The present invention relates to a projection aligner for projecting a pattern formed on a mask onto an object to be exposed to transfer the pattern to the object.
Projection aligners have been used to form wiring patterns of PCBs (Printed Circuit Boards), transparent electrodes of LCD (Liquid Crystal Display) panels and the like. In such projection aligners, a light beam is emitted from a high-power light source, such as an ultra-high-pressure mercury-vapor lamp, toward the object through the mask.
Objects such as printed circuit boards expand/contract in size up to 0.2% due to temperature variation of the atmosphere and/or forces applied thereon during surface polishing process and/or laminating process thereof. To transfer the image of the mask pattern to the object at a correct location irrespective the expansion/contraction of the object, the projection aligners enlarge/reduce the image of the mask pattern in accordance with the expansion/contraction of the object.
There are projection aligners that scans a plurality of light beams across the mask and the object in a predetermined scanning direction to transfer the entire pattern of a large size mask to the object. If the image is enlarged or reduced in accordance with the expansion/contraction of the object in such kind of projection aligners, the images formed on the object by the plurality of light beams become to be overlapped or to be spaced apart to each other in a direction perpendicular to the scanning direction and the image cannot be transferred correctly to the object.
The present invention is advantageous in that a projection aligner is provided which is capable of correctly transferring an enlarged/reduced image of a pattern formed on a mask to an object by scanning a plurality of light beams across the mask and the object.
According to an aspect of the invention, a projection aligner is provided that is arranged to scan a plurality of light beams over the mask in a first direction to transfer an image of a pattern formed on the mask to the object by the light beams passed through the mask.
The projection aligner includes a plurality of optical systems. Each of the optical systems projects different one of the light beams passed through the mask onto the object and thereby transfer different part of the images of the pattern on the mask, or the mask pattern, to the object.
Each of the optical systems includes a lens unit, a reflector and a deflector.
The lens unit has a positive power and is arranged such that an optical axis thereof is parallel to the first direction.
The reflector is provided to one side of the lens unit, preferably in the vicinity of a focal point of the lens unit, to reflect back the light that has passed through the lens unit. The reflector is supported movably in the first direction and in a second direction which is parallel to the object and perpendicular to the first direction. In some cases, a roof mirror, whose reflection surfaces are arranged perpendicular to the mask, is utilized as the reflector. Alternatively, a rectangular prism that internally reflects the light beam by rectangular surfaces thereof and is arranged such that the rectangular surfaces are perpendicular to the mask may be also utilized as the reflector.
The deflector is provided to the other side of the lens unit. The deflector has first and second mirrors. The first mirror deflects the light beam passed through the mask toward the reflector through the lens unit. The second mirror deflects the light beam reflected by the reflector and passed through the lens unit toward the object. The deflector is supported movably in a direction perpendicular to the object. In some cases, the deflector is a triangle prism whose section is an isosceles right triangle and the first and second mirrors are formed on side surfaces of the triangle prism forming a right angle.
In the projection aligner configured as above, each of the images projected onto the object by the optical systems can be enlarged/reduced by moving the reflector in the first direction and the deflector in the direction perpendicular to the object. Further, the location of each of the images formed on the object can be shifted in the second direction, or in the direction perpendicular to the direction the light beams are scanned to transfer the images on the object, by further moving the reflector in the second direction. Thus, the projection aligner can adjust the location of each of the images such that they do not overlap to one another or have gaps therebetween in the second direction even if each of the images are enlarged or reduced in size, and thereby transfer the entire image of the pattern of the mask exactly to the object.
Hereinafter, a projection aligner according to an embodiment of the present invention will be described with reference to the accompanying drawings.
In the following description, a direction in which the mask 4 and the substrate holder 8 move is referred to as an X-axis direction. Further, a Y-axis is defined, which is on a plane parallel to the mask 4 and perpendicular to the X-axis, and a Z-axis is defined as a direction of light beams emitted from the light sources 2 and incident on the substrate B. According to the embodiment, the light beams are perpendicularly incident on the surface of the substrate B.
Each of the projecting optical systems corresponds to different one of the light sources 2. Each projecting optical system includes a collimating lens 3, a mirror 5, a lens unit 6, and a roof mirror 7 that are arranged to project a portion of a mask pattern of the mask 4 onto the substrate B using the light beam emitted from the corresponding light source 2. The projecting optical systems are arranged such that the light beams impinge on the mask in two rows in a staggered configuration which extends in the y-axis direction and such that the whole mask pattern can be transferred onto the substrate B by a single scan (i.e., only by moving the substrate B and the mask 4 in one-way). Note that the mirror 5, lens unit 6 and the roof mirror 7 of adjacent projecting optical systems are arranged in opposite direction so that they do not interfere to each other.
The wavelength and output power of the light source 2 are determined such that the photosensitive material applied on the substrate B is sensitive to the light. An example of such a light source 2 is an ultrahigh-pressure mercury-vapor lamp. Each of the light beams emitted from the light sources 2 irradiate a strip of an area on the mask 4, through the collimating lenses 3. The light beams transmitted through the mask 4 are reflected by the mirrors 5.
The mirror 5 includes two reflection planes, i.e., first and second plane mirrors 5a and 5b. The mirror 5 is arranged such that the first plane mirror 5a deflects the light beam that has passed through the mask 4 toward the lens unit 6 and such that the second plane mirror 5b deflects the light beam coming from the lens unit 6 toward the substrate B.
In the present embodiment, the mirror 5 is formed in a triangular prism whose cross section on an X-Z plane is a right-angled isosceles triangle. The mirror 5 is arranged such that a normal to each of the first and second plane mirrors 5a and 5b forms 45 degrees with respect to the X-axis, and a ridge line formed by the first and second plane mirrors 5a and 5b extends in the Y-axis direction.
The first plane mirror 5a reflects the light beam transmitted through the mask 4 to proceed in the X-axis direction so that the light beam is incident on the lens unit 6. The light beam passed through the lens unit 6 is reflected by the roof prism 7 and is incident on the lens unit 6 again. The second plane mirror 5b reflects the light beam emerging from the lens unit 6 to proceed in the Z-axis direction so that the light beam is incident on the substrate B. Thus, the light beam passes through the lens unit 6 twice and forms an image of the mask pattern on the substrate B.
The lens unit 6 includes a plurality of lens elements arranged in the X-axis direction, and has a positive power as a whole.
The roof mirror 7 has a pair of mirror surfaces that are inwardly directed to form 90 degrees in the X-Y plane. The light beam emerged from the lens unit 6 is reflected by the roof mirror 7, returns to the lens unit 6 in a direction in parallel with the incident direction in the XY-plane. The roof mirror 7 is positioned near a focal point of the lens unit 6. With this arrangement, an erect image of the pattern of the mask 4 is formed on the substrate B. A right angle prism that internally reflects the light beam by surfaces forming the right angle can be used instead of the roof mirror 7.
The projection aligner 1 is also provided with a mask-driving mechanism 14 and an object-driving mechanism 18 for synchronously moving the mask 4 and the substrate holder 8, respectively, in the x-axis direction. A mirror driving mechanism 15 is also provided for each mirror 5 for positioning the mirror 5 in both x-axis and z-axis direction. Further, a roof mirror driving mechanism 17 is provided for each roof mirror 7 for positioning the roof mirror 7 in both x-axis and y-axis directions.
The projection aligner 1 includes a mask-position detector 24 that includes an illuminator for illuminating the mask 4 and a CCD camera for capturing the entire image of the mask 4 illuminated by the illuminator, and an object-position detector 28 that includes an illuminator for illuminating the substrate B and a CCD camera for capturing the entire image of the substrate B illuminated by the illuminator. The wavelength and light amount of the illuminators are determined to be ones to which the photosensitive material applied on the substrate B is not sensitive.
Both the mask 4 and substrate B have alignment marks near each corner thereof. A controller 10 specifies the positions of those alignment marks in the image captured by the CCD cameras and determines the longitudinal and transverse sizes of the substrate and the mask from those positions. The controller 10 further determines the expansion ratio of the image of the mask pattern to be transferred onto the substrate B. Note that, each of the mask-position detector 24 and the object-position detector 28 may include a plurality of cameras each arranged to capture a small area around different one of the alignment marks to allow determination of the position of each of the alignment marks, and in turn the determination of the expansion ratio, in high accuracy.
The projection aligner 1 further includes a substrate height detecting unit 38 for detecting the position of the photosensitive surface of the substrate B in the z-axis direction.
The laser source 38a emits a laser beam LB toward the photosensitive surface of the substrate B at an predetermined incident angle of θ. The wavelength and power of the laser beam LB is selected so that the laser beam LB does not expose the photosensitive material applied on the substrate B. One of the converging lens 38d is placed in front of the laser source 38a to form a beam spot on the substrate B.
The photo-detector 38b is arranged to receive the laser beam LB reflected at the substrate B. A one dimensional position sensitive detector may be utilized as the photo-detector 38b, which includes an elongated light receiving surface and being able to detect the position of the light incident thereon.
The other converging lens 38c is placed in front of the photo-detector 38b to form an image of the beam spot reflected at the substrate B on the light receiving surface of the photo-detector 38b.
The photo-detector 38b and the converging lens 38c are arranged so that the image of the beam spot is formed at the center of the light receiving surface of the photo-detector 38b when the photosensitive surface of the substrate B is located at a distance BH0 from the substrate holder in the z axis direction.
In the substrate height detecting unit 38 configured as above, the position where the laser beam LB is reflected on the substrate B, and in turn the position where the beam spot is formed on the photo-detector 38b, displaces if the height of the substrate B or the position of the photosensitive surface of the substrate B in the z-axis direction changes.
The displacement in the z-axis direction of the photosensitive surface of the substrate B and the displacement of the beam spot formed on the photo-detector 38b are proportional to each other. Thus, the height BH of the photosensitive surface of the substrate B from the substrate holder 8 can be derived from the following equation:
BH=BH0−(ΔLD/μ)×(sin(π/2−θ)/sin 2(π/2−θ)) (1)
where, ΔLD represents the displacement of the beam spot on the photo-detector 38b from the center thereon, and μ represents the magnification of the image formed on the photo-detector 38b by the converging lens 38c which is generally equal to the ratio of length of the optical path between the photo-detector 38b and the converging lens 38c, Λ2, to that between the converging lens 38c and the photosensitive surface of the substrate B, Λ1, that is Λ2/Λ1.
Note that a database may be provided to the projection aligner, which includes data on the relation between BH and ΔLD that is prepared experimentally, so that the height of the photosensitive surface of the substrate B can be determined based on the data of that database instead of utilizing equation (1).
Hereinafter, the operation of the projection aligner 1 shown in
First, the projection aligner 1 adjusts the focus of the projecting optical system to form a clear image of the mask pattern on the photosensitive surface of the substrate B. The focusing of the projecting optical system is achieved by the following procedure.
First, the controller 10 determines the height BH of the substrate B based on the output of the substrate height detecting unit 38 and equation (1). Then, the controller 10 calculates the sum of the optical path length from the mask 4 to the lens unit 6 and that from the lens unit 6 to the photosensitive surface of the substrate B, which will be referred to hereinafter as a total optical pass length DL, based on the height of the substrate, BH, and the position of the mirror 5.
The focusing of the projecting optical system is achieved when the photosensitive surface of the substrate B is placed at a location optically conjugate to the mask 4 with respect to the lens unit 6, that is, when the total optical pass length DL is twice as long as the focal length f of the lens unit 6. The controller 10 determines whether the substrate B is at a location optically conjugate to the mask 4 or not by subtracting the double of the focusing length f of the lens unit 6 from the total optical pass length DL. If the length difference ΔDL obtained as a result of the subtraction above is not zero, then the controller 10 adjust the focusing of the projecting optical system by operating the mirror driving mechanism 15 to move the mirror 5 in the x-axis direction.
In the projection aligner 1 according to the present embodiment, the total optical pass length DL can be changed by moving the mirror 5 in the x-axis direction. As may be understood from
Accordingly, if ΔDL>0, the controller 10 moves the mirror 5 for a distance of |ΔDL|/2 toward the lens unit 6, and if ΔDL<0, in a direction away from the lens unit 6. By moving the mirror 5 as above, the total optical path length DL becomes as long as two times of the focal length f of the lens unit 6 and, as a result, the image of the mask pattern is formed on the substrate with vivid clarity.
After the focusing of the projecting optical system, the projection aligner 1 determines the size ratio of the substrate B to the mask 4 and adjust the magnification of the projecting optical system, or the expansion ratio of the image of the mask pattern transferred onto the substrate B, in accordance with the size ratio obtained.
The size ratio of the substrate B to the mask 4 is determined based on the distances between alignment marks formed on the substrate B and the mask 4.
The mask 4 is provided with alignment marks M1a, M1b, M1c, and M1d. The alignment marks M1a, M1b, M1c, and M1d are formed at each corner of a virtual rectangular on the mask which is shown in broken line in FIG. 4. The virtual rectangular encloses the whole mask pattern area 4a and is defined by sides parallel to the sides of the mask 4.
The controller 10 operates the camera of the mask-position detector 24 to capture the image of the whole mask 4 and determines the lengths of the mask 4 in the x-axis direction (the direction the light beams are scanned over the mask) and in the y-axis direction (the direction perpendicular to the direction the light beams are scanned) from the distances between the marks M1a, M1b, M1c and M1d in the image obtained. More specifically, the controller 10 calculates the average of the distance between the marks M1a and M1b and the distance between the marks M1c and M1d as the length of the mask 4 in the x-axis direction, l1x. Similarly, the controller calculates the average of the distance between the marks M1b and M1c and the distance between the marks M1a and M1d as the length of the mask 4 in the y-axis direction, l1y.
The substrate B is provided with alignment marks M2a, M2b, M2c and M2d of which the positional relations, especially the distances between them, are the same as that of the alignment marks M1a, M1b, M1c and M1d of the mask 4 if the substrate B is not expanded or contracted from its original size.
The controller 10 operates the object-position detector 28 to capture the image of the whole substrate B and determines the lengths l2x and l2y of the substrate B in the x-axis and the y-axis directions, respectively, from the positions of the marks M2a, M2b, M2c and M2d in the captured image in a similar manner to that described above in relation with the mask 4.
Next, the controller 10 adjusts the magnification of the projection optical system, Mgn, to a value between a first size ratio SR1 and a second size ratio SR2, where the first size ratio SR1 is the length ratio of the substrate B to the mask 4 in x-axis direction, i.e., SR1=l2x/l1x, and the second size ratio SR2 that in y-axis direction, i.e., SR2=l2y/l1y.
For example, the controller 10 adjusts the magnification Mgn to a value derived from the following equation:
Mgn=(l2x+l2y)/(l1x+l1y) (2)
Alternatively, the controller 10 may adjust the magnification Mgn of the projecting optical system to one of the followings:
Mgn=(l2x/l1x+l2y/l1y)/2 (3)
Mgn=l2x/l1x (4)
Mgn=l2y/l1y (5)
Mgn=(m·l2x/l1x+n·l2y/l1y)/(m+n) (6)
where m, n are arbitrary positive real numbers.
It should be noted that, in some embodiments of the invention, the projection aligner 1 is configured, as schematically shown in
The adjustment of the magnification of the projecting optical system is achieved by moving the roof mirror 7 and the mirror 5 in the x-axis direction and z-axis direction, respectively.
In
As may be understood from
In the projection aligner 1 according to the present embodiment, the above-mentioned optical path length is changed by moving the mirror 5 in the z axis direction. This method is advantageous since the total optical path length DL does not change with the movement of the mirror 5 and therefore the image of the mask pattern is always clearly formed on the substrate B irrespective the scaling factor of the image. It should be also noted that the location where the optical axis of the projecting optical system impinges on the substrate B does not displaces with the movement of the mirror 5 in the z-axis direction.
If the roof mirror 7 is moved to a position of which the distance from the lens unit 6 is longer than the focal length of the lens unit 6, then the image on the substrate B can be enlarged by moving the mirror 5 toward the substrate B to decrease the length of the optical path from the lens-unit 6 to the substrate B, and vice versa. In contrast, if the roof mirror 7 is located between the lens unit 6 and its focal point, then the image on the substrate B can be enlarged by moving the mirror 5 away from substrate B to increase the length of the optical path between the lens unit and the substrate B, and vice versa.
The displacement ΔL1 of the roof mirror 7 in the x-axis direction from the focal point of the lens unit 6 and the displacement ΔD1 of the mirror 5 in the z-axis direction from the location at where the optical path length from the lens unit 6 to the substrate B is the same as the focal length of the lens unit 6 should satisfy the following relation to adjust the magnification of the projection optical system to Mgn:
(Mgn−1)=−2×ΔD1×ΔL1/f2 (7)
Thus, the controller 10 positions the roof mirror 7 and the mirror 5 so that the equation (7) is satisfied.
As described above, the projection optical system in the projection aligner 1 of the present embodiment is able to enlarge/reduce the image projected onto the substrate B by shifting the roof mirror 7 and the mirror 5 in x-axis and z-axis directions, respectively. However, when the plurality of the projection optical systems enlarge or reduce the images, the images on the substrate B overlap to each other or gaps appear between the images.
Since such overlapping of the images and gaps between the images inhibit correct transfer of the mask pattern onto the substrate B, the locations of the images projected onto the substrate B are adjusted in the y-axis direction so that such overlapping or gaps do not occur. In the projection aligner 1 according to the present embodiment, the above-mentioned adjustment, which will be referred hereinafter as “image location adjustment”, is achieved by moving the roof mirror 7 in y-axis direction as well as moving the mirror 5 in z-axis direction.
In
If the roof mirror 7 is moved, as shown in
Accordingly, if the optical path length from the lens unit 6 to the substrate B is changed by shifting the mirror 5 in the z-axis direction, the location on the substrate B where the image is formed displaces in the y-axis direction. The displacement of the image in the y-axis direction ΔY is related to displacement of the mirror 5 in the z-axis direction ΔD2, or the amount of change of the optical length from the lens unit 6 to the substrate B, and the displacement of the roof mirror 7 in y-axis direction ΔL2 by the following equation:
ΔY=−ΔD2×2ΔL2/f (8)
Note that ΔD2 in equation (8) should be equal to ΔD1 of equation (7) since both ΔD1 and ΔD2 represent the displacement of the mirror 5 in the z-axis direction.
The displacement ΔY for the image projected by the a-th projecting optical system from the most left or right one in
ΔY=(a−(nL+1)/2)×(Mgn−1)×W (9)
where nL is the total number of the projecting optical systems included in the projection aligner 1, and constant number W is the length in the y-axis direction of the unmagnified image projected onto the substrate B by one projecting optical system.
In the projection aligner 1 according to the present embodiment, the controller 10 determines the displacement ΔL2 of the roof mirror 7 in the y-axis direction so that the equations (8) and (9) are satisfied.
As shown in
After the magnifications of the projecting optical systems are adjusted and the image location adjustment is performed as above, the controller 10 operates the mask-driving mechanism 14 and the object-driving mechanism 15 to synchronously move the mask 4 and the substrate B in the x-axis direction to scan the light beams L from the light sources 2 across the mask 4 and the substrate B. The controller 10 moves the mask 4 at a predetermine velocity VM and the substrate B at a velocity VB=Mgn×VM. In addition, the controller 10 moves the mask 4 and the substrate B such that the image at the center of the mask pattern area 4a is transferred on the center of the pattern area B1 of the substrate B.
By operating the projection aligner 1 according to the present embodiment of the invention as above, the mask pattern of the mask 4 is transferred onto the substrate B without having significant displacement between the transferred pattern and the through holes formed to the substrate B.
It should be noted that the embodiment of the invention described above may be modified in various ways. For example, the substrate height detecting unit 38 may also be arranged such that the laser beam LB emitted from the laser source 38a impinges on the photosensitive surface of the substrate B in the vicinity of where one of the light beams from the light sources 2 strikes the substrate B. In this case, the controller 10 may monitor the output of the substrate height detecting unit 38 during the exposure of the substrate B, and control the position of the mirrors 5 in the x-axis direction so that the total optical path length DL satisfies the condition DL=2f substantially all the time during the exposure. With this, the projection aligner 1 becomes able to correctly transfer the mask pattern on a substrate even if the substrate has uneven thickness.
The present disclosure relates to the subject matters contained in Japanese Patent Applications Nos. P2001-394058 and P2001-394413, both filed on Dec. 26, 2001, which are expressly incorporated herein by reference in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
2001-394058 | Dec 2001 | JP | national |
2001-394413 | Dec 2001 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5026145 | Marui et al. | Jun 1991 | A |
5062692 | Marui et al. | Nov 1991 | A |
5078474 | Marui et al. | Jan 1992 | A |
5625436 | Yanagihara et al. | Apr 1997 | A |
5729331 | Tanaka et al. | Mar 1998 | A |
5777722 | Miyazaki et al. | Jul 1998 | A |
5959784 | Seki et al. | Sep 1999 | A |
5999244 | Yanagihara et al. | Dec 1999 | A |
6018384 | Ota | Jan 2000 | A |
6157497 | Kumazawa | Dec 2000 | A |
6236448 | Ota | May 2001 | B1 |
6249336 | Ota | Jun 2001 | B1 |
6351305 | Tanaka et al. | Feb 2002 | B1 |
6388735 | Ota | May 2002 | B1 |
Number | Date | Country |
---|---|---|
49-35453 | Sep 1974 | JP |
7-135165 | May 1995 | JP |
10242040 | Sep 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20030117607 A1 | Jun 2003 | US |