Embodiments of the present disclosure generally relate to a system used in semiconductor device manufacturing. More specifically, embodiments of the present disclosure relate to a plasma processing system used to process a substrate.
Reliably producing high aspect ratio features is one of the key technology challenges for the next generation of semiconductor devices. One method of forming high aspect ratio features uses a plasma-assisted etching process in which a plasma is formed in a processing chamber and ions from the plasma are accelerated towards a surface of a substrate to form openings in a material layer disposed beneath a mask layer formed on the surface of the substrate.
In a typical plasma-assisted etching process, the substrate is positioned on a substrate support disposed in a processing chamber, a plasma is formed over the substrate, and ions are accelerated from the plasma towards the substrate across a plasma sheath, i.e., region depleted of electrons, formed between the plasma and the surface of the substrate.
It has been found that pulsing techniques have to periodically and suddenly consume a large amount of plasma generated bulk electrons to establish the DC bias, and the amount of bulk electrons consumed is often on the order of the number of free electrons found in the generated plasma. Therefore, the consumption of bulk electrons cause severe perturbation to plasma stability and sometimes cause the plasma to extinguish. As an example, assume a plasma processing system has a plasma density of 5e10 cm−3, gap of 2 cm (1 inch gap minus sheath thickness, about 0.5 cm) and wafer diameter of 30 cm. In such a system, the total available electrons in the volume above the wafer is 7e13. Further assume a sheath capacitance of 200 pF and sheath voltage of 8000V (typical for high aspect ratio etch applications). The number of electrons used to charge the wafer surface is about 1e13. So in about tens of nanoseconds, about 15 percent of the bulk electrons is drawn from the plasma to establish the DC bias. This consumption repeats at the pulsing frequency, which may be around 400 kHz. The bulk electron consumption is a significant perturbation to plasma sustainability and stability. This scenario may only worsen with the evolving processes using higher ion energies. During processing, variations in the plasma created by plasma instability will affect the with-in-wafer (WIW) and wafer-to-wafer (WTW) process performance, and thus device yield and other related process results.
Accordingly, there is a need in the art for plasma processing and biasing methods that are able to provide desirable plasma-assisted etching process results.
Embodiments provided herein generally include apparatus, plasma processing systems and methods for generation of a waveform for plasma processing of a substrate in a processing chamber.
One embodiment of the present disclosure is directed to a plasma processing system. The plasma processing system generally includes a processing chamber, a plurality of switches, an electrode disposed in the processing chamber, a voltage source, and a capacitive element. The voltage source is selectively coupled to the electrode via one of the plurality of switches. The capacitive element is selectively coupled to the electrode via one of the plurality of switches. The capacitive element and the voltage source are coupled to the electrode in parallel. The plurality of switches are configured to couple the capacitive element and the voltage source to the electrode during a first phase, couple the capacitive element and the electrode to a ground node during a second phase, and couple the capacitive element to the electrode during a third phase.
One embodiment of the present disclosure is directed to a method of processing a substrate. The method generally includes coupling a capacitive element and a voltage source to an electrode disposed within a processing chamber during a first phase, where the capacitive element and the voltage source are coupled to the electrode in parallel. The method also includes coupling the capacitive element and the electrode to a ground node during a second phase. The method further includes coupling the capacitive element to the electrode during a third phase.
So that the manner in which the above-recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope and may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one aspect may be beneficially utilized on other aspects without specific recitation.
With technology node advancing towards 2 nm, fabrication of smaller features with larger aspect ratios involve atomic precision for plasma processing. For etching processes where the plasma ions play an important role, ion energy control is challenging the semiconductor equipment industry. Traditionally, RF biased techniques use a sinusoidal wave to excite plasma and accelerate ions.
Some embodiments of the present disclosure are generally directed to techniques and apparatus that use the concept of a charge pump to increase wafer surface voltage without or reduced consumption of plasma electrons. In certain aspects, the electrons from an external circuit (such as a capacitive element coupled in parallel with the electrode of the processing chamber) may be used to boost the DC bias at the electrode. The techniques and apparatus for boosting the DC bias at the electrode described herein may reduce the load to plasma electrons and/or facilitate higher energy substrate processing operations.
As shown, the processing system 10 is configured to form a capacitively coupled plasma (CCP), where the processing chamber 100 include an upper electrode (e.g., chamber lid 123) disposed in a processing volume 129 facing a lower electrode (e.g., the substrate support assembly 136) also disposed in the processing volume 129. In a typical capacitively coupled plasma (CCP) processing system, a radio frequency (RF) source is electrically coupled to one of the upper or lower electrode delivers an RF signal configured to ignite and maintain a plasma (e.g., the plasma 101), which is capacitively coupled to each of the upper and lower electrodes and is disposed in a processing region therebetween. Typically, the opposing one of the upper or lower electrodes is coupled to ground or to a second RF power source for additional plasma excitation. As shown, the processing system 10 includes a processing chamber 100, a support assembly 136, and a system controller 126.
The processing chamber 100 typically includes a chamber body 113 that includes the chamber lid 123, one or more sidewalls 122, and a chamber base 124, which collectively define the processing volume 129. The one or more sidewalls 122 and chamber base 124 generally include materials that are sized and shaped to form the structural support for the elements of the processing chamber 100 and are configured to withstand the pressures and added energy applied to them while a plasma 101 is generated within a vacuum environment maintained in the processing volume 129 of the processing chamber 100 during processing. In one example, the one or more sidewalls 122 and chamber base 124 are formed from a metal, such as aluminum, an aluminum alloy, or a stainless steel alloy.
A gas inlet 128 disposed through the chamber lid 123 is used to deliver one or more processing gases to the processing volume 129 from a processing gas source 119 that is in fluid communication therewith. A substrate 103 is loaded into, and removed from, the processing volume 129 through an opening (not shown) in one of the one or more sidewalls 122, which is sealed with a slit valve (not shown) during plasma processing of the substrate 103.
In some embodiments, a plurality of lift pins (not shown) movably disposed through openings formed in the substrate support assembly 136 are used to facilitate substrate transfer to and from a substrate supporting surface 105A. In some embodiments, the plurality of lift pins 132 are disposed above and are coupled to and/or are engageable with a lift pin hoop (not shown) disposed in the processing volume 129. The lift pin hoop may be coupled to a shaft (not shown) that sealingly extends through the chamber base 124. The shaft may be coupled to an actuator (not shown) that is used to raise and lower the lift pin hoop. When the lift pin hoop is in a raised position, it engages with the plurality of lift pins 132 to raise the upper surfaces of the lift pins above the substrate supporting surface 105A, lifting the substrate 103 therefrom and enabling access to a non-active (backside) surface the substrate 103 by a robot handler (not shown). When the lift pin hoop is in a lowered position, the plurality of lift pins 132 are flush with or recessed below the substrate supporting surface 105A, and the substrate 103 rests thereon.
The system controller 126, also referred to herein as a processing chamber controller, includes a central processing unit (CPU) 133, a memory 134, and support circuits 135. The system controller 126 is used to control the process sequence used to process the substrate 103, including the substrate biasing and/or voltage boosting method(s) described herein. The CPU 133 is a general-purpose computer processor configured for use in an industrial setting for controlling the processing chamber and sub-processors related thereto. The memory 134 described herein, which is generally non-volatile memory, may include random access memory, read-only memory, floppy or hard disk drive, or other suitable forms of digital storage, local or remote. The support circuits 135 are conventionally coupled to the CPU 133 and comprise cache, clock circuits, input/output subsystems, power supplies, and the like, and combinations thereof. Software instructions (program) and data can be coded and stored within the memory 134 for instructing a processor within the CPU 133. A software program (or computer instructions) readable by CPU 133 in the system controller 126 determines which tasks are performable by the components in the processing system 10.
Typically, the program, which is readable by CPU 133 in the system controller 126, includes code, which, when executed by the processor (CPU 133), performs tasks relating to the plasma processing schemes described herein. The program may include instructions that are used to control the various hardware and electrical components within the processing system 10 to perform the various process tasks and various process sequences used to implement the methods described herein. In one embodiment, the program includes instructions that are used to perform one or more of the operations described below in relation to
The plasma control system generally includes a first source assembly 196 for establishing at least a first pulsed voltage (PV) waveform at a bias electrode 104 (on a complex load as depicted in
The applied RF signal provided from the first source assembly 196, the second source assembly 197 or the third source assembly 198 may be configured to generate (maintain and/or ignite) a plasma 101 in a processing region disposed between the substrate support assembly 136 and the chamber lid 123. In some embodiments, the RF signal is used to ignite and maintain a processing plasma 101 using the processing gases disposed in the processing volume 129 and fields generated by the RF power (RF signal) delivered to the support base 107 and/or bias electrode 104. In some aspects, the RF signal may be generated by an RF source (not shown) disposed within the waveform generator assembly 150. The processing volume 129 is fluidly coupled to one or more dedicated vacuum pumps through a vacuum outlet 120, which maintain the processing volume 129 at sub-atmospheric pressure conditions and evacuate processing and/or other gases, therefrom. In some embodiments, the substrate support assembly 136, disposed in the processing volume 129, is disposed on a support shaft 138 that is grounded and extends through the chamber base 124. In some embodiments, the RF signal generator may be configured to deliver an RF signal having a frequency that is greater than 40 MHz, such as between about 40 MHz and about 200 MHz.
In some embodiments, a capacitive element 152 may be selectively coupled to the bias electrode 104 and/or the support base 107, as further described herein with respect to
The substrate support assembly 136, as briefly discussed above, generally includes the substrate support 105 (e.g., an electrostatic chuck (ESC) substrate support) and support base 107. In some embodiments, the substrate support assembly 136 can additionally include an insulator plate 111 and a ground plate 112, as is discussed further below. The support base 107 is electrically isolated from the chamber base 124 by the insulator plate 111, and the ground plate 112 is interposed between the insulator plate 111 and the chamber base 124. The substrate support 105 is thermally coupled to and disposed on the support base 107. In some embodiments, the support base 107 is configured to regulate the temperature of the substrate support 105, and the substrate 103 disposed on the substrate support 105, during substrate processing. In some embodiments, the support base 107 includes one or more cooling channels (not shown) disposed therein that are fluidly coupled to, and in fluid communication with, a coolant source (not shown), such as a refrigerant source or water source having a relatively high electrical resistance. In some embodiments, the substrate support 105 includes a heater (not shown), such as a resistive heating element embedded in the dielectric material thereof. Herein, the support base 107 is formed of a corrosion-resistant thermally conductive material, such as a corrosion-resistant metal, for example aluminum, an aluminum alloy, or a stainless steel and is coupled to the substrate support with an adhesive or by mechanical means.
Typically, the substrate support 105 is formed of a dielectric material, such as a bulk sintered ceramic material, such as a corrosion-resistant metal oxide or metal nitride material, for example, aluminum oxide (Al2O3), aluminum nitride (AlN), titanium oxide (TiO), titanium nitride (TiN), yttrium oxide (Y2O3), mixtures thereof, or combinations thereof. In embodiments herein, the substrate support 105 further includes the bias electrode 104 embedded in the dielectric material thereof.
In one configuration, the bias electrode 104 is a chucking pole used to secure (i.e., chuck) the substrate 103 to the substrate supporting surface 105A of the substrate support 105 and to bias the substrate 103 with respect to the processing plasma 101 using one or more of the pulsed-voltage biasing schemes described herein. Typically, the bias electrode 104 is formed of one or more electrically conductive parts, such as one or more metal meshes, foils, plates, or combinations thereof.
In some embodiments, the bias electrode 104 is electrically coupled to a clamping network, which provides a chucking voltage thereto, such as static DC voltage between about −5000 V and about 5000 V, using an electrical conductor, such as the coaxial power delivery line 106 (e.g., a coaxial cable). As will be discussed further below, the clamping network includes a DC power supply 155 (e.g., a high voltage DC (HVDC) supply) and a filter 151 (e.g., a low-pass filter).
The substrate support assembly 136 may further include the edge control electrode 115 that is positioned below the edge ring 114 and surrounds the bias electrode 104 and/or is disposed a distance from a center of the bias electrode 104. In general, for a processing chamber 100 that is configured to process circular substrates, the edge control electrode 115 is annular in shape, is made from a conductive material, and is configured to surround at least a portion of the bias electrode 104. In some embodiments, such as shown in
The edge control electrode 115 can be biased by use of a waveform generator assembly that is different from the waveform generator assembly 150, which is used to bias the bias electrode 104. In some embodiments, the edge control electrode 115 can be biased by use of a waveform generator assembly 150 that is also used to bias the bias electrode 104 by splitting part of the power to the edge control electrode 115. In one configuration, a first waveform generator assembly 150 of the first source assembly 196 is configured to bias the bias electrode 104, and a second waveform generator assembly 150 of a second source assembly 197 is configured to bias the edge control electrode 115.
In one embodiment, a power delivery line 157 electrically connects the output of the waveform generator assembly 150 of the first source assembly 196 to the bias electrode 104. While the discussion below primarily discusses the power delivery line 157 of the first source assembly 196, which is used to couple a waveform generator assembly 150 to the bias electrode 104, the power delivery line 158 of the second source assembly 197, which couples a waveform generator assembly 150 to the edge control electrode 115, will include the same or similar components. The electrical conductor(s) within the various parts of the power delivery line 157 may include: (a) one or a combination of coaxial cables, such as a flexible coaxial cable that is connected in series with a rigid coaxial cable, (b) an insulated high-voltage corona-resistant hookup wire, (c) a bare wire, (d) a metal rod, (e) an electrical connector, or (f) any combination of electrical elements in (a)-(e).
In some embodiments, the processing chamber 100 further includes the quartz pipe 110, or collar, that at least partially circumscribes portions of the substrate support assembly 136 to prevent the substrate support 105 and/or the support base 107 from contact with corrosive processing gases or plasma, cleaning gases or plasma, or byproducts thereof. Typically, the quartz pipe 110, the insulator plate 111, and the ground plate 112 are circumscribed by a liner 108. In some embodiments, a plasma screen 109 is positioned between the cathode liner 108 and the sidewalls 122 to prevent plasma from forming in a volume underneath the plasma screen 109 between the liner 108 and the one or more sidewalls 122.
The positive ions that bombard the surface of the substrate during the ion current stage deposit a positive charge on the substrate surface, which if uncompensated causes a gradually increasing substrate voltage during the ion current stage, as illustrated by voltage waveform 225 in
Certain embodiments of the present disclosure are generally directed to techniques and apparatus for boosting the voltage at an electrode, such as a bias electrode (e.g., the bias electrode 104 depicted in
In the electrical circuit 400, a voltage boost on the pulsed voltage from the voltage source 404 and/or current source 406 may be established at an electrode (which may be represented by the input node 408) using the capacitive element 152 during a portion of the process of establishing the waveform at the electrode, such as the waveform depicted in
The complex load 410 is depicted as a standard electrical plasma model that represents the processing plasma 101 as three series elements. The first element being an electron-repelling cathode sheath (which sometimes may also be referred to as the “plasma sheath” or merely the “sheath”) adjacent to the substrate 103. The cathode sheath is represented by a conventional three-part circuit element comprising: (a) the diode DSH, which when open represents the sheath collapse, (b) the current source Ii, representing the ion current flowing to the substrate in the presence of the sheath, and (c) the capacitor CSH (e.g., ˜100-300 pF), which represents the sheath for the main portion of the biasing cycle (e.g., the ion current stage of the waveform depicted in
The capacitive element 152 may be implemented as one or more capacitors, such as a ceramic capacitor and/or a multi-layered dielectric capacitor. For example, the capacitive element 152 may include multiple capacitors coupled together in a network, such as a parallel network and/or series network. In certain cases, the capacitive element 152 may be rated to operate at high voltages, such as voltage levels above 10 kV. The capacitive element 152 may have a capacitance within a range of 500 picofarads (pF) to 1 nanofarad (nF). The capacitance value of the capacitive element 152 may be close to or higher than CESC and/or CSH. That is, the capacitive element may have a capacitance equal to or greater than at least one of a substrate support capacitance (e.g., CESC) or a sheath capacitance (e.g., CSH) of the processing chamber.
The capacitive element 152 may be selectively coupled to the electrode (e.g., the input node 408) of the processing chamber via at least one of the switches 402 (e.g., the switch 402c). The capacitive element 152 may be selectively coupled to the voltage source 404 and the ground node 414, for example, via at least one of the switches 402 (e.g., the switches 402d, 402e, and 402f). The capacitive element 152 and the voltage source 404 may be selectively coupled in parallel with the electrode (e.g., the input node 408). That is, the capacitive element 152 and the voltage source 404 may be selectively coupled to the electrode in parallel with each other. In certain aspects, the capacitive element 152 is a separate electrical component from the substrate support capacitance (CESC) and/or sheath capacitance (CSH). In certain cases, the capacitive element 152 may be integrated with and/or co-located with the waveform generator assembly 150, such as the voltage source 404 and/or current source 406. In certain cases, the capacitive element 152 may be integrated with and/or co-located with the substrate support capacitance (CESC) and/or sheath capacitance (CSH) to provide a suitable boost voltage as described herein.
The capacitive element 152 may provide a source for bulk electrons that is separate from the plasma. In certain cases, the capacitive element 152 may improve the sustainability and stability of the plasma by reducing the bulk electrons consumed from the plasma to establish the DC bias at the electrode.
The switches 402 may be implemented as high voltage solid-state relays. In certain cases, the switches 402 may be implemented as a high voltage multiplexer and/or demultiplexer. In this example, the switches 402 may include a first switch 402a, second switch 402b, third switch 402c, fourth switch 402d, fifth switch 402e, and sixth switch 402f. The first switch 402a may be coupled between the voltage source 404 and the input node 408, which may be electrically coupled to the electrode or representative of the electrode. The second switch 402b may be coupled between the input node 408 and the ground node 414. The third switch 402c may be coupled between a first terminal 416 of the capacitive element 152 and the input node 408. The fourth switch 402d may be coupled between a second terminal 418 of the capacitive element 152 and the input node 408. The fifth switch 402e may be coupled between the first terminal 416 of the capacitive element 152 and the ground node 414. The sixth switch 402f may be coupled between the second terminal 418 of the capacitive element 152 and the ground node 414.
In certain cases, the state of the switches 402 (e.g., opened or closed) may be controlled by the system controller 126. For example, the system controller 126 may be in communication with control inputs (not shown) of the switches 402, such that control signals from the system controller 126 toggle the states of the switches 402. The system controller 126 may control the individual state of each switch 402 with a separate control signal applied to the respective switch. As further described herein with respect to
The voltage source 404 may be a component of a waveform generator assembly (e.g., the waveform generator assembly 150). That is, the waveform generator assembly may include the voltage source 404, which may include a pulsed-voltage DC waveform generator and/or RF generator (also referred to as an RF signal generator). The voltage source 404 may be selectively coupled to the electrode (e.g., the input node 408) via one of the switches 402 (e.g., the switch 402a). For example, the switch 402a may be coupled in series between the voltage source 404 and the input node 408.
Similarly, the current source 406 may be a component of the waveform generator assembly. The current source 406 may be used to implement the ramp voltage during the ion current stage, for example, as described herein with respect to
Those of skill in the art will understand that the electrical circuit 400 is merely an example, and other electrical circuits (such as the circuits depicted in
Referring to
During the first phase 502, switches 402a, 402d, and 402e (S1, S4, and S5) are closed to charge the substrate support 105 (CESC) and plasma sheath capacitance(s) (CSH and CWALL), as well as the capacitive element 152 (CBOOST), as shown in
The capacitive element 152, CESC, and CSH may be charged to a voltage VBOOST during the first phase 502. Plasma bulk electrons are attracted to the wafer surface due to the rising edge of the waveform shown in
During the second phase 504, the second switch 402b and sixth switch 402f are closed as shown in
As the second switch 402b closes, the potential at the electrode may be forced to the voltage level at the ground node 414 (such as 0 Volts). As a capacitor's voltage drop cannot change instantaneously, the voltage on the wafer surface becomes negative thereby establishing a negative Vdc on the wafer surface. For example, with the second switch 402b in a closed state, the voltage at the electrode may be reduced to first voltage level.
The sixth switch 402f closes and pulls the potential of the connected capacitive element 152 to ground. The potential of at the capacitive element 152 becomes a negative voltage. During the second phase 504, the capacitive element 152 may not be coupled to the input node 408 and the substrate support. The negative DC voltage (Vdc) on the wafer surface after the second switch 402b closes can be approximated by using the magnitude of the falling edge ΔV and the ratio between the CESC and sheath capacitance Csheath:
where Csheath is the capacitance of the wafer sheath capacitance (CSH) in series with the ground sheath capacitance (CWALL). In certain cases, Csheath may be approximated by the wafer sheath capacitance (CSH) due to the ground sheath capacitance (CWALL) being much larger.
During the third phase 506, the third switch 402c and sixth switch 402f are closed as shown in
The voltage at the electrode may be given by:
In certain cases, |Vboost| may be higher than |ΔV|. For example, |Vboost| may be 1750 Volts, and |ΔV| may be 1000 Volts. In this example, the capacitive element 152 may reduce the number of electrons required to accumulate on the wafer surface by 2.75 times for the same amount of Vdc.
The fourth phase 508 is the ion current compensation phase, which may be implemented as described herein with respect to
The oncoming ion current neutralizes the negative discharges on the wafer surface and discharges the sheath capacitor (e.g., CSH). The wafer voltage may be kept at a constant voltage to provide single peak IED as described herein with respect to
The ion compensation current (Iion) can be calibrated using ion energy/flux diagnostics or calculated by sampling the electrode voltage (V0) (e.g., to calculate time derivative of V0) and the value of the sheath capacitance:
where Cboost is the capacitance of the capacitive element 152. For example, the first tens to hundreds of the cycles can be used to sample the electrode voltage and calculate lion for ion current compensation. The current compensation may then be implemented for the subsequent cycles. The current source 406 may be configured to adjust the ion compensation current in response to a change in voltage over time measured at the electrode based at least in part on a capacitance of the capacitive element, for example, as given by Equation (3). An increased capacitance of the capacitive element 152 may slow down the decay of Vdc. Cboost may be made as large as possible in the voltage rating allowed range.
At activity 702, a capacitive element (e.g., the capacitive element 152) and a voltage source (e.g., the voltage source 404) may be coupled to an electrode (e.g., represented by the input node 408) disposed within a processing chamber (e.g., the processing chamber 100) during a first phase (e.g., the first phase 502). The capacitive element 152 and the voltage source 404 may be coupled to the electrode in parallel, for example, as depicted in
At activity 704, the capacitive element 152 and the electrode may be coupled to a ground node (e.g., the ground node 414) during a second phase (e.g., the second phase 504). During the second phase, the electrode may be decoupled from the voltage source and the capacitive element. As an example, with respect to the electrical circuit 400, the first switch 402a, fourth switch 402d, and fifth switch 402e are opened during the second phase. The second switch 402b and sixth switch 402f are closed during the second phase to couple the capacitive element to the input node (e.g., the input node 408). With the second switch 402b closed, a voltage at the electrode may be reduced to a first voltage level.
At activity 706, the capacitive element 152 may be coupled to the electrode during a third phase (e.g., the third phase 506). During the third phase, the electrode may decoupled from the ground node. As an example, with respect to the electrical circuit 400, the second switch 402b may be opened during the third phase, and the third switch may be closed to couple the first terminal 416 of the capacitive element 152 to the input node 408. With the third switch 402c closed, the voltage at the electrode may be reduced to a second voltage level less than the first voltage level.
At activity 708, a current source (e.g., the current source 406) may apply an ion compensation current to the electrode during a fourth phase (e.g., the fourth phase 508). In aspects, the capacitive element 152 may be coupled to the electrode during the fourth phase. For certain aspects, the current source may adjust the ion compensation current in response to a change in voltage over time measured at the electrode based at least in part on a capacitance of the capacitive element, for example, as given by the Equation (3).
In certain aspects, the method 700 may also include generating a plasma over a substrate supporting surface (e.g., the substrate support surface 105A) of a substrate support (e.g., the substrate support 105) disposed in the processing chamber. The plasma and ion current compensation may facilitate the etching of the substrate as described herein.
In certain aspects, the timing of when the charged capacitive element is coupled to the electrode may be adjusted, for example, to produce multiple ion energies and/or adjust the width of an ion energy in an etching cycle.
For certain aspects, the current source may be coupled in series with the capacitive element. For example,
The ion current may be adjusted according to the following expression:
As a result, the electrical circuit 900 may enable a lower ion current compared to the electrical circuit 400.
In certain aspects, a separate voltage source may be used to charge the capacitive element. For example,
During the first phase, the first switch 402a, fourth switch 402d, and the fifth switch 402e may be closed, while the second switch 402b, third switch 402c, and sixth switch 402f may be open. During the second phase, the sixth switch 402f and second switch 402b may be closed, while the first switch 402a, third switch 402c, and fourth switch 402d may be open. During the third phase, the third switch 402c and sixth switch 402f may be closed, while the first switch 402a, second switch 402b, and fifth switch 402e may be open.
In certain cases, the capacitive element 152 and the second voltage source 404b may be used to compensate ion current. For example, the third switch 402c may be closed at the middle of the fourth phase to produce a step down in voltage during the ion current compensation stage.
Similar to the concept of Voltage Triplers and Quadruplers, multiple stages of the boost capacitance can be used to further increase the wafer DC voltage. Such embodiments may use more switches and/or relays.
It will be appreciated that the techniques and apparatus described herein may reduce the number of plasma electrons consumed to establish the DC bias. As such, the techniques and apparatus described herein may improve plasma stability and extend the achievable maximum ion energy for substrate processing.
The term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B and object B touches object C, then objects A and C may still be considered coupled to one another—even if objects A and C do not directly physically touch each other. For instance, a first object may be coupled to a second object even though the first object is never directly physically in contact with the second object.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
4464223 | Gorin | Aug 1984 | A |
4585516 | Corn et al. | Apr 1986 | A |
5099697 | Agar | Mar 1992 | A |
5242561 | Sato | Sep 1993 | A |
5449410 | Chang et al. | Sep 1995 | A |
5464499 | Moslehi et al. | Nov 1995 | A |
5565036 | Westendorp et al. | Oct 1996 | A |
5595627 | Inazawa et al. | Jan 1997 | A |
5597438 | Grewal et al. | Jan 1997 | A |
5698062 | Sakamoto et al. | Dec 1997 | A |
5716534 | Tsuchiya et al. | Feb 1998 | A |
5810982 | Sellers | Sep 1998 | A |
5830330 | Lantsman | Nov 1998 | A |
5882424 | Taylor et al. | Mar 1999 | A |
5928963 | Koshiishi | Jul 1999 | A |
5933314 | Lambson et al. | Aug 1999 | A |
5935373 | Koshimizu | Aug 1999 | A |
5948704 | Benjamin et al. | Sep 1999 | A |
5997687 | Koshimizu | Dec 1999 | A |
6043607 | Roderick | Mar 2000 | A |
6055150 | Clinton et al. | Apr 2000 | A |
6074518 | Imafuku et al. | Jun 2000 | A |
6089181 | Suemasa et al. | Jul 2000 | A |
6110287 | Arai et al. | Aug 2000 | A |
6117279 | Smolanoff et al. | Sep 2000 | A |
6125025 | Howald et al. | Sep 2000 | A |
6133557 | Kawanabe et al. | Oct 2000 | A |
6136387 | Koizumi | Oct 2000 | A |
6197151 | Kaji et al. | Mar 2001 | B1 |
6198616 | Dahimene et al. | Mar 2001 | B1 |
6202590 | Kim et al. | Mar 2001 | B1 |
6214162 | Koshimizu | Apr 2001 | B1 |
6232236 | Shan et al. | May 2001 | B1 |
6252354 | Collins et al. | Jun 2001 | B1 |
6277506 | Okamoto | Aug 2001 | B1 |
6309978 | Donohoe et al. | Oct 2001 | B1 |
6313583 | Arita et al. | Nov 2001 | B1 |
6358573 | Raoux et al. | Mar 2002 | B1 |
6367413 | Sill et al. | Apr 2002 | B1 |
6395641 | Savas | May 2002 | B2 |
6413358 | Donohoe | Jul 2002 | B2 |
6423192 | Wada et al. | Jul 2002 | B1 |
6433297 | Kojima et al. | Aug 2002 | B1 |
6435131 | Koizumi | Aug 2002 | B1 |
6451389 | Amann et al. | Sep 2002 | B1 |
6456010 | Yamakoshi et al. | Sep 2002 | B2 |
6535785 | Johnson et al. | Mar 2003 | B2 |
6621674 | Zahringer et al. | Sep 2003 | B1 |
6664739 | Kishinevsky et al. | Dec 2003 | B1 |
6733624 | Koshiishi et al. | May 2004 | B2 |
6740842 | Johnson et al. | May 2004 | B2 |
6741446 | Ennis | May 2004 | B2 |
6818103 | Scholl et al. | Nov 2004 | B1 |
6818257 | Amann et al. | Nov 2004 | B2 |
6830595 | Reynolds, III | Dec 2004 | B2 |
6849154 | Nagahata et al. | Feb 2005 | B2 |
6861373 | Aoki et al. | Mar 2005 | B2 |
6896775 | Chistyakov | May 2005 | B2 |
6917204 | Mitrovic et al. | Jul 2005 | B2 |
6962664 | Mitrovic | Nov 2005 | B2 |
6970042 | Glueck | Nov 2005 | B2 |
6972524 | Marakhtanov et al. | Dec 2005 | B1 |
7016620 | Maess et al. | Mar 2006 | B2 |
7046088 | Ziegler | May 2006 | B2 |
7059267 | Hedberg et al. | Jun 2006 | B2 |
7104217 | Himor et al. | Sep 2006 | B2 |
7147759 | Chistyakov | Dec 2006 | B2 |
7151242 | Schuler | Dec 2006 | B2 |
7166233 | Johnson et al. | Jan 2007 | B2 |
7183177 | Al-Bayati et al. | Feb 2007 | B2 |
7206189 | Reynolds, III | Apr 2007 | B2 |
7218503 | Howald | May 2007 | B2 |
7218872 | Shimomura | May 2007 | B2 |
7226868 | Mosden et al. | Jun 2007 | B2 |
7265963 | Hirose | Sep 2007 | B2 |
7274266 | Kirchmeier | Sep 2007 | B2 |
7305311 | van Zyl | Dec 2007 | B2 |
7312974 | Kuchimachi | Dec 2007 | B2 |
7408329 | Wiedemuth et al. | Aug 2008 | B2 |
7415940 | Koshimizu et al. | Aug 2008 | B2 |
7440301 | Kirchmeier et al. | Oct 2008 | B2 |
7452443 | Gluck et al. | Nov 2008 | B2 |
7479712 | Richert | Jan 2009 | B2 |
7509105 | Ziegler | Mar 2009 | B2 |
7512387 | Glueck | Mar 2009 | B2 |
7535688 | Yokouchi et al. | May 2009 | B2 |
7586099 | Eyhorn et al. | Sep 2009 | B2 |
7586210 | Wiedemuth et al. | Sep 2009 | B2 |
7588667 | Cerio, Jr. | Sep 2009 | B2 |
7601246 | Kim et al. | Oct 2009 | B2 |
7609740 | Glueck | Oct 2009 | B2 |
7618686 | Colpo | Nov 2009 | B2 |
7645341 | Kennedy et al. | Jan 2010 | B2 |
7651586 | Moriya et al. | Jan 2010 | B2 |
7652901 | Kirchmeier et al. | Jan 2010 | B2 |
7692936 | Richter | Apr 2010 | B2 |
7700474 | Cerio, Jr. | Apr 2010 | B2 |
7705676 | Kirchmeier et al. | Apr 2010 | B2 |
7706907 | Hiroki | Apr 2010 | B2 |
7740704 | Strang | Jun 2010 | B2 |
7758764 | Dhindsa et al. | Jul 2010 | B2 |
7761247 | van Zyl | Jul 2010 | B2 |
7782100 | Steuber et al. | Aug 2010 | B2 |
7795817 | Nitschke | Sep 2010 | B2 |
7821767 | Fujii | Oct 2010 | B2 |
7858533 | Liu et al. | Dec 2010 | B2 |
7898238 | Wiedemuth et al. | Mar 2011 | B2 |
7929261 | Wiedemuth | Apr 2011 | B2 |
RE42362 | Schuler | May 2011 | E |
7977256 | Liu et al. | Jul 2011 | B2 |
7988816 | Koshiishi et al. | Aug 2011 | B2 |
7995313 | Nitschke | Aug 2011 | B2 |
8044595 | Nitschke | Oct 2011 | B2 |
3055203 | Choueiry et al. | Nov 2011 | A1 |
8052798 | Moriya et al. | Nov 2011 | B2 |
8083961 | Chen et al. | Dec 2011 | B2 |
8110992 | Nitschke | Feb 2012 | B2 |
8128831 | Sato et al. | Mar 2012 | B2 |
8133347 | Gluck et al. | Mar 2012 | B2 |
8140292 | Wendt | Mar 2012 | B2 |
8221582 | Patrick et al. | Jul 2012 | B2 |
8236109 | Moriya et al. | Aug 2012 | B2 |
8313612 | McMillin et al. | Nov 2012 | B2 |
8313664 | Chen et al. | Nov 2012 | B2 |
8333114 | Hayashi | Dec 2012 | B2 |
8384403 | Zollner et al. | Feb 2013 | B2 |
8399366 | Takaba | Mar 2013 | B1 |
8419959 | Bettencourt et al. | Apr 2013 | B2 |
8441772 | Yoshikawa et al. | May 2013 | B2 |
8456220 | Thome et al. | Jun 2013 | B2 |
8460567 | Chen | Jun 2013 | B2 |
8466622 | Knaus | Jun 2013 | B2 |
8542076 | Maier | Sep 2013 | B2 |
8551289 | Nishimura et al. | Oct 2013 | B2 |
8568606 | Ohse et al. | Oct 2013 | B2 |
8603293 | Koshiishi | Dec 2013 | B2 |
8641916 | Yatsuda et al. | Feb 2014 | B2 |
8685267 | Yatsuda et al. | Apr 2014 | B2 |
8716114 | Ohmi et al. | May 2014 | B2 |
8735291 | Ranjan et al. | May 2014 | B2 |
8796933 | Hermanns | Aug 2014 | B2 |
8809199 | Nishizuka | Aug 2014 | B2 |
8821684 | Ui et al. | Sep 2014 | B2 |
8852347 | Lee et al. | Oct 2014 | B2 |
8884523 | Winterhalter et al. | Nov 2014 | B2 |
8884525 | Hoffman et al. | Nov 2014 | B2 |
8889534 | Ventzek et al. | Nov 2014 | B1 |
8895942 | Liu et al. | Nov 2014 | B2 |
8907259 | Kasai et al. | Dec 2014 | B2 |
8993943 | Pohl et al. | Mar 2015 | B2 |
9011636 | Ashida | Apr 2015 | B2 |
9053908 | Sriraman et al. | Jun 2015 | B2 |
9059178 | Matsumoto et al. | Jun 2015 | B2 |
9087798 | Ohtake et al. | Jul 2015 | B2 |
9123762 | Lin et al. | Sep 2015 | B2 |
9139910 | Lee et al. | Sep 2015 | B2 |
9147555 | Richter | Sep 2015 | B2 |
9159575 | Ranjan et al. | Oct 2015 | B2 |
9209032 | Zhao et al. | Dec 2015 | B2 |
9209034 | Kitamura et al. | Dec 2015 | B2 |
9287086 | Brouk et al. | Mar 2016 | B2 |
9313872 | Yamazawa | Apr 2016 | B2 |
9355822 | Yamada et al. | May 2016 | B2 |
9373521 | Mochiki et al. | Jun 2016 | B2 |
9384992 | Narishige et al. | Jul 2016 | B2 |
9396960 | Ogawa et al. | Jul 2016 | B2 |
9404176 | Parkhe et al. | Aug 2016 | B2 |
9435029 | Brouk et al. | Sep 2016 | B2 |
9496150 | Mochiki et al. | Nov 2016 | B2 |
9503006 | Pohl et al. | Nov 2016 | B2 |
9530667 | Rastogi et al. | Dec 2016 | B2 |
9564287 | Ohse et al. | Feb 2017 | B2 |
9570313 | Ranjan et al. | Feb 2017 | B2 |
9576810 | Deshmukh et al. | Feb 2017 | B2 |
9576816 | Rastogi et al. | Feb 2017 | B2 |
9593421 | Baek et al. | Mar 2017 | B2 |
9607843 | Rastogi et al. | Mar 2017 | B2 |
9637814 | Bugyi et al. | May 2017 | B2 |
9644221 | Kanamori et al. | May 2017 | B2 |
9663858 | Nagami et al. | May 2017 | B2 |
9666446 | Tominaga et al. | May 2017 | B2 |
9666447 | Rastogi et al. | May 2017 | B2 |
9673027 | Yamamoto et al. | Jun 2017 | B2 |
9673059 | Raley et al. | Jun 2017 | B2 |
9685297 | Carter et al. | Jun 2017 | B2 |
9734992 | Yamada et al. | Aug 2017 | B2 |
9754768 | Yamada et al. | Sep 2017 | B2 |
9761419 | Nagami | Sep 2017 | B2 |
9786503 | Raley et al. | Oct 2017 | B2 |
9788405 | Kawasaki et al. | Oct 2017 | B2 |
9799494 | Chen et al. | Oct 2017 | B2 |
9805916 | Konno et al. | Oct 2017 | B2 |
9805965 | Sadjadi et al. | Oct 2017 | B2 |
9831064 | Konno et al. | Nov 2017 | B2 |
9837285 | Tomura et al. | Dec 2017 | B2 |
9840770 | Klimczak et al. | Dec 2017 | B2 |
9865471 | Shimoda et al. | Jan 2018 | B2 |
9865893 | Esswein et al. | Jan 2018 | B2 |
9870898 | Urakawa et al. | Jan 2018 | B2 |
9922802 | Hirano et al. | Mar 2018 | B2 |
9922806 | Tomura et al. | Mar 2018 | B2 |
9941097 | Yamazawa et al. | Apr 2018 | B2 |
9941098 | Nagami | Apr 2018 | B2 |
9972503 | Tomura et al. | May 2018 | B2 |
9997374 | Takeda et al. | Jun 2018 | B2 |
10109461 | Yamada et al. | Oct 2018 | B2 |
10176970 | Nitschke | Jan 2019 | B2 |
10199246 | Koizumi et al. | Feb 2019 | B2 |
10217933 | Nishimura et al. | Feb 2019 | B2 |
10229819 | Hirano et al. | Mar 2019 | B2 |
10268846 | Miller et al. | Apr 2019 | B2 |
10282567 | Miller et al. | May 2019 | B2 |
10283321 | Yang et al. | May 2019 | B2 |
10304661 | Ziemba et al. | May 2019 | B2 |
10312056 | Collins et al. | Jun 2019 | B2 |
10320373 | Prager et al. | Jun 2019 | B2 |
10348186 | Schuler et al. | Jul 2019 | B2 |
10373755 | Prager et al. | Aug 2019 | B2 |
10382022 | Prager et al. | Aug 2019 | B2 |
10387166 | Preston et al. | Aug 2019 | B2 |
10389345 | Ziemba et al. | Aug 2019 | B2 |
10460910 | Ziemba et al. | Oct 2019 | B2 |
10460911 | Ziemba et al. | Oct 2019 | B2 |
10483089 | Ziemba et al. | Nov 2019 | B2 |
10483100 | Ishizaka et al. | Nov 2019 | B2 |
10510575 | Kraus et al. | Dec 2019 | B2 |
10522343 | Tapily et al. | Dec 2019 | B2 |
10593519 | Yamada et al. | Mar 2020 | B2 |
10607814 | Ziemba et al. | Mar 2020 | B2 |
10658189 | Hatazaki et al. | May 2020 | B2 |
10659019 | Slobodov et al. | May 2020 | B2 |
10665434 | Matsumoto et al. | May 2020 | B2 |
10666198 | Prager et al. | May 2020 | B2 |
10672596 | Brcka | Jun 2020 | B2 |
10672616 | Kubota | Jun 2020 | B2 |
10707053 | Urakawa et al. | Jul 2020 | B2 |
10707054 | Kubota | Jul 2020 | B1 |
10707055 | Shaw et al. | Jul 2020 | B2 |
10707086 | Yang et al. | Jul 2020 | B2 |
10707090 | Takayama et al. | Jul 2020 | B2 |
10707864 | Miller et al. | Jul 2020 | B2 |
10714372 | Chua et al. | Jul 2020 | B2 |
10720305 | Van Zyl | Jul 2020 | B2 |
10734906 | Miller et al. | Aug 2020 | B2 |
10748746 | Kaneko et al. | Aug 2020 | B2 |
10755894 | Hirano et al. | Aug 2020 | B2 |
10763150 | Lindley et al. | Sep 2020 | B2 |
10773282 | Coppa et al. | Sep 2020 | B2 |
10774423 | Janakiraman et al. | Sep 2020 | B2 |
10777388 | Ziemba et al. | Sep 2020 | B2 |
10790816 | Ziemba et al. | Sep 2020 | B2 |
10796887 | Prager et al. | Oct 2020 | B2 |
10804886 | Miller et al. | Oct 2020 | B2 |
10811227 | Van Zyl et al. | Oct 2020 | B2 |
10811228 | Van Zyl et al. | Oct 2020 | B2 |
10811229 | Van Zyl et al. | Oct 2020 | B2 |
10811230 | Ziemba et al. | Oct 2020 | B2 |
10811296 | Cho et al. | Oct 2020 | B2 |
10847346 | Ziemba et al. | Nov 2020 | B2 |
10892140 | Ziemba et al. | Jan 2021 | B2 |
10892141 | Ziemba et al. | Jan 2021 | B2 |
10896807 | Fairbairn et al. | Jan 2021 | B2 |
10896809 | Ziemba et al. | Jan 2021 | B2 |
10903047 | Ziemba et al. | Jan 2021 | B2 |
10904996 | Koh et al. | Jan 2021 | B2 |
10916408 | Dorf et al. | Feb 2021 | B2 |
10923320 | Koh et al. | Feb 2021 | B2 |
10923321 | Dorf et al. | Feb 2021 | B2 |
10923367 | Lubomirsky et al. | Feb 2021 | B2 |
10923379 | Liu et al. | Feb 2021 | B2 |
10971342 | Engelstaedter et al. | Apr 2021 | B2 |
10978274 | Kubota | Apr 2021 | B2 |
10978955 | Ziemba et al. | Apr 2021 | B2 |
10985740 | Prager et al. | Apr 2021 | B2 |
10991553 | Ziemba et al. | Apr 2021 | B2 |
10991554 | Zhao | Apr 2021 | B2 |
10998169 | Ventzek et al. | May 2021 | B2 |
11004660 | Prager et al. | May 2021 | B2 |
11011349 | Brouk et al. | May 2021 | B2 |
11075058 | Ziemba et al. | Jul 2021 | B2 |
11095280 | Ziemba et al. | Aug 2021 | B2 |
11101108 | Slobodov et al. | Aug 2021 | B2 |
11108384 | Prager et al. | Aug 2021 | B2 |
11476090 | Ramaswamy et al. | Oct 2022 | B1 |
20010009139 | Shan et al. | Jul 2001 | A1 |
20010033755 | Ino et al. | Oct 2001 | A1 |
20030049558 | Aoki et al. | Mar 2003 | A1 |
20030052085 | Parsons | Mar 2003 | A1 |
20030079983 | Long | May 2003 | A1 |
20030091355 | Jeschonek et al. | May 2003 | A1 |
20030151372 | Tsuchiya et al. | Aug 2003 | A1 |
20030165044 | Yamamoto | Sep 2003 | A1 |
20030201069 | Johnson | Oct 2003 | A1 |
20040040665 | Mizuno et al. | Mar 2004 | A1 |
20040040931 | Koshiishi et al. | Mar 2004 | A1 |
20040112536 | Quon | Jun 2004 | A1 |
20040223284 | Iwami et al. | Nov 2004 | A1 |
20050022933 | Howard | Feb 2005 | A1 |
20050024809 | Kuchimachi | Feb 2005 | A1 |
20050039852 | Roche et al. | Feb 2005 | A1 |
20050098118 | Amann et al. | May 2005 | A1 |
20050151544 | Mahoney et al. | Jul 2005 | A1 |
20050286916 | Nakazato et al. | Dec 2005 | A1 |
20060171848 | Roche et al. | Aug 2006 | A1 |
20070113787 | Higashiura et al. | May 2007 | A1 |
20070284344 | Todorov et al. | Dec 2007 | A1 |
20080012548 | Gerhardt et al. | Jan 2008 | A1 |
20080048498 | Wiedemuth et al. | Feb 2008 | A1 |
20080160212 | Koo | Jul 2008 | A1 |
20080185537 | Walther et al. | Aug 2008 | A1 |
20080236493 | Sakao | Oct 2008 | A1 |
20080236750 | Koshimizu | Oct 2008 | A1 |
20090059462 | Mizuno et al. | Mar 2009 | A1 |
20090078678 | Kojima | Mar 2009 | A1 |
20090133839 | Yamazawa et al. | May 2009 | A1 |
20090236214 | Janakiraman et al. | Sep 2009 | A1 |
20100018648 | Collins et al. | Jan 2010 | A1 |
20100025230 | Ehiasarian et al. | Feb 2010 | A1 |
20100029038 | Murakawa | Feb 2010 | A1 |
20100118464 | Matsuyama | May 2010 | A1 |
20100154994 | Fischer et al. | Jun 2010 | A1 |
20100321047 | Zollner et al. | Dec 2010 | A1 |
20100326957 | Maeda et al. | Dec 2010 | A1 |
20110143537 | Lee et al. | Jun 2011 | A1 |
20110177669 | Lee et al. | Jul 2011 | A1 |
20110177694 | Chen et al. | Jul 2011 | A1 |
20110298376 | Kanegae | Dec 2011 | A1 |
20120145186 | Koshimizu | Jun 2012 | A1 |
20120171390 | Nauman | Jul 2012 | A1 |
20130059448 | Marakhtanov | Mar 2013 | A1 |
20130087447 | Bodke et al. | Apr 2013 | A1 |
20130214828 | Valcore, Jr. et al. | Aug 2013 | A1 |
20130340938 | Tappan et al. | Dec 2013 | A1 |
20130344702 | Nishizuka | Dec 2013 | A1 |
20140057447 | Yang | Feb 2014 | A1 |
20140061156 | Brouk et al. | Mar 2014 | A1 |
20140117861 | Finley et al. | May 2014 | A1 |
20140125315 | Kirchmeier et al. | May 2014 | A1 |
20140356984 | Ventzek et al. | Dec 2014 | A1 |
20150002018 | Lill et al. | Jan 2015 | A1 |
20150111394 | Hsu | Apr 2015 | A1 |
20150130354 | Leray et al. | May 2015 | A1 |
20150235809 | Ito et al. | Aug 2015 | A1 |
20150366004 | Nangoy et al. | Dec 2015 | A1 |
20160004475 | Beniyama et al. | Jan 2016 | A1 |
20160027678 | Parkhe et al. | Jan 2016 | A1 |
20160196958 | Leray et al. | Jul 2016 | A1 |
20160284514 | Hirano | Sep 2016 | A1 |
20160351375 | Valcore, Jr. et al. | Dec 2016 | A1 |
20160358755 | Long et al. | Dec 2016 | A1 |
20170098527 | Kawasaki et al. | Apr 2017 | A1 |
20170162417 | Ye et al. | Jun 2017 | A1 |
20170221682 | Nishimura et al. | Aug 2017 | A1 |
20170330734 | Lee et al. | Nov 2017 | A1 |
20180076032 | Wang et al. | Mar 2018 | A1 |
20180139834 | Nagashima et al. | May 2018 | A1 |
20180190501 | Ueda | Jul 2018 | A1 |
20180204708 | Tan | Jul 2018 | A1 |
20180309423 | Okunishi et al. | Oct 2018 | A1 |
20180366305 | Nagami et al. | Dec 2018 | A1 |
20180374672 | Hayashi et al. | Dec 2018 | A1 |
20190027344 | Okunishi et al. | Jan 2019 | A1 |
20190090338 | Koh et al. | Mar 2019 | A1 |
20190157044 | Ziemba et al. | May 2019 | A1 |
20190172688 | Ueda | Jun 2019 | A1 |
20190198333 | Tokashiki | Jun 2019 | A1 |
20190259562 | Dorf et al. | Aug 2019 | A1 |
20190267218 | Wang et al. | Aug 2019 | A1 |
20190277804 | Prager et al. | Sep 2019 | A1 |
20190295769 | Prager et al. | Sep 2019 | A1 |
20190295819 | Okunishi et al. | Sep 2019 | A1 |
20190318918 | Saitoh et al. | Oct 2019 | A1 |
20190333741 | Nagami | Oct 2019 | A1 |
20190341232 | Thokachichu et al. | Nov 2019 | A1 |
20190348263 | Okunishi | Nov 2019 | A1 |
20190363388 | Esswein et al. | Nov 2019 | A1 |
20190385822 | Marakhtanov et al. | Dec 2019 | A1 |
20190393791 | Ziemba et al. | Dec 2019 | A1 |
20200016109 | Feng et al. | Jan 2020 | A1 |
20200024330 | Chan-Hui et al. | Jan 2020 | A1 |
20200035457 | Ziemba et al. | Jan 2020 | A1 |
20200035458 | Ziemba et al. | Jan 2020 | A1 |
20200035459 | Ziemba et al. | Jan 2020 | A1 |
20200036367 | Slobodov et al. | Jan 2020 | A1 |
20200037468 | Ziemba et al. | Jan 2020 | A1 |
20200051785 | Miller et al. | Feb 2020 | A1 |
20200051786 | Ziemba et al. | Feb 2020 | A1 |
20200058475 | Engelstaedter et al. | Feb 2020 | A1 |
20200066497 | Engelstaedter et al. | Feb 2020 | A1 |
20200066498 | Engelstaedter et al. | Feb 2020 | A1 |
20200075293 | Ventzek et al. | Mar 2020 | A1 |
20200090905 | Brouk et al. | Mar 2020 | A1 |
20200106137 | Murphy et al. | Apr 2020 | A1 |
20200126760 | Ziemba et al. | Apr 2020 | A1 |
20200126837 | Kuno et al. | Apr 2020 | A1 |
20200144030 | Prager et al. | May 2020 | A1 |
20200154556 | Dorf et al. | May 2020 | A1 |
20200161091 | Ziemba et al. | May 2020 | A1 |
20200162061 | Prager et al. | May 2020 | A1 |
20200168436 | Ziemba et al. | May 2020 | A1 |
20200168437 | Ziemba et al. | May 2020 | A1 |
20200176221 | Prager et al. | Jun 2020 | A1 |
20200227230 | Ziemba et al. | Jul 2020 | A1 |
20200227289 | Song et al. | Jul 2020 | A1 |
20200234922 | Dorf | Jul 2020 | A1 |
20200234923 | Dorf | Jul 2020 | A1 |
20200251371 | Kuno et al. | Aug 2020 | A1 |
20200266035 | Nagaiwa | Aug 2020 | A1 |
20200294770 | Kubota | Sep 2020 | A1 |
20200328739 | Miller et al. | Oct 2020 | A1 |
20200357607 | Ziemba et al. | Nov 2020 | A1 |
20200373114 | Prager et al. | Nov 2020 | A1 |
20200389126 | Prager et al. | Dec 2020 | A1 |
20200407840 | Hayashi et al. | Dec 2020 | A1 |
20200411286 | Koshimizu et al. | Dec 2020 | A1 |
20210005428 | Shaw et al. | Jan 2021 | A1 |
20210013006 | Nguyen et al. | Jan 2021 | A1 |
20210013011 | Prager et al. | Jan 2021 | A1 |
20210013874 | Miller et al. | Jan 2021 | A1 |
20210027990 | Ziemba et al. | Jan 2021 | A1 |
20210029815 | Bowman et al. | Jan 2021 | A1 |
20210043472 | Koshimizu et al. | Feb 2021 | A1 |
20210051792 | Dokan et al. | Feb 2021 | A1 |
20210066042 | Ziemba et al. | Mar 2021 | A1 |
20210082669 | Koshiishi et al. | Mar 2021 | A1 |
20210091759 | Prager et al. | Mar 2021 | A1 |
20210125812 | Ziemba et al. | Apr 2021 | A1 |
20210130955 | Nagaike et al. | May 2021 | A1 |
20210140044 | Nagaike | May 2021 | A1 |
20210151295 | Ziemba et al. | May 2021 | A1 |
20210152163 | Miller et al. | May 2021 | A1 |
20210210313 | Ziemba et al. | Jul 2021 | A1 |
20210210315 | Ziemba et al. | Jul 2021 | A1 |
20210249227 | Bowman et al. | Aug 2021 | A1 |
20210272775 | Koshimizu | Sep 2021 | A1 |
20210288582 | Ziemba et al. | Sep 2021 | A1 |
20220392750 | Yang et al. | Dec 2022 | A1 |
20220399183 | Cui et al. | Dec 2022 | A1 |
20220399186 | Cui et al. | Dec 2022 | A1 |
20220399189 | Guo et al. | Dec 2022 | A1 |
20220406567 | Yang et al. | Dec 2022 | A1 |
20220415614 | Yang et al. | Dec 2022 | A1 |
20230087307 | Guo et al. | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
101990353 | Mar 2011 | CN |
102084024 | Jun 2011 | CN |
105408993 | Mar 2016 | CN |
2014112644 | Jun 2014 | JP |
100757347 | Sep 2007 | KR |
201717247 | May 2017 | TW |
2018111751 | Jun 2018 | WO |
2020216741 | Oct 2020 | WO |
2020263673 | Dec 2020 | WO |
Entry |
---|
International Search Report/Written Opinion issued to PCT/US2022/030844 dated Sep. 27, 2022. |
The International Search Report and the Written Opinion for International Application No. PCT/US2021/040380; dated Oct. 27, 2021; 10 pages. |
International Search Report and Written Opinion dated Feb. 4, 2022 for Application No. PCT/US2021/054806. |
International Search Report and Written Opinion dated Feb. 4, 2022 for Application No. PCT/US2021/054814. |
U.S. Appl. No. 63/210,956, filed Jun. 15, 2021. |
U.S. Appl. No. 17/537,314, filed Nov. 29, 2021. |
U.S. Appl. No. 63/242,410, filed Sep. 9, 2021. |
Chinese Office Action for 201880053380.1 dated Dec. 2, 2021. |
U.S. Appl. No. 17/537, 107, filed Nov. 29, 2021. |
Taiwan Office Action for 108132682 (APPM/44016030TW01 dated Mar. 24, 2022. |
Number | Date | Country | |
---|---|---|---|
20220415614 A1 | Dec 2022 | US |