This specification relates to semiconductor devices, in particular nitride-based devices such as transistors and diodes, which include one or more ohmic contacts.
Transistors used in power electronic applications have typically been fabricated with silicon (Si) semiconductor materials. Common transistor devices for power applications include Si CoolMOS, Si Power MOSFETs, and Si Insulated Gate Bipolar Transistors (IGBTs). While Si power devices are inexpensive, they can suffer from a number of disadvantages, including relatively low switching speeds and high levels of electrical noise. More recently, silicon carbide (SiC) power devices have been considered due to their superior properties. III-Nitride or III-N semiconductor devices, such as gallium nitride (GaN) devices, are now emerging as attractive candidates to carry large currents, support high voltages, and to provide very low on-resistance and fast switching times.
Forming ohmic contacts to III-N material structures, which are utilized in many devices, is often achieved by depositing one or more metal layers on the III-N material and then annealing the structure, causing the metals and underlying III-N material to intermix and form an alloy. While such an alloying process for forming ohmic contacts has been shown to successfully result in low-resistivity ohmic contacts, the reliability and yield of this process has typically been lower than required for commercial scale production.
In a first aspect, a device includes a III-N layer having an upper side and a lower side, the lower side being opposite the upper side, and at least one conductive contact on the upper side of the III-N layer, the conductive contact extending into the III—N layer. The conductive contact comprises a top side facing away from the lower side of the III-N layer, and a bottom side facing towards the lower side of the III-N layer. The bottom side includes a first end and a second end opposite the first end, a first side rising from the first end to an intermediate point closer to the top side than the first end, and a second side falling from the intermediate point to the second end, the second end being further from the top side than the intermediate point.
In a second aspect, a method for fabricating a device includes forming a III-N layer having an upper side and a lower side, the lower side being opposite the upper side. The method further includes forming a recess in a surface on the upper side of the III-N layer, the forming of the recess including etching the surface of the III-N layer using a resist pattern, and forming a conductive contact over the recess in the surface of the III-N layer. The conductive contact includes a top side facing away from the lower side of the III-N layer, and a bottom side facing towards the lower side of the III-N layer. The bottom side comprises a first end and a second end opposite the first end, a first side rising from the first end to an intermediate point closer to the top side than the first end, and a second side falling from the intermediate point to the second end, the second end being further from the top side than the intermediate point.
In a third aspect, a method for fabricating a device includes forming a recess in a surface of a III-N layer having a conductive channel therein, where forming the recess includes etching the surface of the III-N layer using a resist pattern, and forming a conductive contact over the recess in the surface of the III-N layer, the conductive contact being in electrical contact with the conductive channel, the conductive contact having a bottom side in contact with a bottom surface of the recess and a top side opposite the bottom. The etching of the surface causes the bottom surface of the recess to have a first end and a second end opposite the first end, a first side rising monotonically from the first end to an intermediate point closer to the top side of the conductive contact than the first end, and a second side falling monotonically from the intermediate point to the second end, the second end being further from the top side of the conductive contact than the intermediate point.
In a fourth aspect, a device includes a III-N layer having an upper side and a lower side, the lower side being opposite the upper side, and a conductive contact on the upper side of the III-N layer. The conductive contact includes a top side facing away from the lower side of the III-N layer and a bottom side facing towards the lower side of the III-N layer, the bottom side including a first end, a second end opposite the first end, and an intermediate point between the first end and the second end. The device further includes a 2DEG channel in the III-N layer, wherein the 2DEG channel includes a first portion below the intermediate point and second portions below the first and second ends, the second portions having a higher electron concentration than the first portion.
Devices and methods described herein may include one or more of the following features. The first side may rise monotonically from the first end to the intermediate point and the second side may fall monotonically from the intermediate point to the second end. The III-N layer may include a III-N channel layer and a III-N barrier layer, wherein a compositional difference between the III-N channel layer and the III-N barrier layer causes a 2DEG channel to be induced in the III-N channel layer adjacent to the III-N barrier layer. The first side can curve from the first end to the intermediate point and the second side can curve from the second end to the intermediate point, forming a substantially rounded trench shape in the bottom side of the conductive contact. The III-N layer may include a GaN layer, a III-N spacer layer on the GaN layer, and a III-N barrier layer on the III-N spacer layer. Additionally, the III-N spacer layer may have a larger bandgap than the III-N barrier layer. In the device, at least one of the first end and the second end may extend through the III-N spacer layer to contact the GaN layer. The III-N spacer layer can include AlN and the III-N barrier layer can include AlGaN.
The conductive contact may be a source contact, the device further including a drain contact and a gate contact, forming a transistor. The drain contact can include a drain top side facing away from the lower side of the III-N layer, and a drain bottom side facing towards the lower side of the III-N layer, wherein the bottom layer comprises a drain first end and a drain second end opposite the drain first end, a drain first side rising from the drain first end to a drain intermediate point closer to the top side than the drain first end, and a drain second side falling from the drain intermediate point to a drain second end further from the top side than the drain intermediate point. The transistor can be a lateral transistor having the drain, source, and gate on a same side. The drain first side may rise monotonically from the drain first end to the drain intermediate point and the drain second side may fall monotonically from the drain intermediate point to the drain second end. The conductive contact can have a normalized contact resistance of 0.3 Ohm-mm or less. In the device, the first end and/or the second end may have a width less than 300 nanometers. The III-N layer may be on a substrate.
Forming the conductive contact can include forming the conductive contact so that the first side rises monotonically from the first end to the intermediate point and the second side falls monotonically from the intermediate point to the second end. The method of forming the device may include heating the device to a temperature between 300° C. and 600° C. Heating the device may also include heating the device for one to three minutes. Etching the surface of the III-N layer can include performing a dry etch using a chlorine based gas. Furthermore, etching the surface of the III-N layer can include performing a plasma etch in Cl2 plasma at an RF bias of 25 W or less. Forming the III-N layer may comprise forming a GaN layer, an AlN spacer layer on the GaN layer, and an AlGaN layer on the AlN spacer layer. Additionally, forming the recess can include forming the recess through the AlGaN layer up to the AlN spacer layer. Forming the recess may include forming the recess through the AlGaN layer and into the AlN spacer layer. Forming the recess can include forming the recess through the AlGaN layer and the AlN spacer layer and into the GaN layer.
The III-N layer may include a recess, and the conductive contact is in the recess. A separation between the 2DEG channel and the first end of the bottom side of the conductive contact may be less than a separation between the 2DEG channel and the intermediate point. The conductive contact can be in ohmic contact with the 2DEG channel.
The details of one or more embodiments of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
Like reference symbols in the various drawings indicate like elements.
The substrate can be silicon, SiC, AlN, GaN, sapphire, or any other suitable growth substrate for the growth of III-N materials. The III-N layer 122 includes a III-N channel layer 104 and a III-N spacer layer 106, and a III-N barrier layer 108, where the compositions of layers 104, 106, and 108 are selected to induce the 2DEG 116 in the III-N channel layer 104 near the interface between the III-N channel layer 104 and the III-N spacer layer 106. In some implementations, the spacer layer 106 may be omitted. In this case, the III-N barrier layer 108 is formed directly on the III-N channel layer 104, and the compositions of layers 104 and 108 are selected to induce the 2DEG 116 in the III-N channel layer 104 near the interface between the III-N channel layer 104 and the III-N barrier layer 108.
A gate contact 118 is deposited on the III-N layer 122. In some implementations, the gate contact 118 directly contacts the underlying III-N layer 122 (not shown). In other implementations, as illustrated in
As used in this document, the terms III-Nitride or III-N materials, layers, devices, and structures refer to a material, device, or structure comprised of a compound semiconductor material according to the stoichiometric formula BwAlxInyGazN, where w+x+y+z is about 1, and w, x, y, and z are each greater than or equal to zero and less than or equal to 1. In a III-Nitride or III-N device, the conductive channel can be partially or entirely contained within a III-N material layer.
The ohmic metals, of which source and drain contacts 110 and 112 are formed, typically include at least one metal with a relatively low metal work function, for example aluminum (Al) or titanium (Ti). In some implementations, the ohmic contacts 110 and 112 include titanium, aluminum, nickel, or gold, or combinations thereof. In some implementations, the III-N layer 122 includes a GaN layer 104 on the substrate 102, an AlN spacer layer 106 on the GaN layer 104, and an AlGaN layer 108 on the AlN spacer layer 106. The AlN spacer layer 106 can be useful, e.g., to increase mobility and lower an on-state resistance of the transistor 100. The AlN spacer layer 106 may be formed of AlN, or alternatively may be formed of another material having a larger bandgap than the AlGaN layer 108. For example, layer 106 may be formed of AlInGaN, where the compositions of Al, In, and Ga are selected such that layer 106 has a larger bandgap than layer 108. Or, layer 106 may be formed of AlGaN, where the fractional composition of Al in layer 106 is larger than that in layer 108.
The transistor 100 can include an insulator layer 120 between the gate 118 and the AlGaN layer 108. The insulator layer 120 can also serve as a passivation layer, preventing or suppressing dispersion by preventing or suppressing voltage fluctuations at the uppermost III-N surface on either sides of the gate 118. The insulator layer 120 can be made of SixNy, Al2O3, Sift, AlxSiyN, or the like, and can be prepared by metal organic chemical vapor deposition (MOCVD), low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), chemical vapor deposition (CVD), sputtering, atomic layer deposition (ALD), high density chemical vapor deposition, or any suitable deposition process. In a particular example, the insulator layer 120 is a Silicon Nitride (SixNy) layer formed by MOCVD.
The source and drain contacts 110 and 112 exhibit a normalized contact resistance that can be measured, in Ohm-mm, with respect the width W of the transistor 100. The total resistance of each contact, measured in Ohms, is then equal to the normalized contact resistance (measured in Ohm-mm) multiplied by the width W (measured in millimeters) of the transistor. It can be useful, e.g., to improve device performance, to have ohmic contacts with low normalized resistances. In some conventional transistors, the ohmic contacts exhibit normalized resistances in the range of 0.8-2.0 Ohm-mm. The example transistor 100 of
The bottom side of each contact 200a-c includes a first end 202a-c and a second end 206a-c opposite the first end 202a-c. Each contact 200a-c includes a first side that rises, e.g., monotonically, from the first end 202a-c to an intermediate point 204a-c closer to the top side 208a-c than the first end 202a-c and a second side that falls, e.g., monotonically, from the intermediate point 204a-c to the second end 206a-c. The second end 206a-c is further from the top side 208a than the intermediate point 204a-c.
The first ends 202a and/or the second ends 206a of the contacts 200a-c can have a width (“w”) where the end is flat or substantially flat. The width can be, e.g., between 20 and 300 nanometers, for example between 50 and 200 nanometers.
The first example contact 200a has a first side that curves from the first end 202a to the intermediate point 204a and a second side that curves from the intermediate point 204a to the second end 206a, forming a substantially rounded trench shape in the bottom side of the contact 200a. The second example contact 200b has a first side that rises in three line segments from the first end 202b to the intermediate point 204b and a second side that falls in three line segments from the intermediate point 204b to the second end 206b. The third example contact 200c has a first side that rises in three line segments from the first end 202c to the intermediate point 204c and a second side that falls in three line segments from the intermediate point 204c to the second end 206c.
The recess depth can affect the resistance of the contacts 110 and 112. In some implementations, increasing the recess depth can decrease the resistance up to a point where further increasing the recess depth does not decrease the resistance. Beyond a certain depth, the resistance may increase as the recess depth is increased.
A III-N layer is formed on a substrate (602). The substrate can be a silicon wafer. The III-N layer can include a GaN layer on the substrate; an AlN spacer layer on the GaN layer; and an AlGaN layer on the AlN spacer layer. The III-N layer can be formed by either directly growing the III-N layer on the substrate, or alternatively by growing the III-N layer or parts of the III-N layer on a first substrate, detaching the buffer layer from the first substrate, and bonding the buffer layer to the substrate. Forming the III-N layer can include using any appropriate deposition process.
One or more recesses are formed in a surface of the III-N layer (604). For example, the surface of the III-N layer can be etched using a patterned resist. Etching the surface can include performing a dry etch using a chlorine based gas. In some implementations, dry etching techniques, e.g., plasma etching, digital plasma etching, or reactive ion etching (RIE), are used to form the recesses.
The parameters of the etching can be adjusted to control the shape and depth of the recesses. For example, the ion energy used during the etch, the pressure applied during the etch, and the resist pattern used can be varied to achieve a target depth and shape. As an example, the following process may achieve a recess having the profile of the recesses in
Conductive contacts are formed over the one or more recesses (606). Due to the shape of the recesses, the conductive contacts have a bottom side including a first side rising, e.g., rising monotonically, from a first end to an intermediate point and a second side falling, e.g., falling monotonically, from the intermediate point to a second end opposite the first end.
The device is heated at a certain temperature for a certain amount of time (608). For example, the device can be heated to a temperature between 300° C. and 600° C. The device can be heated for one to three minutes. Typically, the heat application is performed at a temperature that is not sufficiently high to cause the contacts to alloy with the III-N layers.
The spike in electron carrier concentration 91 in
A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the techniques and devices described herein. For example, the processes described herein for forming alloyed ohmic contacts with reduced metal spitting can be used in the fabrication of other devices that require alloyed or annealed ohmic contacts, for example diodes, lasers, and LEDs. Accordingly, other implementations are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4300091 | Schade, Jr. | Nov 1981 | A |
4532439 | Koike | Jul 1985 | A |
4645562 | Liao et al. | Feb 1987 | A |
4665508 | Chang | May 1987 | A |
4728826 | Einzinger et al. | Mar 1988 | A |
4821093 | Iafrate et al. | Apr 1989 | A |
4914489 | Awano | Apr 1990 | A |
5051618 | Lou | Sep 1991 | A |
5329147 | Vo et al. | Jul 1994 | A |
5618384 | Chan et al. | Apr 1997 | A |
5646069 | Jelloian et al. | Jul 1997 | A |
5663091 | Yen et al. | Sep 1997 | A |
5705847 | Kashiwa et al. | Jan 1998 | A |
5714393 | Wild et al. | Feb 1998 | A |
5909103 | Williams | Jun 1999 | A |
5998810 | Hatano et al. | Dec 1999 | A |
6008684 | Ker et al. | Dec 1999 | A |
6097046 | Plumton | Aug 2000 | A |
6100571 | Mizuta et al. | Aug 2000 | A |
6292500 | Kouchi et al. | Sep 2001 | B1 |
6307220 | Yamazaki | Oct 2001 | B1 |
6316793 | Sheppard et al. | Nov 2001 | B1 |
6373082 | Ohno et al. | Apr 2002 | B1 |
6429468 | Hsu et al. | Aug 2002 | B1 |
6475889 | Ring | Nov 2002 | B1 |
6486502 | Sheppard et al. | Nov 2002 | B1 |
6504235 | Schmitz et al. | Jan 2003 | B2 |
6515303 | Ring | Feb 2003 | B2 |
6548333 | Smith | Apr 2003 | B2 |
6552373 | Ando et al. | Apr 2003 | B2 |
6580101 | Yoshida | Jun 2003 | B2 |
6583454 | Sheppard et al. | Jun 2003 | B2 |
6586781 | Wu et al. | Jul 2003 | B2 |
6624452 | Yu et al. | Sep 2003 | B2 |
6633195 | Baudelot et al. | Oct 2003 | B2 |
6649497 | Ring | Nov 2003 | B2 |
6727531 | Redwing et al. | Apr 2004 | B1 |
6746938 | Uchiyama et al. | Jun 2004 | B2 |
6777278 | Smith | Aug 2004 | B2 |
6849882 | Chavarkar et al. | Feb 2005 | B2 |
6867078 | Green et al. | Mar 2005 | B1 |
6914273 | Ren et al. | Jul 2005 | B2 |
6946739 | Ring | Sep 2005 | B2 |
6979863 | Ryu | Dec 2005 | B2 |
6982204 | Saxler et al. | Jan 2006 | B2 |
7030428 | Saxler | Apr 2006 | B2 |
7038252 | Saito et al. | May 2006 | B2 |
7045404 | Sheppard et al. | May 2006 | B2 |
7053413 | D'Evelyn et al. | May 2006 | B2 |
7071498 | Johnson et al. | Jul 2006 | B2 |
7078743 | Murata et al. | Jul 2006 | B2 |
7084475 | Shelton et al. | Aug 2006 | B2 |
7109552 | Wu | Sep 2006 | B2 |
7125786 | Ring et al. | Oct 2006 | B2 |
7126212 | Enquist et al. | Oct 2006 | B2 |
7161194 | Parikh et al. | Jan 2007 | B2 |
7169634 | Zhao et al. | Jan 2007 | B2 |
7170111 | Saxler | Jan 2007 | B2 |
7199640 | De Cremoux et al. | Apr 2007 | B2 |
7217960 | Ueno et al. | May 2007 | B2 |
7230284 | Parikh et al. | Jun 2007 | B2 |
7238560 | Sheppard et al. | Jul 2007 | B2 |
7250641 | Saito et al. | Jul 2007 | B2 |
7253454 | Saxler | Aug 2007 | B2 |
7265399 | Sriram et al. | Sep 2007 | B2 |
7268375 | Shur et al. | Sep 2007 | B2 |
7304331 | Saito et al. | Dec 2007 | B2 |
7321132 | Robinson et al. | Jan 2008 | B2 |
7326971 | Harris et al. | Feb 2008 | B2 |
7332795 | Smith et al. | Feb 2008 | B2 |
7364988 | Harris et al. | Apr 2008 | B2 |
7375407 | Yanagihara et al. | May 2008 | B2 |
7382001 | Beach | Jun 2008 | B2 |
7388236 | Wu et al. | Jun 2008 | B2 |
7419892 | Sheppard et al. | Sep 2008 | B2 |
7429534 | Gaska et al. | Sep 2008 | B2 |
7432142 | Saxler et al. | Oct 2008 | B2 |
7436001 | Lee et al. | Oct 2008 | B2 |
7449730 | Kuraguchi | Nov 2008 | B2 |
7456443 | Saxler et al. | Nov 2008 | B2 |
7465967 | Smith et al. | Dec 2008 | B2 |
7465997 | Kinzer et al. | Dec 2008 | B2 |
7482788 | Yang | Jan 2009 | B2 |
7488992 | Robinson | Feb 2009 | B2 |
7501669 | Parikh et al. | Mar 2009 | B2 |
7501670 | Murphy | Mar 2009 | B2 |
7508014 | Tanimoto | Mar 2009 | B2 |
7544963 | Saxler | Jun 2009 | B2 |
7547925 | Wong et al. | Jun 2009 | B2 |
7547928 | Germain | Jun 2009 | B2 |
7548112 | Sheppard | Jun 2009 | B2 |
7550781 | Kinzer et al. | Jun 2009 | B2 |
7550783 | Wu et al. | Jun 2009 | B2 |
7550784 | Saxler et al. | Jun 2009 | B2 |
7566580 | Keller et al. | Jul 2009 | B2 |
7566918 | Wu et al. | Jul 2009 | B2 |
7573078 | Wu et al. | Aug 2009 | B2 |
7592211 | Sheppard et al. | Sep 2009 | B2 |
7598108 | Li et al. | Oct 2009 | B2 |
7601993 | Hoshi et al. | Oct 2009 | B2 |
7605017 | Hayashi et al. | Oct 2009 | B2 |
7612363 | Takeda et al. | Nov 2009 | B2 |
7612390 | Saxler et al. | Nov 2009 | B2 |
7615774 | Saxler | Nov 2009 | B2 |
7629627 | Mil'shtein et al. | Dec 2009 | B2 |
7638818 | Wu et al. | Dec 2009 | B2 |
7655962 | Simin et al. | Feb 2010 | B2 |
7678628 | Sheppard et al. | Mar 2010 | B2 |
7692263 | Wu et al. | Apr 2010 | B2 |
7700973 | Shen et al. | Apr 2010 | B2 |
7709269 | Smith et al. | May 2010 | B2 |
7709859 | Smith et al. | May 2010 | B2 |
7714360 | Otsuka et al. | May 2010 | B2 |
7723739 | Takano et al. | May 2010 | B2 |
7728356 | Suh et al. | Jun 2010 | B2 |
7745851 | Harris | Jun 2010 | B2 |
7755108 | Kuraguchi | Jul 2010 | B2 |
7759699 | Beach | Jul 2010 | B2 |
7759700 | Ueno et al. | Jul 2010 | B2 |
7777252 | Sugimoto et al. | Aug 2010 | B2 |
7777254 | Sato | Aug 2010 | B2 |
7795622 | Kikkawa et al. | Sep 2010 | B2 |
7795642 | Suh et al. | Sep 2010 | B2 |
7811872 | Hoshi et al. | Oct 2010 | B2 |
7812369 | Chini et al. | Oct 2010 | B2 |
7834380 | Ueda et al. | Nov 2010 | B2 |
7851825 | Suh et al. | Dec 2010 | B2 |
7855401 | Sheppard et al. | Dec 2010 | B2 |
7859014 | Nakayama et al. | Dec 2010 | B2 |
7859020 | Kikkawa et al. | Dec 2010 | B2 |
7859021 | Kaneko | Dec 2010 | B2 |
7875537 | Suvorov et al. | Jan 2011 | B2 |
7875907 | Honea et al. | Jan 2011 | B2 |
7875910 | Sheppard et al. | Jan 2011 | B2 |
7875914 | Sheppard | Jan 2011 | B2 |
7884394 | Wu et al. | Feb 2011 | B2 |
7884395 | Saito | Feb 2011 | B2 |
7892974 | Ring et al. | Feb 2011 | B2 |
7893424 | Eichler et al. | Feb 2011 | B2 |
7893500 | Wu et al. | Feb 2011 | B2 |
7898004 | Wu et al. | Mar 2011 | B2 |
7901994 | Saxler et al. | Mar 2011 | B2 |
7906799 | Sheppard et al. | Mar 2011 | B2 |
7915643 | Suh et al. | Mar 2011 | B2 |
7915644 | Wu et al. | Mar 2011 | B2 |
7919791 | Flynn et al. | Apr 2011 | B2 |
7928475 | Parikh et al. | Apr 2011 | B2 |
7932539 | Chen et al. | Apr 2011 | B2 |
7935985 | Mishra et al. | May 2011 | B2 |
7939391 | Suh et al. | May 2011 | B2 |
7948011 | Rajan et al. | May 2011 | B2 |
7955918 | Wu et al. | Jun 2011 | B2 |
7955984 | Ohki | Jun 2011 | B2 |
7956383 | Kuroda et al. | Jun 2011 | B2 |
7960756 | Sheppard et al. | Jun 2011 | B2 |
7961482 | Ribarich | Jun 2011 | B2 |
7965126 | Honea et al. | Jun 2011 | B2 |
7973335 | Okamoto et al. | Jul 2011 | B2 |
7982242 | Goto | Jul 2011 | B2 |
7985986 | Heikman et al. | Jul 2011 | B2 |
7985987 | Kaneko | Jul 2011 | B2 |
8039352 | Mishra et al. | Oct 2011 | B2 |
8044380 | Lee | Oct 2011 | B2 |
8049252 | Smith et al. | Nov 2011 | B2 |
8076698 | Ueda et al. | Dec 2011 | B2 |
8076699 | Chen et al. | Dec 2011 | B2 |
8093606 | Sonobe et al. | Jan 2012 | B2 |
8110425 | Yun | Feb 2012 | B2 |
8114717 | Palacios et al. | Feb 2012 | B2 |
8153515 | Saxler | Apr 2012 | B2 |
8174048 | Beach | May 2012 | B2 |
8178900 | Kurachi et al. | May 2012 | B2 |
8223458 | Mochizuki et al. | Jul 2012 | B2 |
8237196 | Saito | Aug 2012 | B2 |
8237198 | Wu et al. | Aug 2012 | B2 |
8264003 | Herman | Sep 2012 | B2 |
8361816 | Lee et al. | Jan 2013 | B2 |
8363437 | Wang et al. | Jan 2013 | B2 |
8389975 | Kikuchi et al. | Mar 2013 | B2 |
8389977 | Chu et al. | Mar 2013 | B2 |
8390000 | Chu et al. | Mar 2013 | B2 |
8404042 | Mizuhara et al. | Mar 2013 | B2 |
8431960 | Beach et al. | Apr 2013 | B2 |
8455885 | Keller et al. | Jun 2013 | B2 |
8471267 | Hayashi et al. | Jun 2013 | B2 |
8476125 | Khan et al. | Jul 2013 | B2 |
8492779 | Lee | Jul 2013 | B2 |
8502323 | Chen | Aug 2013 | B2 |
8519438 | Mishra et al. | Aug 2013 | B2 |
8525231 | Park et al. | Sep 2013 | B2 |
8530904 | Treu et al. | Sep 2013 | B2 |
8598937 | Lal et al. | Dec 2013 | B2 |
8603880 | Yamada | Dec 2013 | B2 |
8614460 | Matsushita | Dec 2013 | B2 |
8652948 | Horie et al. | Feb 2014 | B2 |
8674407 | Ando et al. | Mar 2014 | B2 |
8698198 | Kuraguchi | Apr 2014 | B2 |
8716141 | Dora et al. | May 2014 | B2 |
8742460 | Mishra et al. | Jun 2014 | B2 |
8772832 | Boutros | Jul 2014 | B2 |
8785305 | Ramdani | Jul 2014 | B2 |
8803246 | Wu et al. | Aug 2014 | B2 |
20030006437 | Mizuta et al. | Jan 2003 | A1 |
20030030056 | Callaway, Jr. | Feb 2003 | A1 |
20040119067 | Weeks, Jr. et al. | Jun 2004 | A1 |
20050087763 | Kanda | Apr 2005 | A1 |
20050133816 | Fan et al. | Jun 2005 | A1 |
20050189559 | Saito et al. | Sep 2005 | A1 |
20060076677 | Daubenspeck et al. | Apr 2006 | A1 |
20060145189 | Beach | Jul 2006 | A1 |
20060189109 | Fitzgerald | Aug 2006 | A1 |
20060202272 | Wu et al. | Sep 2006 | A1 |
20060226442 | Zhang et al. | Oct 2006 | A1 |
20070018199 | Sheppard et al. | Jan 2007 | A1 |
20070045670 | Kuraguchi | Mar 2007 | A1 |
20070128743 | Huang et al. | Jun 2007 | A1 |
20070131968 | Morita et al. | Jun 2007 | A1 |
20070145417 | Brar et al. | Jun 2007 | A1 |
20070205433 | Parikh et al. | Sep 2007 | A1 |
20070210329 | Goto | Sep 2007 | A1 |
20070228477 | Suzuki et al. | Oct 2007 | A1 |
20070249119 | Saito | Oct 2007 | A1 |
20070295985 | Weeks, Jr. et al. | Dec 2007 | A1 |
20080073670 | Yang et al. | Mar 2008 | A1 |
20080258150 | McCarthy et al. | Oct 2008 | A1 |
20080272397 | Koudymov et al. | Nov 2008 | A1 |
20080308813 | Suh et al. | Dec 2008 | A1 |
20090045438 | Inoue et al. | Feb 2009 | A1 |
20090050936 | Oka | Feb 2009 | A1 |
20090072269 | Suh et al. | Mar 2009 | A1 |
20090075455 | Mishra | Mar 2009 | A1 |
20090085065 | Mishra et al. | Apr 2009 | A1 |
20090140262 | Ohki et al. | Jun 2009 | A1 |
20100044752 | Marui | Feb 2010 | A1 |
20100065923 | Charles et al. | Mar 2010 | A1 |
20100133506 | Nakanishi et al. | Jun 2010 | A1 |
20100203234 | Anderson et al. | Aug 2010 | A1 |
20100219445 | Yokoyama et al. | Sep 2010 | A1 |
20110012110 | Sazawa et al. | Jan 2011 | A1 |
20120217512 | Renaud | Aug 2012 | A1 |
20120223317 | Bahl | Sep 2012 | A1 |
20120267637 | Jeon et al. | Oct 2012 | A1 |
20130056744 | Mishra et al. | Mar 2013 | A1 |
20130126943 | Tanaka et al. | May 2013 | A1 |
20130328061 | Chu et al. | Dec 2013 | A1 |
20130334538 | Saunier | Dec 2013 | A1 |
20140084346 | Tajiri | Mar 2014 | A1 |
20140099757 | Parikh et al. | Apr 2014 | A1 |
20140264370 | Keller et al. | Sep 2014 | A1 |
20140264455 | Keller et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1596477 | Mar 2005 | CN |
1748320 | Mar 2006 | CN |
101107713 | Jan 2008 | CN |
101312207 | Nov 2008 | CN |
101897029 | Nov 2010 | CN |
102017160 | Apr 2011 | CN |
103477543 | Dec 2013 | CN |
103493206 | Jan 2014 | CN |
1 998 376 | Dec 2008 | EP |
2 188 842 | May 2010 | EP |
09-306926 | Nov 1997 | JP |
11-224950 | Aug 1999 | JP |
2000-058871 | Feb 2000 | JP |
2003-229566 | Aug 2003 | JP |
2003-244943 | Aug 2003 | JP |
2004-253620 | Sep 2004 | JP |
2004-260114 | Sep 2004 | JP |
2006-032749 | Feb 2006 | JP |
2006-033723 | Feb 2006 | JP |
2007-036218 | Feb 2007 | JP |
2007-505501 | Mar 2007 | JP |
2007-215331 | Aug 2007 | JP |
2007-227409 | Sep 2007 | JP |
2008-091699 | Apr 2008 | JP |
2008-199771 | Aug 2008 | JP |
2008-243848 | Oct 2008 | JP |
2009-503815 | Jan 2009 | JP |
2009-524242 | Jun 2009 | JP |
2010-087076 | Apr 2010 | JP |
2010-525023 | Jul 2010 | JP |
2010-539712 | Dec 2010 | JP |
2011-0033584 | Mar 2011 | KR |
200924068 | Jun 2009 | TW |
200924201 | Jun 2009 | TW |
200947703 | Nov 2009 | TW |
201010076 | Mar 2010 | TW |
201027759 | Jul 2010 | TW |
201027912 | Jul 2010 | TW |
201036155 | Oct 2010 | TW |
201322443 | Jun 2013 | TW |
WO 2004070791 | Aug 2004 | WO |
WO 2004098060 | Nov 2004 | WO |
WO 2005036749 | Apr 2005 | WO |
WO 2005070007 | Aug 2005 | WO |
WO 2005070009 | Aug 2005 | WO |
WO 2006114883 | Nov 2006 | WO |
WO 2007077666 | Jul 2007 | WO |
WO 2007108404 | Sep 2007 | WO |
WO 2008120094 | Oct 2008 | WO |
WO 2009036181 | Mar 2009 | WO |
WO 2009036266 | Mar 2009 | WO |
WO 2009039028 | Mar 2009 | WO |
WO 2009039041 | Mar 2009 | WO |
WO 2009076076 | Jun 2009 | WO |
WO 2009132039 | Oct 2009 | WO |
WO 2010039463 | Apr 2010 | WO |
WO 2010068554 | Jun 2010 | WO |
WO 2010090885 | Aug 2010 | WO |
WO 2010132587 | Nov 2010 | WO |
WO 2011031431 | Mar 2011 | WO |
WO 2011072027 | Jun 2011 | WO |
WO 2013052833 | Apr 2013 | WO |
Entry |
---|
Authorized officer Sang Won Choi, International Search Report and Written Opinion in PCT/US2015/065597, mailed Mar. 30, 2016, 16 pages. |
Authorized officer Chung Keun Lee, International Search Report and Written Opinion in PCT/US2008/076030, mailed Mar. 23, 2009, 10 pages. |
Authorized officer Yolaine Cussac, International Preliminary Report on Patentability in PCT/US2008/076030, Mar. 25, 2010, 5 pages. |
Authorized officer Chung Keun Lee, International Search Report and Written Opinion in PCT/US2008/076079, mailed Mar. 20, 2009, 11 pages. |
Authorized officer Nora Lindner, International Preliminary Report on Patentability in PCT/US2008/076079, mailed Apr. 1, 2010, 6 pages. |
Authorized officer Keon Hyeong Kim, International Search Report and Written Opinion in PCT/US2008/076160 mailed Mar. 18, 2009, 11 pages. |
Authorized officer Simin Baharlou, International Preliminary Report on Patentability in PCT/US2008/076160, mailed Mar. 25, 2010, 6 pages. |
Authorized officer Chung Keun Lee, International Search Report and Written Opinion in PCT/US2008/076199, mailed Mar. 24, 2009, 11 pages. |
Authorized officer Dorothée Mülhausen, International Preliminary Report on Patentability in PCT/US2008/076199, mailed Apr. 1, 2010, 6 pages. |
Authorized officer Keon Hyeong Kim, International Search Report and Written Opinion in PCT/US2008/085031, mailed Jun. 24, 2009, 11 pages. |
Authorized officer Yolaine Cussac, International Preliminary Report on Patentability in PCT/US2008/085031, mailed Jun. 24, 2010, 6 pages. |
Authorized officer Tae Hoon Kim, International Search Report and Written Opinion in PCT/US2009/041304, mailed Dec. 18, 2009, 13 pages. |
Authorized officer Dorothée Mülhausen, International Preliminary Report on Patentability, in PCT/US2009/041304, mailed Nov. 4, 2010, 8 pages. |
Authorized officer Sung Hee Kim, International Search Report and the Written Opinion in PCT/US2009/057554, mailed May 10, 2010, 13 pages. |
Authorized Officer Gijsbertus Beijer, International Preliminary Report on Patentability in PCT/US2009/057554, mailed Mar. 29, 2011, 7 pages. |
Authorized officer Cheon Whan Cho, International Search Report and Written Opinion in PCT/US2009/066647, mailed Jul. 1, 2010, 16 pages. |
Authorized officer Athina Nikitas-Etienne, International Preliminary Report on Patentability in PCT/US2009/066647, mailed Jun. 23, 2011, 12 pages. |
Authorized officer Sung Chan Chung, International Search Report and Written Opinion for PCT/US2010/021824, mailed Aug. 23, 2010, 9 pages. |
Authorized officer Beate Giffo-Schmitt, International Preliminary Report on Patentability in PCT/US2010/021824, mailed Aug. 18, 2011, 6 pages. |
Authorized officer Sang Ho Lee, International Search Report and Written Opinion in PCT/US2010/034579, mailed Dec. 24, 2010, 9 pages. |
Authorized officer Nora Lindner, International Preliminary Report on Patentability in PCT/US2010/034579, mailed Nov. 24, 2011, 7 pages. |
Authorized officer Jeongmin Choi, International Search Report and Written Opinion in PCT/US2010/046193, mailed Apr. 26, 2011, 13 pages. |
Authorized officer Philippe Bécamel, International Preliminary Report on Patentability in PCT/US2010/046193, mailed Mar. 8, 2012, 10 pages. |
Authorized officer Sang Ho Lee, International Search Report and Written Opinion in PCT/US2010/059486, mailed Jul. 26, 2011, 9 pages. |
Authorized officer Nora Lindner, International Preliminary Report on Patentability in PCT/US2010/059486, mailed Jun. 21, 2012, 6 pages. |
Authorized officer Kwan Sik Sul, International Search Report and Written Opinion in PCT/US2011/063975, mailed May 18, 2012, 8 pages. |
Authorized officer Simin Baharlou, International Preliminary Report on Patentability in PCT/US2011/063975, mailed Jun. 27, 2013, 5 pages. |
Authorized officer Sang-Taek Kim, International Search Report and Written Opinion in PCT/US2011/061407, mailed May 22, 2012, 10 pages. |
Authorized officer Lingfei Bai, International Preliminary Report on Patentability in PCT/US2011/061407, mailed Jun. 6, 2013, 7 pages. |
Authorized officer Kwan Sik Sul, International Search Report and Written Opinion in PCT/US2012/023160, mailed May 24, 2012, 9 pages. |
Authorized officer Simin Baharlou, International Preliminary Report on Patentability in PCT/US2012/023160, mailed Aug. 15, 2013, 6 pages. |
Authorized officer Jeongmin Choi, International Search Report and Written Opinion in PCT/US2012/027146, mailed Sep. 24, 2012, 12 pages. |
Authorized officer Athina Nickitas-Etienne, International Preliminary Report on Patentability in PCT/US2012/027146, mailed Sep. 19, 2013, 9 pages. |
Authorized officer Tae Hoon Kim, International Search Report and Written Opinion in PCT/US2013/035837, mailed Jul. 30, 2013, 9 pages. |
Authorized officer Agnès Wittmann-Regis, International Preliminary Report on Patentability in PCT/US2013/035837, mailed Oct. 23, 2014, 6 pages. |
Authorized officer Sang Won Choi, International Search Report and Written Opinion in PCT/US2013/048275, mailed Oct. 14, 2013, 17 pages. |
Authorized officer Simin Baharlou, International Preliminary Report on Patentability in PCT/US2013/048275, mailed Jan. 8, 2015, 14 pages. |
Authorized officer Hye Lyun Park, International Search Report and Written Opinion in PCT/US2013/050914, mailed Oct. 18, 2013, 11 pages. |
Authorized officer Yukari Nakamura, International Preliminary Report on Patentability in PCT/US2013/050914, mailed Jan. 29, 2015, 8 pages. |
Authorized officer Sang Won Choi, International Search Report and Written Opinion in PCT/US2013/024470, mailed May 27, 2013, 12 pages. |
Authorized officer Simin Baharlou, International Preliminary Report on Patentability in PCT/US2013/024470, mailed Aug. 14, 2014, 9 pages. |
Authorized officer June Young Son, International Search Report and Written Opinion in PCT/US2014/016298, mailed May 23, 2014, 15 pages. |
Authorized officer Kihwan Moon, International Preliminary Report on Patentability in PCT/US2014/016298, mailed Aug. 27, 2015, 12 pages. |
Authorized officer Tae Hoon Kim, International Search Report and Written Opinion in PCT/US2014/027523, mailed Jul. 30, 2014, 14 pages. |
Authorized officer Nora Lindner, International Preliminary Report on Patentability in PCT/US2014/027523, mailed Sep. 24, 2015, 11 pages. |
Authorized officer June Young Son, International Search Report and Written Opinion in PCT/US2014/024191, mailed Aug. 7, 2014, 11 pages. |
Authorized officer Kihwan Moon, International Preliminary Report on Patentability in PCT/US2014/024191, mailed Sep. 24, 2015, 8 pages. |
Authorized officer June Young Son, International Search Report and Written Opinion in PCT/US2014/046030, mailed Oct. 21, 2014, 12 pages. |
Authorized officer Agnès Wittmann-Regis, International Preliminary Report on Patentability in PCT/US2014/046030, mailed Jan. 28, 2016, 9 pages. |
European Search Report in Application No. 10 81 5813.0, mailed Mar. 12, 2013, 9 pages. |
Search Report and Action in TW Application No. 098132132, issued Dec. 6, 2012, 8 pages. |
Search Report and Action in TW Application No. 098141930, issued Jul. 10, 2014, 7 pages. |
Chinese First Office Action for Application No. 200880120050.6, Aug. 2, 2011, 10 pages. |
Chinese First Office Action for Application No. 200980114639.X, May 14, 2012, 13 pages. |
Ando et al., “10-W/mm AlGaN—GaN HFET with a Field Modulating Plate,” IEEE Electron Device Letters, 2003, 24(5):289-291. |
Arulkumaran et al., “Enhancement of Breakdown Voltage by AlN Buffer Layer Thickness in AlGaN/GaN High-electron-mobility Transistors on 4 in. Diameter Silicon,” Applied Physics Letters, 2005, 86:123503-1-3. |
Arulkumaran et al. “Surface Passivation Effects on AlGaN/GaN High-Electron-Mobility Transistors with SiO2, Si3N4, and Silicon Oxynitride,” Applied Physics Letters, 2004, 84(4):613-615. |
Barnett and Shinn, “Plastic and Elastic Properties of Compositionally Modulated Thin Films,” Annu. Rev. Mater. Sci., 1994, 24:481-511. |
Chen et al., “High-performance AlGaN/GaN Lateral Field-effect Rectifiers Compatible with High Electron Mobility Transistors,” Applied Physics Letters, 2008, 92, 253501-1-3. |
Cheng et al., “Flat GaN Epitaxial Layers Grown on Si(111) by Metalorganic Vapor Phase Epitaxy Using Step-graded AlGaN Intermediate Layers,” Journal of Electronic Materials, 2006, 35(4):592-598. |
Coffie, “Characterizing and Suppressing DC-to-RF Dispersion in AlGaN/GaN High Electron Mobility Transistors,” 2003, PhD Thesis, University of California, Santa Barbara, 169 pages. |
Coffie et al., “Unpassivated p-GaN/AlGaN/GaN HEMTs with 7.1 W/mm at 10 GhZ,” Electronic Letters, 2003, 39(19):1419-1420. |
Chu et al., “1200-V Normally Off GaN-on-Si Field-effect Transistors with Low Dynamic On-Resistance,” IEEE Electron Device Letters, 2011, 32(5):632-634. |
Dora et al., “High Breakdown Voltage Achieved on AlGaN/GaN HEMTs with Integrated Slant Field Plates,” IEEE Electron Device Letters, 2006, 27(9):713-715. |
Dora et al., “ZrO2 Gate Dielectrics Produced by Ultraviolet Ozone Oxidation for GaN and AlGaN/GaN Transistors,” J. Vac. Sci. Technol. B, 2006, 24(2)575-581. |
Dora, “Understanding Material and Process Limits for High Breakdown Voltage AlGaN/GaN HEMTs,” PhD Thesis, University of California, Santa Barbara, Mar. 2006, 157 pages. |
Fanciulli et al., “Structural and Electrical Properties of HfO2 Films Grown by Atomic Layer Deposition on Si, Ge, GaAs and GaN,” Mat. Res. Soc. Symp. Proc., 2004, vol. 786, 6 pages. |
Green et al., “The Effect of Surface Passivation on the Microwave Characteristics of Undoped AlGaN/GaN HEMT's,” IEEE Electron Device Letters, 2000, 21(6):268 270. |
Gu et al., “AlGaN/GaN MOS Transistors using Crystalline ZrO2 as Gate Dielectric,” Proceedings of SPIE, 2007, vol. 6473, 64730S-1-8. |
Higashiwaki et al. “AlGaN/GaN Heterostructure Field-Effect Transistors on 4H—SiC Substrates with Current-Gain Cutoff Frequency of 190 GHz,” Applied Physics Express, 2008, 021103-1-3. |
Hwang et al., “Effects of a Molecular Beam Epitaxy Grown AlN Passivation Layer on AlGaN/GaN Heterojunction Field Effect Transistors,” Solid-State Electronics, 2004, 48:363-366. |
Im et al., “Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure with Extremely High 2DEG Density Grown on Silicon Substrate,” IEEE Electron Device Letters, 2010, 31(3):192-194. |
Karmalkar and Mishra, “Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate,” IEEE Transactions on Electron Devices, 2001, 48(8):1515-1521. |
Karmalkar and Mishra, “Very High Voltage AlGaN/GaN High Electron Mobility Transistors Using a Field Plate Deposited on a Stepped Insulator,” Solid-State Electronics, 2001, 45:1645-1652. |
Keller et al., “GaN—GaN Junctions with Ultrathin AlN Interlayers: Expanding Heterojunction Design,” Applied Physics Letters, 2002, 80(23):4387-4389. |
Khan et al, “AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor,” IEEE Electron Device Letters, 2000, 21(2):63-65. |
Kim, “Process Development and Device Characteristics of AlGaN/GaN HEMTs for High Frequency Applications,” PhD Thesis, University of Illinois at Urbana-Champaign, 2007, 120 pages. |
Kumar et al., “High Transconductance Enhancement-mode AlGaN/GaN HEMTs on SiC Substrate,” Electronics Letters, 2003, 39(24):1758-1760. |
Kuraguchi et al., “Normally-off GaN-MISFET with Well-controlled Threshold Voltage,” Phys. Stats. Sol., 2007, 204(6):2010-2013. |
Lanford et al., “Recessed-gate Enhancement-mode GaN HEMT with High Threshold Voltage, ” Electronic Letters, 2005, 41(7):449-450. |
Lee et al., “Self-aligned Process for Emitter- and Base-regrowth GaN HBTs and BJTs,” Solid-State Electronics, 2001, 45:243-247. |
Marchand et al., “Metalorganic Chemical Vapor Deposition on GaN on Si(111): Stress Control and Application to Filed-effect Transistors,” Journal of Applied Physics, 2001, 89(12):7846-7851. |
Mishra et al., “AlGaN/GaN HEMTs—An Overview of Device Operation and Applications,” Proceedings of the IEEE, 2002, 90(6):1022-1031. |
Nanjo et al., “Remarkable Breakdown Voltage Enhancement in AlGaN Channel High Electron Mobility Transistors,” Applied Physics Letters 92 (2008), 3 pages. |
Napierala et al., “Selective GaN Epitaxy on Si(111) Substrates Using Porous Aluminum Oxide Buffer Layers,” Journal of the Electrochemical Society, 2006. 153(2):G125-G127, 4 pages. |
Oka and Nozawa, “AlGaN/GaN Recessed MIS-gate HFET with High-threshold-voltage Normally-off Operation for Power Electronics Applications,” IEEE Electron Device Letters, 2008, 29(7):668-670. |
Palacios et al., “AlGaN/GaN HEMTs with an InGaN-based Back-barrier,” Device Research Conference Digest, 2005, DRC '05 63rd, pp. 181-182. |
Palacios et al., “AlGaN/GaN High Electron Mobility Transistors with InGaN Back-Barriers,” IEEE Electron Device Letters, 2006, 27(1):13-15. |
Palacios et al., “Nitride-based High Electron Mobility Transistors with a GaN Spacer,” Applied Physics Letters, 2006, 89:073508-1-3. |
Pei et al., “Effect of Dielectric Thickness on Power Performance of AlGaN/GaN HEMTs,” IEEE Electron Device Letters, 2009, 30(4):313-315. |
Tracy Frost, “Planar, Low Switching Loss, Gallium Nitride Devices for Power Conversion Applications,” SBIR N121-090 (Navy), 2012, 3 pages. |
Rajan et al., “Advanced Transistor Structures Based on N-face GaN,” 32M International Symposium on Compound Semiconductors (ISCS), Sep. 18-22, 2005, Europa-Park Rust, Germany, 2 pages. |
Reiher et al., “Efficient Stress Relief in GaN Heteroepitaxy on Si(111) Using Low-temperature AlN Interlayers,” Journal of Crystal Growth, 2003, 248:563-567. |
Saito et al., “Recessed-gate Structure Approach Toward Normally Off High-voltage AlGaN/GaN HEMT for Power Electronics Applications,” IEEE Transactions on Electron Device, 2006, 53(2):356-362. |
Shelton et al., “Selective Area Growth and Characterization of AlGaN/GaN Heterojunction Bipolar Transistors by Metalorganic Chemical Vapor Deposition,” IEEE Transactions on Electron Devices, 2001, 48(3):490-494. |
Shen, “Advanced Polarization-based Design of AlGaN/GaN HEMTs,” Jun. 2004, PhD Thesis, University of California, Santa Barbara, 192 pages. |
Sugiura et al., “Enhancement-mode n-channel GaN MOSFETs Fabricated on p—GaN Using HfO2 as Gate Oxide,” Electronics Letters, 2007, vol. 43, No. 17, 2 pages. |
Suh et al. “High-Breakdown Enhancement-mode AlGaN/GaN HEMTs with Integrated Slant Field-Plate,” Electron Devices Meeting, 2006, IEDM '06 International, 3 pages. |
Tipirneni et al. “Silicon Dioxide-encapsulated High-Voltage AlGaN/GaN HFETs for Power-Switching Applications,” IEEE Electron Devices Letters, 2007, 28(9):784-786. |
Vetury et al., “Direct Measurement of Gate Depletion in High Breakdown (405V) Al/GaN/GaN Heterostructure Field Effect Transistors,” IEDM 98, 1998, pp. 55-58. |
Wang et al., “Comparison of the Effect of Gate Dielectric Layer on 2DEG Carrier Concentration in Strained AlGaN/GaN Heterostructure,” Mater. Res. Soc. Symp. Proc., 2007, vol. 831, 6 pages. |
Wang et al., “Enhancement-mode Si3N4/AlGaN/GaN MISHFETs,” IEEE Electron Device Letters, 2006, 27(10):793-795. |
Wu, “AlGaN/GaN Microwave Power High-Mobility Transistors,” PhD Thesis, University of California, Santa Barbara, Jul. 1997, 134 pages. |
Wu et al., “A 97.8% Efficient GaN HEMT Boost Converter with 300-W Output Power at 1 MHz,” Electronic Device Letters, 2008, IEEE, 29(8):824-826. |
Yoshida, “AlGan/GaN Power FET,” Furukawa Review, 2002, 21:7-11. |
Zhang, “High Voltage GaN HEMTs with Low On-resistance for Switching Applications,” PhD Thesis, University of California, Santa Barbara, Sep. 2002, 166 pages. |
Zhanghong Content, Shanghai Institute of Metallurgy, Chinese Academy of Sciences, “Two-Dimensional Electron Gas and High Electron Mobility Transistor (HEMT),” Dec. 31, 1984, 17 pages. |
Number | Date | Country | |
---|---|---|---|
20160172455 A1 | Jun 2016 | US |