the coaxial tuning stub) has a wide impedance match space provided that the plasma-electrode resonant frequency does not deviate too far from the source power frequency. In general, the fixed impedance match need only hold the VSWR at the source power generator within 3:1 to provide an adequate match. What we have found is that as chamber pressure is varied from 5 mT to 1000 mT, the VSWR exceeds 3:1 over a portion of this range. Thus, the chamber pressure must be confined within a much smaller range.
We have found that the variation in plasma-electrode resonant frequency with chamber pressure seems to be unavoidable: The resonant frequency is a function of the plasma impedance which in turn depends upon the electron-neutral collision frequency. The electron-neutral collision frequency is a direct function of chamber pressure. Thus, a variation in plasma-electrode resonant frequency with chamber pressure would appear to be unavoidable, so that realizing a wide pressure window (e.g., 5–1000 mT) has not seemed an attainable goal.
A plasma reactor operable over a very wide process window of pressure, source power and bias power includes a resonant circuit consisting of an overhead electrode having a first impedance, a wafer support pedestal having a second impedance and a bulk plasma having a third impedance and generally lying in a process zone between the overhead electrode and the wafer support pedestal, the magnitudes of the impedances of the overhead electrode and the wafer support pedestal being within an order of magnitude of one another, the resonant circuit having a resonant frequency determined by the first, second and third impedances. An RF plasma source power generator having a frequency at least nearly matching the resonant frequency is coupled to the overhead electrode by a fixed impedance match element.
In one aspect, the magnitudes of the impedances of the overhead electrode and the wafer support pedestal are within a factor of two of one another. In a further aspect, an RF plasma bias power generator is coupled to the pedestal through an impedance match circuit. In a yet further aspect, the fixed impedance match element has its own resonance nearly matching the resonant frequency of resonant circuit.
The impedance of said bulk plasma is susceptible to changes with gas pressure inside said reactor, and the impedance of the wafer support pedestal near the resonant frequency is can be sufficient to maintain a VSWR for the RF plasma source power generator not exceeding 3:1 for changes in chamber pressure from 10 mT to 900 mT.
In one embodiment, the wafer support pedestal includes a conductive RF feed layer and a grounded base layer separated from the conductive RF feed layer across a dielectric gap to form a cathode capacitor across the dielectric gap. The length of the gap is sufficient to provide the necessary cathode impedance to achieve the large process window or chamber pressure range.
Referring to
The capacitance of the overhead electrode assembly 126, including the electrode 125, the dielectric ring 120 and dielectric seal 130 measured with respect to RF return or ground can be 180 pico farads. The electrode assembly capacitance is affected by the electrode area, the gap length (distance between wafer support and overhead electrode), and by factors affecting stray capacitances, especially the dielectric values of the seal 130 and of the dielectric ring 120, which in turn are affected by the dielectric constants and thicknesses of the materials employed. More generally, the capacitance of the electrode assembly (an unsigned number or scalar) is equal or nearly equal in magnitude to the negative capacitance of the plasma (a complex number) at a particular source power frequency, plasma density and operating pressure, as will be discussed below.
Many of the factors influencing the foregoing relationship are in great part predetermined due to the realities of the plasma process requirements needed to be performed by the reactor, the size of the wafer, and the requirement that the processing be carried out uniformly over the wafer. Thus, the plasma capacitance is a function of the plasma density and the source power frequency, while the electrode capacitance is a function of the wafer support-to-electrode gap (height), electrode diameter, and dielectric values of the insulators of the assembly. Plasma density, operating pressure, gap, and electrode diameter must satisfy the requirements of the plasma process to be performed by the reactor. In particular, the ion density must be within a certain range. For example, silicon and dielectric plasma etch processes generally require the plasma ion density to be within the range of 109 to 1012 ions/cc. The wafer electrode gap provides an optimum plasma ion distribution uniformity for 8 inch wafers, for example, if the gap is about 1.25 to about 2.0 inches. For 300 mm diameter wafers, an optimum gap size is about 1.25 inches. The electrode diameter can be at least as great as, if not greater than the diameter of the wafer. Operating pressures similarly have practical ranges for typical etch and other plasma processes.
But it has been found that other factors remain which can be selected to achieve the above relationship, particularly choice of source frequency and choice of capacitances for the overhead electrode assembly 126. Within the foregoing dimensional constraints imposed on the electrode and the constraints (e.g., density range) imposed on the plasma, the electrode capacitance can be matched to the magnitude of the negative capacitance of the plasma if the source power frequency is selected to be a VHF frequency, and if the dielectric values of the insulator components of electrode assembly 126 are selected properly. Such selection can achieve a match or near match between source power frequency and plasma-electrode resonance frequency.
Accordingly in one aspect, for an 8-inch wafer the overhead electrode diameter is approximately 11 inches, the gap is about 2 inches, the plasma density and operating pressure is typical for etch processes as above-stated, the dielectric material for the seal 130 has a dielectric constant of 9 and a thickness of the order of 1 inch, the ring 115 has an inner diameter of slightly in excess of 10 inches and an outer diameter of about 13 inches, the ring 120 has a dielectric constant of 4 and a thickness of the order of 10 mm, the VHF source power frequency is 210 MHz (although other VHF frequencies could be equally effective), and the source power frequency, the plasma electrode resonance frequency and the stub resonance frequency are all matched or nearly matched. For 300 mm diameter wafers, an optimum source power frequency is 162 MHz, with the plasma electrode resonance frequency and the stub resonance frequency being matched or slightly offset from 162 MHz.
More particularly, these three frequencies can be slightly offset from one another, with the source power frequency being 162 MHz (optimized for 300 mm wafers), the electrode-plasma resonant frequency being slightly below 162 MHz, and the stub frequency being slightly above 162 MHz, in order to achieve a de-tuning effect which advantageously reduces the system Q. Such a reduction in system Q renders the reactor performance less susceptible to changes in conditions inside the chamber, so that the entire process is much more stable and can be carried out over a far wider process window.
The coaxial stub 135 is a specially configured design which further contributes to the overall system stability, its wide process window capabilities, as well as many other valuable advantages. It includes an inner cylindrical conductor 140 and an outer concentric cylindrical conductor 145. An insulator 147 (denoted by cross-hatching in
A tap 160 is provided at a particular point along the axial length of the stub 135 for applying RF power from the RF generator 150 to the stub 135, as will be discussed below. The RF power terminal 150b and the RF return terminal 150a of the generator 150 are connected at the tap 160 on the stub 135 to the inner and outer coaxial stub conductors 140, 145, respectively. These connections are made via a generator-to-stub coaxial cable 162 having a characteristic impedance that matches the output impedance of the generator 150 (typically, 50 Ohms) in the well-known manner. A terminating conductor 165 at the far end 135a of the stub 135 shorts the inner and outer conductors 140, 145 together, so that the stub 135 is shorted at its far end 135a. At the near end 135b (the unshorted end) of the stub 135, the outer conductor 145 is connected to the chamber body via an annular conductive housing or support 175, while the inner conductor 140 is connected to the center of electrode 125 via a conductive cylinder or support 176. A dielectric ring 180 is held between and separates the conductive cylinder 176 and the electrode 125.
The inner conductor 140 can provide a conduit for utilities such as process gases and coolant. The principal advantage of this feature is that, unlike typical plasma reactors, the gas line 170 and the coolant line 173 do not cross large electrical potential differences. They therefore may be constructed of metal, a less expensive and more reliable material for such a purpose. The metallic gas line 170 feeds gas inlets 172 in or adjacent the overhead electrode 125 while the metallic coolant line 173 feeds coolant passages or jackets 174 within the overhead electrode 125.
An active and resonant impedance transformation is thereby provided by this specially configured stub match between the RF generator 150, and the overhead electrode assembly 126 and processing plasma load, minimizing reflected power and providing a very wide impedance match space accommodating wide changes in load impedance. Consequently, wide process windows and process flexibility is provided, along with previously unobtainable efficiency in use of power, all while minimizing or avoiding the need for typical impedance match apparatus. As noted above, the stub resonance frequency is also offset from ideal match to further enhance overall system Q, system stability and process windows and multi-process capability.
Matching the Electrode-Plasma Resonance Frequency and the VHF Source Power Frequency:
As outlined above, a principal feature is to configure the overhead electrode assembly 126 for resonance with the plasma at the electrode-plasma resonant frequency and for the matching (or the near match of) the source power frequency and the electrode-plasma frequency. The electrode assembly 126 has a predominantly capacitive reactance while the plasma reactance is a complex function of frequency, plasma density and other parameters. (As will be described below in greater detail, a plasma is analyzed in terms of a reactance which is a complex function involving imaginary terms and generally corresponds to a negative capacitance.) The electrode-plasma resonant frequency is determined by the reactances of the electrode assembly 126 and of the plasma (in analogy with the resonant frequency of a capacitor/inductor resonant circuit being determined by the reactances of the capacitor and the inductor). Thus the electrode-plasma resonant frequency may not necessarily be the source power frequency, depending as it does upon the plasma density. The problem, therefore, is to find a source power frequency at which the plasma reactance is such that the electrode-plasma resonant frequency is equal or nearly equal to the source power frequency, given the constraints of practical confinement to a particular range of plasma density and electrode dimensions. The problem is even more difficult, because the plasma density (which affects the plasma reactance) and the electrode dimensions (which affect electrode capacitance) must meet certain process constraints. Specifically, for dielectric and metal plasma etch processes, the plasma density should be within the range of 109–1012 ions/cc, which is a constraint on the plasma reactance. Moreover, a more uniform plasma ion density distribution for processing 300 mm diameter wafers for example, is realized by a wafer-to-electrode gap or height of about 1.25 inches and an electrode diameter on the order of the wafer diameter, or greater, which is a constraint on the electrode capacitance. On the other hand, a different gap length may be used for processing an even larger wafer.
Accordingly in one feature of the embodiment, by matching (or nearly matching) the electrode capacitance to the magnitude of the negative capacitance of the plasma, the electrode-plasma resonant frequency and the source power frequency are at least nearly matched. For the general metal and dielectric etch process conditions enumerated above (i.e., plasma density between 109–1012 ions/cc, a 2-inch gap and an electrode diameter on the order of roughly 11 inches), the match is possible if the source power frequency is a VHF frequency. Other conditions (e.g., different wafer diameters, different plasma densities, etc.) may dictate a different frequency range to realize such a match in carrying out this feature of the reactor. As will be detailed below, under favored plasma processing conditions for processing 8-inch wafers in several principal applications including dielectric and metal plasma etching and chemical vapor deposition, the plasma capacitance in one typical working example having plasma densities as set forth above was between −50 and −400 pico farads. In a working embodiment employing a source power frequency of 210 MHz, the capacitance of the overhead electrode assembly 126 was matched to the magnitude of this negative plasma capacitance by using an electrode diameter of 11 inches, a gap length (electrode to pedestal spacing) of approximately 1¼ inches, choosing a dielectric material for seal 130 having a dielectric constant of 9, and a thickness of the order of one inch, and a dielectric material for the ring 120 having a dielectric constant of 4 and thickness of the order of 10 mm. For 300 mm wafers, the source power frequency may be about 162 MHz.
The combination of electrode assembly 126 and the plasma resonates at an electrode-plasma resonant frequency that at least nearly matches the source power frequency applied to the electrode 125, assuming a matching of their capacitances as just described. We have discovered that for favored etch plasma processing recipes, environments and plasmas, this electrode-plasma resonant frequency and the source power frequency can be matched or nearly matched at VHF frequencies; and that it is highly advantageous that such a frequency match or near-match be implemented. In the foregoing embodiment, the electrode-plasma resonance frequency corresponding to the foregoing values of plasma negative capacitance can be slightly below 162 MHz. The source power frequency is 162 MHz, a near-match in which the source power frequency is offset slightly above the electrode-plasma resonance frequency in order to realize other advantages to be discussed below. If the source power frequency is 210 MHz, then the plasma resonance frequency may be 200 MHz and the stub resonance frequency may be 220 MHz.
The plasma capacitance is a function of among other things, plasma electron density. This is related to plasma ion density, which needs, in order to provide good plasma processing conditions, to be kept in a range generally 109 to 1012 ions/cc. This density, together with the source power frequency and other parameters, determines the plasma negative capacitance, the selection of which is therefore constrained by the need to optimize plasma processing conditions, as will be further detailed below. But the overhead electrode assembly capacitance is affected by many physical factors, e.g. gap length (spacing between electrode 125 and the wafer 110); the area of electrode 125; the choice of dielectric constant of the dielectric seal 130 between electrode 125 and grounded chamber body 127; the choice of dielectric constant for the dielectric ring 120 between semiconductor ring 115 and the chamber body 127; and the thickness of the dielectric structures of seal 130 and ring 120 and the thickness and dielectric constant of the ring 180. This permits some adjustment of the electrode assembly capacitance through choices made among these and other physical factors affecting the overhead electrode capacitance. We have found that the range of this adjustment is sufficient to achieve the necessary degree of matching of the overhead electrode assembly capacitance to the magnitude of the negative plasma capacitance. In particular, the dielectric materials and dimensions for the seal 130 and ring 120 are chosen to provide the desired dielectric constants and resulting dielectric values. Matching the electrode capacitance and the plasma capacitance can then be achieved despite the fact that some of the same physical factors influencing electrode capacitance, particularly gap length, will be dictated or limited by the following practicalities: the need to handle larger diameter wafers; to do so with good uniformity of distribution of plasma ion density over the full diameter of the wafer; and to have good control of ion density vs ion energy.
Accordingly, for plasma ion density ranges as set forth above favorable to plasma etch processes, and for chamber dimensions suitable for processing 8 inch wafers, a capacitance for the electrode assembly 126 was achieved which matched the plasma capacitance of −50 to −400 pico farads by using an electrode diameter of 11 inches, a gap length of approximately 2 inches, and a material for the seal 130 having a dielectric constant of 9, and a material for the ring 120 having a dielectric constant of 4.
Given the foregoing range for the plasma capacitance and the matching overhead electrode capacitance, the electrode-plasma resonance frequency was approximately 200 MHz for a source power frequency of 210 MHz. The foregoing values can be adjusted to optimize performance for 300 mm wafers using a source power frequency of 162 MHz.
A great advantage of choosing the capacitance of the electrode assembly 126 in this manner, and then matching the resultant electrode-plasma resonant frequency and the source power frequency, is that resonance of the electrode and plasma near the source power frequency provides a wider impedance match and wider process window, and consequently much greater immunity to changes in process conditions, and therefore greater performance stability. The entire processing system is rendered less sensitive to variations in operating conditions, e.g., shifts in plasma impedance, and therefore more reliable along with a greater range of process applicability. As will be discussed later in the specification, this advantage is further enhanced by the small offset between the electrode-plasma resonant frequency and the source power frequency.
Why the Plasma Has a Negative Capacitance:
The capacitance of the plasma is governed by the electrical permittivity of the plasma, ε, which is a complex number and is a function of the electrical permittivity of free space ε0, the plasma electron frequency ωpe, the source power frequency ω and the electron-neutral collision frequency ηen in accordance with the following equation:
ε=ε0[1−ωpe2/(ω(ω+iηen) ) ] where i=(−1)1/2.
(The plasma electron frequency ωpe is a simple function of the plasma electron density and is defined in well-known publications on plasma processing.)
In one working example, the neutral species was Argon, the plasma electron frequency was slightly below about 162 MHz, the RF source power frequency was about 162 MHz with chamber pressure in the range of 5 mT to 1000 mT with sufficient RF power applied so that the plasma density was between 109 and 1012 cc−1. Under these conditions, which are typical of those favorable to plasma etch processes, the plasma generally has a negative capacitance because its effective electrical permittivity defined by the foregoing equation is negative. Under these conditions, the plasma had a negative capacitance of −50 to −400 pico farads. Then as we have seen above in more general terms, the plasma capacitance, as a function of plasma electron density (as well as source power frequency and electron-neutral collision frequency) tends to be generally limited by favored plasma process realities for key applications such as dielectric etch, metal etch and CVD, to certain desired ranges, and to have a negative value at VHF source power frequencies. By exploiting these characteristics of the plasma, the electrode capacitance matching and frequency-matching features of the reactor achieve a process window capability and flexibility and stability of operation not previously possible.
Impedance Transformation Provided by the Stub 135:
The stub 135 provides an impedance transformation between the 50 Ohm output impedance of the RF generator 150 and the load impedance presented by the combination of the electrode assembly 126 and the plasma within the chamber. For such an impedance match, there must be little or no reflection of RF power at the generator-stub connection and at the stub-electrode connection (at least no reflection exceeding the VSWR limits of the RF generator 150). How this is accomplished will now be described.
At the desired VHF frequency of the generator 150 and at a plasma density and chamber pressure favorable for plasma etch processes (i.e., 109–1012 ions/cm3 and 5 mT–1000 mT, respectively), the impedance of the plasma itself is about (0.3+(i)7)Ohms, where 0.3 is the real part of the plasma impedance, i=(−1)1/2, and 7 is the imaginary part of the plasma impedance. The load impedance presented by the electrode-plasma combination is a function of this plasma impedance and of the capacitance of the electrode assembly 126. As described above, the capacitance of the electrode assembly 126 is selected to achieve a resonance between the electrode assembly 126 and the plasma with an electrode-plasma resonant frequency at or slightly less than about 162 MHz for 300 mm wafers. Reflections of RF power at the stub-electrode interface are minimized or avoided because the resonant frequency of the stub 135 is set to be at or near the electrode-plasma resonant frequency so that the two at least nearly resonate together.
At the same time, reflections of RF power at the generator-stub interface are minimized or avoided because the location of the tap 160 along the axial length of the stub 135 is such that, at the tap 160, the ratio of the standing wave voltage to the standing wave current in the stub 135 is near the output impedance of the generator 150 or characteristic impedance of the cable 162 (both being about 50 Ohms). How the tap 160 is located to achieve this will now be discussed.
Axial Location of the Stub Tap 160:
The axial length of the coaxial stub 135 can be a multiple of a quarter wavelength of a “stub” frequency (e.g., slightly above 162 MHz) which, as stated above, is near the electrode-plasma resonant frequency. In one embodiment, this multiple is two, so that the coaxial stub length is about a half wavelength of the “stub” frequency.
The tap 160 is at a particular axial location along the length of the stub 135. At this location, the ratio between the amplitudes of the standing wave voltage and the standing wave current of an RF signal at the output frequency of the generator 150 corresponds to an input impedance matching the output impedance of the RF generator 150 (e.g., 50 Ohms). This is illustrated in
The impedance match space can be greatly expanded to accommodate a nearly 60:1 change in the real part of the load impedance. This dramatic result is achieved by slightly shifting the tap 160 from the precise 50 Ohm point at location A toward the shorted external end 135a of the coaxial stub 135. This shift can be, for example, 5% of a wavelength (i.e., about 7.5 inch at 162 MHz for 30 Ohm characteristic impedance). It is our discovery that at this slightly shifted tap location, the RF current contribution at the tap 160 subtracts or adds to the current in the stub, which ever becomes appropriate, to compensate for fluctuations in the plasma load impedance, as will be described below with reference to
It is felt that this behavior is due to a tendency of the phase of the standing wave current in the stub 135 to become more sensitive to an impedance mismatch with the electrode-plasma load impedance, as the tap point is moved away from the location at A. As described above, the electrode assembly 126 is matched to the negative capacitance of the plasma under nominal operating conditions. This capacitance is −50 to −400 pico farads at the VHF source power frequency. At this capacitance the plasma exhibits a plasma impedance of (0.3+i7)Ω. Thus, 0.3 Ω is the real part of the plasma impedance for which the system is tuned. As plasma conditions fluctuate, the plasma capacitance and impedance fluctuate away from their nominal values. As the plasma capacitance fluctuates from that to which the electrode 125 was matched, the phase of the electrode-plasma resonance changes, which affects the phase of the current in the stub 135. As the phase of the stub standing wave current thus shifts, the RF generator current supplied to the tap 160 will either add to or subtract from the stub standing wave current, depending upon the direction of the phase shift. The displacement of the tap 160 from the 50 Ohm location at A is limited to a small fraction of the wavelength (e.g., 5%).
This expansion of the match space to accommodate a 60:1 swing in the real part of the load impedance enhances process window and reliability of the reactor. This is because as operating conditions shift during a particular process or application, or as the reactor is operated with different operating recipes for different applications, the plasma impedance will change, particularly the real part of the impedance. In the prior art, such a change could readily exceed the range of the conventional match circuit employed in the system, so that the delivered power could no longer be controlled sufficiently to support a viable process, and the process could fail. In the present reactor, the range of the real part of the load impedance over which delivered power can be maintained at a desired level has been increased so much that changes in plasma impedance, which formerly would have led to a process failure, have little or no effect on a reactor embodying this aspect of the reactor. Thus, the invention enables the reactor to withstand far greater changes in operating conditions during a particular process or application. Alternatively, it enables the reactor to be used in many different applications involving a wider range of process conditions, a significant advantage.
As a further advantage, the coaxial stub 135 that provides this broadened impedance match is a simple passive device with no “moving parts” such as a variable capacitor/servo or a variable frequency/servo typical of conventional impedance match apparatus. It is thus inexpensive and far more reliable than the impedance match apparatus that it replaces.
De-Tuning the Operating and Resonant Frequencies to Broaden the Process Window:
In accordance with a further aspect, the system Q is reduced to broaden the process window by slightly offsetting the stub resonant frequency, the electrode plasma resonant frequency and the plasma source power frequency from one another. As described above, the stub resonant frequency is that frequency at which the axial length of the stub 135 is a half wavelength, and the electrode-plasma resonant frequency is the frequency at which the electrode assembly 126 and the plasma resonate together. In one embodiment, the stub 135 was cut to a length at which its resonant frequency was slight above 162 MHz, the RF source power generator 150 was selected to operate at 162 MHz and the resulting electrode-plasma resonant frequency was slight less than about 162 MHz, for 300 mm wafers.
By choosing three such differing frequencies for plasma resonance, stub resonance and source power frequency, rather than the same frequency for all three, the system has been somewhat “de-tuned”. It therefore has a lower “Q”. The use of the higher VHF source power frequency proportionately decreases the Q as well (in addition to facilitating the match of the electrode and plasma capacitances under etch-favorable operating conditions).
Decreasing system Q broadens the impedance match space of the system, so that its performance is not as susceptible to changes in plasma conditions or deviations from manufacturing tolerances. For example, the electrode-plasma resonance may fluctuate due to fluctuations in plasma conditions. With a smaller Q, the resonance between the stub 135 and the-electrode-plasma combination that is necessary for an impedance match (as described previously in this specification) changes less for a given change in the plasma-electrode resonance. As a result, fluctuations in plasma conditions have less effect on the impedance match. Specifically, a given deviation in plasma operating conditions produces a smaller increase in VSWR at the output of RF generator 150. Thus, the reactor may be operated in a wider window of plasma process conditions (pressure, source power level, source power frequency, plasma density, etc). Moreover, manufacturing tolerances may be relaxed to save cost and a more uniform performance among reactors of the same model design is achieved, a significant advantage. A related advantage is that the same reactor may have a sufficiently wide process window to be useful for operating different process recipes and different applications, such as metal etch, dielectric etch and/or chemical vapor deposition.
Minimizing the Stub Characteristic Impedance to Broaden the Process Window:
Another choice that broadens the tuning space or decreases the system Q is to decrease the characteristic impedance of the stub 135. However, the stub characteristic impedance can exceed the generator output impedance, to preserve adequate match space. Therefore, the system Q can be reduced, to the extent of reducing the amount by which the characteristic impedance of the stub 135 exceeds the output impedance of the signal generator 150.
The characteristic impedance of the coaxial stub 135 is a function of the radii of the inner and outer conductors 140, 145 and of the dielectric constant of the insulator 147 therebetween. The stub characteristic impedance is chosen to provide the requisite impedance transformation between the output impedance of the plasma power source 150 and the input impedance at the electrode 135. This characteristic impedance lies between a minimum characteristic impedance and a maximum characteristic impedance. Changing the characteristic impedance of the stub 135 changes the waveforms of
In an initial embodiment, the coaxial stub characteristic impedance was chosen to be greater (by about 30%) than the output impedance of the RF generator 150, in order to provide an adequate match space. The stub impedance must exceed the RF generator output impedance because the impedance match condition is achieved by selecting the location of the tap point 160 to satisfy
Zgen=a2[Zstub2/rplasma]
where a is determined by the location of the tap point and varies between zero and one. (The quantity a corresponds to the ratio of the inductance of the small portion of the stub 135 between the far end 135a and the tap 160 to the inductance of the entire stub 135.) Since a cannot exceed one, the stub characteristic impedance must exceed the generator output impedance in order to find a solution to the foregoing equation. However, since the Q of the system is directly proportional to the stub characteristic impedance, the amount by which the stub characteristic impedance exceeds the generator output impedance can be somewhat minimized to keep the Q as low as practical. In the exemplary embodiment, the stub characteristic impedance exceeds the generator output impedance by only about 15 Ohms.
However, in other embodiments, the coaxial stub characteristic impedance may be chosen to be less than the plasma power source (generator) output impedance to achieve greater power efficiency with some reduction in impedance match.
Increased Power Efficiency Provided by the Impedance Transformation of the Stub:
As discussed earlier in this specification, plasma operating conditions (e.g., plasma density) that favor plasma etch processes result in a plasma impedance that has a very small real (resistive) part (e.g., less 0.3 Ohm) and a small imaginary (reactive) part (e.g., 7 Ohms). Capacitive losses predominate in the combination electrode-plasma area of the system, because the electrode capacitance is the predominant impedance to power flow in that part of the reactor. Therefore, power loss in the electrode-plasma combination is proportional to the voltage on the electrode-plasma combination. In contrast, inductive and resistive losses predominate in the stub 135, because the inductance and resistance of the stub 135 are the predominant elements of impedance to power flow in the stub 135. Therefore, power loss in the stub 135 is proportional to current in the stub. The stub characteristic impedance is much greater than the real part of the impedance presented by the electrode-plasma combination. Therefore, in the higher impedance stub 135 the voltage will be higher and the current lower than in the lower impedance plasma in which the current will be higher and the voltage lower. Thus, the impedance transformation between the stub 135 and the plasma-electrode combination produces a higher voltage and lower current in the stub 135 (where resistive and inductive losses dominate and where these are now minimized) and a correspondingly lower voltage and higher current at the plasma/electrode (where capacitive losses dominate and where these are now minimized). In this manner overall power loss in the system is minimized so that power efficiency is greatly improved, a significant advantage. In the foregoing embodiment, power efficiency is about 95% or greater.
Thus, the stub 135, configured as described above, serves not only to provide an impedance match or transformation between the generator and the electrode-plasma impedances across a very wide range or window of operating conditions, but in addition provides a significant improvement in power efficiency.
Cross-Grounding:
The ion energy at the wafer surface can be controlled independently of the plasma density/overhead electrode power. Such independent control of the ion energy is achieved by applying an HF frequency bias power source to the wafer. This frequency, (typically 13.56 MHz) is significantly lower than the VHF power applied to the overhead electrode that governs plasma density. Bias power is applied to the wafer by a bias power HF signal generator 200 coupled through a conventional impedance match circuit 210 to the wafer support 105. The power level of the bias generator 200 controls the ion energy near the wafer surface, and is generally a fraction of the power level of the plasma source power generator 150.
As referred to above, the coaxial stub 135 includes a shorting conductor 165 at the outer stub end providing a short circuit between the inner and outer coaxial stub conductors 140, 145. The shorting conductor 165 establishes the location of the VHF standing wave current peak and the VHF standing wave voltage null as in
The combination of the wafer 110 and wafer support 105, the HF impedance match circuit 210 and the HF bias power source 200 connected thereto provides a very low impedance or near short to ground for the VHF power applied to the overhead electrode 125. As a result, the system is cross-grounded, the HF bias signal being returned to ground through the overhead electrode 125 and the shorted coaxial stub 135, and the VHF power signal on the overhead electrode 135 being returned to ground through a very low impedance path (for VHF) through the wafer, the HF bias impedance match 210 and the HF bias power generator 200.
The exposed portion of the chamber side wall between the plane of the wafer and the plane of the overhead electrode 125 plays little or no role as a direct return path for the VHF power applied to the overhead electrode 125 because of the large area of the electrode 125 and the relatively short electrode-to-wafer gap. In fact, the side wall of the chamber may be isolated from the plasma using magnetic isolation or a dielectric coating or an annular dielectric insert or removable liner.
In order to confine current flow of the VHF plasma source power emanating from the overhead electrode 125 within the vertical electrode-to-pedestal pathway and away from other parts of the chamber 100 such as the sidewall, the effective ground or return electrode area in the plane of the wafer 110 is enlarged beyond the physical area of the wafer or wafer support 105, so that it exceeds the area of the overhead electrode 125. This is achieved by the provision of the annular semiconductor ring 115 generally coplanar with and surrounding the wafer 110. The semiconductor ring 115 provides a stray capacitance to the grounded chamber body and thereby extends the effective radius of the “return” electrode in the plane of the wafer 110 for the VHF power signal from the overhead electrode. The semiconductor ring 115 is insulated from the grounded chamber body by the dielectric ring 120. The thickness and dielectric constant of the ring 120 is selected to achieve a desirable ratio of VHF ground currents through the wafer 110 and through the semiconductor ring 115. In a one embodiment, the dielectric ring 120 was quartz, having a dielectric constant of 4 and was of a thickness of 10 mm.
In order to confine current flow from the HF plasma bias power from the bias generator 200 within the vertical path between the surface of the wafer and the electrode 125 and avoid current flow to other parts of the chamber (e.g., the sidewall), the overhead electrode 135 provides an effective HF return electrode area significantly greater than the area of the wafer or wafer support 105. The semiconductor ring 115 in the plane of the wafer support 105 does not play a significant role in coupling the HF bias power into the chamber, so that the effective electrode area for coupling the HF bias power is essentially confined to the area of the wafer and wafer support 105.
Enhancement of Plasma Stability:
Plasma stability was enhanced by eliminating D.C. coupling of the plasma to the shorting conductor 165 connected across the inner and outer stub conductors 140, 145 at the back of the stub 135. This is accomplished by the provision of the thin capacitive ring 180 between the coaxial stub inner conductor 140 and the electrode 125. In the embodiment of
Suppression of Plasma Sheath-Generated Harmonics:
The capacitive ring 180 can play an important role in suppressing plasma sheath-generated harmonics of the HF bias signal applied to the wafer support pedestal 105. The presence of such harmonics degrades process performance, and specifically reduces etch rates. By selecting the capacitance-determining characteristics of the capacitive ring 180 (i.e., dielectric constant and thickness), the return path from the plasma through the overhead electrode 125 and coaxial inner conductor 140 is tuned to resonate (and therefore have a very high admittance) at a particular HF frequency. While one choice for this resonant frequency would be the fundamental of the HF bias signal applied to the wafer support pedestal 105, the etch rate can be improved by 10% to 15% by selecting this resonance to be the second harmonic of the bias signal. Such a favorable result is achieved because harmonics generated by the non-linear load presented by the plasma sheath are quickly returned to ground through the low impedance path presented by the overhead electrode and coaxial center conductor 140 by virtue of the capacitive ring 180.
Selection of the thickness of the capacitive ring 180 to tune the return path through the overhead electrode 125 to a particular HF frequency is affected by a number of factors, including the capacitance of the thin plasma sheath at the overhead electrode 125, the capacitance of the thick plasma sheath at the wafer support pedestal 105 as well as the capacitance of the plasma itself. For this purpose, the ring 180 may be thinner than as shown as
Bias Circuit Tuning for Uniform Radial Plasma Distribution:
The RF bias generator 200 produces power in the HF band (e.g., 13.56 MHz). Its RF bias impedance match element 210 is coupled to the workpiece 110 by an elongate conductor 5525 (hereinafter referred to as an RF conductor) extending through the workpiece support cathode 105. The RF conductor 5525 is insulated from grounded conductors such as the aluminum pedestal layer 5505. The RF conductor 5525 has a top termination or bias power feed point 5525a in electrical contact with the conductive mesh 5515.
The major reason for the difference in impedances of the two RF return paths will now be explained in general terms. The primary return path is provided by the conductive mesh 5515 which is coupled through the metal pedestal 5505 and RF conductor 5525. The RF return path 5540 (
Since the two RF return paths are physically different, they tend to offer different impedances to the VHF power radiated by the overhead electrode 125. Such differences may cause non-uniformities in radial distribution across the wafer surface of impedance to the VHF power, rendering source power coupling to the plasma nonuniform and giving rise to nonuniform radial distribution of plasma ion density near the surface of the workpiece. This in turn can cause processing non-uniformities that unduly narrow the process window. In order to solve this problem, the reactor of
A principal purpose of this adjustment in the feed point impedance is to bring the impedance at the feed point 5525a to at least nearly zero at the source power frequency (i.e., the VHF frequency of the overhead electrode 125 of about 162 MHz). As a result of this adjustment, the RF current return path is dominated by the conductive mesh 5515 through the RF conductor 5525 while minimizing the current through the aluminum pedestal layer 5505. As a result, the impedances of the regions 5530 and 5535 can be made to be at least nearly the same.
In order to adjust the feed point impedance as set forth above, a dielectric cylindrical sleeve 5550 surrounds the RF conductor 5525. The axial length and the dielectric constant of the material constituting the sleeve 5550 determine the feed point impedance presented by the RF conductor 5525 to the VHF power. In one example, the length and dielectric constant of the sleeve 5550 is selected to bring the feed point impedance to nearly zero at the VHF source power frequency (e.g., 162 MHz). In a working example, the feed point impedance without the sleeve 5550 was (0.9+j41.8) Ohms and with the sleeve was nearly a short circuit at (0.8+j0.3) Ohms. The impedance presented by the outer region 5535 surrounding the feed point 5525a is nearly a short at 162 MHz (due mainly to the presence of the conductive mesh 5515). Therefore, in the latter example the sleeve 5550 may bring the feed point impedance at the source power frequency to a value closer to that of the surrounding region. Here, the impedance of the region surrounding the feed point is determined mainly by the conductive mesh 5515. As a result, a more uniform radial distribution of impedance is attained, for more uniform capacitive coupling of VHF source power.
The sleeve 5550 can include additional features facilitating the foregoing improvement in VHF power deposition while simultaneously solving a separate problem, namely improving the uniformity in the electric field created by the RF bias power (at 13.56 MHz for example) applied to the wafer 110 by the RF conductor 5525. The problem is how to adjust radial distribution of VHF power coupling for maximum uniformity of plasma-ion density while simultaneously adjusting the HF bias power electric field distribution across the wafer surface for maximum uniformity. Maximum uniformity would be attained if the feed point impedance at the HF bias power frequency were brought nearer to that of the surrounding region 5535 dominated by the conductive mesh 5515 (without altering the feed point impedance at the VHF source power frequency). This problem is solved by dividing the sleeve 5550 along its cylindrical axis into plural cylindrical sections, and adjusting or selecting the length and dielectric constant of each section independently. This provides several independent variables that may be exploited to permit matching the feed point impedance to that of the surrounding region at both the bias frequency (e.g., 13.56 MHz) and at the source frequency (e.g., 162 MHz) simultaneously.
Referring to the working example of
It is felt that the length and dielectric constant of the sleeve top section 5552 can be selected and fixed to optimize the HF bias power deposition exclusively, and that the lengths and dielectric constants of the remaining sleeve sections 5554, 5556 can then be selected to optimize VHF source power deposition by the overhead electrode while leaving the HF bias power deposition optimized.
RF Coupling Ring for Enhancing Plasma Uniformity:
It has been previously noted herein that plasma ion density distribution in a reactor having an overhead VHF electrode such as the electrode 125 tends to be center high with a non-uniformity of about 10%. This non-uniformity is reduced by selectively enhancing capacitive coupling from the overhead electrode 125 to the plasma in the vicinity of the workpiece periphery. Referring to
Pressure-Invariant Impedance Match:
As described above with reference to
A problem arose, in that it became a goal to have the reactor work well over an extremely wide range of chamber pressures, i.e., from 5 to 1000 mT as well as an extremely wide range of plasma densities, i.e., from 1×1010 to 10×1010 ions/cc without exceeding the impedance mismatch tolerance of the VHF generator 150, typically a 3:1 VSWR (voltage standing wave ratio). Unfortunately, it was found that the plasma-electrode resonance frequency changed significantly as chamber pressure was varied over such a wide range. This caused the electrode-plasma resonance to shift away from the source power frequency and the fixed match resonance frequency, a serious problem that led to an impedance mismatch exceeding the 3:1 VSWR limit of the VHF generator 150. Such a departure from the match space leads to lack of control over the source power delivered to the plasma and hence a lack of control over certain process parameters, particularly plasma ion density. We discovered that this problem arose from the dependence of the dielectric constant (electrical permittivity) of the bulk plasma on the pressure-sensitive electron-neutral collision frequency. The equation governing the dielectric constant is as follows:
1−ωp2/[ω(ω+iνen]
where ωp is the plasma frequency, ω is the frequency of the source power generator 150, i=(−1)1/2, and νen is the electron-neutral collision frequency. The plasma admittance is:
iωε0[1−ωp2/(ω(ω+iνen)]Πr2/d.
The plasma admittance (impedance) determines the resonance with the overhead electrode 125, and therefore the resonant frequency will wander with the chamber pressure because the electron neutral collision frequency changes with chamber pressure. As the resonant frequency wanders away from the source power frequency, impedance match is impaired. The result is that the pressure range over which the reactor can maintain an impedance match is narrow, much narrower than the desired range of 5 mT to 1000 mT.
We have overcome this limitation by adding to the resonant circuit a new reactive element whose reactance is unaffected by changes in chamber pressure. This new element is the reactance of the cathode or wafer support pedestal 105. This is accomplished by increasing the reactance of the cathode at the source power frequency so that its impedance becomes a significant element in the resonant circuit including the overhead electrode, the bulk plasma and the coaxial stub. The main advantage is that the cathode reactance is pressure-insensitive, so that its capacitance buffers the effect of changes in the electron-neutral collision frequency with pressure. The result is that the chamber is operable over the extremely wide pressure range of 5–1000 mT.
This feature represents a change from our earlier implementation of the embodiment of
Introducing the cathode impedance as an additional element in the resonant circuit changes the structure of the resonant circuit and changes the resonant frequency. This requires that the cathode capacitance, the overhead electrode capacitance and the bulk plasma impedance form a resonance, and that the VHF source power frequency be near the resonant frequency. In one implementation, the foregoing parameters were selected so that the resonant frequency remained at 162 MHz, a frequency we had chosen prior to this invention.
In order to achieve optimum performance, we have found that the cathode capacitance can be selected so that:
Item (4) poses a problem because the desired range in plasma electron density over which the reactor should operate (i.e., 0.5×1010 to 10×1010/cc) corresponds possibly to a 20:1 dynamic range in plasma admittance. However, what was found is that, with the appropriate selection of the cathode capacitance, the plasma admittance did not follow the plasma electron density in a linear fashion, but instead behaved non-linearly so that plasma admittance was compressed in a narrow range that held the VSWR at the source impedance match within a 3:1 range over which the fixed match can operate.
In addition, we have found that the capacitance of the cathode can be selected so that the foregoing constraints are met:
As mentioned briefly above, the initial implementation of the embodiment of
The problem of a limited range of chamber pressure over which an impedance match is maintained was caused by the tendency of the resonant frequency to change with changes in chamber pressure, as described above. This problem is solved by decreasing the capacitance of the cathode 105 so as to increase the impedance of the cathode 105. As described above with reference to
The magnitude of the cathode impedance was increased by decreasing cathode capacitance. This was achieved by replacing the intermediate insulator layer 5510 (of thickness T1) with a much thicker intermediate insulator layer 5510′ (of greater thickness T2), as illustrated in
The cathode impedance was increased sufficiently (by decreasing its capacitance) to become comparable to the impedance of the overhead electrode. It was also increased sufficiently to be within an order of magnitude of the complex conjugate of the bulk plasma impedance. For example, one working embodiment having a 300 mm diameter cathode employed a bulk plasma impedance of 0.5–j0.3 Ohms (at 162 MHz source power frequency) with an overhead electrode capacitance of about 300 picofarads and a cathode capacitance of about 350 picofarads. This working embodiment worked well over a much greater range of chamber pressures without departing from an impedance match not exceeding a 3:1 SWR. In fact, the desired goal of changing chamber pressure within a range of about 1 to 1000 mT without exceeding an SWR of 3:1 at the VHF generator 150 was realized in this working embodiment. The resonant frequency was near the source power frequency of 162 MHz, and the impedances were as follows: overhead electrode impedance was j4 Ohms, cathode impedance was j4 Ohms, and bulk plasma impedance was 0.5–j0.3 Ohms. The cathode impedance was increased sufficiently to bring it to within a factor of 10 of the bulk plasma impedance and to within less than a factor of 2 of the overhead electrode impedance. In fact, the impedances of the overhead electrode and the cathode were about the same (e.g., to within about 20%). In this way, the impedance of the cathode is increased sufficiently to hold the SWR at the source power generator 150 to 3:1 or less over a chamber pressure range of 1 to 1000 mT and a plasma ion density range of 1×1010 to 10×1010 ions/cc.
Effect on the Cathode Feedpoint Impedance:
As described above with reference to
Stable Plasma Maintenance Over Wide Process Window:
The addition of a third reactive element in the resonant circuit (i.e., the cathode impedance) that is invariant under pressure change has been shown in
In a typical conventional reactor, the impedance match device is incapable of following significant changes in process parameters (source power, bias power, chamber pressure), so that such changes cause an unacceptably high impedance mismatch (an SWR beyond the tolerance of the source power generator), causing the generator to shut down and the plasma to be extinguished. Thus, the plasma must be restarted or re-struck under the changed process conditions (e.g., at a new chamber pressure level), which consumes more time and reduces the productivity of the reactor. Even if the plasma is not extinguished by the process parameter change, the impedance match in such a conventional reactor may not follow the changes, and may not arrive at the target state, i.e., it may converge to the wrong state, so that the desired state (e.g., a particular delivered source power versus reflected source power at a particular chamber pressure and bias power level) may be unattainable without extraordinary efforts.
We have found that the fixed impedance match element 135 provides a continuous impedance match while the process parameter (pressure, source power and bias power) are changed to move the process to any location within the volume of
This new capability leads to a novel method of operating the plasma reactor illustrated in
Radial Plasma Confinement:
A combination of certain features described above confines the plasma within the cylindrical processing volume overlying the wafer support pedestal 105:
A first feature is the provision of a uniform distribution of impedance (i.e., capacitance) across the surface of the cathode 105 for both the VHF source power current from the VHF generator 150 and simultaneously for the bias power current from the HF bias power generator 200. This is accomplished using the dielectric tuning sleeve assembly 5550 of
A second feature is the cross-grounding of the source power generator 150 and bias power generator 200, as described above with reference to
A third feature is the fixed impedance match element (either the tuning stub 135 or equivalently a stripline circuit) to provide an impedance match for the VHF power generator 150 across a wide process window.
The dielectric sleeve assembly 5550 of
The features of uniform capacitance distribution across the cathode 105 and low impedance for the VHF source power current through the cathode 105) depend upon maintenance of an adequate impedance match for the VHF source power generator 150 through varying plasma load conditions. This is the function of the fixed impedance match element 135.
The provision of the foregoing features (1, 2, 3) constitutes a method of confining the plasma to the cylindrical process volume overlying the wafer support pedestal or cathode 105 and lying between the cathode 150 and the overhead electrode 125. As illustrated in
In
The plasma density creation follows the radial distribution of the square of the RF electric field, and therefore the curves of
While the invention has been described in detail by specific reference to preferred embodiments, it is understood that variations and modifications thereof may be made without departing from the true spirit and scope of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 10/235,988 filed Sep. 4, 2002 now U.S. Pat. No. 6,900,596 entitled CAPACITIVELY COUPLED PLASMA REACTOR WITH UNIFORM RADIAL DISTRIBUTION OF PLASMA, by Jang Gyoo Yang et al., which is a continuation-in-part of U.S. patent application Ser. No. 10/192,271 filed Jul. 9, 2002 now U.S. Pat. No. 6,853,141 entitled CAPACITIVELY COUPLED PLASMA REACTOR WITH MAGNETIC CONTROL by Daniel Hoffman et al. This application is also a continuation-in-part of U.S. patent application Ser. No. 10/288,890 filed Nov. 5, 2002 now U.S. Pat. No. 6,838,635 entitled PLASMA REACTOR WITH OVERHEAD RF ELECTRODE TUNED TO THE PLASMA by Daniel Hoffman, which is a continuation of U.S. patent application Ser. No. 09/527,342 filed Mar. 17, 2000 now U.S. Pat. No. 6,528,751 entitled PLASMA REACTOR WITH OVERHEAD RF ELECTRODE TUNED TO THE PLASMA by Daniel Hoffman. This application also contains subject matter related to the following applications: U.S. patent application Ser. No. 10/754,280 filed Jan. 8, 2004 by Daniel J. Hoffman et al, entitled PLASMA REACTOR WITH OVERHEAD RF SOURCE POWER ELECTRODE WITH LOW LOSS, LOW ARCING TENDENCY AND LOW CONTAMINATION, which is a continuation-in-part of U.S. application Ser. No. 10/028,922, which is a continuation-in-part of U.S. application Ser. No. 09/527,342 filed Mar. 17, 2000; U.S. patent application Ser. No. 09/527,342 filed Mar. 17, 2000 entitled PLASMA REACTOR WITH OVERHEAD RF ELECTRODE TUNED TO THE PLASMA by Daniel Hoffman et al.; U.S. patent application Ser. No. 10/007,367 filed Oct. 22, 2001 entitled MERIE PLASMA REACTOR WITH OVERHEAD RF ELECTRODE TUNED TO THE PLASMA WITH ARCING SUPPRESSION by Daniel Hoffman et al., which is a continuation-in-part of U.S. patent application Ser. No. 09/527,342 filed Mar. 17, 2000; and U.S. patent application Ser. No. 10/028,922 filed Dec. 19, 2001 entitled PLASMA REACTOR WITH OVERHEAD RF ELECTRODE TUNED TO THE PLASMA WITH ARCING SUPPRESSION by Daniel Hoffman et al., which is a continuation-in-part of U.S. patent application Ser. No. 09/527,342 filed Mar. 17, 2000.
Number | Name | Date | Kind |
---|---|---|---|
2951960 | Watrous, Jr. | Sep 1960 | A |
2967926 | Edstrom | Jan 1961 | A |
3355615 | Le Bihan et al. | Nov 1967 | A |
3610986 | King | Oct 1971 | A |
4458180 | Sohval | Jul 1984 | A |
4464223 | Gorin | Aug 1984 | A |
4570106 | Sohval et al. | Feb 1986 | A |
4579618 | Celestino et al. | Apr 1986 | A |
4859908 | Yoshida et al. | Aug 1989 | A |
4888518 | Grunwald | Dec 1989 | A |
4973883 | Hirose et al. | Nov 1990 | A |
4990229 | Campbell et al. | Feb 1991 | A |
5006760 | Drake, Jr. | Apr 1991 | A |
5017835 | Oechsner | May 1991 | A |
5032202 | Tsai et al. | Jul 1991 | A |
5053678 | Koike et al. | Oct 1991 | A |
5055853 | Garnier | Oct 1991 | A |
5077499 | Oku | Dec 1991 | A |
5089083 | Kojima et al. | Feb 1992 | A |
5107170 | Ishikawa et al. | Apr 1992 | A |
5115167 | Ootera et al. | May 1992 | A |
5122251 | Campbell et al. | Jun 1992 | A |
5140223 | Gesche et al. | Aug 1992 | A |
5175472 | Johnson, Jr. et al. | Dec 1992 | A |
5195045 | Keane et al. | Mar 1993 | A |
5198725 | Chen et al. | Mar 1993 | A |
5210466 | Collins et al. | May 1993 | A |
5213658 | Ishida | May 1993 | A |
5218271 | Egorov et al. | Jun 1993 | A |
5223457 | Mintz et al. | Jun 1993 | A |
5225024 | Hanley et al. | Jul 1993 | A |
5246532 | Ishida | Sep 1993 | A |
5256931 | Bernadet | Oct 1993 | A |
5272417 | Ohmi | Dec 1993 | A |
5273610 | Thomas, III et al. | Dec 1993 | A |
5274306 | Kaufman et al. | Dec 1993 | A |
5279669 | Lee | Jan 1994 | A |
5280219 | Ghanbari | Jan 1994 | A |
5300460 | Collins et al. | Apr 1994 | A |
5314603 | Sugiyama et al. | May 1994 | A |
5325019 | Miller et al. | Jun 1994 | A |
5401351 | Samukawa | Mar 1995 | A |
5432315 | Kaji et al. | Jul 1995 | A |
5453305 | Lee | Sep 1995 | A |
5463525 | Barnes et al. | Oct 1995 | A |
5467013 | Williams et al. | Nov 1995 | A |
5474648 | Patrick et al. | Dec 1995 | A |
5512130 | Barna et al. | Apr 1996 | A |
5534070 | Okamura et al. | Jul 1996 | A |
5537004 | Imahashi et al. | Jul 1996 | A |
5554223 | Imahashi | Sep 1996 | A |
5556549 | Patrick et al. | Sep 1996 | A |
5567268 | Kadomura | Oct 1996 | A |
5576600 | McCrary et al. | Nov 1996 | A |
5576629 | Turner et al. | Nov 1996 | A |
5587038 | Cecchi et al. | Dec 1996 | A |
5592055 | Capacci et al. | Jan 1997 | A |
5595627 | Inazawa et al. | Jan 1997 | A |
5605637 | Shan et al. | Feb 1997 | A |
5618382 | Mintz et al. | Apr 1997 | A |
5627435 | Jansen et al. | May 1997 | A |
5660671 | Harada et al. | Aug 1997 | A |
5662770 | Donohoe | Sep 1997 | A |
5674321 | Pu et al. | Oct 1997 | A |
5685914 | Hills et al. | Nov 1997 | A |
5705019 | Yamada et al. | Jan 1998 | A |
5707486 | Collins | Jan 1998 | A |
5710486 | Ye et al. | Jan 1998 | A |
5720826 | Hayashi et al. | Feb 1998 | A |
5733511 | De Francesco | Mar 1998 | A |
5770922 | Gerrish et al. | Jun 1998 | A |
5792376 | Kanai et al. | Aug 1998 | A |
5846885 | Kamata et al. | Dec 1998 | A |
5849136 | Mintz et al. | Dec 1998 | A |
5849372 | Annaratone et al. | Dec 1998 | A |
5855685 | Tobe et al. | Jan 1999 | A |
5858819 | Miyasaka | Jan 1999 | A |
5863376 | Wicker et al. | Jan 1999 | A |
5866986 | Pennington | Feb 1999 | A |
5868848 | Tsukamoto | Feb 1999 | A |
5885358 | Maydan et al. | Mar 1999 | A |
5904799 | Donohoe | May 1999 | A |
5914568 | Nonaka | Jun 1999 | A |
5929717 | Richardson et al. | Jul 1999 | A |
5936481 | Fujii | Aug 1999 | A |
5939886 | Turner et al. | Aug 1999 | A |
5942074 | Lenz et al. | Aug 1999 | A |
5971591 | Vona et al. | Oct 1999 | A |
5997962 | Ogasawara et al. | Dec 1999 | A |
6016131 | Sato et al. | Jan 2000 | A |
6043608 | Samukawa et al. | Mar 2000 | A |
6089182 | Hama | Jul 2000 | A |
6093457 | Okumura et al. | Jul 2000 | A |
6095084 | Shamouilian et al. | Aug 2000 | A |
6096160 | Kadomura | Aug 2000 | A |
6106663 | Kuthi et al. | Aug 2000 | A |
6110395 | Gibson, Jr. | Aug 2000 | A |
6113731 | Shan et al. | Sep 2000 | A |
6142096 | Sakai et al. | Nov 2000 | A |
6152071 | Akiyama et al. | Nov 2000 | A |
6155200 | Horijke et al. | Dec 2000 | A |
6162709 | Raoux et al. | Dec 2000 | A |
6174450 | Patrick et al. | Jan 2001 | B1 |
6188564 | Hao | Feb 2001 | B1 |
6213050 | Liu et al. | Apr 2001 | B1 |
6218312 | Collins et al. | Apr 2001 | B1 |
6245190 | Masuda et al. | Jun 2001 | B1 |
6251216 | Okamura et al. | Jun 2001 | B1 |
6262538 | Keller | Jul 2001 | B1 |
6290806 | Donohoe | Sep 2001 | B1 |
6291999 | Nishimori et al. | Sep 2001 | B1 |
6337292 | Kim et al. | Jan 2002 | B1 |
6346915 | Okumura et al. | Feb 2002 | B1 |
RE37580 | Barnes et al. | Mar 2002 | E |
6449568 | Gerrish | Sep 2002 | B1 |
6451703 | Liu et al. | Sep 2002 | B1 |
6462481 | Holland et al. | Oct 2002 | B1 |
6528751 | Hoffman et al. | Mar 2003 | B1 |
6586886 | Katz et al. | Jul 2003 | B1 |
6894245 | Hoffman et al. | May 2005 | B1 |
20020139477 | Ni et al. | Oct 2002 | A1 |
20030132195 | Edamura et al. | Jul 2003 | A1 |
20030168427 | Flamm et al. | Sep 2003 | A1 |
Number | Date | Country |
---|---|---|
0 343 500 | Nov 1989 | EP |
0 678 903 | Oct 1995 | EP |
0 719 447 | Jul 1998 | EP |
WO 0171765 | Sep 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040159287 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10235988 | Sep 2002 | US |
Child | 10778620 | US | |
Parent | 10192271 | Jul 2002 | US |
Child | 10235988 | US | |
Parent | 10288890 | Nov 2002 | US |
Child | 10778620 | US | |
Parent | 09527342 | Mar 2000 | US |
Child | 10288890 | US |