Probe station with two platens

Information

  • Patent Grant
  • 7368925
  • Patent Number
    7,368,925
  • Date Filed
    Friday, January 16, 2004
    21 years ago
  • Date Issued
    Tuesday, May 6, 2008
    16 years ago
Abstract
A probe station for testing a device under test. A first platen supporting an electrical probe. A chuck supporting the device under test. A second platen supporting an optical probe. The first platen and the second platen positioned above the device under test. A percentage of the top surface of the second platen terminating into free space.
Description

The present invention relates to a probe station.


Probe stations are designed to measure the characteristics of electrical devices such as silicon wafers. Probe stations typically include a chuck that supports the electrical device while it is being probed by needles or contacts on a membrane situated above the chuck. In order to provide a controlled environment to probe the electrical device, many of today's probe stations surround the chuck with an environmental enclosure so that temperature, humidity, etc. may be held within predetermined limits during testing. Environmental enclosures protect the device from spurious air currents that would otherwise affect measurements, and also facilitate thermal testing of electrical devices at other-than-ambient environmental conditions. Environmental conditions within the enclosure are principally controlled by a dry air ventilation system as well as a temperature element, usually located below the chuck, that heats or cools the electrical device being tested through thermal conduction.


Many probe stations also incorporate guarding and electromagnetic interference (EMI) shielding structures within or around the environmental enclosures in order to provide an electrically quiet environment, often essential during high frequency testing where electrical noise from external electromagnetic sources can hinder accurate measurement of the electrical device's characteristics. Guarding and EMI shielding structures are well known and discussed extensively in technical literature. See, for example, an article by William Knauer entitled “Fixturing for Low Current/Low Voltage Parametric Testing” appearing in Evaluation Engineering, November, 1990, pages 150-153.


Probe stations incorporating EMI shielding structures will usually at least partially surround the test signal with a guard signal that closely approximates the test signal, thus inhibiting electromagnetic current leakage from the test signal path to its immediately surrounding environment. Similarly, EMI shielding structures may provide a shield signal to the environmental enclosure surrounding much of the perimeter of the probe station. The environmental enclosure is typically connected to earth ground, instrumentation ground, or some other desired potential.


To provide guarding and shielding for systems of the type just described, existing probe stations may include a multistage chuck upon which the electrical device rests when being tested. The top stage of the chuck, which supports the electrical device, typically comprises a solid, electrically conductive metal plate through which the test signal may be routed. A middle stage and a bottom stage of the chuck similarly comprise solid electrically conductive plates through which a guard signal and a shield signal may be routed, respectively. In this fashion, an electrical device resting on such a multistage chuck may be both guarded and shielded from below.



FIG. 1 shows a generalized schematic of a probe station 10. The probe station 10 includes the chuck 12 that supports the electrical device 14 to be probed by the probe apparatus 16 that extends through an opening in the platen 18. An outer shield box 24 provides sufficient space for the chuck 12 to be moved laterally by a positioner 22. Because the chuck 12 may freely move within the outer shield box 24, a suspended member 26 electrically interconnected to a guard potential may be readily positioned above the chuck 12. The suspended guard member 26 defines an opening that is aligned with the opening defined by the platen 18 so that the probe apparatus 16 may extend through the guard member 26 to probe the electrical device 14. When connected to a guard signal substantially identical to the test signal provided to the probe apparatus 16, the suspended guard member 26 provides additional guarding for low noise tests. Such a design is exemplified by EP 0 505 981 B1, incorporated by reference herein.


To provide a substantially closed environment, the outer shield box 24 includes a sliding plate assembly 28 that defines a portion of the lower perimeter of the shield box 24. The sliding plate assembly 28 comprises a number of overlapping plate members. Each plate member defines a central opening 30 through which the positioner 22 may extend. Each successively higher plate member is smaller in size and also defines a smaller opening 30 through which the positioner 22 extends. The sliding plate assembly 28 is included to permit lateral movement of the positioner 22, and hence the chuck 12, while maintaining a substantially closed lower perimeter for the shield box 24.


Referring to FIG. 2, in many cases the semiconductor wafers that are tested within such a probe station are edge coupled photonics devices. Edge coupled photonics devices are normally arranged within each semiconductor wafer in orthogonal arrays of devices. Typically, the wafers are sliced in thin strips of a plurality individual optical devices, as illustrated in FIG. 3. Edge coupled photonics devices may include, for example, lasers, semiconductor optical amplifiers, optical modulators (e.g., Machzhender, electro-absorption), edge coupled photo-diodes, and passive devices. Referring to FIG. 4, many such photonics devices provide light output through one side of the device. Normally, the photonics devices receive light through the opposing side of the device from the light output. On another side of the device one or more electrical contacts are provided. In typical operation, the light provided by the device may be modulated or otherwise modified by changing the input light and/or the electrical signal to the device, or the electrical output may be modulated or otherwise modified by changing the input light. Similarly, other photonics devices are surface coupled where the electrical contact and the light output (or light input) are both on the same face of the device, as illustrated in FIG. 5. On such surface coupled photonics device is a VCSEL laser.


Referring to FIG. 6, a typical arrangement to test such photonics devices within a probe station is shown. A set of electrical probe positioners 50 are arranged on the platen to provide electrical signals to and from the device under test, as needed. In addition, one or more optical probe positioners 60 are positioned on the platen to sense the light output from the device under test or provide light to the device under test. As it may be observed, when testing devices that include both optical and electrical attributes the number of positioners may be significant thereby potentially resulting in insufficient space on the platen to effectively accommodate all the necessary positioners. In addition, the opening provided by the platen is normally relatively small so that the space available for extending the probes through the platen is limited. This limited space significantly increases the difficultly in positioning the electrical and optical probes. Similarly, the end of the optical probes typically need to be positioned within 0.10 microns in x/y/z directions which is somewhat awkward from a position on the platen above the chuck. Moreover, the angular orientation of the end portion of the optical probe likewise needs to be very accurate to couple light between the optical probe and the device under test which is similarly difficult. In many applications extreme positional and angular accuracy is needed to couple the optical waveguide or free space optical path (i.e., optical probe) to a photonics device or another optical waveguide. Moreover, during the testing of wafers the optical probes frequently tend to be out of alignment requiring manual alignment for each photonics device while probing each of the devices.


What is desired, then, is a probe station that facilitates accurate alignment of electrical and optical probes.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a cross sectional view of an existing probe station.



FIG. 2 illustrates a wafer with photonics devices thereon.



FIG. 3 illustrates a strip of photonics devices.



FIG. 4 illustrates an edge coupled photonics device.



FIG. 5 illustrates an upper surface coupled photonics device.



FIG. 6 shows a cross sectional view of the probe station of FIG. 1 with electrical and optical probes.



FIG. 7 shows a pictorial view of a modified probe station.



FIG. 8 shows a pictorial view of another modified probe station.



FIG. 9 shows a pictorial view of yet another modified probe station.



FIG. 10 shows a pictorial view of the support assembly for the probe station of FIG. 7.



FIG. 11 shows a pictorial view of a further modified probe station.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

During testing, the end of the optical probes are typically aligned with the edge of the device under test while the electrical probes are typically aligned with the contacts on the upper surface of the device under test, with both the electrical probes and the optical probes being supported by the platen. In many cases, the entire platen is moved in the z-axis direction for selectively contacting the electrical probes on the device under test. Alternatively, the chuck is moved in a z-axis direction. The z-axis movement of the platen permits consistent simultaneous relative movement of all the electrical and optical probes. Each component of the device under test is successively moved in x and/or y lateral directions relative to the electrical probes using a chuck or other support to a location under the electrical probes.


The present inventors considered the z-axis movement of the platen or chuck to perform simultaneous probing and came to the realization that normal z-axis movement of the platen typically brings the probes into contact with the device under test with sufficient additional z-axis movement to result in lateral scrubbing of the contact surfaces to provide a good contact. This additional z-axis movement for the electrical probes, which may vary depending on the particular circuit being probed, different electronic components, the planarity of the devices, and differences in the height of the different contacts between devices, may result in inaccurate alignment of the optical probes which are likewise being moved in the z-axis direction together with the platen or chuck. The alignment of the optical inputs and outputs of the devices tends not to vary in the same manner as the contacts, if they vary significantly at all. In summary, the appropriate z-axis movement of the electrical probes varies depending on the particular device being tested; while the appropriate z-axis movement of the optical probes tends to be at a substantially fixed location with respect to the device under test, which may not be consistent with the z-axis movement provided for the electrical probes. Moreover, the relatively long optical device tends to expand and contract with temperature variations of the environment resulting in additional difficultly properly positioning the optical probe.


In light of the foregoing realizations the present inventors determined that the traditional probe station should be modified in some manner to facilitate at least partial independent movement or otherwise separation of the optical probes and electrical probes. Referring to FIG. 7, a modified probe station 100 includes a chuck 102 that supports a device under test 104. The device under test 104 in many instances is one or more photonic devices. An upper platen 106 defines an opening 108 therein and is positioned above the chuck 102. The opening 108 may be, for example, completely encircled by the upper platen 106 or a cutout portion of the upper platen 106. Electrical probes 110 are supported by the upper platen 106. The platen 106 is supported by a plurality of supports 112A, 112B, 112C, and 112D. Positioned below the supports 112A-112D is a lower platen 114. The optical probes 116 are supported by the lower platen 114. A microscope, not shown, may be used to position the device under test 104 relative to the probes 110 and 116. During probing the upper platen 106 is moved in a z-axis direction to make contact between the electrical probes 110 and the device under test 104. The x and/or y position of the chuck 102 (hence the device under test 104) relative to the electrical probes 110 is modified, and thereafter the upper platen 106 is moved in a z-direction to make contact between the electrical probes 110 and the device under test 104. During testing the optical probes 116 are aligned with the edge of the device under test 104.


In the case that the device under test is moved in a direction perpendicular to the edge of the device under test 104 being tested, it may be observed that the optical probes 116 may not need to be repositioned for each device being tested. If realignment of the optical probes 116 are necessary, there is a good likelihood that minimal adjustment is necessary. In particular, there is a high likelihood that the elevation of the optical probe 116 is accurate (or nearly so) because the chuck 102 is moving within a horizontal plane for testing the device under test 104. It may be observed that optical probes 116 are effectively decoupled from the z-axis motion of the upper platen 106. Moreover movement of the upper platen 106 for bringing the electrical probes 110 into contact with the device under test 104 does not result in movement of the optical probe 116 with respect to the device under test 104. Similarly, it may be observed that movement of the optical probes 116 does not result in movement of the electrical probes 110.


As illustrated in FIG. 7, it may be observed that there is substantial open space on the lower platen 114 to position the optical probes 116. Further, the open space permits operators to access the optical probes 116 to make adjustments, as necessary. For example, the lower platen 114 may include at least 70% of its surface area free of other components and structures, such as the chuck and supports, available for the positioning of optical components thereon. More preferably, at least 80%, 85%, 90%, and 95% of the surface area of the lower platen 114 is free of other components and structures. Moreover, from a region defined by the perimeter of the supports, the lower platen 114 has preferably 70%, 80%, 85%, 90%, or 95% of the surface area of the upper platen free from other components and structures thereon in any outward direction, such as +x, −x, +y, or −y directions. This free space more readily permits the attachment of free space optics thereon, which frequently require substantial space and flexibility to set up. The size of the upper platen 106 may have less surface area, the same surface area, or greater surface area than the lower platen 114. For example, the lower platen 114 (e.g., optical platen) may have a surface area that is 25%, 35%, or 50% or more greater than the upper platen 106 (e.g., non-optical platen). This increased surface area of the lower platen 114 relative to the upper platen 106 permits more open access to the lower platen 114 to locate optical components thereon without limitations resulting from the proximity upper platen 106. Preferably the lower platen 114 is a single integral member or otherwise a rigidly interconnected set of members. It is of course to be understood that the system may include more than two platens, as desired. In addition, the electrical components may be located on the lower platen, as desired. Also, the optical components may be located on the upper platen, as desired, which may include holes therein for an optical breadboard if desired. Furthermore, with the upper platen being maintained in position principally by gravity, such that it would become detached from the supports if the probe station were turned up side down, a set of different upper platens may be provided, each of which is designed to be particularly suitable for a particular test. For example, some upper platens may be small, large, oval, rectangular, thin, thick, etc.


Another feature that may be included is the capability of removing or otherwise moving the upper platen out of the way for in a controlled manner. The movement of the upper platen facilitates the adjustment and installation of the optical components thereunder. For example, a mechanical support mechanism may be included that supports the upper platen while the platen is moved with respect to the remainder of the probe station, and in particular the lower platen. For example, the upper platen may be displaced such that at least 20% (or at least 30% or at least 40% or at least 50%) of its surface area is laterally displaced beyond its original position on the supports. Alternatively, the upper platen may be tilted upwardly. For example, the upper platen may be tilted such that it is at least 5 degrees (or at least 10 degrees or at least 20 degrees or at least 45 degrees or at least 75 degrees) of its surface area is tiled with respect to its position when probing, such as horizontal.


Referring to FIG. 8, a modified probe station 200 includes an upper platen 206 supported by a set of upper supports 212A-212D. The upper supports 212A-212D extend through respective openings 220A-220D in a lower platen 214 and are supported by a base 222. The lower platen 214 is supported by a set of supports 224A-224D which is supported by the base 222. The supports 224A-224D and the supports 212A-212D are preferably adjustable in height. The chuck 202 extends through an opening 226 in the lower platen 214 and is supported by the base 222. With this structure, one or more optical probes 216 supported by the lower platen 214 may be simultaneously moved in the z-axis direction with respect to a device under test 204 supported by the chuck 202. Also, one or more electrical probes 210 may be simultaneously moved in the z-axis direction with respect to a device under test 204 supported by the chuck 202. Furthermore, one or more electrical probes 210 may be simultaneously moved in the z-axis direction with respect to the optical probes 216, or vise versa, both of which may be moved relative to the device under test 204. This permits effective realignment of one or more optical probes 216 with respect to the edge of the device under test 204. In this manner, at least a portion of the alignment of the optical probes 216 may be performed by the probe station, as opposed to the individual positioners attached to the optical probes 116. It is to be understood that the lower platen 214 is preferably positioned at a location below the device under test 204 while the upper platen 206 is positioned above the device under test 204. Also, it is to be understood that the lower platen 214 may be positioned at a location above the device under test 204 while the upper platen 206 is likewise positioned above the device under test 204. Also, it is to be understood that the lower platen 214 may be positioned at a location below the device under test 204 while the upper platen 206 is likewise positioned below the device under test 204. Moreover, the range of movement of the supports may permit the upper platen 206 and/or the lower platen 214 to be moved from a position above the device under test 214 to a position below the device under test 214, or from a position below the device under test 214 to a position above the device under test 214.


Referring to FIG. 9, a modified probe station 300 includes the chuck 202 being supported by the lower platen 214. In this manner, the chuck 202 and the lower platen 214 will move together in the z-axis. This is beneficial, at least in part, to assist in maintaining the relative alignment between the optical probes and the device under test.


Referring to FIGS. 7-9, the lower platen (or the upper platen) may include a set of openings 170 defined therein suitable for engaging an optical device. Typically the openings 170 are arranged in an orthogonal array. The openings 170 provide a convenient mechanism for interconnection between the lower platen and the optical probes.


The probe station facilitates the testing of a photonics device that includes an optical test path, which is optimized based upon optical characteristics. In addition, the probe station facilitates the testing of a photonics device that includes an electrical test path, which is similarly optimized based upon electrical characteristics. Typically multiple electrical probes are supported and simultaneously brought into contact with the device under test. In this manner, the probe station includes a structure that brings together optimized electrical test paths and optimized optical test paths together on the device under test.


Referring to FIG. 10, the upper platen 106 (or other platens) is supported by a plurality of supports 350A-350D. Preferably the platen 106 is supported by a set of contacts 352A-352D. The contacts 352A-352D are preferably not fixedly interconnected with the upper platen 106, but rather maintained in contact by the force of gravity free from a fixed interconnection, such as a screw or bolt. Accordingly, the upper platen 106 may be removed from the supports 350A-350D by merely lifting the upper platen 106. A set of interconnecting members 354, 356, and 358 may be included to provide increased rigidity to the supports 350A-350D. In addition, the length of the interconnecting members 354, 356, 358 may be adjustable, such as extending through the supports 350A-350D or otherwise including a length adjustment mechanism for the interconnecting members themselves. In this manner the upper platen 106 may be lifted from the supports 350A-350D , the position of the supports 350A-350D and relative spacing thereof modified, and the upper platen 106 repositioned on the supports 350A-350D. In addition, a mechanical lift mechanism 359 may be included to raise and lower the upper platen 106. Also, the supports 350A-350D may include internal height adjustment for z-axis movement. Further, computer controlled lift control mechanisms may likewise be used. Moreover, it may be observed that the upper platen 106 may be moved in the z-axis direction, and in the x and/or y direction by simply moving the upper platen 106. In an alternative embodiment, the supports 350A-350D may include horizontal movement structures to move the upper platen 106 in the x and/or y directions. As one example, the horizontal movement structures may be a set of rollers that permit the selective lateral movement of the upper platen 106.


Referring to FIG. 11, a substantially enclosed environment 400 may be provided around the device under test. The environment may be electrically connected to an earth ground potential, an instrument ground potential, a guard potential, a shield potential, or otherwise remains floating. An optical box 402 may be provided within the lower region of the probe station to provide a substantially light tight environment around the device under test, which may be useful for many applications. The optical box 402 preferably includes a plurality of sealable openings to permit access to the optical probes. An electrical box 404 may be provided within the upper region of the probe station to provide a substantially noise controlled environment around the electrical probes, which may be useful for many applications. The electrical box 404 may be electrically connected to an earth ground potential, an instrument ground potential, a guard potential, a shield potential, or otherwise remains floating.


The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.

Claims
  • 1. A probe station for testing a device under test, said probe station comprising: (a) a first platen supporting an electrical probe engageable with a first surface of said device under test;(b) a chuck supporting said device under test;(c) a second platen having a top surface supporting thereon an optical probe to emit light for impingement on said device under test and, alternatively, to detect light emitted by said device under test toward said first platen and propagating on an axis not substantially normal to said first surface;(d) said first platen positioned above said second platen and above said device under test;(e) at least 70% of the top surface of said second platen terminating in free space when said optical probe is not supported thereon.
  • 2. The probe station of claim 1 wherein at least 80% of the top surface of said second platen terminating in free space when said optical probe is not supported thereon.
  • 3. The probe station of claim 1 wherein said first platen is supported for movement relative to said second platen.
  • 4. The probe station of claim 1 wherein at least 85% of the top surface of said second platen terminating in free space when said optical probe is not supported thereon.
  • 5. The probe station of claim 1 wherein at least 90% of the top surface of said second platen terminating in free space when said optical probe is not supported thereon.
  • 6. The probe station of claim 1 wherein at least 95% of the top surface of said second platen terminating in free space when said optical probe is not supported thereon.
  • 7. The probe station of claim 1 wherein said second platen has a greater top surface area than said first platen.
  • 8. The probe station of claim 1 wherein said second platen has a smaller top surface area than said first platen.
  • 9. The probe station of claim 1 wherein said second platen has the same surface area as said first platen.
  • 10. The probe station of claim 1 wherein said first platen is maintained in position with respect to said second platen by gravity such that if said probe station were turned upside down said first platen would freely fall away from said second platen.
BACKGROUND OF THE INVENTION

This application is a continuation of U.S. patent application Ser. No. 10/285,135 filed Oct. 30, 2002, now U.S. Pat. No. 6,777,964 which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/351 ,844 filed Jan. 25, 2002.

US Referenced Citations (840)
Number Name Date Kind
1337866 Whitaker Apr 1920 A
2142625 Zoethout Jan 1939 A
2197081 Piron Apr 1940 A
2376101 Tyzzer May 1945 A
2389668 Johnson Nov 1945 A
2471897 Rappl May 1949 A
2812502 Doherty Nov 1957 A
3176091 Hanson et al. Mar 1965 A
3185927 Margulis et al. May 1965 A
3192844 Szasz et al. Jul 1965 A
3193712 Harris Jul 1965 A
3201721 Voelcker Aug 1965 A
3230299 Radziejowski Jan 1966 A
3256484 Terry Jun 1966 A
3265969 Catu Aug 1966 A
3289046 Carr Nov 1966 A
3333274 Forcier Jul 1967 A
3405361 Kattner et al. Oct 1968 A
3408565 Frick et al. Oct 1968 A
3435185 Gerard Mar 1969 A
3484679 Hodgson et al. Dec 1969 A
3596228 Reed, Jr. et al. Jul 1971 A
3602845 Agrios et al. Aug 1971 A
3609539 Gunthert Sep 1971 A
3648169 Wiesler Mar 1972 A
3654573 Graham Apr 1972 A
3662318 Decuyper May 1972 A
3700998 Lee et al. Oct 1972 A
3710251 Hagge et al. Jan 1973 A
3714572 Ham et al. Jan 1973 A
3740900 Youmans et al. Jun 1973 A
3775644 Cotner et al. Nov 1973 A
3777260 Davies et al. Dec 1973 A
3810017 Wiesler et al. May 1974 A
3814888 Bowers et al. Jun 1974 A
3829076 Sofy Aug 1974 A
3858212 Tompkins et al. Dec 1974 A
3863181 Glance et al. Jan 1975 A
3866093 Kusters et al. Feb 1975 A
3930809 Evans Jan 1976 A
3936743 Roch Feb 1976 A
3952156 Lahr Apr 1976 A
3970934 Aksu Jul 1976 A
3976959 Gaspari Aug 1976 A
3992073 Buchoff et al. Nov 1976 A
3996517 Fergason et al. Dec 1976 A
4001685 Roch Jan 1977 A
4008900 Khoshaba Feb 1977 A
4009456 Hopfer Feb 1977 A
4027253 Chiron et al. May 1977 A
4035723 Kvaternik Jul 1977 A
4038894 Knibbe et al. Aug 1977 A
4042119 Hassan et al. Aug 1977 A
4049252 Bell Sep 1977 A
4066943 Roch Jan 1978 A
4072576 Arwin et al. Feb 1978 A
4093988 Scott Jun 1978 A
4099120 Aksu Jul 1978 A
4115735 Stanford Sep 1978 A
4115736 Tracy Sep 1978 A
4116523 Coberly et al. Sep 1978 A
4135131 Larsen et al. Jan 1979 A
4151465 Lenz Apr 1979 A
4161692 Tarzwell Jul 1979 A
4172993 Leach Oct 1979 A
4186338 Fichtenbaum Jan 1980 A
4275446 Blaess Jun 1981 A
4277741 Faxvog et al. Jul 1981 A
4280112 Eisenhart Jul 1981 A
4284033 delRio Aug 1981 A
4284682 Frosch et al. Aug 1981 A
4287473 Sawyer Sep 1981 A
4327180 Chen Apr 1982 A
4330783 Toia May 1982 A
4342958 Russell Aug 1982 A
4346355 Tsukii Aug 1982 A
4352061 Matrone Sep 1982 A
4357575 Uren et al. Nov 1982 A
4365109 O'Loughlin Dec 1982 A
4365195 Stegens Dec 1982 A
4371742 Manly Feb 1983 A
4376920 Smith Mar 1983 A
4383178 Shibata et al. May 1983 A
4383217 Shiell May 1983 A
4401945 Juengel Aug 1983 A
4414638 Talambrias Nov 1983 A
4419626 Cedrone et al. Dec 1983 A
4425395 Negishi et al. Jan 1984 A
4426619 Demand Jan 1984 A
4453142 Murphy Jun 1984 A
4468629 Choma, Jr. Aug 1984 A
4473798 Cedrone et al. Sep 1984 A
4479690 Inouye et al. Oct 1984 A
4480223 Aigo Oct 1984 A
4487996 Rabinowitz et al. Dec 1984 A
4491173 Demand Jan 1985 A
4503335 Takahashi Mar 1985 A
4507602 Aguirre Mar 1985 A
4515133 Roman May 1985 A
4515439 Esswein May 1985 A
4528504 Thornton, Jr. et al. Jul 1985 A
4531474 Inuta Jul 1985 A
4532423 Tojo et al. Jul 1985 A
4552033 Marzhauser Nov 1985 A
4557599 Zimring Dec 1985 A
4566184 Higgins et al. Jan 1986 A
4567321 Harayama Jan 1986 A
4567908 Bolsterli Feb 1986 A
4575676 Palkuti Mar 1986 A
4588950 Henley May 1986 A
4588970 Donecker et al. May 1986 A
4621169 Petinelli et al. Nov 1986 A
4626618 Takaoka et al. Dec 1986 A
4641659 Sepponen Feb 1987 A
4642417 Ruthrof et al. Feb 1987 A
4646005 Ryan Feb 1987 A
4651115 Wu Mar 1987 A
4665360 Phillips May 1987 A
4673839 Veenendaal Jun 1987 A
4675600 Gergin Jun 1987 A
4680538 Dalman et al. Jul 1987 A
4684883 Ackerman et al. Aug 1987 A
4691163 Blass et al. Sep 1987 A
4691831 Suzuki et al. Sep 1987 A
4694245 Frommes Sep 1987 A
4695794 Bargett et al. Sep 1987 A
4697143 Lockwood et al. Sep 1987 A
4703433 Sharrit Oct 1987 A
4705447 Smith Nov 1987 A
4706019 Richardson Nov 1987 A
4711563 Lass Dec 1987 A
4712370 MacGee Dec 1987 A
4713347 Mitchell et al. Dec 1987 A
4725793 Igarashi Feb 1988 A
4727637 Buckwitz et al. Mar 1988 A
4730158 Kasai et al. Mar 1988 A
4731577 Logan Mar 1988 A
4734872 Eager et al. Mar 1988 A
4739259 Hadwin et al. Apr 1988 A
4742571 Letron May 1988 A
4744041 Strunk et al. May 1988 A
4746857 Sakai et al. May 1988 A
4754239 Sedivec Jun 1988 A
4755746 Mallory et al. Jul 1988 A
4755747 Sato Jul 1988 A
4755874 Esrig et al. Jul 1988 A
4757255 Margozzi Jul 1988 A
4758785 Rath Jul 1988 A
4759712 Demand Jul 1988 A
4766384 Kleinberg et al. Aug 1988 A
4771234 Cook et al. Sep 1988 A
4772846 Reeds Sep 1988 A
4777434 Miller et al. Oct 1988 A
4780670 Cherry Oct 1988 A
4783625 Harry et al. Nov 1988 A
4784213 Eager et al. Nov 1988 A
4786867 Yamatsu Nov 1988 A
4787752 Fraser et al. Nov 1988 A
4791363 Logan Dec 1988 A
4795962 Yanagawa et al. Jan 1989 A
4805627 Klingenbeck et al. Feb 1989 A
4810981 Herstein Mar 1989 A
4812754 Tracy et al. Mar 1989 A
4816767 Cannon et al. Mar 1989 A
4818169 Schram et al. Apr 1989 A
4827211 Strid et al. May 1989 A
4831494 Arnold et al. May 1989 A
4838802 Soar Jun 1989 A
4839587 Flatley et al. Jun 1989 A
4845426 Nolan et al. Jul 1989 A
4849689 Gleason Jul 1989 A
4853613 Sequeira et al. Aug 1989 A
4853624 Rabjohn Aug 1989 A
4853627 Gleason et al. Aug 1989 A
4856426 Wirz Aug 1989 A
4856904 Akagawa Aug 1989 A
4858160 Strid et al. Aug 1989 A
4859989 McPherson Aug 1989 A
4864227 Sato Sep 1989 A
4871883 Guiol Oct 1989 A
4871965 Elbert et al. Oct 1989 A
4884026 Hayakawa et al. Nov 1989 A
4884206 Mate Nov 1989 A
4888550 Reid Dec 1989 A
4891584 Kamieniecki et al. Jan 1990 A
4893914 Hancock et al. Jan 1990 A
4894612 Drake et al. Jan 1990 A
4896109 Rauscher Jan 1990 A
4899998 Teramachi Feb 1990 A
4904933 Snyder et al. Feb 1990 A
4904935 Calma et al. Feb 1990 A
4906920 Huff et al. Mar 1990 A
4916398 Rath Apr 1990 A
4918279 Babel et al. Apr 1990 A
4918374 Stewart et al. Apr 1990 A
4918383 Huff et al. Apr 1990 A
4922128 Dhong et al. May 1990 A
4922186 Tsuchiya et al. May 1990 A
4923407 Rice et al. May 1990 A
4926118 O'Connor et al. May 1990 A
4929893 Sato et al. May 1990 A
4933634 Cuzin et al. Jun 1990 A
4968931 Littlebury et al. Nov 1990 A
4978907 Smith Dec 1990 A
4978914 Akimoto et al. Dec 1990 A
4982153 Collins et al. Jan 1991 A
4994737 Carlton et al. Feb 1991 A
5001423 Abrami et al. Mar 1991 A
5006796 Burton et al. Apr 1991 A
5010296 Okada et al. Apr 1991 A
5019692 Nbedi et al. May 1991 A
5030907 Yih et al. Jul 1991 A
5034688 Moulene et al. Jul 1991 A
5041782 Marzan Aug 1991 A
5045781 Gleason et al. Sep 1991 A
5061823 Carroll Oct 1991 A
5065089 Rich Nov 1991 A
5065092 Sigler Nov 1991 A
5066357 Smyth, Jr. et al. Nov 1991 A
5070297 Kwon et al. Dec 1991 A
5077523 Blanz Dec 1991 A
5082627 Stanbro Jan 1992 A
5084671 Miyata et al. Jan 1992 A
5089774 Nakano Feb 1992 A
5091691 Kamieniecki et al. Feb 1992 A
5091732 Mileski et al. Feb 1992 A
5095891 Reitter Mar 1992 A
5097207 Blanz Mar 1992 A
5101149 Adams et al. Mar 1992 A
5101453 Rumbaugh Mar 1992 A
5103169 Heaton et al. Apr 1992 A
5105148 Lee Apr 1992 A
5105181 Ross Apr 1992 A
5107076 Bullock et al. Apr 1992 A
5136237 Smith et al. Aug 1992 A
5142224 Smith et al. Aug 1992 A
5144228 Sorna et al. Sep 1992 A
5159264 Anderson Oct 1992 A
5159267 Anderson Oct 1992 A
5159752 Mahant-Shetti et al. Nov 1992 A
5160883 Blanz Nov 1992 A
5164319 Hafeman et al. Nov 1992 A
5164661 Jones Nov 1992 A
5166606 Blanz Nov 1992 A
5172049 Kiyokawa et al. Dec 1992 A
5172051 Zamborelli Dec 1992 A
5187443 Bereskin Feb 1993 A
5198752 Miyata et al. Mar 1993 A
5198753 Hamburgen Mar 1993 A
5198756 Jenkins et al. Mar 1993 A
5198758 Iknaian et al. Mar 1993 A
5202558 Barker Apr 1993 A
5209088 Vaks May 1993 A
5210485 Kreiger et al. May 1993 A
5214243 Johnson May 1993 A
5214374 St. Onge May 1993 A
5218185 Gross Jun 1993 A
5220277 Reitinger Jun 1993 A
5221905 Bhangu et al. Jun 1993 A
5225037 Elder et al. Jul 1993 A
5225796 Williams et al. Jul 1993 A
5227730 King et al. Jul 1993 A
5232789 Platz et al. Aug 1993 A
5233197 Bowman et al. Aug 1993 A
5233306 Misra Aug 1993 A
5237267 Harwood et al. Aug 1993 A
5245292 Milesky et al. Sep 1993 A
5266889 Harwood et al. Nov 1993 A
5267088 Nomura Nov 1993 A
5270664 McMurtry et al. Dec 1993 A
5274336 Crook et al. Dec 1993 A
5278494 Obigane Jan 1994 A
5280156 Niori et al. Jan 1994 A
5298972 Heffner Mar 1994 A
5303938 Miller et al. Apr 1994 A
5304924 Yamano et al. Apr 1994 A
5315237 Iwakura et al. May 1994 A
5321352 Takebuchi Jun 1994 A
5321453 Mori et al. Jun 1994 A
5325052 Yamashita Jun 1994 A
5334931 Clarke et al. Aug 1994 A
5336989 Hofer Aug 1994 A
5345170 Schwindt et al. Sep 1994 A
5357211 Bryson et al. Oct 1994 A
5363050 Guo et al. Nov 1994 A
5369368 Kassen et al. Nov 1994 A
5369370 Stratmann et al. Nov 1994 A
5371457 Lipp Dec 1994 A
5373231 Boll et al. Dec 1994 A
5374938 Hatazawa et al. Dec 1994 A
5376790 Linker et al. Dec 1994 A
5382898 Subramanian Jan 1995 A
5397855 Ferlier Mar 1995 A
5404111 Mori et al. Apr 1995 A
5408188 Katoh Apr 1995 A
5408189 Swart et al. Apr 1995 A
5410259 Fujihara et al. Apr 1995 A
5412330 Ravel et al. May 1995 A
5412866 Woith et al. May 1995 A
5414565 Sullivan et al. May 1995 A
5422574 Kister Jun 1995 A
5434512 Schwindt et al. Jul 1995 A
5448172 Dechene et al. Sep 1995 A
5451884 Sauerland Sep 1995 A
5457398 Schwindt et al. Oct 1995 A
5461328 Devereaux et al. Oct 1995 A
5467024 Swapp Nov 1995 A
5469324 Henderson et al. Nov 1995 A
5475316 Hurley et al. Dec 1995 A
5477011 Singles et al. Dec 1995 A
5478748 Akins, Jr. et al. Dec 1995 A
5479108 Cheng Dec 1995 A
5479109 Lau et al. Dec 1995 A
5481196 Nosov Jan 1996 A
5481936 Yanagisawa Jan 1996 A
5486975 Shamouilian et al. Jan 1996 A
5488954 Sleva et al. Feb 1996 A
5491426 Small Feb 1996 A
5493070 Habu Feb 1996 A
5493236 Ishii et al. Feb 1996 A
5500606 Holmes Mar 1996 A
5505150 James et al. Apr 1996 A
5506498 Anderson et al. Apr 1996 A
5506515 Godshalk et al. Apr 1996 A
5508631 Manku et al. Apr 1996 A
5510792 Ono et al. Apr 1996 A
5511010 Burns Apr 1996 A
5512835 Rivera et al. Apr 1996 A
5515167 Ledger et al. May 1996 A
5517111 Shelor May 1996 A
5521522 Abe et al. May 1996 A
5523694 Cole, Jr. Jun 1996 A
5528158 Sinsheimer et al. Jun 1996 A
5530371 Perry et al. Jun 1996 A
5530372 Lee et al. Jun 1996 A
5532609 Harwood et al. Jul 1996 A
5539323 Davis, Jr. Jul 1996 A
5539676 Yamaguchi Jul 1996 A
5546012 Perry et al. Aug 1996 A
5550480 Nelson et al. Aug 1996 A
5550482 Sano Aug 1996 A
5552716 Bruce et al. Sep 1996 A
5561377 Strid et al. Oct 1996 A
5561585 Barnes et al. Oct 1996 A
5565788 Burr et al. Oct 1996 A
5565881 Phillips et al. Oct 1996 A
5569591 Kell et al. Oct 1996 A
5571324 Sago et al. Nov 1996 A
5572398 Federlin et al. Nov 1996 A
5578932 Adamian Nov 1996 A
5583445 Mullen Dec 1996 A
5584608 Gillespie Dec 1996 A
5594358 Ishikawa et al. Jan 1997 A
5600256 Woith et al. Feb 1997 A
5604444 Harwood et al. Feb 1997 A
5610529 Schwindt Mar 1997 A
5611946 Leong et al. Mar 1997 A
5617035 Swapp Apr 1997 A
5628057 Phillips et al. May 1997 A
5629631 Perry et al. May 1997 A
5631571 Spaziani et al. May 1997 A
5633780 Cronin May 1997 A
5640101 Kuji et al. Jun 1997 A
5642298 Mallory et al. Jun 1997 A
5644248 Fujimoto Jul 1997 A
5646538 Lide et al. Jul 1997 A
5653939 Hollis et al. Aug 1997 A
5656942 Watts et al. Aug 1997 A
5657394 Schwartz et al. Aug 1997 A
5659255 Strid et al. Aug 1997 A
5659421 Rahmel et al. Aug 1997 A
5663653 Schwindt et al. Sep 1997 A
5666063 Abercrombie et al. Sep 1997 A
5668470 Shelor Sep 1997 A
5669316 Faz et al. Sep 1997 A
5670322 Eggers et al. Sep 1997 A
5670888 Cheng Sep 1997 A
5672816 Park et al. Sep 1997 A
5675499 Lee et al. Oct 1997 A
5675932 Mauney Oct 1997 A
5676360 Boucher et al. Oct 1997 A
5680039 Mochizuki et al. Oct 1997 A
5682337 El-Fishaway et al. Oct 1997 A
5685232 Inoue Nov 1997 A
5704355 Bridges Jan 1998 A
5712571 O'Donoghue Jan 1998 A
5715819 Svenson et al. Feb 1998 A
5729150 Schwindt Mar 1998 A
5731708 Sobhami Mar 1998 A
5731920 Katsuragawa Mar 1998 A
5744971 Chan et al. Apr 1998 A
5748506 Bockelman May 1998 A
5751252 Phillips May 1998 A
5767690 Fujimoto Jun 1998 A
5773951 Markowski et al. Jun 1998 A
5777485 Tanaka et al. Jul 1998 A
5792668 Fuller et al. Aug 1998 A
5793213 Bockelman et al. Aug 1998 A
5794133 Kashima Aug 1998 A
5798652 Taraci Aug 1998 A
5802856 Schaper et al. Sep 1998 A
5804982 Lo et al. Sep 1998 A
5804983 Nakajima et al. Sep 1998 A
5807107 Bright et al. Sep 1998 A
5811751 Leong et al. Sep 1998 A
5824494 Feldberg Oct 1998 A
5828225 Obikane et al. Oct 1998 A
5829437 Bridges Nov 1998 A
5831442 Heigl Nov 1998 A
5833601 Swartz et al. Nov 1998 A
5835997 Yassine Nov 1998 A
5838161 Akram et al. Nov 1998 A
5841288 Meaney et al. Nov 1998 A
5846708 Hollis et al. Dec 1998 A
5847569 Ho et al. Dec 1998 A
5848500 Kirk Dec 1998 A
5852232 Samsavar et al. Dec 1998 A
5854608 Leisten Dec 1998 A
5857667 Lee Jan 1999 A
5861743 Pye et al. Jan 1999 A
5867073 Weinreb et al. Feb 1999 A
5869326 Hofmann Feb 1999 A
5869975 Strid et al. Feb 1999 A
5874361 Collins et al. Feb 1999 A
5879289 Yarush et al. Mar 1999 A
5883522 O'Boyle Mar 1999 A
5883523 Ferland et al. Mar 1999 A
5888075 Hasegawa et al. Mar 1999 A
5892539 Colvin Apr 1999 A
5900737 Graham et al. May 1999 A
5903143 Mochizuki et al. May 1999 A
5905421 Oldfield May 1999 A
5910727 Fujihara et al. Jun 1999 A
5916689 Collins et al. Jun 1999 A
5923177 Wardwell Jul 1999 A
5926028 Mochizuki Jul 1999 A
5942907 Chiang Aug 1999 A
5944093 Viswanath Aug 1999 A
5945836 Sayre et al. Aug 1999 A
5949383 Hayes et al. Sep 1999 A
5949579 Baker Sep 1999 A
5952842 Fujimoto Sep 1999 A
5959461 Brown et al. Sep 1999 A
5960411 Hartman et al. Sep 1999 A
5963027 Peters Oct 1999 A
5963364 Leong et al. Oct 1999 A
5970429 Martin Oct 1999 A
5973505 Strid et al. Oct 1999 A
5974662 Eldridge et al. Nov 1999 A
5981268 Kovacs et al. Nov 1999 A
5982166 Mautz Nov 1999 A
5993611 Moroney, III et al. Nov 1999 A
5995914 Cabot Nov 1999 A
5996102 Haulin Nov 1999 A
5998768 Hunter et al. Dec 1999 A
5999268 Yonezawa et al. Dec 1999 A
6001760 Katsuda et al. Dec 1999 A
6002236 Trant et al. Dec 1999 A
6002263 Peters et al. Dec 1999 A
6002426 Back et al. Dec 1999 A
6013586 McGhee et al. Jan 2000 A
6019612 Hasegawa et al. Feb 2000 A
6023209 Faulkner et al. Feb 2000 A
6028435 Nikawa Feb 2000 A
6029141 Bezos et al. Feb 2000 A
6031383 Streib et al. Feb 2000 A
6032714 Fenton Mar 2000 A
6034533 Tervo et al. Mar 2000 A
6037785 Higgins Mar 2000 A
6037793 Miyazawa et al. Mar 2000 A
6043667 Cadwallader et al. Mar 2000 A
6049216 Yang et al. Apr 2000 A
6051422 Kovacs et al. Apr 2000 A
6052653 Mazur et al. Apr 2000 A
6054869 Hutton et al. Apr 2000 A
6060888 Blackham et al. May 2000 A
6060891 Hembree et al. May 2000 A
6060892 Yamagata May 2000 A
6061589 Bridges et al. May 2000 A
6064213 Khandros et al. May 2000 A
6064217 Smith May 2000 A
6064218 Godfrey et al. May 2000 A
6066911 Lindemann et al. May 2000 A
6078183 Cole, Jr. Jun 2000 A
6091236 Piety et al. Jul 2000 A
6091255 Godfrey Jul 2000 A
6096567 Kaplan et al. Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104203 Costello et al. Aug 2000 A
6104206 Verkuil Aug 2000 A
6111419 Lefever et al. Aug 2000 A
6114865 Lagowski et al. Sep 2000 A
6118287 Boll et al. Sep 2000 A
6118894 Schwartz et al. Sep 2000 A
6121783 Horner et al. Sep 2000 A
6124723 Costello Sep 2000 A
6124725 Sato Sep 2000 A
6127831 Khoury et al. Oct 2000 A
6130544 Strid et al. Oct 2000 A
6137302 Schwindt Oct 2000 A
6137303 Deckert et al. Oct 2000 A
6144212 Mizuta Nov 2000 A
6147502 Fryer et al. Nov 2000 A
6147851 Anderson Nov 2000 A
6160407 Nikawa Dec 2000 A
6166553 Sinsheimer Dec 2000 A
6169410 Grace et al. Jan 2001 B1
6172337 Johnsgard et al. Jan 2001 B1
6175228 Zamborelli et al. Jan 2001 B1
6181144 Hembree et al. Jan 2001 B1
6181149 Godfrey et al. Jan 2001 B1
6181297 Leisten Jan 2001 B1
6181416 Falk Jan 2001 B1
6184845 Leisten et al. Feb 2001 B1
6191596 Abiko Feb 2001 B1
6194720 Li et al. Feb 2001 B1
6194907 Kanao et al. Feb 2001 B1
6198299 Hollman Mar 2001 B1
6211663 Moulthrop et al. Apr 2001 B1
6211837 Crouch et al. Apr 2001 B1
6215295 Smith, III Apr 2001 B1
6222031 Wakabayashi et al. Apr 2001 B1
6222970 Wach et al. Apr 2001 B1
6229327 Boll et al. May 2001 B1
6232787 Lo et al. May 2001 B1
6232788 Schwindt et al. May 2001 B1
6232789 Schwindt May 2001 B1
6232790 Bryan et al. May 2001 B1
6233613 Walker et al. May 2001 B1
6236223 Brady et al. May 2001 B1
6236975 Boe et al. May 2001 B1
6236977 Verba et al. May 2001 B1
6242929 Mizuta Jun 2001 B1
6245692 Pearce et al. Jun 2001 B1
6251595 Gordon et al. Jun 2001 B1
6252392 Peters Jun 2001 B1
6257319 Kainuma et al. Jul 2001 B1
6257564 Avneri et al. Jul 2001 B1
6259261 Engelking et al. Jul 2001 B1
6265950 Schmidt et al. Jul 2001 B1
6271673 Furuta et al. Aug 2001 B1
6275738 Kasevich et al. Aug 2001 B1
6278051 Peabody Aug 2001 B1
6278411 Ohlsson et al. Aug 2001 B1
6281691 Matsunaga et al. Aug 2001 B1
6284971 Atalar et al. Sep 2001 B1
6288557 Peters et al. Sep 2001 B1
6292760 Burns Sep 2001 B1
6300775 Peach et al. Oct 2001 B1
6307672 DeNure Oct 2001 B1
6310483 Taura et al. Oct 2001 B1
6310755 Kholodenko et al. Oct 2001 B1
6313649 Harwood et al. Nov 2001 B2
6320372 Keller Nov 2001 B1
6320396 Nikawa Nov 2001 B1
6327034 Hoover et al. Dec 2001 B1
6335625 Bryant et al. Jan 2002 B1
6335628 Schwindt et al. Jan 2002 B2
6340568 Hefti Jan 2002 B2
6340895 Gervais Jan 2002 B1
6359456 Hembree et al. Mar 2002 B1
6362636 Peters et al. Mar 2002 B1
6362792 Sawamura et al. Mar 2002 B1
6366247 Sawamura et al. Apr 2002 B1
6369776 Leisten et al. Apr 2002 B1
6376258 Hefti Apr 2002 B2
6380751 Harwood et al. Apr 2002 B2
6384614 Hager et al. May 2002 B1
6395480 Hefti May 2002 B1
6396296 Tarter et al. May 2002 B1
6396298 Young et al. May 2002 B1
6400168 Matsunaga et al. Jun 2002 B2
6404213 Noda Jun 2002 B2
6407560 Walraven et al. Jun 2002 B1
6407562 Whiteman Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
6414478 Suzuki Jul 2002 B1
6415858 Getchel et al. Jul 2002 B1
6418009 Brunette Jul 2002 B1
6420722 Moore et al. Jul 2002 B2
6424141 Hollman et al. Jul 2002 B1
6424316 Leisten Jul 2002 B1
6445202 Cowan et al. Sep 2002 B1
6447339 Reed et al. Sep 2002 B1
6448788 Meaney et al. Sep 2002 B1
6459739 Vitenberg Oct 2002 B1
6476442 Williams et al. Nov 2002 B1
6480013 Nayler et al. Nov 2002 B1
6481939 Gillespie et al. Nov 2002 B1
6483327 Bruce et al. Nov 2002 B1
6483336 Harris et al. Nov 2002 B1
6486687 Harwood et al. Nov 2002 B2
6488405 Eppes et al. Dec 2002 B1
6489789 Peters et al. Dec 2002 B2
6490471 Svenson et al. Dec 2002 B2
6492822 Schwindt et al. Dec 2002 B2
6501289 Takekoshi Dec 2002 B1
6512482 Nelson et al. Jan 2003 B1
6515494 Low Feb 2003 B1
6528993 Shin et al. Mar 2003 B1
6529844 Kapetanic et al. Mar 2003 B1
6548311 Knoll Apr 2003 B1
6549022 Cole, Jr. et al. Apr 2003 B1
6549026 Dibattista et al. Apr 2003 B1
6549106 Martin Apr 2003 B2
6566079 Hefti May 2003 B2
6573702 Marcuse et al. Jun 2003 B2
6578264 Gleason et al. Jun 2003 B1
6580283 Carbone et al. Jun 2003 B1
6582979 Coccioli et al. Jun 2003 B2
6587327 Devoe et al. Jul 2003 B1
6603322 Boll et al. Aug 2003 B1
6605951 Cowan Aug 2003 B1
6605955 Costello et al. Aug 2003 B1
6608494 Bruce et al. Aug 2003 B1
6608496 Strid et al. Aug 2003 B1
6611417 Chen Aug 2003 B2
6617862 Bruce Sep 2003 B1
6621082 Morita et al. Sep 2003 B2
6624891 Marcus et al. Sep 2003 B2
6627461 Chapman et al. Sep 2003 B2
6628503 Sogard Sep 2003 B2
6628980 Atalar et al. Sep 2003 B2
6633174 Satya et al. Oct 2003 B1
6636059 Harwood et al. Oct 2003 B2
6636182 Mehltretter Oct 2003 B2
6639415 Peters et al. Oct 2003 B2
6639461 Tam et al. Oct 2003 B1
6642732 Cowan et al. Nov 2003 B2
6643597 Dunsmore Nov 2003 B1
6653903 Leich et al. Nov 2003 B2
6657601 McLean Dec 2003 B2
6686753 Kitahata Feb 2004 B1
6701265 Hill et al. Mar 2004 B2
6707548 Kreimer et al. Mar 2004 B2
6710798 Hershel et al. Mar 2004 B1
6717426 Iwasaki Apr 2004 B2
6720782 Schwindt et al. Apr 2004 B2
6724205 Hayden et al. Apr 2004 B1
6724928 Davis Apr 2004 B1
6727716 Sharif Apr 2004 B1
6731804 Chugo et al. May 2004 B1
6734687 Ishitani et al. May 2004 B1
6737920 Jen et al. May 2004 B2
6744268 Hollman Jun 2004 B2
6753679 Kwong et al. Jun 2004 B1
6753699 Stockstad Jun 2004 B2
6768328 Self et al. Jul 2004 B2
6770955 Coccioli et al. Aug 2004 B1
6771090 Harris et al. Aug 2004 B2
6771806 Satya et al. Aug 2004 B1
6774651 Hembree Aug 2004 B1
6777964 Navratil et al. Aug 2004 B2
6778140 Yeh Aug 2004 B1
6784679 Sweet et al. Aug 2004 B2
6788093 Aitren et al. Sep 2004 B2
6791344 Cook et al. Sep 2004 B2
6794888 Kawaguchi et al. Sep 2004 B2
6794950 Du Toit et al. Sep 2004 B2
6798226 Altmann et al. Sep 2004 B2
6801047 Harwood et al. Oct 2004 B2
6806724 Hayden et al. Oct 2004 B2
6806836 Ogawa et al. Oct 2004 B2
6809533 Anlage et al. Oct 2004 B1
6812718 Chong et al. Nov 2004 B1
6822463 Jacobs Nov 2004 B1
6836135 Harris et al. Dec 2004 B2
6838885 Kamitani Jan 2005 B2
6842024 Peters et al. Jan 2005 B2
6843024 Nozaki et al. Jan 2005 B2
6847219 Lesher et al. Jan 2005 B1
6856129 Thomas et al. Feb 2005 B2
6861856 Dunklee et al. Mar 2005 B2
6864694 McTigue Mar 2005 B2
6873167 Goto et al. Mar 2005 B2
6885197 Harris et al. Apr 2005 B2
6900646 Kasukabe et al. May 2005 B2
6900647 Yoshida et al. May 2005 B2
6900652 Mazur May 2005 B2
6900653 Yu et al. May 2005 B2
6902941 Sun Jun 2005 B2
6903563 Yoshida et al. Jun 2005 B2
6914244 Alani Jul 2005 B2
6914580 Leisten Jul 2005 B2
6927079 Fyfield Aug 2005 B1
6937341 Woollam et al. Aug 2005 B1
6970001 Chheda et al. Nov 2005 B2
6987483 Tran Jan 2006 B2
7001785 Chen Feb 2006 B1
7002133 Beausoleil et al. Feb 2006 B2
7002363 Mathieu Feb 2006 B2
7002364 Kang et al. Feb 2006 B2
7003184 Ronnekleiv et al. Feb 2006 B2
7005842 Fink et al. Feb 2006 B2
7005868 McTigue Feb 2006 B2
7005879 Robertazzi Feb 2006 B1
7006046 Aisenbrey Feb 2006 B2
7007380 Das et al. Mar 2006 B2
7009188 Wang Mar 2006 B2
7009383 Harwood et al. Mar 2006 B2
7009415 Kobayashi et al. Mar 2006 B2
7011531 Egitto et al. Mar 2006 B2
7012425 Shoji Mar 2006 B2
7012441 Chou et al. Mar 2006 B2
7013221 Friend et al. Mar 2006 B1
7014499 Yoon Mar 2006 B2
7015455 Mitsuoka et al. Mar 2006 B2
7015689 Kasajima et al. Mar 2006 B2
7015690 Wang et al. Mar 2006 B2
7015703 Hopkins et al. Mar 2006 B2
7015707 Cherian Mar 2006 B2
7015708 Beckous et al. Mar 2006 B2
7015709 Capps et al. Mar 2006 B2
7015710 Yoshida et al. Mar 2006 B2
7015711 Rothaug et al. Mar 2006 B2
7019541 Kittrell Mar 2006 B2
7019544 Jacobs et al. Mar 2006 B1
7019701 Ohno et al. Mar 2006 B2
7020360 Satomura et al. Mar 2006 B2
7020363 Johannessen Mar 2006 B2
7022976 Santana, Jr. et al. Apr 2006 B1
7022985 Knebel et al. Apr 2006 B2
7023225 Blackwood Apr 2006 B2
7023226 Okumura et al. Apr 2006 B2
7023229 Maesaki et al. Apr 2006 B2
7023231 Howland, Jr. et al. Apr 2006 B2
7025628 LaMeres et al. Apr 2006 B2
7026832 Chaya et al. Apr 2006 B2
7026833 Rincon et al. Apr 2006 B2
7026834 Hwang Apr 2006 B2
7026835 Farnworth et al. Apr 2006 B2
7030599 Douglas Apr 2006 B2
7030827 Mahler et al. Apr 2006 B2
7032307 Matsunaga et al. Apr 2006 B2
7034553 Gilboe Apr 2006 B2
7035738 Matsumoto et al. Apr 2006 B2
7088981 Chang Aug 2006 B2
7096133 Martin et al. Aug 2006 B1
7101797 Yuasa Sep 2006 B2
7187188 Andrews et al. Mar 2007 B2
7188037 Hidehira Mar 2007 B2
20010002794 Draving et al. Jun 2001 A1
20010009377 Schwindt et al. Jul 2001 A1
20010010468 Gleason et al. Aug 2001 A1
20010020283 Sakaguchi Sep 2001 A1
20010024116 Draving Sep 2001 A1
20010030549 Gleason et al. Oct 2001 A1
20010043073 Montoya Nov 2001 A1
20010044152 Burnett Nov 2001 A1
20010045511 Moore et al. Nov 2001 A1
20010054906 Fujimura Dec 2001 A1
20020005728 Babson et al. Jan 2002 A1
20020008533 Ito et al. Jan 2002 A1
20020009377 Shafer Jan 2002 A1
20020009378 Obara Jan 2002 A1
20020011859 Smith et al. Jan 2002 A1
20020011863 Takahashi et al. Jan 2002 A1
20020050828 Seward, IV et al. May 2002 A1
20020070743 Felici et al. Jun 2002 A1
20020070745 Johnson et al. Jun 2002 A1
20020075027 Hollman et al. Jun 2002 A1
20020079911 Schwindt Jun 2002 A1
20020118009 Hollman et al. Aug 2002 A1
20020118034 Laureantl Aug 2002 A1
20020149377 Hefti et al. Oct 2002 A1
20020153909 Petersen et al. Oct 2002 A1
20020163769 Brown Nov 2002 A1
20020168659 Hefti et al. Nov 2002 A1
20020180466 Hiramatsu et al. Dec 2002 A1
20020197709 Van der Weide et al. Dec 2002 A1
20030010877 Landreville et al. Jan 2003 A1
20030030822 Finarov Feb 2003 A1
20030032000 Liu et al. Feb 2003 A1
20030040004 Hefti et al. Feb 2003 A1
20030057513 Alexander Mar 2003 A1
20030062915 Arnold et al. Apr 2003 A1
20030071631 Alexander Apr 2003 A1
20030072549 Facer et al. Apr 2003 A1
20030077649 Cho et al. Apr 2003 A1
20030088180 VanVeen et al. May 2003 A1
20030119057 Gascoyne et al. Jun 2003 A1
20030139662 Seidman Jul 2003 A1
20030139790 Ingle et al. Jul 2003 A1
20030141861 Navratil et al. Jul 2003 A1
20030155939 Lutz et al. Aug 2003 A1
20030170898 Gunderson et al. Sep 2003 A1
20030184332 Tomimatsu et al. Oct 2003 A1
20040015060 Samsoondar et al. Jan 2004 A1
20040021475 Ito et al. Feb 2004 A1
20040061514 Schwindt et al. Apr 2004 A1
20040066181 Thies Apr 2004 A1
20040069776 Fagrell et al. Apr 2004 A1
20040090223 Yonezawa May 2004 A1
20040095145 Boudiaf et al. May 2004 A1
20040095641 Russum et al. May 2004 A1
20040100276 Fanton May 2004 A1
20040100297 Tanioka et al. May 2004 A1
20040108847 Stoll et al. Jun 2004 A1
20040113639 Dunklee et al. Jun 2004 A1
20040113640 Cooper et al. Jun 2004 A1
20040130787 Thome-Forster et al. Jul 2004 A1
20040132222 Hembree et al. Jul 2004 A1
20040134899 Hiramatsu et al. Jul 2004 A1
20040147034 Gore et al. Jul 2004 A1
20040162689 Jamneala et al. Aug 2004 A1
20040175294 Ellison et al. Sep 2004 A1
20040186382 Modell et al. Sep 2004 A1
20040193382 Adamian et al. Sep 2004 A1
20040197771 Powers et al. Oct 2004 A1
20040199350 Blackham et al. Oct 2004 A1
20040207072 Hiramatsu et al. Oct 2004 A1
20040207424 Hollman Oct 2004 A1
20040239338 Johnsson et al. Dec 2004 A1
20040246004 Heuermann Dec 2004 A1
20040251922 Martens et al. Dec 2004 A1
20050024069 Hayden et al. Feb 2005 A1
20050026276 Chou Feb 2005 A1
20050030047 Adamian Feb 2005 A1
20050054029 Tomimatsu et al. Mar 2005 A1
20050062533 Vice Mar 2005 A1
20050083130 Grilo Apr 2005 A1
20050099192 Dunklee et al. May 2005 A1
20050101846 Fine et al. May 2005 A1
20050156675 Rohde et al. Jul 2005 A1
20050164160 Gunter et al. Jul 2005 A1
20050165316 Lowery et al. Jul 2005 A1
20050168722 Forstner et al. Aug 2005 A1
20050174191 Brunker et al. Aug 2005 A1
20050178980 Skidmore et al. Aug 2005 A1
20050195124 Puente Ballarda et al. Sep 2005 A1
20050227503 Reitinger Oct 2005 A1
20050236587 Kodama et al. Oct 2005 A1
20050237102 Tanaka Oct 2005 A1
20060052075 Galivanche et al. Mar 2006 A1
20060114012 Reitinger Jun 2006 A1
20060155270 Hancock et al. Jul 2006 A1
20060158207 Reitinger Jul 2006 A1
20060226864 Kramer Oct 2006 A1
20070024506 Hardacker Feb 2007 A1
20070030021 Cowan et al. Feb 2007 A1
Foreign Referenced Citations (101)
Number Date Country
1083975 Mar 1994 CN
31 14 466 Mar 1982 DE
31 25 552 Nov 1982 DE
3637549 May 1988 DE
41 09 908 Oct 1992 DE
43 16 111 Nov 1994 DE
195 41 334 Sep 1996 DE
196 16 212 Oct 1996 DE
19522774 Jan 1997 DE
196 18 717 Jan 1998 DE
10000324 Jul 2001 DE
0 087 497 Sep 1983 EP
0 201 205 Dec 1986 EP
0 314 481 May 1989 EP
0 333 521 Sep 1989 EP
0 460 911 Dec 1991 EP
0 574 149 May 1993 EP
0 574 149 Dec 1993 EP
0 706 210 Apr 1996 EP
0 573 183 Jan 1999 EP
0 945 736 Sep 1999 EP
2 197 081 May 1988 GB
53-037077 Apr 1978 JP
53-052354 May 1978 JP
55-115383 Sep 1980 JP
56-007439 Jan 1981 JP
56-88333 Jul 1981 JP
57-075480 May 1982 JP
57-163035 Oct 1982 JP
62-011243 Jan 1987 JP
62-11243 Jan 1987 JP
62-51235 Mar 1987 JP
62-098634 May 1987 JP
62-107937 May 1987 JP
62-239050 Oct 1987 JP
63-108738 May 1988 JP
63-129640 Jun 1988 JP
63-143814 Jun 1988 JP
63-160355 Jul 1988 JP
63-318745 Dec 1988 JP
1-165968 Jun 1989 JP
1-178872 Jul 1989 JP
1-209380 Aug 1989 JP
1-214038 Aug 1989 JP
1-219575 Sep 1989 JP
1-295167 Nov 1989 JP
1-296167 Nov 1989 JP
2-22836 Jan 1990 JP
2-22837 Jan 1990 JP
2-22873 Jan 1990 JP
2-124469 May 1990 JP
2-191352 Jul 1990 JP
2-220453 Sep 1990 JP
3-67187 Mar 1991 JP
3-175367 Jul 1991 JP
3-196206 Aug 1991 JP
3-228348 Oct 1991 JP
4-130639 May 1992 JP
4-159043 Jun 1992 JP
4-206930 Jul 1992 JP
4-340248 Nov 1992 JP
5-082631 Apr 1993 JP
5-157790 Jun 1993 JP
51-57790 Jun 1993 JP
5-166893 Jul 1993 JP
51-66893 Jul 1993 JP
6-85044 Mar 1994 JP
60-71425 Mar 1994 JP
6-102313 Apr 1994 JP
6-132709 May 1994 JP
7-005078 Jan 1995 JP
7-5197 Jan 1995 JP
7-12871 Jan 1995 JP
7005078 Jan 1995 JP
7-273509 Oct 1995 JP
8-35987 Feb 1996 JP
8-261898 Oct 1996 JP
8-330401 Dec 1996 JP
10-116866 May 1998 JP
10-339743 Dec 1998 JP
11-023975 Jan 1999 JP
11-031724 Feb 1999 JP
2000-329664 Nov 2000 JP
2001-124676 May 2001 JP
2001-189285 Jul 2001 JP
2001-189378 Jul 2001 JP
2002033374 Jan 2002 JP
2002164396 Jun 2002 JP
2002-164396 Jun 2002 JP
2002-203879 Jul 2002 JP
2002-243502 Aug 2002 JP
843040 Jun 1981 SU
1392603 Apr 1988 SU
WO 8000101 Jan 1980 WO
WO 8607493 Dec 1986 WO
WO 8904001 May 1989 WO
WO 0169656 Sep 2001 WO
WO 2004049395 Jun 2004 WO
WO 2004065944 Aug 2004 WO
WO 2004079299 Sep 2004 WO
WO 2005062025 Jul 2005 WO
Related Publications (1)
Number Date Country
20050156610 A1 Jul 2005 US
Provisional Applications (1)
Number Date Country
60351844 Jan 2002 US
Continuations (1)
Number Date Country
Parent 10285135 Oct 2002 US
Child 10759481 US