The present invention relates to a semiconductor mounting method, and more particularly, to a technology for preventing warping during handling of a chip-on-wafer (CoW).
A method for producing a three-dimensional mounting device requires a high yield, low cost process. It is desirable to employ an organic substrate and perform solder bonding in a reflow oven to achieve high performance and low cost. A through silicon via (TSV) wafer is a wafer in which TSVs are formed. A TSV chip is a chip in which TSVs are formed.
The TSVs function as electrical communication paths between a top surface (or front surface) and a bottom surface (or back surface), and are in a completely penetrating (complete) state when the TSVs extend to both the top and bottom surfaces. A rewiring layer may be formed near an outermost surface. The material of the wafers is not limited to silicon, and the material of the vias is not limited to Cu.
It is difficult to form TSVs having a large aspect ratio in a process of forming the TSVs in a TSV wafer or a TSV chip. The aspect ratio of a TSV is a ratio expressed as β (depth)/α (diameter). It is desirable to reduce α from the viewpoint of increasing the wiring density. On the other hand, it is technically difficult to cut via holes and fill them so as to increase β. This is the reason why it is difficult to increase the aspect ratio of the TSVs. If TSVs having a large diameter are formed, there is a risk that device performance will be degraded owing to an internal stress caused by a difference in coefficient of linear expansion between the material of the TSVs and the material of the wafer, that is, silicon. As a result, the diameter of the TSVs tends to be reduced, and necessarily the thickness of the TSV chips also tends to be reduced.
The thin TSV chips warp by a not inconsiderable amount due to asymmetry between structures at front and back sides, such as a silicon device layer, a wiring layer, and electrodes on outer layers. The warping of the TSV chips causes a problem of, in particular, a bonding failure in a chip bonding process performed in a reflow oven.
In addition, because the thin TSV chip warps by a large amount owing to a difference in coefficient of thermal expansion (CTE) between the TSV chip and the organic substrate, it is difficult to mount a top chip onto the TSV chip by a reflow process. With the procedure illustrated in
Technologies in the prior art are directed to preventing warping and flattening technologies using an adhesive layer. However, in particular, past technologies do not provide for the “preparation of a silicon wafer in which TSVs do not extend to a bottom surface of the silicon wafer, and scraping of the bottom surface so that the TSVs extend to the bottom surface while a support is fixed to the silicon wafer.”
One aspect of the present invention provides a method for preventing warping of a TSV wafer before thinning in a process of handling the TSV wafer before thinning. The method includes the steps of: arranging a plurality of chips so that the chips correspond to TSVs; fixing the plurality of chips to the TSV wafer before thinning with a plurality of solder bumps to produce fixed chips; sealing a space between each chip and the TSV wafer before thinning with an underfill material to produce sealed chips; fixing a support so that the support covers the fixed and sealed chips; scraping a surface to which the TSVs do not extend while the support is fixed until the TSVs appear and are in a completely penetrating state; and dicing the TSV wafer before thinning along a region where the chips are not arranged.
Another aspect of the present invention provides a method for preventing warping of a TSV wafer after thinning in a process of handing the TSV wafer after thinning. The method includes the steps of: arranging a plurality of chips fixed to a top surface so that the chips correspond to TSVs; melting a plurality of solder bumps to fix the plurality of chips and produce fixed chips; sealing a space between each chip and the TSV wafer after thinning with an underfill material to produce sealed chips; fixing a support so that the support covers the fixed and sealed chips; arranging solder bumps on the bottom surface of the TSV wafer after thinning so that the solder bumps correspond to the TSVs; melting the solder bumps to fix the solder bumps to the bottom surface of the TSV wafer after thinning by and produce fixed solder bumps; and dicing the TSV wafer after thinning along a region where the chips and the fixed solder bumps fixed are not arranged.
Another aspect of the present invention provides a chip-on-wafer having TSVs where the TSVs do not extend to one of top and bottom surfaces of a wafer and are in a partially penetrating state, where a plurality of chips are arranged so as to correspond to the TSVs and are fixed by melting a plurality of solder bumps, and where a space between each chip and the wafer is sealed with an underfill material.
A plurality of chips, which have already been tested and completed, are arranged so as to correspond to the TSVs, and are fixed by melting a plurality of solder bumps. It is assumed that the chips are simultaneously bonded in a reflow oven after being provisionally fixed with a flux. However, the method for bonding the chips is not limited to this, and the chips may also be stacked in multiple stages. The chips can be those that have already been tested and completed. A space between each chip and the silicon wafer is sealed with an underfill material. Since the space is sealed, sufficient resistance to an external mechanical force is provided.
Although it is assumed that simultaneous bonding is performed in a reflow oven, the bonding process is not limited to this, and bonding using a pre-applied underfill material or cold bonding can instead be performed. The wafer on which chips are mounted as described above can be referred to as a “chip-on-wafer (CoW)”. In step A2, a support is fixed so as to cover the fixed and sealed chips. The support increases the rigidity. Chips having a height, or thickness, of about 100 to 800 μm have been put into practical use. A support that provisionally fixes the layer can be used to fix the support. Typically, an adhesive may be used.
The wafer that is an intermediate product in step A2 has a new structural feature in that the TSVs are in a partially penetrating, or incomplete, state. A thinning process is performed between steps A2 and A3. Specifically, the surface of the wafer to which the TSVs do not extend is scraped, i.e., the wafer is thinned, while the support is fixed until the TSVs appear and are in a completely penetrating, complete, state. The surface can be scraped by applying a mechanical stress.
Alternatively, a chemical method can be used instead of the mechanical scraping method. An insulating film, a rewiring film, an electrode, or the like can be formed as necessary on the wafer surface that has been subjected to thinning. A method for forming the electrode is not particularly limited. For example, a plating method or a ball mounting method can be used. In step A4, solder bumps can be arranged on the TSVs that have appeared and are in a completely penetrating state. A method for forming the bumps is not particularly limited. For example, a plating method, or C4NP can be used.
In step A5, the silicon wafer is diced along regions where the chips are not arranged. The support can be fixed to the wafer until the dicing process is finished. The dicing process can be performed by applying a mechanical stress. The dicing process can be performed by cutting the silicon wafer into small pieces to change the wafer from a state in which a plurality of chips are mounted thereon to a state in which a single chip is mounted on each of the small pieces. In step A6, an organic substrate is prepared, and a plurality of solder bumps are prepared on the organic substrate. One of the small pieces into which the silicon wafer has been cut is placed on the prepared solder bumps, and is fixed by melting the solder bumps.
In the case where solder bumps are arranged on the TSVs that have appeared and are in a completely penetrating state in step A4, an organic substrate is prepared, and one of the small pieces into which the silicon wafer has been cut is placed on the organic substrate and is fixed by melting the solder bumps.
Since molding is performed, a flat surface for fixing the support can be more easily formed. In addition, a high rigidity material can be used to form the flattening provisionally fixing layer, and a material expected to be highly adhesive to the support, i.e., material that can be easily bonded to an attachment surface of the support, can be used to form the support provisionally fixing layer. The support provisionally fixing layer, which is an adhesive layer, can serve to smooth irregularities on the flattening provisionally fixing layer. The characteristics of the flattening provisionally fixing layer and the support provisionally fixing layer can be selected so that the support can be easily removed when the reinforcement by the support is no longer necessary.
A resin curable by light, heat, or the like, can be used in the molding process. The support provisionally fixing layer can be formed by, for example, a spin-coating technology.
The solder bumps are fixed to the bottom surface of the silicon wafer by melting the solder bumps. The wafer that is an intermediate product in step C3 has a new structural feature in that the support is fixed so as to cover the chips and the solder bumps are fixed to the bottom surface of the silicon wafer. In step C4, the silicon wafer is diced along regions where the chips and the solder bumps fixed by being melted are not arranged. The support can be maintained in the fixed state until the dicing process is finished, so that sufficient resistance to the mechanical stress can be ensured during the dicing process.
The dicing process can be performed by cutting the silicon wafer into small pieces to change the wafer from a state in which a plurality of chips are mounted thereon to a state in which a single chip is mounted on each of the small pieces. In step C5, an organic substrate is prepared, and a plurality of solder bumps are prepared on the organic substrate. One of the small pieces into which the silicon wafer has been cut is placed on the prepared solder bumps, and is fixed by melting the solder bumps. In the case where solder bumps are arranged on the TSVs that have appeared and are in a completely penetrating state in step C5, an organic substrate is prepared, and one of the small pieces into which the silicon wafer has been cut is placed on the organic substrate, and is fixed by melting the solder bumps.
Although the support is removed in step E4, dicing is preferably performed while the piece of dicing tape is attached in the state where the support is not yet removed—in other words, while the original function of the dicing tape is achieved. In step E5, the piece of dicing tape is removed. It can be effective to apply a release agent or the like in advance. Instead of removing the piece of dicing tape, the main body can be removed from the piece of dicing tape.
The main characteristic of the present invention is the order in which processes of a method are performed. The present invention can also be realized as a system in which a robot or the like automatically executes each step of the method.
This application is a divisional of U.S. patent application Ser. No. 14/193,875, filed Feb. 28, 2014, the disclosure of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14193875 | Feb 2014 | US |
Child | 14735258 | US |