Reduced size self-delivering RNAi compounds

Abstract
The present invention relates to RNAi constructs with minimal double-stranded regions, and their use in gene silencing. RNAi constructs associated with the invention include a double stranded region of 8-14 nucleotides and a variety of chemical modifications, and are highly effective in gene silencing. The RNAi constructs may be, for instance, miRNA constructs that are miRNA modulators.
Description
FIELD OF INVENTION

The invention pertains to the field of RNA interference (RNAi). The invention more specifically relates to nucleic acid molecules with improved in vivo delivery properties without the use of a delivering agent and their use in efficient gene silencing.


BACKGROUND OF INVENTION

Complementary oligonucleotide sequences are promising therapeutic agents and useful research tools in elucidating gene functions. However, prior art oligonucleotide molecules suffer from several problems that may impede their clinical development, and frequently make it difficult to achieve intended efficient inhibition of gene expression (including protein synthesis) using such compositions in vivo.


A major problem has been the delivery of these compounds to cells and tissues. Conventional double-stranded RNAi compounds, 19-29 bases long, form a highly negatively-charged rigid helix of approximately 1.5 by 10-15 nm in size. This rod type molecule cannot get through the cell-membrane and as a result has very limited efficacy both in vitro and in vivo. As a result, all conventional RNAi compounds require some kind of a delivery vehicle to promote their tissue distribution and cellular uptake. This is considered to be a major limitation of the RNAi technology.


There have been previous attempts to apply chemical modifications to oligonucleotides to improve their cellular uptake properties. One such modification was the attachment of a cholesterol molecule to the oligonucleotide. A first report on this approach was by Letsinger et al., in 1989. Subsequently, ISIS Pharmaceuticals, Inc. (Carlsbad, Calif.) reported on more advanced techniques in attaching the cholesterol molecule to the oligonucleotide (Manoharan, 1992).


With the discovery of siRNAs in the late nineties, similar types of modifications were attempted on these molecules to enhance their delivery profiles. Cholesterol molecules conjugated to slightly modified (Soutschek, 2004) and heavily modified (Wolfrum, 2007) siRNAs appeared in the literature. Yamada et al., 2008 also reported on the use of advanced linker chemistries which further improved cholesterol mediated uptake of siRNAs. In spite of all this effort, the uptake of these types of compounds appears to be inhibited in the presence of biological fluids resulting in highly limited efficacy in gene silencing in vivo, limiting the applicability of these compounds in a clinical setting.


Therefore, it would be of great benefit to improve upon the prior art oligonucleotides by designing oligonucleotides that have improved delivery properties in vivo and are clinically meaningful.


SUMMARY OF INVENTION

Described herein are asymmetric chemically modified nucleic acid molecules with minimal double stranded regions, and the use of such molecules in gene expression modulation. RNAi molecules associated with the invention contain single stranded regions and double stranded regions, and can contain a variety of chemical modifications within both the single stranded and double stranded regions of the molecule. Additionally, the RNAi molecules can be attached to a hydrophobic conjugate such as a conventional and advanced sterol-type molecule. This new class of RNAi molecules has superior efficacy both in vitro and in vivo than previously described RNAi molecules.


Aspects of the invention relate to an isolated nucleic acid molecule having a guide strand of 18-23 nucleotides in length that has complementarity to a miRNA sequence and a passenger strand of 8-16 nucleotides in length. The guide strand and the passenger strand form the nucleic acid molecule such that the nucleic acid has a double stranded region and a single stranded region, wherein the single stranded region is the 3′ end of the guide strand and is 2-13 nucleotides in length and comprises at least two phosphorothioate modifications. At least 50% of the pyrimidines in the nucleic acid molecule are modified.


In some embodiments the nucleotide in position one of the guide strand has a 2′-O-methyl modification. For example, the nucleotide in position one of the guide strand may be a 5P-2′O-methyl U.


In other embodiments, at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% of the pyrimidines in the nucleic acid molecule are modified. 100% of the pyrimidines in the nucleic acid molecule are modified in other embodiments. The modified pyrimidines may be, for instance, 2′fluoro or 2′O methyl modified.


In some embodiments at least one U or C includes a hydrophobic modification. In other embodiments a plurality of U's and/or C's include a hydrophobic modification. The hydrophobic modification may be, for instance, a methyl or ethyl hydrophobic base modification.


The guide strand may include a number of phosphate backbone modifications, such as phosphorothioate modifications. The guide strand contains 6-8 phosphorothioate modifications in some embodiments. In other embodiments the 3′ terminal 10 nucleotides of the guide strand include at least eight phosphorothioate modifications. In yet other embodiments the guide strand includes 4-14 phosphate modifications. These modifications may be on the single stranded region, the double stranded region or both.


The nucleic acid molecule includes a single stranded and a double stranded region. The single stranded region of the guide strand, in some embodiments, is 6 nucleotides long. In other embodiments the single stranded region of the guide strand is 8 nucleotides long. The double stranded region may be 12-14 or 13 nucleotides long in other embodiments.


Optionally, the double stranded nucleic acid molecule has one end that is blunt or includes a one nucleotide overhang.


The passenger strand is linked at the 3′ end to a lipophilic group according to some embodiments. The lipophilic group may be a sterol, such as cholesterol.


The isolated double stranded nucleic acid molecule in some embodiments is an miRNA mimic. The miRNA sequence to which the guide strand is complementary in the miRNA mimic is a miRNA recognition element. In some embodiments the miRNA mimic is a mimic of an miRNA selected from the group consisting of miR21, miR 139, miR 7, miR29, miR 122, miR 302-367 cluster, miR 221, miR-96, miR 126, miR 225 and miR 206.


In other embodiments the isolated double stranded nucleic acid molecule is an miRNA inhibitor. The miRNA sequence to which the guide strand is complementary in the miRNA inhibitor is an antisense strand of a mature miRNA. In some embodiments the guide strand is at least 50% chemically modified. In other embodiments the mature miRNA is miR 17-92.


According to aspects of the invention, a method for modulating miRNA-mediated gene expression in a mammalian cell is provided. The method involves contacting the mammalian cell with an isolated double stranded nucleic acid molecule described herein in an effective amount to modulate miRNA-mediated gene expression. In some embodiments miRNA-mediated gene expression in the mammalian cell is reduced. In other embodiments miRNA-mediated gene expression in the mammalian cell is increased. The mammalian cell may contacted with the isolated nucleic acid in vivo, ex vivo, or in vitro.


The invention also involves in other aspects a method for modulating miRNA-mediated gene expression in a stem cell. The method involves contacting the stem cell with an isolated double stranded nucleic acid molecule described herein in an effective amount to modulate miRNA-mediated gene expression in the stem cell. The methods are useful for example in promoting or inhibiting stem cell differentiation, tissue remodeling, organ preservation etc.


Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention. This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.





BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:



FIG. 1 is a schematic depicting proposed structures of asymmetric double stranded RNA molecules (adsRNA). Bold lines represent sequences carrying modification patterns compatible with RISC loading. Striped lines represent polynucleotides carrying modifications compatible with passenger strands. Plain lines represent a single stranded polynucleotide with modification patterns optimized for cell interaction and uptake. FIG. 1A depicts adsRNA with extended guide or passenger strands; FIG. 1B depicts adsRNA with length variations of a cell penetrating polynucleotide; FIG. 1C depicts adsRNA with 3′ and 5′ conjugates; FIG. 1D depicts adsRNAs with mismatches.



FIG. 2 is a schematic depicting asymmetric dsRNA molecules with different chemical modification patterns. Several examples of chemical modifications that might be used to increase hydrophobicity are shown including 4-pyridyl, 2-pyridyl, isobutyl and indolyl based position 5 uridine modifications.



FIG. 3 is a schematic depicting the use of dsRNA binding domains, protamine (or other Arg rich peptides), spermidine or similar chemical structures to block duplex charge to facilitate cellular entry.



FIG. 4 is a schematic depicting positively charged chemicals that might be used for polynucleotide charge blockage.



FIG. 5 is a schematic depicting examples of structural and chemical compositions of single stranded RISC entering polynucleotides. The combination of one or more modifications including 2′d, 2′Ome, 2′F, hydrophobic and phosphorothioate modifications can be used to optimize single strand entry into the RISC.



FIG. 6 is a schematic depicting examples of structural and chemical composition of RISC substrate inhibitors. Combinations of one or more chemical modifications can be used to mediate efficient uptake and efficient binding to preloaded RISC complex.



FIG. 7 is a schematic depicting structures of polynucleotides with sterol type molecules attached, where R represent a polycarbonic tail of 9 carbons or longer. FIG. 7A depicts an adsRNA molecule; FIG. 7B depicts an siRNA molecule of approximately 17-30 bp long; FIG. 7C depicts a RISC entering strand; FIG. 7D depicts a substrate analog strand. Chemical modification patterns, as depicted in FIG. 7, can be optimized to promote desired function.



FIG. 8 is a schematic depicting examples of naturally occurring phytosterols with a polycarbon chain that is longer than 8, attached at position 17. More than 250 different types of phytosterols are known.



FIG. 9 is a schematic depicting examples of sterol-like structures, with variations in the size of the polycarbon chains attached at position 17.



FIG. 10 presents schematics and graphs demonstrating that the percentage of liver uptake and plasma clearance of lipid emulsions containing sterol type molecules is directly affected by the size of the polycarbon chain attached at position 17. This figure is adapted from Martins et al, Journal of Lipid Research (1998).



FIG. 11 is a schematic depicting micelle formation. FIG. 11A depicts a polynucleotide with a hydrophobic conjugate; FIG. 11B depicts linoleic acid; FIG. 11C depicts a micelle formed from a mixture of polynucleotides containing hydrophobic conjugates combined with fatty acids.



FIG. 12 is a schematic depicting how alteration in lipid composition can affect pharmacokinetic behavior and tissue distribution of hydrophobically modified and/or hydrophobically conjugated polynucleotides. In particular, use of lipid mixtures enriched in linoleic acid and cardiolipin results in preferential uptake by cardiomyocites.



FIG. 13 is a schematic showing examples of RNAi constructs and controls used to target MAP4K4 expression. RNAi construct 12083 corresponds to SEQ ID NOs:597 and 598. RNAi construct 12089 corresponds to SEQ ID NO:599.



FIG. 14 is a graph showing MAP4K4 expression following transfection with RNAi constructs associated with the invention. RNAi constructs tested were: 12083 (Nicked), 12085 (13nt Duplex), 12089 (No Stem Pairing) and 12134 (13nt miniRNA). Results of transfection were compared to an untransfected control sample. RNAi construct 12083 corresponds to SEQ ID NOs:597 and 598. RNAi construct 12085 corresponds to SEQ ID NOs:600 and 601. RNAi construct 12089 corresponds to SEQ ID NO:599. RNAi construct 12134 corresponds to SEQ ID NOs:602 and 603.



FIG. 15 is a graph showing expression of MAP4K4 24 hours post-transfection with RNAi constructs associated with the invention. RNAi constructs tested were: 11546 (MAP4K4 rxRNA), 12083 (MAP4K4 Nicked Construct), 12134 (12 bp soloRNA) and 12241 (14/3/14 soloRNA). Results of transfection were compared to a filler control sample. RNAi construct 11546 corresponds to SEQ ID NOs:604 and 605. RNAi construct 12083 corresponds to SEQ ID NOs:597 and 598. RNAi construct 12134 corresponds to SEQ ID NOs:602 and 603. RNAi construct 12241 corresponds to SEQ ID NOs:606 and 607.



FIG. 16 presents a graph and several tables comparing parameters associated with silencing of MAP4K4 expression following transfection with RNAi constructs associated with the invention. The rxRNA construct corresponds to SEQ ID NOs:604 and 605. The 14-3-14 soloRNA construct corresponds to SEQ ID NOs:606 and 607. The 13/19 duplex (nicked construct) corresponds to SEQ ID NOs:597 and 598. The 12-bp soloRNA construct corresponds to SEQ ID NOs:602 and 603.



FIG. 17 is a schematic showing examples of RNAi constructs and controls used to target SOD1 expression. The 12084 RNAi construct corresponds to SEQ ID NOs:612 and 613.



FIG. 18 is a graph showing SOD1 expression following transfection with RNAi constructs associated with the invention. RNAi constructs tested were: 12084 (Nicked), 12086 (13nt Duplex), 12090 (No Stem Pairing) and 12035 (13nt MiniRNA). Results of transfection were compared to an untransfected control sample. The 12084 RNAi construct corresponds to SEQ ID NOs:612 and 613. The 12086 RNAi construct corresponds to SEQ ID NOs:608 and 609. The 12035 RNAi construct corresponds to SEQ ID NOs:610 and 611.



FIG. 19 is a graph showing expression of SOD1 24 hours post-transfection with RNAi constructs associated with the invention. RNAi constructs tested were: 10015 (SOD1 rxRNA) and 12084 (SOD1 Nicked Construct). Results of transfection were compared to a filler control sample. The 10015 RNAi construct corresponds to SEQ ID NOs:614 and 615. The 12084 RNAi construct corresponds to SEQ ID NOs:612 and 613.



FIG. 20 is a schematic indicating that RNA molecules with double stranded regions that are less than 10 nucleotides are not cleaved by Dicer.



FIG. 21 is a schematic revealing a hypothetical RNAi model for RNA induced gene silencing.



FIG. 22 is a graph showing chemical optimization of asymmetric RNAi compounds. The presence of chemical modifications, in particular 2′F UC, phosphorothioate modifications on the guide strand, and complete CU 2′OMe modification of the passenger strands results in development of functional compounds. Silencing of MAP4K4 following lipid-mediated transfection is shown using RNAi molecules with specific modifications. RNAi molecules tested had sense strands that were 13 nucleotides long and contained the following modifications: unmodified; C and U 2′OMe; C and U 2′OMe and 3′ Chl; rxRNA 2′OMe pattern; or full 2′OMe, except base 1. Additionally, the guide (anti-sense) strands of the RNAi molecules tested contained the following modifications: unmodified; unmodified with 5′P; C and U 2′F; C and U 2′F with 8 PS 3′ end; and unmodified (17 nt length). Results for rxRNA 12/10 Duplex and negative controls are also shown.



FIG. 23 demonstrates that the chemical modifications described herein significantly increase in vitro efficacy in un-assisted delivery of RNAi molecules in HeLa cells. The structure and sequence of the compounds were not altered; only the chemical modification patterns of the molecules were modified. Compounds lacking 2′F, 2′O-me, phosphorothioate modification, or cholesterol conjugates were completely inactive in passive uptake. A combination of all 4 of these types of modifications produced the highest levels of activity (compound 12386).



FIG. 24 is a graph showing MAP4K4 expression in Hela cells following passive uptake transfection of: NT Accell modified siRNA, MAP4K4 Accell siRNA, Non-Chl nanoRNA (12379) and sd-nanoRNA (12386).



FIG. 25 is a graph showing expression of MAP4K4 in HeLa cells following passive uptake transfection of various concentrations of RNA molecules containing the following parameters: Nano Lead with no 3′Chl; Nano Lead; Accell MAP4K4; 21mer GS with 8 PS tail; 21mer GS with 12 PS tail; and 25mer GS with 12 PS tail.



FIG. 26 is a graph demonstrating that reduction in oligonucleotide content increases the efficacy of unassisted uptake. Similar chemical modifications were applied to asymmetric compounds, traditional siRNA compounds and 25mer RNAi compounds. The asymmetric small compounds demonstrated the most significant efficacy.



FIG. 27 is a graph demonstrating the importance of phosphorothioate content for un-assisted delivery. FIG. 27A demonstrates the results of a systematic screen that revealed that the presence of at least 2-12 phosphorothioates in the guide strand significantly improves uptake; in some embodiments, 4-8 phosphorothioate modifications were found to be preferred. FIG. 27B reveals that the presence or absence of phosphorothioate modifications in the sense strand did not alter efficacy.



FIG. 28 is a graph showing expression of MAP4K4 in primary mouse hepatocytes following passive uptake transfection of: Accell Media-Ctrl-UTC; MM APOB Alnylam; Active APOB Alnylam; nanoRNA without chl; nanoRNA MAP4K4; Mouse MAP4K4 Accell Smartpool; DY547 Accell Control; Luc Ctrl rxRNA with Dy547; MAP4K4 rxRNA with DY547; and AS Strand Alone (nano).



FIG. 29 is a graph showing expression of ApoB in mouse primary hepatocytes following passive uptake transfection of: Accell Media-Ctrl-UTC; MM APOB Alnylam; Active APOB Alnylam; nanoRNA without chl; nanoRNA MAP4K4; Mouse MAP4K4 Accell Smartpool; DY547 Accell Control; Luc Ctrl rxRNA with Dy547; MAP4K4 rxRNA with DY547; and AS Strand Alone (nano).



FIG. 30 is a graph showing expression of MAP4K4 in primary human hepatocytes following passive uptake transfection of: 11550 MAP4K4 rxRNA; 12544 MM MAP4K4 nanoRNA; 12539 Active MAP4K4 nanoRNA; Accell Media; and UTC.



FIG. 31 is a graph showing ApoB expression in primary human hepatocytes following passive uptake transfection of: 12505 Active ApoB chol-siRNA; 12506 mM ApoB chol-siRNA; Accell Media; and UTC.



FIG. 32 is an image depicting localization of sd-rxRNAnano localization.



FIG. 33 is an image depicting localization of Chol-siRNA (Alnylam).



FIG. 34 is a schematic of 1st generation (G1) sd-rxRNAnano molecules associated with the invention indicating regions that are targeted for modification, and functions associated with different regions of the molecules.



FIG. 35 depicts modification patterns that were screened for optimization of sd-rxRNAnano (G1). The modifications that were screened included, on the guide strand, lengths of 19, 21 and 25 nucleotides, phosphorothioate modifications of 0-18 nucleotides, and replacement of 2′F modifications with 2′OMe, 5 Methyl C and/or ribo Thymidine modifications. Modifications on the sense strand that were screened included nucleotide lengths of 11, 13 and 19 nucleotides, phosphorothioate modifications of 0-4 nucleotides and 2′OMe modifications.



FIG. 36 is a schematic depicting modifications of sd-rxRNAnano that were screened for optimization.



FIG. 37 is a graph showing percent MAP4K4 expression in Hek293 cells following transfection of: Risc Free siRNA; rxRNA; Nano (unmodified); GS alone; Nano Lead (no Chl); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 8 PS, 19 nt); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 8 PS, 21 nt); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 12 PS, 21 nt); and Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 12 PS, 25 nt);



FIG. 38 is a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: GS alone; Nano Lead; Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 8 PS, 19 nt); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 8 PS, 21 nt); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 12 PS, 21 nt); Nano (GS: (3) 2′OMe at positions 1, 18, and 19, 12 PS, 25 nt).



FIG. 39 is a graph showing percent MAP4K4 expression in Hek293 cells following lipid mediated transfection of: Guide Strand alone (GS: 8PS, 19 nt); Guide Strand alone (GS: 18PS, 19 nt); Nano (GS: no PS, 19 nt); Nano (GS: 2 PS, 19 nt); Nano (GS: 4 PS, 19 nt); Nano (GS: 6 PS, 19 nt); Nano Lead (GS: 8 PS, 19 nt); Nano (GS: 10 PS, 19 nt); Nano (GS: 12 PS, 19 nt); and Nano (GS: 18 PS, 19 nt).



FIG. 40 is a graph showing percent MAP4K4 expression in Hek293 cells following lipid mediated transfection of: Guide Strand alone (GS: 8PS, 19 nt); Guide Strand alone (GS: 18PS, 19 nt); Nano (GS: no PS, 19 nt); Nano (GS: 2 PS, 19 nt); Nano (GS: 4 PS, 19 nt); Nano (GS: 6 PS, 19 nt); Nano Lead (GS: 8 PS, 19 nt); Nano (GS: 10 PS, 19 nt); Nano (GS: 12 PS, 19 nt); and Nano (GS: 18 PS, 19 nt).



FIG. 41 is a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: Nano Lead (no Chl); Guide Strand alone (18 PS); Nano (GS: 0 PS, 19 nt); Nano (GS: 2 PS, 19 nt); Nano (GS: 4 PS, 19 nt); Nano (GS: 6 PS, 19 nt); Nano Lead (GS: 8 PS, 19 nt); Nano (GS: 10 PS, 19 nt); Nano (GS: 12 PS, 19 nt); and Nano (GS: 18 PS, 19 nt).



FIG. 42 is a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: Nano Lead (no Chl); Guide Strand alone (18 PS); Nano (GS: 0 PS, 19 nt); Nano (GS: 2 PS, 19 nt); Nano (GS: 4 PS, 19 nt); Nano (GS: 6 PS, 19 nt); Nano Lead (GS: 8 PS, 19 nt); Nano (GS: 10 PS, 19 nt); Nano (GS: 12 PS, 19 nt); and Nano (GS: 18 PS, 19 nt).



FIG. 43 is a schematic depicting guide strand chemical modifications that were screened for optimization.



FIG. 44 is a graph showing percent MAP4K4 expression in Hek293 cells following reverse transfection of: RISC free siRNA; GS only (2′F C and Us); GS only (2′OMe C and Us); Nano Lead (2′F C and Us); nano (GS: (3) 2′OMe, positions 16-18); nano (GS: (3) 2′OMe, positions 16, 17 and 19); nano (GS: (4) 2′OMe, positions 11, 16-18); nano (GS: (10) 2′OMe, C and Us); nano (GS: (6) 2′OMe, positions 1 and 5-9); nano (GS: (3) 2′OMe, positions 1, 18 and 19); and nano (GS: (5) 2′OMe Cs).



FIG. 45 is a graph demonstrating efficacy of various chemical modification patterns. In particular, 2-OMe modification in positions 1 and 11-18 was well tolerated. 2′OMe modifications in the seed area resulted in a slight reduction of efficacy (but were still highly efficient). Ribo-modifications in the seed were well tolerated. This data enabled the generation of self delivering compounds with reduced or no 2′F modifications. This is significant because 2′F modifications may be associated with toxicity in vivo.



FIG. 46 is a schematic depicting sense strand modifications.



FIG. 47 is a graph demonstrating sense strand length optimization. A sense strand length between 10-15 bases was found to be optimal in this assay. Increasing sense strand length resulted in a reduction of passive uptake of these compounds but may be tolerated for other compounds. Sense strands containing LNA modification demonstrated similar efficacy to non-LNA containing compounds. In some embodiments, the addition of LNA or other thermodynamically stabilizing compounds can be beneficial, resulting in converting non-functional sequences into functional sequences.



FIG. 48 is a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: Guide Strand Alone (2′F C and U); Nano Lead; Nano Lead (No Chl); Nano (SS: 11 nt 2′OMe C and Us, Chl); Nano (SS: 11nt, complete 2′OMe, Chl); Nano (SS: 19 nt, 2′OMe C and Us, Chl); Nano (SS: 19 nt, 2′OMe C and Us, no Chi).



FIG. 49 is a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: Nano Lead (No Chl); Nano (SS no PS); Nano Lead (SS:2 PS); Nano (SS:4 PS).



FIG. 50 is a schematic depicting a sd-rxRNAnano second generation (GM lead molecule.



FIG. 51 presents a graph indicating EC50 values for MAP4K4 silencing in the presence of sd-rxRNA, and images depicting localization of DY547-labeled rxRNAori and DY547-labeled sd-rxRNA.



FIG. 52 is a graph showing percent MAP4K4 expression in HeLa cells in the presence of optimized sd-rxRNA molecules.



FIG. 53 is a graph depicting the relevance of chemistry content in optimization of sd-rxRNA efficacy.



FIG. 54 presents schematics of sterol-type molecules and a graph revealing that sd-rxRNA compounds are fully functional with a variety of linker chemistries. GII asymmetric compounds were synthesized with sterol type molecules attached through TEG and amino caproic acid linkers. Both linkers showed identical potency. This functionality independent of linker chemistry indicates a significant difference between the molecules described herein and previously described molecules, and offers significant advantages for the molecules described herein in terms of scale up and synthesis.



FIG. 55 demonstrates the stability of chemically modified sd-rxRNA compounds in human serum in comparison to non modified RNA. The oligonucleotides were incubated in 75% serum at 37° C. for the number of hours indicated. The level of degradation was determined by running the samples on non-denaturing gels and staining with SYBGR.



FIG. 56 is a graph depicting optimization of cellular uptake of sd-rxRNA through minimizing oligonucleotide content.



FIG. 57 is a graph showing percent MAP4K4 expression after spontaneous cellular uptake of sd-rxRNA in mouse PEC-derived macrophages, and phase and fluorescent images showing localization of sd-rxRNA.



FIG. 58 is a graph showing percent MAP4K4 expression after spontaneous cellular uptake of sd-rxRNA (targeting) and sd-rxRNA (mismatch) in mouse primary hepatocytes, and phase and fluorescent images showing localization of sd-rxRNA.



FIG. 59 presents images depicting localization of DY547-labeled sd-rxRNA delivered to RPE cells with no formulation.



FIG. 60 is a graph showing silencing of MAP4K4 expression in RPE cells treated with sd-rxRNAnano without formulation.



FIG. 61 presents a graph and schematics of RNAi compounds showing the chemical/structural composition of highly effective sd-rxRNA compounds. Highly effective compounds were found to have the following characteristics: antisense strands of 17-21 nucleotides, sense strands of 10-15 nucleotides, single-stranded regions that contained 2-12 phosphorothioate modifications, preferentially 6-8 phosphorothioate modifications, and sense strands in which the majority of nucleotides were 2′OMe modified, with or without phosphorothioate modification. Any linker chemistry can be used to attach these molecules to hydrophobic moieties such as cholesterol at the 3′ end of the sense strand. Version GIIa-b of these RNA compounds demonstrate that elimination of 2′F content has no impact on efficacy.



FIG. 62 presents a graph and schematics of RNAi compounds demonstrating the superior performance of sd-rxRNA compounds compared to compounds published by Wolfrum et. al. Nature Biotech, 2007. Both generation I and II compounds (GI and GIIa) developed herein show great efficacy. By contrast, when the chemistry described in Wolfrum et al. (all oligos contain cholesterol conjugated to the 3′ end of the sense strand) was applied to the same sequence in a context of conventional siRNA (19 bp duplex with two overhang) the compound was practically inactive. These data emphasize the significance of the combination of chemical modifications and asymmetrical molecules described herein, producing highly effective RNA compounds.



FIG. 63 presents images showing that sd-rxRNA accumulates inside cells while other less effective conjugate RNAs accumulate on the surface of cells.



FIG. 64 presents images showing that sd-rxRNA molecules, but not other molecules, are internalized into cells within minutes.



FIG. 65 presents images demonstrating that sd-rxRNA compounds have drastically better cellular and tissue uptake characteristics when compared to conventional cholesterol conjugated siRNAs (such as those published by Soucheck et al). FIG. 65A,B compare uptake in RPE cells, FIG. 65C,D compare uptake upon local administration to skin and FIG. 65E,F compare uptake by the liver upon systemic administration. The level of uptake is at least an order of magnitude higher for the sd-rxRNA compounds relative to the regular siRNA-cholesterol compounds.



FIG. 66 presents images depicting localization of rxRNAori and sd-rxRNA following local delivery.



FIG. 67 presents images depicting localization of sd-rxRNA and other conjugate RNAs following local delivery.



FIG. 68 presents a graph revealing the results of a screen performed with sd-rxRNAGII chemistry to identify functional compounds targeting the SPP1 gene. Multiple effective compounds were identified, with 14131 being the most effective. The compounds were added to A-549 cells and the level of the ratio of SPP1/PPIB was determined by B-DNA after 48 hours.



FIG. 69 presents a graph and several images demonstrating efficient cellular uptake of sd-rxRNA within minutes of exposure. This is a unique characteristics of the sd-rxRNA compounds described herein, not observed with any other RNAi compounds. The Soutschek et al. compound was used as a negative control.



FIG. 70 presents a graph and several images demonstrating efficient uptake and silencing of sd-rxRNA compounds in multiple cell types with multiple sequences. In each case silencing was confirmed by looking at target gene expression using a Branched DNA assay.



FIG. 71 presents a graph revealing that sd-rxRNA is active in the presence and absence of serum. A slight reduction in efficacy (2-5 fold) was observed in the presence of serum. This minimal reduction in efficacy in the presence of serum differentiates the sd-rxRNA compounds described herein from previously described RNAi compounds, which had a greater reduction in efficacy, and thus creates a foundation for in vivo efficacy of the sd-rxRNA molecules described herein.



FIG. 72 presents images demonstrating efficient tissue penetration and cellular uptake upon single intradermal injection of sd-rxRNA compounds described herein. This represents a model for local delivery of sd-rxRNA compounds as well as an effective demonstration of delivery of sd-rxRNA compounds and silencing of genes in dermatological applications.



FIG. 73 presents images and a graph demonstrating efficient cellular uptake and in vivo silencing with sd-rxRNA following intradermal injection.



FIG. 74 presents graphs demonstrating that sd-rxRNA compounds have improved blood clearance and induce effective gene silencing in vivo in the liver upon systemic administration.



FIG. 75 presents a graph demonstrating that the presence of 5-Methyl C in an RNAi compound resulted in an increase in potency of lipid mediated transfection, demonstrating that hydrophobic modification of Cs and Us in the content of RNAi compounds can be beneficial. In some embodiments, these types of modifications can be used in the context of 2′ ribose modified bases to insure optimal stability and efficacy.



FIG. 76 presents a graph showing percent MAP4K4 expression in HeLa cells following passive uptake transfection of: Guide strand alone; Nano Lead; Nano Lead (No cholesterol); Guide Strand w/5MeC and 2′F Us Alone; Nano Lead w/GS 5MeC and 2′F Us; Nano Lead w/GS riboT and 5 Methyl Cs; and Nano Lead w/Guide dT and 5 Methyl Cs.



FIG. 77 presents images comparing localization of sd-rxRNA and other RNA conjugates following systemic delivery to the liver.



FIG. 78 presents schematics demonstrating 5-uridyl modifications with improved hydrophobicity characteristics. Incorporation of such modifications into sd-rxRNA compounds can increase cellular and tissue uptake properties. FIG. 78B presents a new type of RNAi compound modification which can be applied to compounds to improve cellular uptake and pharmacokinetic behavior. This type of modification, when applied to sd-rxRNA compounds, may contribute to making such compounds orally available.



FIG. 79 presents schematics revealing the structures of synthesized modified sterol type molecules, where the length and structure of the C17 attached tail is modified. Without wishing to be bound by any theory, the length of the C17 attached tail may contribute to improving in vitro and in vivo efficacy of sd-rxRNA compounds.



FIG. 80 presents a schematic demonstrating the lithocholic acid route to long side chain cholesterols.



FIG. 81 presents a schematic demonstrating a route to 5-uridyl phosphoramidite synthesis.



FIG. 82 presents a schematic demonstrating synthesis of tri-functional hydroxyprolinol linker for 3′-cholesterol attachment.



FIG. 83 presents a schematic demonstrating synthesis of solid support for the manufacture of a shorter asymmetric RNAi compound strand.



FIG. 84 demonstrates SPPI sd-rxRNA compound selection. Sd-rxRNA compounds targeting SPP1 were added to A549 cells (using passive transfection) and the level of SPP1 expression was evaluated after 48 hours. Several novel compounds effective in SPP1 silencing were identified, the most potent of which was compound 14131.



FIG. 85 demonstrates independent validation of sd-rxRNA compounds 14116, 14121, 14131, 14134, 14139, 14149, and 14152 efficacy in SPP1 silencing.



FIG. 86 demonstrates results of sd-rxRNA compound screens to identify sd-rxRNA compounds functional in CTGF knockdown.



FIG. 87 demonstrates results of sd-rxRNA compound screens to identify sd-rxRNA functional in CTGF knockdown.



FIG. 88 demonstrates a systematic screen identifying the minimal length of the asymmetric compounds. The passenger strand of 10-19 bases was hybridized to a guide strand of 17-25 bases. In this assay, compounds with duplex regions as short as 10 bases were found to be effective in inducing.



FIG. 89 demonstrates that positioning of the sense strand relative to the guide strand is critical for RNAi Activity. In this assay, a blunt end was found to be optimal, a 3′ overhang was tolerated, and a 5′ overhang resulted in complete loss of functionality.



FIG. 90 demonstrates that the guide strand, which has homology to the target only at nucleotides 2-17, resulted in effective RNAi when hybridized with sense strands of different lengths. The compounds were introduced into HeLa cells via lipid mediated transfection.



FIG. 91 is a schematic depicting a panel of sterol-type molecules which can be used as a hydrophobic entity in place of cholesterol. In some instances, the use of sterol-type molecules comprising longer chains results in generation of sd-rxRNA compounds with significantly better cellular uptake and tissue distribution properties.



FIG. 92 presents schematics depicting a panel of hydrophobic molecules which might be used as a hydrophobic entity in place of cholesterol. These list just provides representative examples; any small molecule with substantial hydrophobicity can be used.





DETAILED DESCRIPTION

Aspects of the invention relate to methods and compositions involved in gene silencing. The invention is based at least in part on the surprising discovery that asymmetric nucleic acid molecules with a double stranded region of a minimal length such as 8-14 nucleotides, are effective in silencing gene expression. Molecules with such a short double stranded region have not previously been demonstrated to be effective in mediating RNA interference. It had previously been assumed that that there must be a double stranded region of 19 nucleotides or greater. The molecules described herein are optimized through chemical modification, and in some instances through attachment of hydrophobic conjugates.


The invention is based at least in part on another surprising discovery that asymmetric nucleic acid molecules with reduced double stranded regions are much more effectively taken up by cells compared to conventional siRNAs. These molecules are highly efficient in silencing of target gene expression and offer significant advantages over previously described RNAi molecules including high activity in the presence of serum, efficient self delivery, compatibility with a wide variety of linkers, and reduced presence or complete absence of chemical modifications that are associated with toxicity.


In contrast to single-stranded polynucleotides, duplex polynucleotides have been difficult to deliver to a cell as they have rigid structures and a large number of negative charges which makes membrane transfer difficult. Unexpectedly, it was found that the polynucleotides of the present invention, although partially double-stranded, are recognized in vivo as single-stranded and, as such, are capable of efficiently being delivered across cell membranes. As a result the polynucleotides of the invention are capable in many instances of self delivery. Thus, the polynucleotides of the invention may be formulated in a manner similar to conventional RNAi agents or they may be delivered to the cell or subject alone (or with non-delivery type carriers) and allowed to self deliver. In one embodiment of the present invention, self delivering asymmetric double-stranded RNA molecules are provided in which one portion of the molecule resembles a conventional RNA duplex and a second portion of the molecule is single stranded.


The polynucleotides of the invention are referred to herein as isolated double stranded or duplex nucleic acids, oligonucleotides or polynucleotides, nano molecules, nano RNA, sd-rxRNAnano, sd-rxRNA or RNA molecules of the invention.


The oligonucleotides of the invention in some aspects have a combination of asymmetric structures including a double stranded region and a single stranded region of 5 nucleotides or longer, specific chemical modification patterns and are conjugated to lipophilic or hydrophobic molecules. This new class of RNAi like compounds have superior efficacy in vitro and in vivo. Based on the data described herein it is believed that the reduction in the size of the rigid duplex region in combination with phosphorothioate modifications applied to a single stranded region are new and important for achieving the observed superior efficacy. Thus, the RNA molecules described herein are different in both structure and composition as well as in vitro and in vivo activity.


In a preferred embodiment the RNAi compounds of the invention comprise an asymmetric compound comprising a duplex region (required for efficient RISC entry of 10-15 bases long) and single stranded region of 4-12 nucleotides long; with a 13 nucleotide duplex. A 6 nucleotide single stranded region is preferred in some embodiments. The single stranded region of the new RNAi compounds also comprises 2-12 phosphorothioate internucleotide linkages (referred to as phosphorothioate modifications). 6-8 phosphorothioate internucleotide linkages are preferred in some embodiments. Additionally, the RNAi compounds of the invention also include a unique chemical modification pattern, which provides stability and is compatible with RISC entry. The combination of these elements has resulted in unexpected properties which are highly useful for delivery of RNAi reagents in vitro and in vivo.


The chemically modification pattern, which provides stability and is compatible with RISC entry includes modifications to the sense, or passenger, strand as well as the antisense, or guide, strand. For instance the passenger strand can be modified with any chemical entities which confirm stability and do not interfere with activity. Such modifications include 2′ ribo modifications (O-methyl, 2′ F, 2 deoxy and others) and backbone modification like phosphorothioate modifications. A preferred chemical modification pattern in the passenger strand includes O-methyl modification of C and U nucleotides within the passenger strand or alternatively the passenger strand may be completely O-methyl modified.


The guide strand, for example, may also be modified by any chemical modification which confirms stability without interfering with RISC entry. A preferred chemical modification pattern in the guide strand includes the majority of C and U nucleotides being 2′ F modified and the 5′ end being phosphorylated. Another preferred chemical modification pattern in the guide strand includes 2′Omethyl modification of position 1 and C/U in positions 11-18 and 5′ end chemical phosphorylation. Yet another preferred chemical modification pattern in the guide strand includes 2′Omethyl modification of position 1 and C/U in positions 11-18 and 5′ end chemical phosphorylation and 2′F modification of C/U in positions 2-10.


It was surprisingly discovered according to the invention that the above-described chemical modification patterns of the oligonucleotides of the invention are well tolerated and actually improved efficacy of asymmetric RNAi compounds. See, for instance, FIG. 22.


It was also demonstrated experimentally herein that the combination of modifications to RNAi when used together in a polynucleotide results in the achievement of optimal efficacy in passive uptake of the RNAi. Elimination of any of the described components (Guide strand stabilization, phosphorothioate stretch, sense strand stabilization and hydrophobic conjugate) or increase in size results in sub-optimal efficacy and in some instances complete lost of efficacy. The combination of elements results in development of compound, which is fully active following passive delivery to cells such as HeLa cells. (FIG. 23). The degree to which the combination of elements results in efficient self delivery of RNAi molecules was completely unexpected.


The data shown in FIGS. 26, 27 and 43 demonstrated the importance of the various modifications to the RNAi in achieving stabilization and activity. For instance, FIG. 26 demonstrates that use off asymmetric configuration is important in getting efficacy in passive uptake. When the same chemical composition is applied to compounds of traditional configurations (19-21 bases duplex and 25 mer duplex) the efficacy was drastically decreased in a length dependent manner FIG. 27 demonstrated a systematic screen of the impact of phosphorothioate chemical modifications on activity. The sequence, structure, stabilization chemical modifications, hydrophobic conjugate were kept constant and compound phosphorothioate content was varied (from 0 to 18 PS bond). Both compounds having no phosphorothioate linkages and having 18 phosphorothioate linkages were completely inactive in passive uptake. Compounds having 2-16 phosphorothioate linkages were active, with compounds having 4-10 phosphorothioate being the most active compounds.


The data in the Examples presented below demonstrates high efficacy of the oligonucleotides of the invention both in vitro in variety of cell types (supporting data) and in vivo upon local and systemic administration. For instance, the data compares the ability of several competitive RNAi molecules having different chemistries to silence a gene. Comparison of sd-rxRNA (oligonucleotides of the invention) with RNAs described in Soucheck et al. and Wolfrum at al., as applied to the same targeting region, demonstrated that only sd-rxRNA chemistry showed a significant functionality in passive uptake. The composition of the invention achieved EC50 values of 10-50 pM. This level of efficacy is un-attainable with conventional chemistries like those described in Sauthceck at al and Accell. Similar comparisons were made in other systems, such as in vitro (RPE cell line), in vivo upon local administration (wounded skin) and systemic (50 mg/kg) as well as other genes (FIGS. 65 and 68). In each case the oligonucleotides of the invention achieved better results. FIG. 64 includes data demonstrating efficient cellular uptake and resulting silencing by sd-rxRNA compounds only after 1 minute of exposure. Such an efficacy is unique to this composition and have not been seen with other types of molecules in this class. FIG. 70 demonstrates efficient uptake and silencing of sd-rxRNA compounds in multiple cell types with multiple sequences. The sd-rxRNA compounds are also active in cells in presence and absence of serum and other biological liquids. FIG. 71 demonstrates only a slight reduction in activity in the presence of serum. This ability to function in biologically aggressive environment effectively further differentiates sd-rxRNA compounds from other compounds described previously in this group, like Accell and Soucheck et al, in which uptake is drastically inhibited in a presence of serum.


Significant amounts of data also demonstrate the in vivo efficacy of the compounds of the invention. For instance FIGS. 72-74 involve multiple routes of in vivo delivery of the compounds of the invention resulting in significant activity. FIG. 72, for example, demonstrates efficient tissue penetration and cellular uptake upon single intradermal injection. This is a model for local delivery of sd-rxRNA compounds as well as an effective delivery mode for sd-rxRNA compounds and silencing genes in any dermatology applications. FIG. 73 demonstrated efficient tissue penetration, cellular uptake and silencing upon local in vivo intradermal injection of sd-rxRNA compounds. The data of FIG. 74 demonstrate that sd-rxRNA compounds result in highly effective liver uptake upon IV administration. Comparison to Souicheck at al molecule showed that the level of liver uptake at identical dose level was quite surprisingly, at least 50 fold higher with the sd-rxRNA compound than the Souicheck at al molecule.


The sd-rxRNA can be further improved in some instances by improving the hydrophobicity of compounds using of novel types of chemistries. For example one chemistry is related to use of hydrophobic base modifications. Any base in any position might be modified, as long as modification results in an increase of the partition coefficient of the base. The preferred locations for modification chemistries are positions 4 and 5 of the pyrimidines. Preferably the base modification is a methyl or ethyl modification. The major advantage of these positions is (a) ease of synthesis and (b) lack of interference with base-pairing and A form helix formation, which are essential for RISC complex loading and target recognition. Examples of these chemistries is shown in FIGS. 75-83. A version of sd-rxRNA compounds where multiple deoxy Uridines are present without interfering with overall compound efficacy was used. In addition major improvement in tissue distribution and cellular uptake might be obtained by optimizing the structure of the hydrophobic conjugate. In some of the preferred embodiment the structure of sterol is modified to alter (increase/decrease) C17 attached chain. This type of modification results in significant increase in cellular uptake and improvement of tissue uptake prosperities in vivo.


This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


Thus, aspects of the invention relate to isolated double stranded nucleic acid molecules comprising a guide (antisense) strand and a passenger (sense) strand. As used herein, the term “double-stranded” refers to one or more nucleic acid molecules in which at least a portion of the nucleomonomers are complementary and hydrogen bond to form a double-stranded region. In some embodiments, the length of the guide strand ranges from 16-29 nucleotides long. In certain embodiments, the guide strand is 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29 nucleotides long. The guide strand has complementarity to a target gene. Complementarity between the guide strand and the target gene may exist over any portion of the guide strand. Complementarity as used herein may be perfect complementarity or less than perfect complementarity as long as the guide strand is sufficiently complementary to the target that it mediates RNAi. In some embodiments complementarity refers to less than 25%, 20%, 15%, 10%, 5%, 4%, 3%, 2%, or 1% mismatch between the guide strand and the target. Perfect complementarity refers to 100% complementarity. Thus the invention has the advantage of being able to tolerate sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence. For example, siRNA sequences with insertions, deletions, and single point mutations relative to the target sequence have also been found to be effective for inhibition. Moreover, not all positions of a siRNA contribute equally to target recognition. Mismatches in the center of the siRNA are most critical and essentially abolish target RNA cleavage. Mismatches upstream of the center or upstream of the cleavage site referencing the antisense strand are tolerated but significantly reduce target RNA cleavage. Mismatches downstream of the center or cleavage site referencing the antisense strand, preferably located near the 3′ end of the antisense strand, e.g. 1, 2, 3, 4, 5 or 6 nucleotides from the 3′ end of the antisense strand, are tolerated and reduce target RNA cleavage only slightly.


While not wishing to be bound by any particular theory, in some embodiments, the guide strand is at least 16 nucleotides in length and anchors the Argonaute protein in RISC. In some embodiments, when the guide strand loads into RISC it has a defined seed region and target mRNA cleavage takes place across from position 10-11 of the guide strand. In some embodiments, the 5′ end of the guide strand is or is able to be phosphorylated. The nucleic acid molecules described herein may be referred to as minimum trigger RNA.


In some embodiments, the length of the passenger strand ranges from 8-14 nucleotides long. In certain embodiments, the passenger strand is 8, 9, 10, 11, 12, 13 or 14 nucleotides long. The passenger strand has complementarity to the guide strand. Complementarity between the passenger strand and the guide strand can exist over any portion of the passenger or guide strand. In some embodiments, there is 100% complementarity between the guide and passenger strands within the double stranded region of the molecule.


Aspects of the invention relate to double stranded nucleic acid molecules with minimal double stranded regions. In some embodiments the region of the molecule that is double stranded ranges from 8-14 nucleotides long. In certain embodiments, the region of the molecule that is double stranded is 8, 9, 10, 11, 12, 13 or 14 nucleotides long. In certain embodiments the double stranded region is 13 nucleotides long. There can be 100% complementarity between the guide and passenger strands, or there may be one or more mismatches between the guide and passenger strands. In some embodiments, on one end of the double stranded molecule, the molecule is either blunt-ended or has a one-nucleotide overhang. The single stranded region of the molecule is in some embodiments between 4-12 nucleotides long. For example the single stranded region can be 4, 5, 6, 7, 8, 9, 10, 11 or 12 nucleotides long. However, in certain embodiments, the single stranded region can also be less than 4 or greater than 12 nucleotides long. In certain embodiments, the single stranded region is 6 nucleotides long.


RNAi constructs associated with the invention can have a thermodynamic stability (ΔG) of less than −13 kkal/mol. In some embodiments, the thermodynamic stability (ΔG) is less than −20 kkal/mol. In some embodiments there is a loss of efficacy when (ΔG) goes below −21 kkal/mol. In some embodiments a (ΔG) value higher than −13 kkal/mol is compatible with aspects of the invention. Without wishing to be bound by any theory, in some embodiments a molecule with a relatively higher (ΔG) value may become active at a relatively higher concentration, while a molecule with a relatively lower (ΔG) value may become active at a relatively lower concentration. In some embodiments, the (ΔG) value may be higher than −9 kkcal/mol. The gene silencing effects mediated by the RNAi constructs associated with the invention, containing minimal double stranded regions, are unexpected because molecules of almost identical design but lower thermodynamic stability have been demonstrated to be inactive (Rana et al 2004).


Without wishing to be bound by any theory, results described herein suggest that a stretch of 8-10 bp of dsRNA or dsDNA will be structurally recognized by protein components of RISC or co-factors of RISC. Additionally, there is a free energy requirement for the triggering compound that it may be either sensed by the protein components and/or stable enough to interact with such components so that it may be loaded into the Argonaute protein. If optimal thermodynamics are present and there is a double stranded portion that is preferably at least 8 nucleotides then the duplex will be recognized and loaded into the RNAi machinery.


In some embodiments, thermodynamic stability is increased through the use of LNA bases. In some embodiments, additional chemical modifications are introduced. Several non-limiting examples of chemical modifications include: 5′ Phosphate, 2′-O-methyl, 2′-O-ethyl, 2′-fluoro, ribothymidine, C-5 propynyl-dC (pdC) and C-5 propynyl-dU (pdU); C-5 propynyl-C (pC) and C-5 propynyl-U (pU); 5-methyl C, 5-methyl U, 5-methyl dC, 5-methyl dU methoxy, (2,6-diaminopurine), 5′-Dimethoxytrityl-N4-ethyl-2′-deoxyCytidine and MGB (minor groove binder). It should be appreciated that more than one chemical modification can be combined within the same molecule.


Molecules associated with the invention are optimized for increased potency and/or reduced toxicity. For example, nucleotide length of the guide and/or passenger strand, and/or the number of phosphorothioate modifications in the guide and/or passenger strand, can in some aspects influence potency of the RNA molecule, while replacing 2′-fluoro (2′F) modifications with 2′-O-methyl (2′OMe) modifications can in some aspects influence toxicity of the molecule. Specifically, reduction in 2′F content of a molecule is predicted to reduce toxicity of the molecule. The Examples section presents molecules in which 2′F modifications have been eliminated, offering an advantage over previously described RNAi compounds due to a predicted reduction in toxicity. Furthermore, the number of phosphorothioate modifications in an RNA molecule can influence the uptake of the molecule into a cell, for example the efficiency of passive uptake of the molecule into a cell. Preferred embodiments of molecules described herein have no 2′F modification and yet are characterized by equal efficacy in cellular uptake and tissue penetration. Such molecules represent a significant improvement over prior art, such as molecules described by Accell and Wolfrum, which are heavily modified with extensive use of 2′F.


In some embodiments, a guide strand is approximately 18-19 nucleotides in length and has approximately 2-14 phosphate modifications. For example, a guide strand can contain 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or more than 14 nucleotides that are phosphate-modified. The guide strand may contain one or more modifications that confer increased stability without interfering with RISC entry. The phosphate modified nucleotides, such as phosphorothioate modified nucleotides, can be at the 3′ end, 5′ end or spread throughout the guide strand. In some embodiments, the 3′ terminal 10 nucleotides of the guide strand contains 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 phosphorothioate modified nucleotides. The guide strand can also contain 2′F and/or 2′OMe modifications, which can be located throughout the molecule. In some embodiments, the nucleotide in position one of the guide strand (the nucleotide in the most 5′ position of the guide strand) is 2′OMe modified and/or phosphorylated. C and U nucleotides within the guide strand can be 2′F modified. For example, C and U nucleotides in positions 2-10 of a 19 nt guide strand (or corresponding positions in a guide strand of a different length) can be 2′F modified. C and U nucleotides within the guide strand can also be 2′OMe modified. For example, C and U nucleotides in positions 11-18 of a 19 nt guide strand (or corresponding positions in a guide strand of a different length) can be 2′OMe modified. In some embodiments, the nucleotide at the most 3′ end of the guide strand is unmodified. In certain embodiments, the majority of Cs and Us within the guide strand are 2′F modified and the 5′ end of the guide strand is phosphorylated. In other embodiments, position 1 and the Cs or Us in positions 11-18 are 2′OMe modified and the 5′ end of the guide strand is phosphorylated. In other embodiments, position 1 and the Cs or Us in positions 11-18 are 2′OMe modified, the 5′ end of the guide strand is phosphorylated, and the Cs or Us in position 2-10 are 2′F modified.


In some aspects, an optimal passenger strand is approximately 11-14 nucleotides in length. The passenger strand may contain modifications that confer increased stability. One or more nucleotides in the passenger strand can be 2′OMe modified. In some embodiments, one or more of the C and/or U nucleotides in the passenger strand is 2′OMe modified, or all of the C and U nucleotides in the passenger strand are 2′OMe modified. In certain embodiments, all of the nucleotides in the passenger strand are 2′OMe modified. One or more of the nucleotides on the passenger strand can also be phosphate-modified such as phosphorothioate modified. The passenger strand can also contain 2′ ribo, 2′F and 2 deoxy modifications or any combination of the above. As demonstrated in the Examples, chemical modification patterns on both the guide and passenger strand are well tolerated and a combination of chemical modifications is shown herein to lead to increased efficacy and self-delivery of RNA molecules.


Aspects of the invention relate to RNAi constructs that have extended single-stranded regions relative to double stranded regions, as compared to molecules that have been used previously for RNAi. The single stranded region of the molecules may be modified to promote cellular uptake or gene silencing. In some embodiments, phosphorothioate modification of the single stranded region influences cellular uptake and/or gene silencing. The region of the guide strand that is phosphorothioate modified can include nucleotides within both the single stranded and double stranded regions of the molecule. In some embodiments, the single stranded region includes 2-12 phosphorothioate modifications. For example, the single stranded region can include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 phosphorothioate modifications. In some instances, the single stranded region contains 6-8 phosphorothioate modifications.


Molecules associated with the invention are also optimized for cellular uptake. In RNA molecules described herein, the guide and/or passenger strands can be attached to a conjugate. In certain embodiments the conjugate is hydrophobic. The hydrophobic conjugate can be a small molecule with a partition coefficient that is higher than 10. The conjugate can be a sterol-type molecule such as cholesterol, or a molecule with an increased length polycarbon chain attached to C17, and the presence of a conjugate can influence the ability of an RNA molecule to be taken into a cell with or without a lipid transfection reagent. The conjugate can be attached to the passenger or guide strand through a hydrophobic linker. In some embodiments, a hydrophobic linker is 5-12C in length, and/or is hydroxypyrrolidine-based. In some embodiments, a hydrophobic conjugate is attached to the passenger strand and the CU residues of either the passenger and/or guide strand are modified. In some embodiments, at least 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95% of the CU residues on the passenger strand and/or the guide strand are modified. In some aspects, molecules associated with the invention are self-delivering (sd). As used herein, “self-delivery” refers to the ability of a molecule to be delivered into a cell without the need for an additional delivery vehicle such as a transfection reagent.


Aspects of the invention relate to selecting molecules for use in RNAi. Based on the data described herein, molecules that have a double stranded region of 8-14 nucleotides can be selected for use in RNAi. In some embodiments, molecules are selected based on their thermodynamic stability (ΔG). In some embodiments, molecules will be selected that have a (ΔG) of less than −13 kkal/mol. For example, the (ΔG) value may be −13, −14, −15, −16, −17, −18, −19, −21, −22 or less than −22 kkal/mol. In other embodiments, the (ΔG) value may be higher than −13 kkal/mol. For example, the (ΔG) value may be −12, −11, −10, −9, −8, −7 or more than −7 kkal/mol. It should be appreciated that ΔG can be calculated using any method known in the art. In some embodiments ΔG is calculated using Mfold, available through the Mfold internet site (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi). Methods for calculating ΔG are described in, and are incorporated by reference from, the following references: Zuker, M. (2003) Nucleic Acids Res., 31(13):3406-15; Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) J. Mol. Biol. 288:911-940; Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner, D. H. (2004) Proc. Natl. Acad. Sci. 101:7287-7292; Duan, S., Mathews, D. H., and Turner, D. H. (2006) Biochemistry 45:9819-9832; Wuchty, S., Fontana, W., Hofacker, I. L., and Schuster, P. (1999) Biopolymers 49:145-165.


Aspects of the invention relate to using nucleic acid molecules described herein, with minimal double stranded regions and/or with a (ΔG) of less than −13 kkal/mol, for gene silencing. RNAi molecules can be administered in vivo or in vitro, and gene silencing effects can be achieved in vivo or in vitro.


In certain embodiments, the polynucleotide contains 5′- and/or 3′-end overhangs. The number and/or sequence of nucleotides overhang on one end of the polynucleotide may be the same or different from the other end of the polynucleotide. In certain embodiments, one or more of the overhang nucleotides may contain chemical modification(s), such as phosphorothioate or 2′-OMe modification.


In certain embodiments, the polynucleotide is unmodified. In other embodiments, at least one nucleotide is modified. In further embodiments, the modification includes a 2′-H or 2′-modified ribose sugar at the 2nd nucleotide from the 5′-end of the guide sequence. The “2nd nucleotide” is defined as the second nucleotide from the 5′-end of the polynucleotide.


As used herein, “2′-modified ribose sugar” includes those ribose sugars that do not have a 2′-OH group. “2′-modified ribose sugar” does not include 2′-deoxyribose (found in unmodified canonical DNA nucleotides). For example, the 2′-modified ribose sugar may be 21-O-alkyl nucleotides, 2′-deoxy-2′-fluoro nucleotides, 2′-deoxy nucleotides, or combination thereof.


In certain embodiments, the 2′-modified nucleotides are pyrimidine nucleotides (e.g., C/U). Examples of 2′-O-alkyl nucleotides include 2′-O-methyl nucleotides, or 2′-O-allyl nucleotides.


In certain embodiments, the miniRNA polynucleotide of the invention with the above-referenced 5′-end modification exhibits significantly (e.g., at least about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or more) less “off-target” gene silencing when compared to similar constructs without the specified 5′-end modification, thus greatly improving the overall specificity of the RNAi reagent or therapeutics.


As used herein, “off-target” gene silencing refers to unintended gene silencing due to, for example, spurious sequence homology between the antisense (guide) sequence and the unintended target mRNA sequence.


According to this aspect of the invention, certain guide strand modifications further increase nuclease stability, and/or lower interferon induction, without significantly decreasing RNAi activity (or no decrease in RNAi activity at all).


In some embodiments, the 5′-stem sequence may comprise a 2′-modified ribose sugar, such as 2′-O-methyl modified nucleotide, at the 2nd nucleotide on the 5′-end of the polynucleotide and, in some embodiments, no other modified nucleotides. The hairpin structure having such modification may have enhanced target specificity or reduced off-target silencing compared to a similar construct without the 2′-O-methyl modification at said position.


Certain combinations of specific 5′-stem sequence and 3′-stem sequence modifications may result in further unexpected advantages, as partly manifested by enhanced ability to inhibit target gene expression, enhanced serum stability, and/or increased target specificity, etc.


In certain embodiments, the guide strand comprises a 2′-O-methyl modified nucleotide at the 2nd nucleotide on the 5′-end of the guide strand and no other modified nucleotides.


In other aspects, the miniRNA structures of the present invention mediates sequence-dependent gene silencing by a microRNA mechanism. As used herein, the term “microRNA” (“miRNA”), also referred to in the art as “small temporal RNAs” (“stRNAs”), refers to a small (10-50 nucleotide) RNA which are genetically encoded (e.g., by viral, mammalian, or plant genomes) and are capable of directing or mediating RNA silencing. An “miRNA disorder” shall refer to a disease or disorder characterized by an aberrant expression or activity of an miRNA.


miRNAs are important modulators of cellular homeostasis and differention. Reduced levels of miRNA expression or excessive expression of miRNA have been shown to be involved in many diseases. microRNAs are involved in down-regulating target genes in critical pathways, such as development and cancer, in mice, worms and mammals. In particular significant reduction of different miRNA expression is related to tumor development and progression. Gene silencing through a microRNA mechanism is achieved by specific yet, in some cases, imperfect base-pairing of the miRNA and its target messenger RNA (mRNA). Various mechanisms may be used in microRNA-mediated down-regulation of target mRNA expression.


miRNAs are noncoding RNAs of approximately 22 nucleotides which can regulate gene expression at the post transcriptional or translational level during plant and animal development. One common feature of miRNAs is that they are all excised from an approximately 70 nucleotide precursor RNA stem-loop termed pre-miRNA, probably by Dicer, an RNase III-type enzyme, or a homolog thereof. Naturally-occurring miRNAs are expressed by endogenous genes in vivo and are processed from a hairpin or stem-loop precursor (pre-miRNA or pri-miRNAs) by Dicer or other RNAses. miRNAs can exist transiently in vivo as a double-stranded duplex but only one strand is taken up by the RISC complex to direct gene silencing.


In some embodiments a version of sd-rxRNA compounds, which are effective in cellular uptake and modulating miRNA activity are described. Essentially the compounds are similar to RISC entering version but large strand chemical modification patterns are optimized in the way to block cleavage and act as an effective inhibitor of the RISC action. For example, the compound might be completely or mostly O-methyl modified with the PS content described previously. For these types of compounds the 5′ phosphorylation is not necessary. The presence of double stranded region is preferred as it is promotes cellular uptake and efficient RISC loading.


Finding a way to modulate miRNA expression is an important unresolved problem in miRNA based drug development. The invention describes novel miRNA modulating compounds (miRNA mimics and miRNA inhibitors). The miRNA modulating compounds of the invention have the same basic structural properties described herein for self delivering RNA. Exemplary, non-limiting, sequences of the miRNA modulating compounds of the invention are shown in Tables 4-5.


In general, the miRNA modulating compounds have two strands, a guide (or antisense) strand that is 18-23 bases long and a passenger (or sense) strand that is 8-16 bases long. The size difference of the two strands results in a double stranded and a single strand region of the molecule. In some embodiments the single stranded region is substantially modified, for example, with phosphorothioates. The presence of this phosphorothioated region is believed to be important for improved PK/PD, tissue distribution and cellular uptake properties of these molecules.


In some instances it is preferred that the first position of the guide strand has a 2′O-methyl modification such as a 5P-2 o-methyl U. The presence of this modification in the guide strand further promotes the association with and loading into RISC complex.


Preferably both strands of the miRNA modulators are extensively modified, as described herein. For instance many of the pyrimidines are preferably 2′ modified. These modifications contribute to the stability of the molecule.


Additionally the overall hydrophobicity of the miRNA modulating compounds of the invention is increased to enhance cellular entry. This may be accomplished through the presence of some hydrophobic modification in the bases. For instance, position 5 or 4 of uridines and cytidine may include hydrophobic base modifications. These modifications increase and promote RISC association, stability, specificity and cellular entry. An example of a preferred hydrophobic base modification is methyl or ethyl. The presence of these type of modifications appear to not interfere with RISC entry of the miRNA modulating compounds and actually seem to promotes RISC entry.


In addition to hydrophobic base modification, other hydrophobic moieties may be linked to the molecule. A preferred location for linkage of hydrophobic moieties is the 3′ end position of the passenger strand.


The compounds of the invention having these structural properties are excellent modulators of miRNA expression in vivo. Administration of these compounds is expected to mimic natural miRNA expression in a targeted cells or inhibit undesirable miRNA, depending on the specificity of the guide strand. These compounds are useful in modulating miRNA level and activity in many tissues, such as brain, spinal cord, tumors, liver, lung, kidney skin, heart, vasculature, and spleen. Additionally these compounds may be used ex vivo and in primary, dentritic or stem cells to modulate cellular properties prior to introduction or reintroduction of the cells into a subject. For instance they may be used in dendritic cells or primary tumors to help with a cancer vaccine development. The compounds may be used in stem cells or tissues or organs ex vivo or in vitro to promote or stop stem cells differentiation, tissue remodeling, organ preservation and many other applications.


The miRNA modulating compounds of the invention are miRNA mimics or miRNA inhibitors. An miRNA mimic as used herein refers to a double stranded nucleic acid having a guide strand that has a nucleic acid sequence that is similar, or in some cases identical, to a guide strand of a naturally occurring mature miRNA. Naturally occurring miRNA are processed from long nucleic acids having secondary structural properties (referred to as pri-miRNA and pre-miRNA) to produce naturally occurring mature miRNA. The mature miRNA is a double stranded molecule of about 22 nucleotides in length having a guide strand that binds to an miRNA recognition element (MRE) in the 3′ untranslated region (UTR) of a target mRNA (in a RISC complex) and suppresses its translation or initiates degradation of the mRNA.


The miRNA mimic of the invention includes a guide strand that is identical to or similar to the sequence of a guide strand of a naturally occurring mature miRNA. Identical to the sequence, as used herein refers to the same nucleic acid bases in the nucleotide as are found in the mature miRNA. Similar to the sequence, in this context, refers to a nucleic acid molecule having a sequence which is less than identical but at least 75% homologous to the mature miRNA. In some instances “similar to the sequence” refers to a sequence which is less than identical but at least 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% homologous to the mature miRNA. In some cases the sequence of the miRNA mimic may include the same bases, but the base of the mimic may be modified, i.e. hydrophobically modified. In other cases the mimic may include one or more different bases or nucleotides than the naturally occurring mature miRNA.


The guide strand of the miRNA mimic is complementary to a miRNA recognition element (MRE). “Complementary to a miRNA recognition element” as used herein refers to base complementarity between at least 6 or 7 nucleotides of the miRNA mimic guide strand (preferably the 5′ end of the guide strand) and the MRE. The region of complementarity is referred to as the seed region. In some embodiments the seed region or region of complementarity is 6, 7, 8, 9, 10, 11, 12 or 13 nucleotides in length. The complementarity of the seed region may be perfect (100%) or may be less i.e. greater than 90%, 95%, 96%, 97%, 98%, or 99%, but preferably is 100%. The complementarity between the entire miRNA and the MRE may be greater than 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.


The miRNA mimics of the invention are useful for mimicking the activity of any naturally occurring miRNA. Non-limiting examples include: miR21, miR 139, miR 7, miR29, miR 122, miR 302-367 cluster, miR 221, miR-96, miR 126, miR 225 and miR 206.


An miRNA inhibitor as used herein refers to a double stranded nucleic acid having a guide strand that has a nucleic acid sequence that is complementary to a guide strand or antisense strand of a naturally occurring mature miRNA. “Complementary to an antisense strand of a naturally occurring mature miRNA” as used herein refers to base complementarity between the guide strand of the inhibitor and the antisense strand of the naturally occurring mature miRNA. In some embodiments the complementarity may be perfect (100%) or may be less than perfect i.e. greater than 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% complementarity. The guide strand of the miRNA inhibitor is extensively chemically modified (i.e. with O-methyls or other modification), to prevent its entry into RISC. The association of the miRNA inhibitor guide strand with the naturally occurring (or miRNA mimic guide strand) miRNA loaded RISC is enhanced by the chemical modifications and sequence complementarily, such that it competes for binding with the naturally occurring mRNA.


The structure and function of miRNAs has been the subject of extensive research and several miRNAs have been sequenced and investigated regarding their function in human disease. Some non-limiting examples of known human miRNAs, the expression of which can be modulated with agents and methods provided herein are let-7, let-7a-1, let-7a-2, let-7a-3, let-7b, let-7c, let-7d, let-7e, let-7f-1, let-7f-2, let-7g, let-7i, mir-1, mir-10, mir-100, mir-101, mir-101-1, mir-101-2, mir-103, mir-103-1, mir-103-2, mir-105, mir-105-1, mir-105-2, mir-106a, mir-106b, mir-107, mir-10a, mir-10b, mir-1-1, mir-1-2, mir-124, mir-124-1, mir-124-2, mir-124-3, mir-125, mir-125a, mir-125b-1, mir-125b-2, mir-128, mir-128a, mir-128b, mir-129, mir-129-1, mir-129-2, mir-130, mir-130a, mir-130b, mir-132, mir-132, mir-133, mir-133a-1, mir-133a-2, mir-133b, mir-135, mir-135a-1, mir-135a-2, mir-135b, mir-138, mir-138-1, mir-138-2, mir-141, mir-146, mir-146a, mir-146b, mir-147, mir-147a, mir-147b, mir-148, mir-148a, mir-148b, mir-15, mir-151, mir-152, mir-153, mir-153-1, mir-153-2, mir-154, mir-154, mir-15a, mir-15b, mir-16-1, mir-16-2, mir-17, mir-181, mir-181a-1, mir-181a-2, mir-181b-1, mir-181b-2, mir-181c, mir-181d, mir-188, mir-188, mir-18a, mir-18b, mir-19, mir-190, mir-190, mir-190b, mir-192, mir-192, mir-193, mir-193a, mir-193b, mir-194, mir-194-1, mir-194-2, mir-195, mir-196, mir-196a-1, mir-196a-2, mir-196b, mir-199, mir-199a-1, mir-199a-2, mir-199b, mir-19a, mir-19b-1, mir-19b-2, mir-200a, mir-200b, mir-200c, mir-204, mir-204, mir-206, mir-208, mir-208, mir-208b, mir-20a, mir-20b, mir-211, mir-212, mir-215, mir-216, mir-216a, mir-216b, mir-218, mir-218-1, mir-218-2, mir-219, mir-219-1, mir-219-2, mir-220, mir-220, mir-220b, mir-221, mir-221, mir-222, mir-23, mir-23a, mir-23b, mir-24, mir-24-1, mir-24-2, mir-25, mir-25, mir-26, mir-26a-1, mir-26a-2, mir-26b, mir-27, mir-27a, mir-27b, mir-28, mir-28, mir-29, mir-290, mir-29a, mir-29b-1, mir-29b-2, mir-29c, mir-30, mir-300, mir-301a, mir-301b, mir-302, mir-302a, mir-302b, mir-302c, mir-302d, mir-30a, mir-30b, mir-30c-1, mir-30c-2, mir-30d, mir-30e, mir-323, mir-329, mir-329-1, mir-329-2, mir-33, mir-33a, mir-33b, mir-34, mir-34a, mir-34b, mir-34c, mir-365, mir-365-1, mir-365-2, mir-368, mir-369, mir-371, mir-372, mir-374, mir-374a, mir-374b, mir-376a-1, mir-376a-2, mir-376b, mir-376c, mir-377, mir-379, mir-379, mir-380, mir-381, mir-382, mir-409, mir-410, mir-411, mir-421, mir-429, mir-449, mir-449a, mir-449b, mir-450, mir-450a-1, mir-450a-2, mir-450b, mir-453, mir-487a, mir-487b, mir-494, mir-495, mir-496, mir-500, mir-500, mir-501, mir-502, mir-506, mir-506, mir-507, mir-508, mir-509, mir-509-1, mir-509-2, mir-509-3, mir-510, mir-511, mir-511-1, mir-511-2, mir-512, mir-512-1, mir-512-2, mir-513, mir-513-1, mir-513-2, mir-514-1, mir-514-2, mir-514-3, mir-515, mir-515-1, mir-515-2, mir-516a-1, mir-516a-2, mir-516b-1, mir-516b-2, mir-517a, mir-517b, mir-517c, mir-518a-1, mir-518a-2, mir-518b, mir-518c, mir-518d, mir-518e, mir-518f, mir-519a-1, mir-519a-2, mir-519b, mir-519c, mir-519d, mir-519e, mir-520a, mir-520b, mir-520c, mir-520d, mir-520e, mir-520f, mir-520g, mir-520h, mir-521-1, mir-521-2, mir-522, mir-523, mir-524, mir-525, mir-526a-1, mir-526a-2, mir-526b, mir-527, mir-532, mir-539, mir-543, mir-545, mir-548, mir-548a-1, mir-548a-2, mir-548a-3, mir-548b, mir-548c, mir-548d-1, mir-548d-2, mir-550, mir-550-1, mir-550-2, mir-551, mir-551a, mir-551b, mir-570, mir-579, mir-603, mir-655, mir-656, mir-660, mir-7, mir-7-1, mir-7-2, mir-7-3, mir-758, mir-8, mir-891, mir-891a, mir-891b, mir-892, mir-892a, mir-892b, mir-9, mir-9-1, mir-9-2, mir-92a-1, mir-92a-2, mir-92b, mir-93, mir-9-3, mir-941, mir-941-1, mir-941-2, mir-941-3, mir-941-4, mir-95, mir-95, mir-98, mir-99, mir-99a, mir-99b. Sequence, structural information, and functions of these and other miRNAs are well known to those of skill in the art and are described, for example, in the miRBase database, Release 16, September 2010, accessible at www.mirbase.org, and described in more detail in “miRBase: tools for microRNA genomics” by Griffiths-Jones S, Saini H K, van Dongen S, Enright A J, Nucleic Acids Res. 2008 36:D154-D158; “miRBase: microRNA sequences, targets and gene nomenclature” by Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J, Nucleic Acids Res. 2006 34:D140-D144; and “The miRNA Registry” by Griffiths-Jones S, Nucleic Acids Res. 2004 32:D109-D111. The entire contents of miRBase, Release 16, September 2010, and the three references provided immediately above are incorporated herein in their entirety by reference for disclosure of miRNA sequences, structure, and function.


In some embodiments, the miRNA that is modulated using an agent or method provided herein is an miRNA that is implicated or known to be involved in the pathogenesis or the progression of a human disease, for example, in a cancer or neoplastic disease. miRNAs implicated or known to be involved in the pathogenesis or the progression of a human disease are well known to those of skill in the art and include, but are not limited to the miRNAs described in the Human mRNA & Disease Database (HMDD), Release January 2011, accessible at 202.38.126.151/hmdd/mirna/md/, and described in more detail in Lu M, Zhang Q, Deng M, Miao J, Guo Y, et al. (2008) An Analysis of Human MicroRNA and Disease Associations. PLoS ONE 3(10): e3420; the mir2disease base, Release March 2011, accessible at www.mir2disease.org, and described in more detail in Jiang Q., Wang Y., Hao Y., Juan L., Teng M., Zhang X., Li M., Wang G., Liu Y., (2009) miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98-104; the entire contents of each database and reference are incorporated herein by reference.


In some embodiments, an miRNA modulating agent or method is provided that targets a particular miRNA or a particular miRNA cluster. For example, in some embodiments, the target miRNA is mir139 (e.g., miRBase accession: MI0000261). Mir139 has been described to act as a tumor suppressor and aberrant expression of mir139 has been reported to be associated with leukemia, for example, chronic lymphocytic leukemia, and with certain carcinomas, for example, adenocarcinoma, epithelial ovarian carcinoma, gastric carcinoma, and non-small cell lung carcinoma. In some embodiments, a miRNA modulating agent or method provided herein is useful for the alleviation of a disease or condition associated with aberrant mir139.


In some embodiments, the target miRNA is let-7 (e.g., miRBase accession: MI0000060-MI0000068). Let-7 has been reported to act as a tumor suppressor and aberrant expression of let-7 has been reported to be associated with tumorigenesis and tumor progression. In some embodiments, a let-7 mimic as provided herein is introduced into a neoplastic cell or tissue, for example, into a tumor cell or tumor tissue to alleviate tumor growth and/or any associated disease or condition. In some embodiments, introduction of a let-7 mimic into a tumor results in tumor regression.


In some embodiments, the target miRNA is mir-29 (e.g., miRBase accession: MI0000087, MI0000105, MI0000107). Aberrant expression of mir-29 has been reported to be associated with abnormal cell or tissue proliferation. For example, lack of miR-29a and/or miR-29b is implicated in progression of HCV infection, fibrosis or neuron remodeling and degeneration during Alzeheimer's disease. In some embodiments, introduction of a mir-29 mimic into an affected cell or tissue of a diseased subject is of therapeutic benefit in neurological disorders, liver and pulmonary fibrosis, HCV or other liver infection, cardiac hypertension and other indications with a reported involvement of mir-29. In some embodiments, introduction of a mir-29 mimic, as provided herein, for example, of a mir-29b mimic, can result in PDPN downregulation, which is involved in glioblastoma progression. In some embodiments, introduction of a mir-29 mimic as provided herein into a glioblastoma cell or tissue, for example, brain tissue of a glioblastoma patient, results in arrest or delay of tumor progression, tumor regression, or an alleviation of the disease state.


In some embodiments, the target miRNA is mir-133 (e.g., miRBase accession: MI0000450, MI0000451, MI0000822). Aberrant expression of miR-133 has been reported to be associated with CTGF downregulation as well as downregulation of molecular signaling pathways implicated in fibrosis. In some embodiments, a mir-133 mimic provided herein is used as an anti-fibrotic agent.


In some embodiments, the target miRNA is a miRNA of the mir-302-367 cluster, comprising mir-302a-mir302d and mir-367 (e.g., miRBase accession: MI0000738, MI0000772, MI0000773, MI0000775). Aberrant expression of the miRNA 302-367 cluster has been reported to be associated with inhibition of HDac2-regulated reprogramming of somatic cells into pluripotent stem cells. In some embodiments, introduction of a mimic of a miRNA in the miRNA 302-367 cluster into somatic stem cells supports or enhances the reprogramming of the somatic cells into pluripotent stem cells, which can be used for regenerative medicine approaches, and organ and tissue development.


In some embodiments, the target miRNA is mir-221 (e.g., miRBase accession: MI0000298). Mir-221 has been reported to act as a tumor suppressor, and aberrant expression of mir-221 has been reported to be associated with glioblastoma progression. In some embodiments, introduction, e.g., by direct injection or intrabrain infusion of a mir-221 mimic provided herein is used to treat or alleviate a symptom observed in glioblastoma patients.


In some embodiments, the target miRNA is mir-96 (e.g., miRBase accession: MI0000098). Mir-96 has been reported to be involved in hair growth regulation and aberrant expression of mir-96 has been reported to be associated with alopecia, for example, or chemotherapy-induced alopecia. In some embodiments, a mir-96 mimic as provided herein is used to treat alopecia.


In some embodiments, the target miRNA is mir-126, mir-335, or mir-206 (e.g., miRBase accession: MI0000471, MI0000816, MI0000490). These miRNAs are potent suppressors of tumor metastasis formation or maturation. For example, mir-126 has been reported to suppress endothelium cellular recruitment and, thus, metastasis maturation. In some embodiment, introduction of a mir-126, mir-335, or mir-206 mimic as provided herein into a primary tumor, or systemic administration to a subject having a tumor results in a partial or complete inhibition of metastasis formation.


In some embodiments, the target miRNA is a miRNA of the mir-17-92 cluster, comprising mir-17, mir-18a, mir-19a, mir-20a, mir-19b-1, and mir-92a-1 (e.g., miRBase accession: MI0000071, MI0000072, MI0000073, MI0000076, MI0000074, MI0000093). The mir-17-92 cluster has been reported to act as an oncogene and overexpression of the cluster, or of any member of the cluster has been reported to be associated with tumorigenesis. In some embodiments, a miRNA inhibitory agent targeting the mir-17-92 cluster as provided herein is administered to a tumor cell or tissue, or systemically, to a patient diagnosed with or suspected to have a tumor. Another pathway that uses small RNAs as sequence-specific regulators is the RNA interference (RNAi) pathway, which is an evolutionarily conserved response to the presence of double-stranded RNA (dsRNA) in the cell. The dsRNAs are cleaved into ˜20-base pair (bp) duplexes of small-interfering RNAs (siRNAs) by Dicer. These small RNAs get assembled into multiprotein effector complexes called RNA-induced silencing complexes (RISCs). The siRNAs then guide the cleavage of target mRNAs with perfect complementarity.


Some aspects of biogenesis, protein complexes, and function are shared between the siRNA pathway and the miRNA pathway. The subject single-stranded polynucleotides may mimic the dsRNA in the siRNA mechanism, or the microRNA in the miRNA mechanism.


In certain embodiments, the modified RNAi constructs may have improved stability in serum and/or cerebral spinal fluid compared to an unmodified RNAi constructs having the same sequence.


In certain embodiments, the structure of the RNAi construct does not induce interferon response in primary cells, such as mammalian primary cells, including primary cells from human, mouse and other rodents, and other non-human mammals. In certain embodiments, the RNAi construct may also be used to inhibit expression of a target gene in an invertebrate organism.


To further increase the stability of the subject constructs in vivo, the 3′-end of the hairpin structure may be blocked by protective group(s). For example, protective groups such as inverted nucleotides, inverted abasic moieties, or amino-end modified nucleotides may be used. Inverted nucleotides may comprise an inverted deoxynucleotide. Inverted abasic moieties may comprise an inverted deoxyabasic moiety, such as a 3′,3′-linked or 5′,5′-linked deoxyabasic moiety.


The RNAi constructs of the invention are capable of inhibiting the synthesis of any target protein encoded by target gene(s). The invention includes methods to inhibit expression of a target gene either in a cell in vitro, or in vivo. As such, the RNAi constructs of the invention are useful for treating a patient with a disease characterized by the overexpression of a target gene.


The target gene can be endogenous or exogenous (e.g., introduced into a cell by a virus or using recombinant DNA technology) to a cell. Such methods may include introduction of RNA into a cell in an amount sufficient to inhibit expression of the target gene. By way of example, such an RNA molecule may have a guide strand that is complementary to the nucleotide sequence of the target gene, such that the composition inhibits expression of the target gene.


The invention also relates to vectors expressing the nucleic acids of the invention, and cells comprising such vectors or the nucleic acids. The cell may be a mammalian cell in vivo or in culture, such as a human cell.


The invention further relates to compositions comprising the subject RNAi constructs, and a pharmaceutically acceptable carrier or diluent.


Another aspect of the invention provides a method for inhibiting the expression of a target gene in a mammalian cell, comprising contacting the mammalian cell with any of the subject RNAi constructs.


The method may be carried out in vitro, ex vivo, or in vivo, in, for example, mammalian cells in culture, such as a human cell in culture.


The target cells (e.g., mammalian cell) may be contacted in the presence of a delivery reagent, such as a lipid (e.g., a cationic lipid) or a liposome.


Another aspect of the invention provides a method for inhibiting the expression of a target gene in a mammalian cell, comprising contacting the mammalian cell with a vector expressing the subject RNAi constructs.


In one aspect of the invention, a longer duplex polynucleotide is provided, including a first polynucleotide that ranges in size from about 16 to about 30 nucleotides; a second polynucleotide that ranges in size from about 26 to about 46 nucleotides, wherein the first polynucleotide (the antisense strand) is complementary to both the second polynucleotide (the sense strand) and a target gene, and wherein both polynucleotides form a duplex and wherein the first polynucleotide contains a single stranded region longer than 6 bases in length and is modified with alternative chemical modification pattern, and/or includes a conjugate moiety that facilitates cellular delivery. In this embodiment, between about 40% to about 90% of the nucleotides of the passenger strand between about 40% to about 90% of the nucleotides of the guide strand, and between about 40% to about 90% of the nucleotides of the single stranded region of the first polynucleotide are chemically modified nucleotides.


In an embodiment, the chemically modified nucleotide in the polynucleotide duplex may be any chemically modified nucleotide known in the art, such as those discussed in detail above. In a particular embodiment, the chemically modified nucleotide is selected from the group consisting of 2′ F modified nucleotides, 2′-O-methyl modified and 2′ deoxy nucleotides. In another particular embodiment, the chemically modified nucleotides results from “hydrophobic modifications” of the nucleotide base. In another particular embodiment, the chemically modified nucleotides are phosphorothioates. In an additional particular embodiment, chemically modified nucleotides are combination of phosphorothioates, 2′-O-methyl, 2′ deoxy, hydrophobic modifications and phosphorothioates. As these groups of modifications refer to modification of the ribose ring, back bone and nucleotide, it is feasible that some modified nucleotides will carry a combination of all three modification types.


In another embodiment, the chemical modification is not the same across the various regions of the duplex. In a particular embodiment, the first polynucleotide (the passenger strand), has a large number of diverse chemical modifications in various positions. For this polynucleotide up to 90% of nucleotides might be chemically modified and/or have mismatches introduced.


In another embodiment, chemical modifications of the first or second polynucleotide include, but not limited to, 5′ position modification of Uridine and Cytosine (4-pyridyl, 2-pyridyl, indolyl, phenyl (C6H5OH); tryptophanyl (C8H6N)CH2CH(NH2)CO), isobutyl, butyl, aminobenzyl; phenyl; naphthyl, etc), where the chemical modification might alter base pairing capabilities of a nucleotide. For the guide strand an important feature of this aspect of the invention is the position of the chemical modification relative to the 5′ end of the antisense and sequence. For example, chemical phosphorylation of the 5′ end of the guide strand is usually beneficial for efficacy. O-methyl modifications in the seed region of the sense strand (position 2-7 relative to the 5′ end) are not generally well tolerated, whereas 2′F and deoxy are well tolerated. The mid part of the guide strand and the 3′ end of the guide strand are more permissive in a type of chemical modifications applied. Deoxy modifications are not tolerated at the 3′ end of the guide strand.


A unique feature of this aspect of the invention involves the use of hydrophobic modification on the bases. In one embodiment, the hydrophobic modifications are preferably positioned near the 5′ end of the guide strand, in other embodiments, they localized in the middle of the guides strand, in other embodiment they localized at the 3′ end of the guide strand and yet in another embodiment they are distributed thought the whole length of the polynucleotide. The same type of patterns is applicable to the passenger strand of the duplex.


The other part of the molecule is a single stranded region. The single stranded region is expected to range from 7 to 40 nucleotides.


In one embodiment, the single stranded region of the first polynucleotide contains modifications selected from the group consisting of between 40% and 90% hydrophobic base modifications, between 40%-90% phosphorothioates, between 40%-90% modification of the ribose moiety, and any combination of the preceding.


Efficiency of guide strand (first polynucleotide) loading into the RISC complex might be altered for heavily modified polynucleotides, so in one embodiment, the duplex polynucleotide includes a mismatch between nucleotide 9, 11, 12, 13, or 14 on the guide strand (first polynucleotide) and the opposite nucleotide on the sense strand (second polynucleotide) to promote efficient guide strand loading.


More detailed aspects of the invention are described in the sections below.


Duplex Characteristics


Double-stranded oligonucleotides of the invention may be formed by two separate complementary nucleic acid strands. Duplex formation can occur either inside or outside the cell containing the target gene.


As used herein, the term “duplex” includes the region of the double-stranded nucleic acid molecule(s) that is (are) hydrogen bonded to a complementary sequence. Double-stranded oligonucleotides of the invention may comprise a nucleotide sequence that is sense to a target gene and a complementary sequence that is antisense to the target gene. The sense and antisense nucleotide sequences correspond to the target gene sequence, e.g., are identical or are sufficiently identical to effect target gene inhibition (e.g., are about at least about 98% identical, 96% identical, 94%, 90% identical, 85% identical, or 80% identical) to the target gene sequence.


In certain embodiments, the double-stranded oligonucleotide of the invention is double-stranded over its entire length, i.e., with no overhanging single-stranded sequence at either end of the molecule, i.e., is blunt-ended. In other embodiments, the individual nucleic acid molecules can be of different lengths. In other words, a double-stranded oligonucleotide of the invention is not double-stranded over its entire length. For instance, when two separate nucleic acid molecules are used, one of the molecules, e.g., the first molecule comprising an antisense sequence, can be longer than the second molecule hybridizing thereto (leaving a portion of the molecule single-stranded). Likewise, when a single nucleic acid molecule is used a portion of the molecule at either end can remain single-stranded.


In one embodiment, a double-stranded oligonucleotide of the invention contains mismatches and/or loops or bulges, but is double-stranded over at least about 70% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 80% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 90%-95% of the length of the oligonucleotide. In another embodiment, a double-stranded oligonucleotide of the invention is double-stranded over at least about 96%-98% of the length of the oligonucleotide. In certain embodiments, the double-stranded oligonucleotide of the invention contains at least or up to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 mismatches.


Modifications


The nucleotides of the invention may be modified at various locations, including the sugar moiety, the phosphodiester linkage, and/or the base.


Sugar moieties include natural, unmodified sugars, e.g., monosaccharide (such as pentose, e.g., ribose, deoxyribose), modified sugars and sugar analogs. In general, possible modifications of nucleomonomers, particularly of a sugar moiety, include, for example, replacement of one or more of the hydroxyl groups with a halogen, a heteroatom, an aliphatic group, or the functionalization of the hydroxyl group as an ether, an amine, a thiol, or the like.


One particularly useful group of modified nucleomonomers are 2′-O-methyl nucleotides. Such 2′-O-methyl nucleotides may be referred to as “methylated,” and the corresponding nucleotides may be made from unmethylated nucleotides followed by alkylation or directly from methylated nucleotide reagents. Modified nucleomonomers may be used in combination with unmodified nucleomonomers. For example, an oligonucleotide of the invention may contain both methylated and unmethylated nucleomonomers.


Some exemplary modified nucleomonomers include sugar- or backbone-modified ribonucleotides. Modified ribonucleotides may contain a non-naturally occurring base (instead of a naturally occurring base), such as uridines or cytidines modified at the 5′-position, e.g., 5′-(2-amino)propyl uridine and 5′-bromo uridine; adenosines and guanosines modified at the 8-position, e.g., 8-bromo guanosine; deaza nucleotides, e.g., 7-deaza-adenosine; and N-alkylated nucleotides, e.g., N6-methyl adenosine. Also, sugar-modified ribonucleotides may have the 2′-OH group replaced by a H, alxoxy (or OR), R or alkyl, halogen, SH, SR, amino (such as NH2, NHR, NR2), or CN group, wherein R is lower alkyl, alkenyl, or alkynyl.


Modified ribonucleotides may also have the phosphodiester group connecting to adjacent ribonucleotides replaced by a modified group, e.g., of phosphorothioate group. More generally, the various nucleotide modifications may be combined.


Although the antisense (guide) strand may be substantially identical to at least a portion of the target gene (or genes), at least with respect to the base pairing properties, the sequence need not be perfectly identical to be useful, e.g., to inhibit expression of a target gene's phenotype. Generally, higher homology can be used to compensate for the use of a shorter antisense gene. In some cases, the antisense strand generally will be substantially identical (although in antisense orientation) to the target gene.


The use of 2′-O-methyl modified RNA may also be beneficial in circumstances in which it is desirable to minimize cellular stress responses. RNA having 2′-O-methyl nucleomonomers may not be recognized by cellular machinery that is thought to recognize unmodified RNA. The use of 2′-O-methylated or partially 2′-O-methylated RNA may avoid the interferon response to double-stranded nucleic acids, while maintaining target RNA inhibition. This may be useful, for example, for avoiding the interferon or other cellular stress responses, both in short RNAi (e.g., siRNA) sequences that induce the interferon response, and in longer RNAi sequences that may induce the interferon response.


Overall, modified sugars may include D-ribose, 2′-O-alkyl (including 2′-O-methyl and 2′-O-ethyl), i.e., 2′-alkoxy, 2′-amino, 2′-S-alkyl, 2′-halo (including 2′-fluoro), 2′-methoxyethoxy, 2′-allyloxy (—OCH2CH═CH2), 2′-propargyl, 2′-propyl, ethynyl, ethenyl, propenyl, and cyano and the like. In one embodiment, the sugar moiety can be a hexose and incorporated into an oligonucleotide as described (Augustyns, K., et al., Nucl. Acids. Res. 18:4711 (1992)). Exemplary nucleomonomers can be found, e.g., in U.S. Pat. No. 5,849,902, incorporated by reference herein.


The term “alkyl” includes saturated aliphatic groups, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), branched-chain alkyl groups (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl (alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. In certain embodiments, a straight chain or branched chain alkyl has 6 or fewer carbon atoms in its backbone (e.g., C1-C6 for straight chain, C3-C6 for branched chain), and more preferably 4 or fewer. Likewise, preferred cycloalkyls have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure. The term C1-C6 includes alkyl groups containing 1 to 6 carbon atoms.


Moreover, unless otherwise specified, the term alkyl includes both “unsubstituted alkyls” and “substituted alkyls,” the latter of which refers to alkyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety. Cycloalkyls can be further substituted, e.g., with the substituents described above. An “alkylaryl” or an “arylalkyl” moiety is an alkyl substituted with an aryl (e.g., phenylmethyl (benzyl)). The term “alkyl” also includes the side chains of natural and unnatural amino acids. The term “n-alkyl” means a straight chain (i.e., unbranched) unsubstituted alkyl group.


The term “alkenyl” includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double bond. For example, the term “alkenyl” includes straight-chain alkenyl groups (e.g., ethylenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, etc.), branched-chain alkenyl groups, cycloalkenyl (alicyclic) groups (cyclopropenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl), alkyl or alkenyl substituted cycloalkenyl groups, and cycloalkyl or cycloalkenyl substituted alkenyl groups. In certain embodiments, a straight chain or branched chain alkenyl group has 6 or fewer carbon atoms in its backbone (e.g., C2-C6 for straight chain, C3-C6 for branched chain). Likewise, cycloalkenyl groups may have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure. The term C2-C6 includes alkenyl groups containing 2 to 6 carbon atoms.


Moreover, unless otherwise specified, the term alkenyl includes both “unsubstituted alkenyls” and “substituted alkenyls,” the latter of which refers to alkenyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety.


The term “alkynyl” includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but which contain at least one triple bond. For example, the term “alkynyl” includes straight-chain alkynyl groups (e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.), branched-chain alkynyl groups, and cycloalkyl or cycloalkenyl substituted alkynyl groups. In certain embodiments, a straight chain or branched chain alkynyl group has 6 or fewer carbon atoms in its backbone (e.g., C2-C6 for straight chain, C3-C6 for branched chain). The term C2-C6 includes alkynyl groups containing 2 to 6 carbon atoms.


Moreover, unless otherwise specified, the term alkynyl includes both “unsubstituted alkynyls” and “substituted alkynyls,” the latter of which refers to alkynyl moieties having independently selected substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moiety.


Unless the number of carbons is otherwise specified, “lower alkyl” as used herein means an alkyl group, as defined above, but having from one to five carbon atoms in its backbone structure. “Lower alkenyl” and “lower alkynyl” have chain lengths of, for example, 2-5 carbon atoms.


The term “alkoxy” includes substituted and unsubstituted alkyl, alkenyl, and alkynyl groups covalently linked to an oxygen atom. Examples of alkoxy groups include methoxy, ethoxy, isopropyloxy, propoxy, butoxy, and pentoxy groups. Examples of substituted alkoxy groups include halogenated alkoxy groups. The alkoxy groups can be substituted with independently selected groups such as alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulffiydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic moieties. Examples of halogen substituted alkoxy groups include, but are not limited to, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chloromethoxy, dichloromethoxy, trichloromethoxy, etc.


The term “heteroatom” includes atoms of any element other than carbon or hydrogen. Preferred heteroatoms are nitrogen, oxygen, sulfur and phosphorus.


The term “hydroxy” or “hydroxyl” includes groups with an —OH or —O (with an appropriate counterion).


The term “halogen” includes fluorine, bromine, chlorine, iodine, etc. The term “perhalogenated” generally refers to a moiety wherein all hydrogens are replaced by halogen atoms.


The term “substituted” includes independently selected substituents which can be placed on the moiety and which allow the molecule to perform its intended function. Examples of substituents include alkyl, alkenyl, alkynyl, aryl, (CR′R″)0-3NR′R″, (CR′R″)0-3CN, NO2, halogen, (CR′R″)0-3C(halogen)3, (CR′R″)0-3CH(halogen)2, (CR′R″)0-3CH2(halogen), (CR′R″)0-3CONR′R″, (CR′R″)0-3S(O)1-2NR′R″, (CR′R″)0-3CHO, (CR′R″)0-3O(CR′R″)0-3H, (CR′R″)0-3S(O)0-2R′, (CR′R″)0-3O(CR′R″)0-3H, (CR′R″)0-3COR′, (CR′R″)0-3CO2R′, or (CR′R″)0-3OR′ groups; wherein each R′ and R″ are each independently hydrogen, a C1-C5 alkyl, C2-C5 alkenyl, C2-C5 alkynyl, or aryl group, or R′ and R″ taken together are a benzylidene group or a —(CH2)2O(CH2)2— group.


The term “amine” or “amino” includes compounds or moieties in which a nitrogen atom is covalently bonded to at least one carbon or heteroatom. The term “alkyl amino” includes groups and compounds wherein the nitrogen is bound to at least one additional alkyl group. The term “dialkyl amino” includes groups wherein the nitrogen atom is bound to at least two additional alkyl groups.


The term “ether” includes compounds or moieties which contain an oxygen bonded to two different carbon atoms or heteroatoms. For example, the term includes “alkoxyalkyl,” which refers to an alkyl, alkenyl, or alkynyl group covalently bonded to an oxygen atom which is covalently bonded to another alkyl group.


The term “base” includes the known purine and pyrimidine heterocyclic bases, deazapurines, and analogs (including heterocyclic substituted analogs, e.g., aminoethyoxy phenoxazine), derivatives (e.g., 1-alkyl-, 1-alkenyl-, heteroaromatic- and 1-alkynyl derivatives) and tautomers thereof. Examples of purines include adenine, guanine, inosine, diaminopurine, and xanthine and analogs (e.g., 8-oxo-N6-methyladenine or 7-diazaxanthine) and derivatives thereof. Pyrimidines include, for example, thymine, uracil, and cytosine, and their analogs (e.g., 5-methylcytosine, 5-methyluracil, 5-(1-propynyl)uracil, 5-(1-propynyl)cytosine and 4,4-ethanocytosine). Other examples of suitable bases include non-purinyl and non-pyrimidinyl bases such as 2-aminopyridine and triazines.


In a preferred embodiment, the nucleomonomers of an oligonucleotide of the invention are RNA nucleotides. In another preferred embodiment, the nucleomonomers of an oligonucleotide of the invention are modified RNA nucleotides. Thus, the oligonucleotides contain modified RNA nucleotides.


The term “nucleoside” includes bases which are covalently attached to a sugar moiety, preferably ribose or deoxyribose. Examples of preferred nucleosides include ribonucleosides and deoxyribonucleosides. Nucleosides also include bases linked to amino acids or amino acid analogs which may comprise free carboxyl groups, free amino groups, or protecting groups. Suitable protecting groups are well known in the art (see P. G. M. Wuts and T. W. Greene, “Protective Groups in Organic Synthesis”, 2nd Ed., Wiley-Interscience, New York, 1999).


The term “nucleotide” includes nucleosides which further comprise a phosphate group or a phosphate analog.


As used herein, the term “linkage” includes a naturally occurring, unmodified phosphodiester moiety (—O—(PO2−)—O—) that covalently couples adjacent nucleomonomers. As used herein, the term “substitute linkage” includes any analog or derivative of the native phosphodiester group that covalently couples adjacent nucleomonomers. Substitute linkages include phosphodiester analogs, e.g., phosphorothioate, phosphorodithioate, and P-ethyoxyphosphodiester, P-ethoxyphosphodiester, P-alkyloxyphosphotriester, methylphosphonate, and nonphosphorus containing linkages, e.g., acetals and amides. Such substitute linkages are known in the art (e.g., Bjergarde et al. 1991. Nucleic Acids Res. 19:5843; Caruthers et al. 1991. Nucleosides Nucleotides. 10:47). In certain embodiments, non-hydrolizable linkages are preferred, such as phosphorothiate linkages.


In certain embodiments, oligonucleotides of the invention comprise hydrophobically modified nucleotides or “hydrophobic modifications.” As used herein “hydrophobic modifications” refers to bases that are modified such that (1) overall hydrophobicity of the base is significantly increased, and/or (2) the base is still capable of forming close to regular Watson-Crick interaction. Several non-limiting examples of base modifications include 5-position uridine and cytidine modifications such as methyl, ethyl, phenyl, 4-pyridyl, 2-pyridyl, indolyl, and isobutyl, phenyl (C6H5OH); tryptophanyl (C8H6N)CH2CH(NH2)CO), butyl, aminobenzyl; and naphthyl.


In certain embodiments, oligonucleotides of the invention comprise 3′ and 5′ termini (except for circular oligonucleotides). In one embodiment, the 3′ and 5′ termini of an oligonucleotide can be substantially protected from nucleases e.g., by modifying the 3′ or 5′ linkages (e.g., U.S. Pat. No. 5,849,902 and WO 98/13526). For example, oligonucleotides can be made resistant by the inclusion of a “blocking group.” The term “blocking group” as used herein refers to substituents (e.g., other than OH groups) that can be attached to oligonucleotides or nucleomonomers, either as protecting groups or coupling groups for synthesis (e.g., FITC, propyl (CH2—CH2—CH3), glycol (—O—CH2—CH2—O—) phosphate (PO32−), hydrogen phosphonate, or phosphoramidite). “Blocking groups” also include “end blocking groups” or “exonuclease blocking groups” which protect the 5′ and 3′ termini of the oligonucleotide, including modified nucleotides and non-nucleotide exonuclease resistant structures.


Exemplary end-blocking groups include cap structures (e.g., a 7-methylguanosine cap), inverted nucleomonomers, e.g., with 3′-3′ or 5′-5′ end inversions (see, e.g., Ortiagao et al. 1992. Antisense Res. Dev. 2:129), methylphosphonate, phosphoramidite, non-nucleotide groups (e.g., non-nucleotide linkers, amino linkers, conjugates) and the like. The 3′ terminal nucleomonomer can comprise a modified sugar moiety. The 3′ terminal nucleomonomer comprises a 3′-O that can optionally be substituted by a blocking group that prevents 3′-exonuclease degradation of the oligonucleotide. For example, the 3′-hydroxyl can be esterified to a nucleotide through a 3′→3′ internucleotide linkage. For example, the alkyloxy radical can be methoxy, ethoxy, or isopropoxy, and preferably, ethoxy. Optionally, the 3′→3′linked nucleotide at the 3′ terminus can be linked by a substitute linkage. To reduce nuclease degradation, the 5′ most 3′→5′ linkage can be a modified linkage, e.g., a phosphorothioate or a P-alkyloxyphosphotriester linkage. Preferably, the two 5′ most 3′→5′ linkages are modified linkages. Optionally, the 5′ terminal hydroxy moiety can be esterified with a phosphorus containing moiety, e.g., phosphate, phosphorothioate, or P-ethoxyphosphate.


Another type of conjugates that can be attached to the end (3′ or 5′ end), the loop region, or any other parts of the miniRNA might include a sterol, sterol type molecule, peptide, small molecule, protein, etc. In some embodiments, a miniRNA may contain more than one conjugates (same or different chemical nature). In some embodiments, the conjugate is cholesterol.


Another way to increase target gene specificity, or to reduce off-target silencing effect, is to introduce a 2′-modification (such as the 2′-O methyl modification) at a position corresponding to the second 5′-end nucleotide of the guide sequence. This allows the positioning of this 2′-modification in the Dicer-resistant hairpin structure, thus enabling one to design better RNAi constructs with less or no off-target silencing.


In one embodiment, a hairpin polynucleotide of the invention can comprise one nucleic acid portion which is DNA and one nucleic acid portion which is RNA. Antisense (guide) sequences of the invention can be “chimeric oligonucleotides” which comprise an RNA-like and a DNA-like region.


The language “RNase H activating region” includes a region of an oligonucleotide, e.g., a chimeric oligonucleotide, that is capable of recruiting RNase H to cleave the target RNA strand to which the oligonucleotide binds. Typically, the RNase activating region contains a minimal core (of at least about 3-5, typically between about 3-12, more typically, between about 5-12, and more preferably between about 5-10 contiguous nucleomonomers) of DNA or DNA-like nucleomonomers. (See, e.g., U.S. Pat. No. 5,849,902). Preferably, the RNase H activating region comprises about nine contiguous deoxyribose containing nucleomonomers.


The language “non-activating region” includes a region of an antisense sequence, e.g., a chimeric oligonucleotide, that does not recruit or activate RNase H. Preferably, a non-activating region does not comprise phosphorothioate DNA. The oligonucleotides of the invention comprise at least one non-activating region. In one embodiment, the non-activating region can be stabilized against nucleases or can provide specificity for the target by being complementary to the target and forming hydrogen bonds with the target nucleic acid molecule, which is to be bound by the oligonucleotide.


In one embodiment, at least a portion of the contiguous polynucleotides are linked by a substitute linkage, e.g., a phosphorothioate linkage.


In certain embodiments, most or all of the nucleotides beyond the guide sequence (2′-modified or not) are linked by phosphorothioate linkages. Such constructs tend to have improved pharmacokinetics due to their higher affinity for serum proteins. The phosphorothioate linkages in the non-guide sequence portion of the polynucleotide generally do not interfere with guide strand activity, once the latter is loaded into RISC.


Antisense (guide) sequences of the present invention may include “morpholino oligonucleotides.” Morpholino oligonucleotides are non-ionic and function by an RNase H-independent mechanism. Each of the 4 genetic bases (Adenine, Cytosine, Guanine, and Thymine/Uracil) of the morpholino oligonucleotides is linked to a 6-membered morpholine ring. Morpholino oligonucleotides are made by joining the 4 different subunit types by, e.g., non-ionic phosphorodiamidate inter-subunit linkages. Morpholino oligonucleotides have many advantages including: complete resistance to nucleases (Antisense & Nucl. Acid Drug Dev. 1996. 6:267); predictable targeting (Biochemica Biophysica Acta. 1999. 1489:141); reliable activity in cells (Antisense & Nucl. Acid Drug Dev. 1997. 7:63); excellent sequence specificity (Antisense & Nucl. Acid Drug Dev. 1997. 7:151); minimal non-antisense activity (Biochemica Biophysica Acta. 1999. 1489:141); and simple osmotic or scrape delivery (Antisense & Nucl. Acid Drug Dev. 1997. 7:291). Morpholino oligonucleotides are also preferred because of their non-toxicity at high doses. A discussion of the preparation of morpholino oligonucleotides can be found in Antisense & Nucl. Acid Drug Dev. 1997. 7:187.


The chemical modifications described herein are believed, based on the data described herein, to promote single stranded polynucleotide loading into the RISC. Single stranded polynucleotides have been shown to be active in loading into RISC and inducing gene silencing. However, the level of activity for single stranded polynucleotides appears to be 2 to 4 orders of magnitude lower when compared to a duplex polynucleotide.


The present invention provides a description of the chemical modification patterns, which may (a) significantly increase stability of the single stranded polynucleotide (b) promote efficient loading of the polynucleotide into the RISC complex and (c) improve uptake of the single stranded nucleotide by the cell. FIG. 5 provides some non-limiting examples of the chemical modification patterns which may be beneficial for achieving single stranded polynucleotide efficacy inside the cell. The chemical modification patterns may include combination of ribose, backbone, hydrophobic nucleoside and conjugate type of modifications. In addition, in some of the embodiments, the 5′ end of the single polynucleotide may be chemically phosphorylated.


In yet another embodiment, the present invention provides a description of the chemical modifications patterns, which improve functionality of RISC inhibiting polynucleotides. Single stranded polynucleotides have been shown to inhibit activity of a preloaded RISC complex through the substrate competition mechanism. For these types of molecules, conventionally called antagomers, the activity usually requires high concentration and in vivo delivery is not very effective. The present invention provides a description of the chemical modification patterns, which may (a) significantly increase stability of the single stranded polynucleotide (b) promote efficient recognition of the polynucleotide by the RISC as a substrate and/or (c) improve uptake of the single stranded nucleotide by the cell. FIG. 6 provides some non-limiting examples of the chemical modification patterns that may be beneficial for achieving single stranded polynucleotide efficacy inside the cell. The chemical modification patterns may include combination of ribose, backbone, hydrophobic nucleoside and conjugate type of modifications.


The modifications provided by the present invention are applicable to all polynucleotides. This includes single stranded RISC entering polynucleotides, single stranded RISC inhibiting polynucleotides, conventional duplexed polynucleotides of variable length (15-40 bp), asymmetric duplexed polynucleotides, and the like. Polynucleotides may be modified with wide variety of chemical modification patterns, including 5′ end, ribose, backbone and hydrophobic nucleoside modifications.


Synthesis


Oligonucleotides of the invention can be synthesized by any method known in the art, e.g., using enzymatic synthesis and/or chemical synthesis. The oligonucleotides can be synthesized in vitro (e.g., using enzymatic synthesis and chemical synthesis) or in vivo (using recombinant DNA technology well known in the art).


In a preferred embodiment, chemical synthesis is used for modified polynucleotides. Chemical synthesis of linear oligonucleotides is well known in the art and can be achieved by solution or solid phase techniques. Preferably, synthesis is by solid phase methods. Oligonucleotides can be made by any of several different synthetic procedures including the phosphoramidite, phosphite triester, H-phosphonate, and phosphotriester methods, typically by automated synthesis methods.


Oligonucleotide synthesis protocols are well known in the art and can be found, e.g., in U.S. Pat. No. 5,830,653; WO 98/13526; Stec et al. 1984. J. Am. Chem. Soc. 106:6077; Stec et al. 1985. J. Org. Chem. 50:3908; Stec et al. J. Chromatog. 1985. 326:263; LaPlanche et al. 1986. Nucl. Acid. Res. 1986. 14:9081; Fasman G. D., 1989. Practical Handbook of Biochemistry and Molecular Biology. 1989. CRC Press, Boca Raton, Fla.; Lamone. 1993. Biochem. Soc. Trans. 21:1; U.S. Pat. No. 5,013,830; U.S. Pat. No. 5,214,135; U.S. Pat. No. 5,525,719; Kawasaki et al. 1993. J. Med. Chem. 36:831; WO 92/03568; U.S. Pat. No. 5,276,019; and U.S. Pat. No. 5,264,423.


The synthesis method selected can depend on the length of the desired oligonucleotide and such choice is within the skill of the ordinary artisan. For example, the phosphoramidite and phosphite triester method can produce oligonucleotides having 175 or more nucleotides, while the H-phosphonate method works well for oligonucleotides of less than 100 nucleotides. If modified bases are incorporated into the oligonucleotide, and particularly if modified phosphodiester linkages are used, then the synthetic procedures are altered as needed according to known procedures. In this regard, Uhlmann et al. (1990, Chemical Reviews 90:543-584) provide references and outline procedures for making oligonucleotides with modified bases and modified phosphodiester linkages. Other exemplary methods for making oligonucleotides are taught in Sonveaux. 1994. “Protecting Groups in Oligonucleotide Synthesis”; Agrawal. Methods in Molecular Biology 26:1. Exemplary synthesis methods are also taught in “Oligonucleotide Synthesis—A Practical Approach” (Gait, M. J. IRL Press at Oxford University Press. 1984). Moreover, linear oligonucleotides of defined sequence, including some sequences with modified nucleotides, are readily available from several commercial sources.


The oligonucleotides may be purified by polyacrylamide gel electrophoresis, or by any of a number of chromatographic methods, including gel chromatography and high pressure liquid chromatography. To confirm a nucleotide sequence, especially unmodified nucleotide sequences, oligonucleotides may be subjected to DNA sequencing by any of the known procedures, including Maxam and Gilbert sequencing, Sanger sequencing, capillary electrophoresis sequencing, the wandering spot sequencing procedure or by using selective chemical degradation of oligonucleotides bound to Hybond paper. Sequences of short oligonucleotides can also be analyzed by laser desorption mass spectroscopy or by fast atom bombardment (McNeal, et al., 1982, J. Am. Chem. Soc. 104:976; Viari, et al., 1987, Biomed. Environ. Mass Spectrom. 14:83; Grotjahn et al., 1982, Nuc. Acid Res. 10:4671). Sequencing methods are also available for RNA oligonucleotides.


The quality of oligonucleotides synthesized can be verified by testing the oligonucleotide by capillary electrophoresis and denaturing strong anion HPLC (SAX-HPLC) using, e.g., the method of Bergot and Egan. 1992. J. Chrom. 599:35.


Other exemplary synthesis techniques are well known in the art (see, e.g., Sambrook et al., Molecular Cloning: a Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and II (D N Glover Ed. 1985); Oligonucleotide Synthesis (M J Gait Ed, 1984; Nucleic Acid Hybridisation (B D Hames and S J Higgins eds. 1984); A Practical Guide to Molecular Cloning (1984); or the series, Methods in Enzymology (Academic Press, Inc.)).


In certain embodiments, the subject RNAi constructs or at least portions thereof are transcribed from expression vectors encoding the subject constructs. Any art recognized vectors may be use for this purpose. The transcribed RNAi constructs may be isolated and purified, before desired modifications (such as replacing an unmodified sense strand with a modified one, etc.) are carried out.


Delivery/Carrier


Uptake of Oligonucleotides by Cells


Oligonucleotides and oligonucleotide compositions are contacted with (i.e., brought into contact with, also referred to herein as administered or delivered to) and taken up by one or more cells or a cell lysate. The term “cells” includes prokaryotic and eukaryotic cells, preferably vertebrate cells, and, more preferably, mammalian cells. In a preferred embodiment, the oligonucleotide compositions of the invention are contacted with human cells.


Oligonucleotide compositions of the invention can be contacted with cells in vitro, e.g., in a test tube or culture dish, (and may or may not be introduced into a subject) or in vivo, e.g., in a subject such as a mammalian subject. Oligonucleotides are taken up by cells at a slow rate by endocytosis, but endocytosed oligonucleotides are generally sequestered and not available, e.g., for hybridization to a target nucleic acid molecule. In one embodiment, cellular uptake can be facilitated by electroporation or calcium phosphate precipitation. However, these procedures are only useful for in vitro or ex vivo embodiments, are not convenient and, in some cases, are associated with cell toxicity.


In another embodiment, delivery of oligonucleotides into cells can be enhanced by suitable art recognized methods including calcium phosphate, DMSO, glycerol or dextran, electroporation, or by transfection, e.g., using cationic, anionic, or neutral lipid compositions or liposomes using methods known in the art (see e.g., WO 90/14074; WO 91/16024; WO 91/17424; U.S. Pat. No. 4,897,355; Bergan et al. 1993. Nucleic Acids Research. 21:3567). Enhanced delivery of oligonucleotides can also be mediated by the use of vectors (See e.g., Shi, Y. 2003. Trends Genet 2003 Jan. 19:9; Reichhart J. M et al. Genesis. 2002. 34(1-2):1604, Yu et al. 2002. Proc. Natl. Acad. Sci. USA 99:6047; Sui et al. 2002. Proc. Natl. Acad. Sci. USA 99:5515) viruses, polyamine or polycation conjugates using compounds such as polylysine, protamine, or Ni, N12-bis(ethyl) spermine (see, e.g., Bartzatt, R. et al. 1989. Biotechnol. Appl. Biochem. 11:133; Wagner E. et al. 1992. Proc. Natl. Acad. Sci. 88:4255).


In certain embodiments, the miniRNA of the invention may be delivered by using various beta-glucan containing particles, such as those described in US 2005/0281781 A1, WO 2006/007372, and WO 2007/050643 (all incorporated herein by reference). In certain embodiments, the beta-glucan particle is derived from yeast. In certain embodiments, the payload trapping molecule is a polymer, such as those with a molecular weight of at least about 1000 Da, 10,000 Da, 50,000 Da, 100 kDa, 500 kDa, etc. Preferred polymers include (without limitation) cationic polymers, chitosans, or PEI (polyethylenimine), etc.


Such beta-glucan based delivery system may be formulated for oral delivery, where the orally delivered beta-glucan/miniRNA constructs may be engulfed by macrophages or other related phagocytic cells, which may in turn release the miniRNA constructs in selected in vivo sites. Alternatively or in addition, the miniRNA may changes the expression of certain macrophage target genes.


The optimal protocol for uptake of oligonucleotides will depend upon a number of factors, the most crucial being the type of cells that are being used. Other factors that are important in uptake include, but are not limited to, the nature and concentration of the oligonucleotide, the confluence of the cells, the type of culture the cells are in (e.g., a suspension culture or plated) and the type of media in which the cells are grown.


Encapsulating Agents


Encapsulating agents entrap oligonucleotides within vesicles. In another embodiment of the invention, an oligonucleotide may be associated with a carrier or vehicle, e.g., liposomes or micelles, although other carriers could be used, as would be appreciated by one skilled in the art. Liposomes are vesicles made of a lipid bilayer having a structure similar to biological membranes. Such carriers are used to facilitate the cellular uptake or targeting of the oligonucleotide, or improve the oligonucleotide's pharmacokinetic or toxicologic properties.


For example, the oligonucleotides of the present invention may also be administered encapsulated in liposomes, pharmaceutical compositions wherein the active ingredient is contained either dispersed or variously present in corpuscles consisting of aqueous concentric layers adherent to lipidic layers. The oligonucleotides, depending upon solubility, may be present both in the aqueous layer and in the lipidic layer, or in what is generally termed a liposomic suspension. The hydrophobic layer, generally but not exclusively, comprises phospholipids such as lecithin and sphingomyelin, steroids such as cholesterol, more or less ionic surfactants such as diacetylphosphate, stearylamine, or phosphatidic acid, or other materials of a hydrophobic nature. The diameters of the liposomes generally range from about 15 nm to about 5 microns.


A “hydrophobic modified polynucleotide” as used herein is a polynucleotide of the invention (i.e. sd-rxRNA) that has at least one modification that renders the polynucleotide more hydrophobic than the polynucleotide was prior to modification. The modification may be achieved by attaching (covalently or non-covalently) a hydrophobic molecule to the polynucleotide. In some instances the hydrophobic molecule is or includes a lipophilic group.


The term “lipophilic group” means a group that has a higher affinity for lipids than its affinity for water. Examples of lipophilic groups include, but are not limited to, cholesterol, a cholesteryl or modified cholesteryl residue, adamantine, dihydrotesterone, long chain alkyl, long chain alkenyl, long chain alkynyl, olely-lithocholic, cholenic, oleoyl-cholenic, palmityl, heptadecyl, myrisityl, bile acids, cholic acid or taurocholic acid, deoxycholate, oleyl litocholic acid, oleoyl cholenic acid, glycolipids, phospholipids, sphingolipids, isoprenoids, such as steroids, vitamins, such as vitamin E, fatty acids either saturated or unsaturated, fatty acid esters, such as triglycerides, pyrenes, porphyrines, Texaphyrine, adamantane, acridines, biotin, coumarin, fluorescein, rhodamine, Texas-Red, digoxygenin, dimethoxytrityl, t-butyldimethylsilyl, t-butyldiphenylsilyl, cyanine dyes (e.g. Cy3 or Cy5), Hoechst 33258 dye, psoralen, or ibuprofen. The cholesterol moiety may be reduced (e.g. as in cholestan) or may be substituted (e.g. by halogen). A combination of different lipophilic groups in one molecule is also possible.


The hydrophobic molecule may be attached at various positions of the polynucleotide. As described above, the hydrophobic molecule may be linked to the terminal residue of the polynucleotide such as the 3′ of 5′-end of the polynucleotide. Alternatively, it may be linked to an internal nucleotide or a nucleotide on a branch of the polynucleotide. The hydrophobic molecule may be attached, for instance to a 2′-position of the nucleotide. The hydrophobic molecule may also be linked to the heterocyclic base, the sugar or the backbone of a nucleotide of the polynucleotide.


The hydrophobic molecule may be connected to the polynucleotide by a linker moiety. Optionally the linker moiety is a non-nucleotidic linker moiety. Non-nucleotidic linkers are e.g. abasic residues (dSpacer), oligoethyleneglycol, such as triethyleneglycol (spacer 9) or hexaethylenegylcol (spacer 18), or alkane-diol, such as butanediol. The spacer units are preferably linked by phosphodiester or phosphorothioate bonds. The linker units may appear just once in the molecule or may be incorporated several times, e.g. via phosphodiester, phosphorothioate, methylphosphonate, or amide linkages.


Typical conjugation protocols involve the synthesis of polynucleotides bearing an aminolinker at one or more positions of the sequence, however, a linker is not required. The amino group is then reacted with the molecule being conjugated using appropriate coupling or activating reagents. The conjugation reaction may be performed either with the polynucleotide still bound to a solid support or following cleavage of the polynucleotide in solution phase. Purification of the modified polynucleotide by HPLC typically results in a pure material.


In some embodiments the hydrophobic molecule is a sterol type conjugate, a PhytoSterol conjugate, cholesterol conjugate, sterol type conjugate with altered side chain length, fatty acid conjugate, any other hydrophobic group conjugate, and/or hydrophobic modifications of the internal nucleoside, which provide sufficient hydrophobicity to be incorporated into micelles.


For purposes of the present invention, the term “sterols”, refers or steroid alcohols are a subgroup of steroids with a hydroxyl group at the 3-position of the A-ring. They are amphipathic lipids synthesized from acetyl-coenzyme A via the HMG-CoA reductase pathway. The overall molecule is quite flat. The hydroxyl group on the A ring is polar. The rest of the aliphatic chain is non-polar. Usually sterols are considered to have an 8 carbon chain at position 17.


For purposes of the present invention, the term “sterol type molecules”, refers to steroid alcohols, which are similar in structure to sterols. The main difference is the structure of the ring and number of carbons in a position 21 attached side chain.


For purposes of the present invention, the term “PhytoSterols” (also called plant sterols) are a group of steroid alcohols, phytochemicals naturally occurring in plants. There are more then 200 different known PhytoSterols


For purposes of the present invention, the term “Sterol side chain” refers to a chemical composition of a side chain attached at the position 17 of sterol-type molecule. In a standard definition sterols are limited to a 4 ring structure carrying a 8 carbon chain at position 17. In this invention, the sterol type molecules with side chain longer and shorter than conventional are described. The side chain may branched or contain double back bones.


Thus, sterols useful in the invention, for example, include cholesterols, as well as unique sterols in which position 17 has attached side chain of 2-7 or longer then 9 carbons. In a particular embodiment, the length of the polycarbon tail is varied between 5 and 9 carbons. FIG. 9 demonstrates that there is a correlation between plasma clearance, liver uptake and the length of the polycarbon chain. Such conjugates may have significantly better in vivo efficacy, in particular delivery to liver. These types of molecules are expected to work at concentrations 5 to 9 fold lower then oligonucleotides conjugated to conventional cholesterols.


Alternatively the polynucleotide may be bound to a protein, peptide or positively charged chemical that functions as the hydrophobic molecule. The proteins may be selected from the group consisting of protamine, dsRNA binding domain, and arginine rich peptides. Exemplary positively charged chemicals include spermine, spermidine, cadaverine, and putrescine.


In another embodiment hydrophobic molecule conjugates may demonstrate even higher efficacy when it is combined with optimal chemical modification patterns of the polynucleotide (as described herein in detail), containing but not limited to hydrophobic modifications, phosphorothioate modifications, and 2′ ribo modifications.


In another embodiment the sterol type molecule may be a naturally occurring PhytoSterols such as those shown in FIG. 8. The polycarbon chain may be longer than 9 and may be linear, branched and/or contain double bonds. Some PhytoSterol containing polynucleotide conjugates may be significantly more potent and active in delivery of polynucleotides to various tissues. Some PhytoSterols may demonstrate tissue preference and thus be used as a way to delivery RNAi specifically to particular tissues.


Targeting Agents


The delivery of oligonucleotides can also be improved by targeting the oligonucleotides to a cellular receptor. The targeting moieties can be conjugated to the oligonucleotides or attached to a carrier group (i.e., poly(L-lysine) or liposomes) linked to the oligonucleotides. This method is well suited to cells that display specific receptor-mediated endocytosis.


For instance, oligonucleotide conjugates to 6-phosphomannosylated proteins are internalized 20-fold more efficiently by cells expressing mannose 6-phosphate specific receptors than free oligonucleotides. The oligonucleotides may also be coupled to a ligand for a cellular receptor using a biodegradable linker. In another example, the delivery construct is mannosylated streptavidin which forms a tight complex with biotinylated oligonucleotides. Mannosylated streptavidin was found to increase 20-fold the internalization of biotinylated oligonucleotides. (Vlassov et al. 1994. Biochimica et Biophysica Acta 1197:95-108).


In addition specific ligands can be conjugated to the polylysine component of polylysine-based delivery systems. For example, transferrin-polylysine, adenovirus-polylysine, and influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides-polylysine conjugates greatly enhance receptor-mediated DNA delivery in eucaryotic cells. Mannosylated glycoprotein conjugated to poly(L-lysine) in aveolar macrophages has been employed to enhance the cellular uptake of oligonucleotides. Liang et al. 1999. Pharmazie 54:559-566.


Because malignant cells have an increased need for essential nutrients such as folic acid and transferrin, these nutrients can be used to target oligonucleotides to cancerous cells. For example, when folic acid is linked to poly(L-lysine) enhanced oligonucleotide uptake is seen in promyelocytic leukaemia (HL-60) cells and human melanoma (M-14) cells. Ginobbi et al. 1997. Anticancer Res. 17:29. In another example, liposomes coated with maleylated bovine serum albumin, folic acid, or ferric protoporphyrin IX, show enhanced cellular uptake of oligonucleotides in murine macrophages, KB cells, and 2.2.15 human hepatoma cells. Liang et al. 1999. Pharmazie 54:559-566.


Liposomes naturally accumulate in the liver, spleen, and reticuloendothelial system (so-called, passive targeting). By coupling liposomes to various ligands such as antibodies are protein A, they can be actively targeted to specific cell populations. For example, protein A-bearing liposomes may be pretreated with H-2K specific antibodies which are targeted to the mouse major histocompatibility complex-encoded H-2K protein expressed on L cells. (Vlassov et al. 1994. Biochimica et Biophysica Acta 1197:95-108).


Other in vitro and/or in vivo delivery of RNAi reagents are known in the art, and can be used to deliver the subject RNAi constructs. See, for example, U.S. patent application publications 20080152661, 20080112916, 20080107694, 20080038296, 20070231392, 20060240093, 20060178327, 20060008910, 20050265957, 20050064595, 20050042227, 20050037496, 20050026286, 20040162235, 20040072785, 20040063654, 20030157030, WO 2008/036825, WO04/065601, and AU2004206255B2, just to name a few (all incorporated by reference).


Administration


The optimal course of administration or delivery of the oligonucleotides may vary depending upon the desired result and/or on the subject to be treated. As used herein “administration” refers to contacting cells with oligonucleotides and can be performed in vitro or in vivo. The dosage of oligonucleotides may be adjusted to optimally reduce expression of a protein translated from a target nucleic acid molecule, e.g., as measured by a readout of RNA stability or by a therapeutic response, without undue experimentation.


For example, expression of the protein encoded by the nucleic acid target can be measured to determine whether or not the dosage regimen needs to be adjusted accordingly. In addition, an increase or decrease in RNA or protein levels in a cell or produced by a cell can be measured using any art recognized technique. By determining whether transcription has been decreased, the effectiveness of the oligonucleotide in inducing the cleavage of a target RNA can be determined.


Any of the above-described oligonucleotide compositions can be used alone or in conjunction with a pharmaceutically acceptable carrier. As used herein, “pharmaceutically acceptable carrier” includes appropriate solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, it can be used in the therapeutic compositions. Supplementary active ingredients can also be incorporated into the compositions.


Oligonucleotides may be incorporated into liposomes or liposomes modified with polyethylene glycol or admixed with cationic lipids for parenteral administration. Incorporation of additional substances into the liposome, for example, antibodies reactive against membrane proteins found on specific target cells, can help target the oligonucleotides to specific cell types.


Moreover, the present invention provides for administering the subject oligonucleotides with an osmotic pump providing continuous infusion of such oligonucleotides, for example, as described in Rataiczak et al. (1992 Proc. Natl. Acad. Sci. USA 89:11823-11827). Such osmotic pumps are commercially available, e.g., from Alzet Inc. (Palo Alto, Calif.). Topical administration and parenteral administration in a cationic lipid carrier are preferred.


With respect to in vivo applications, the formulations of the present invention can be administered to a patient in a variety of forms adapted to the chosen route of administration, e.g., parenterally, orally, or intraperitoneally. Parenteral administration, which is preferred, includes administration by the following routes: intravenous; intramuscular; interstitially; intraarterially; subcutaneous; intra ocular; intrasynovial; trans epithelial, including transdermal; pulmonary via inhalation; ophthalmic; sublingual and buccal; topically, including ophthalmic; dermal; ocular; rectal; and nasal inhalation via insufflation.


Pharmaceutical preparations for parenteral administration include aqueous solutions of the active compounds in water-soluble or water-dispersible form. In addition, suspensions of the active compounds as appropriate oily injection suspensions may be administered. Suitable lipophilic solvents or vehicles include fatty oils, for example, sesame oil, or synthetic fatty acid esters, for example, ethyl oleate or triglycerides. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension include, for example, sodium carboxymethyl cellulose, sorbitol, or dextran, optionally, the suspension may also contain stabilizers. The oligonucleotides of the invention can be formulated in liquid solutions, preferably in physiologically compatible buffers such as Hank's solution or Ringer's solution. In addition, the oligonucleotides may be formulated in solid form and redissolved or suspended immediately prior to use. Lyophilized forms are also included in the invention.


Pharmaceutical preparations for topical administration include transdermal patches, ointments, lotions, creams, gels, drops, sprays, suppositories, liquids and powders. In addition, conventional pharmaceutical carriers, aqueous, powder or oily bases, or thickeners may be used in pharmaceutical preparations for topical administration.


Pharmaceutical preparations for oral administration include powders or granules, suspensions or solutions in water or non-aqueous media, capsules, sachets or tablets. In addition, thickeners, flavoring agents, diluents, emulsifiers, dispersing aids, or binders may be used in pharmaceutical preparations for oral administration.


For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are known in the art, and include, for example, for transmucosal administration bile salts and fusidic acid derivatives, and detergents. Transmucosal administration may be through nasal sprays or using suppositories. For oral administration, the oligonucleotides are formulated into conventional oral administration forms such as capsules, tablets, and tonics. For topical administration, the oligonucleotides of the invention are formulated into ointments, salves, gels, or creams as known in the art.


Drug delivery vehicles can be chosen e.g., for in vitro, for systemic, or for topical administration. These vehicles can be designed to serve as a slow release reservoir or to deliver their contents directly to the target cell. An advantage of using some direct delivery drug vehicles is that multiple molecules are delivered per uptake. Such vehicles have been shown to increase the circulation half-life of drugs that would otherwise be rapidly cleared from the blood stream. Some examples of such specialized drug delivery vehicles which fall into this category are liposomes, hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres.


The described oligonucleotides may be administered systemically to a subject. Systemic absorption refers to the entry of drugs into the blood stream followed by distribution throughout the entire body. Administration routes which lead to systemic absorption include: intravenous, subcutaneous, intraperitoneal, and intranasal. Each of these administration routes delivers the oligonucleotide to accessible diseased cells. Following subcutaneous administration, the therapeutic agent drains into local lymph nodes and proceeds through the lymphatic network into the circulation. The rate of entry into the circulation has been shown to be a function of molecular weight or size. The use of a liposome or other drug carrier localizes the oligonucleotide at the lymph node. The oligonucleotide can be modified to diffuse into the cell, or the liposome can directly participate in the delivery of either the unmodified or modified oligonucleotide into the cell.


The chosen method of delivery will result in entry into cells. Preferred delivery methods include liposomes (10-400 nm), hydrogels, controlled-release polymers, and other pharmaceutically applicable vehicles, and microinjection or electroporation (for ex vivo treatments).


The pharmaceutical preparations of the present invention may be prepared and formulated as emulsions. Emulsions are usually heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. The emulsions of the present invention may contain excipients such as emulsifiers, stabilizers, dyes, fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives, and anti-oxidants may also be present in emulsions as needed. These excipients may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase.


Examples of naturally occurring emulsifiers that may be used in emulsion formulations of the present invention include lanolin, beeswax, phosphatides, lecithin and acacia. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. Examples of finely divided solids that may be used as emulsifiers include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.


Examples of preservatives that may be included in the emulsion formulations include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Examples of antioxidants that may be included in the emulsion formulations include free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.


In one embodiment, the compositions of oligonucleotides are formulated as microemulsions. A microemulsion is a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution. Typically microemulsions are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a 4th component, generally an intermediate chain-length alcohol to form a transparent system.


Surfactants that may be used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (S0750), decaglycerol decaoleate (DA0750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules.


Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.


Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both oil/water and water/oil) have been proposed to enhance the oral bioavailability of drugs.


Microemulsions offer improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al., Pharmaceutical Research, 1994, 11:1385; Ho et al., J. Pharm. Sci., 1996, 85:138-143). Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides from the gastrointestinal tract, as well as improve the local cellular uptake of oligonucleotides within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.


In an embodiment, the present invention employs various penetration enhancers to affect the efficient delivery of nucleic acids, particularly oligonucleotides, to the skin of animals. Even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to increasing the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also act to enhance the permeability of lipophilic drugs.


Five categories of penetration enhancers that may be used in the present invention include: surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants. Other agents may be utilized to enhance the penetration of the administered oligonucleotides include: glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-15 pyrrol, azones, and terpenes such as limonene, and menthone.


The oligonucleotides, especially in lipid formulations, can also be administered by coating a medical device, for example, a catheter, such as an angioplasty balloon catheter, with a cationic lipid formulation. Coating may be achieved, for example, by dipping the medical device into a lipid formulation or a mixture of a lipid formulation and a suitable solvent, for example, an aqueous-based buffer, an aqueous solvent, ethanol, methylene chloride, chloroform and the like. An amount of the formulation will naturally adhere to the surface of the device which is subsequently administered to a patient, as appropriate. Alternatively, a lyophilized mixture of a lipid formulation may be specifically bound to the surface of the device. Such binding techniques are described, for example, in K. Ishihara et al., Journal of Biomedical Materials Research, Vol. 27, pp. 1309-1314 (1993), the disclosures of which are incorporated herein by reference in their entirety.


The useful dosage to be administered and the particular mode of administration will vary depending upon such factors as the cell type, or for in vivo use, the age, weight and the particular animal and region thereof to be treated, the particular oligonucleotide and delivery method used, the therapeutic or diagnostic use contemplated, and the form of the formulation, for example, suspension, emulsion, micelle or liposome, as will be readily apparent to those skilled in the art. Typically, dosage is administered at lower levels and increased until the desired effect is achieved. When lipids are used to deliver the oligonucleotides, the amount of lipid compound that is administered can vary and generally depends upon the amount of oligonucleotide agent being administered. For example, the weight ratio of lipid compound to oligonucleotide agent is preferably from about 1:1 to about 15:1, with a weight ratio of about 5:1 to about 10:1 being more preferred. Generally, the amount of cationic lipid compound which is administered will vary from between about 0.1 milligram (mg) to about 1 gram (g). By way of general guidance, typically between about 0.1 mg and about 10 mg of the particular oligonucleotide agent, and about 1 mg to about 100 mg of the lipid compositions, each per kilogram of patient body weight, is administered, although higher and lower amounts can be used.


The agents of the invention are administered to subjects or contacted with cells in a biologically compatible form suitable for pharmaceutical administration. By “biologically compatible form suitable for administration” is meant that the oligonucleotide is administered in a form in which any toxic effects are outweighed by the therapeutic effects of the oligonucleotide. In one embodiment, oligonucleotides can be administered to subjects. Examples of subjects include mammals, e.g., humans and other primates; cows, pigs, horses, and farming (agricultural) animals; dogs, cats, and other domesticated pets; mice, rats, and transgenic non-human animals.


Administration of an active amount of an oligonucleotide of the present invention is defined as an amount effective, at dosages and for periods of time necessary to achieve the desired result. For example, an active amount of an oligonucleotide may vary according to factors such as the type of cell, the oligonucleotide used, and for in vivo uses the disease state, age, sex, and weight of the individual, and the ability of the oligonucleotide to elicit a desired response in the individual. Establishment of therapeutic levels of oligonucleotides within the cell is dependent upon the rates of uptake and efflux or degradation. Decreasing the degree of degradation prolongs the intracellular half-life of the oligonucleotide. Thus, chemically-modified oligonucleotides, e.g., with modification of the phosphate backbone, may require different dosing.


The exact dosage of an oligonucleotide and number of doses administered will depend upon the data generated experimentally and in clinical trials. Several factors such as the desired effect, the delivery vehicle, disease indication, and the route of administration, will affect the dosage. Dosages can be readily determined by one of ordinary skill in the art and formulated into the subject pharmaceutical compositions. Preferably, the duration of treatment will extend at least through the course of the disease symptoms.


Dosage regime may be adjusted to provide the optimum therapeutic response. For example, the oligonucleotide may be repeatedly administered, e.g., several doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. One of ordinary skill in the art will readily be able to determine appropriate doses and schedules of administration of the subject oligonucleotides, whether the oligonucleotides are to be administered to cells or to subjects.


Physical methods of introducing nucleic acids include injection of a solution containing the nucleic acid, bombardment by particles covered by the nucleic acid, soaking the cell or organism in a solution of the nucleic acid, or electroporation of cell membranes in the presence of the nucleic acid. A viral construct packaged into a viral particle would accomplish both efficient introduction of an expression construct into the cell and transcription of nucleic acid encoded by the expression construct. Other methods known in the art for introducing nucleic acids to cells may be used, such as lipid-mediated carrier transport, chemical-mediated transport, such as calcium phosphate, and the like. Thus the nucleic acid may be introduced along with components that perform one or more of the following activities: enhance nucleic acid uptake by the cell, inhibit annealing of single strands, stabilize the single strands, or other-wise increase inhibition of the target gene.


Nucleic acid may be directly introduced into the cell (i.e., intracellularly); or introduced extracellularly into a cavity, interstitial space, into the circulation of an organism, introduced orally or by inhalation, or may be introduced by bathing a cell or organism in a solution containing the nucleic acid. Vascular or extravascular circulation, the blood or lymph system, and the cerebrospinal fluid are sites where the nucleic acid may be introduced.


The cell with the target gene may be derived from or contained in any organism. The organism may a plant, animal, protozoan, bacterium, virus, or fungus. The plant may be a monocot, dicot or gymnosperm; the animal may be a vertebrate or invertebrate. Preferred microbes are those used in agriculture or by industry, and those that are pathogenic for plants or animals.


Alternatively, vectors, e.g., transgenes encoding a siRNA of the invention can be engineered into a host cell or transgenic animal using art recognized techniques.


Another use for the nucleic acids of the present invention (or vectors or transgenes encoding same) is a functional analysis to be carried out in eukaryotic cells, or eukaryotic non-human organisms, preferably mammalian cells or organisms and most preferably human cells, e.g. cell lines such as HeLa or 293 or rodents, e.g. rats and mice. By administering a suitable nucleic acid of the invention which is sufficiently complementary to a target mRNA sequence to direct target-specific RNA interference, a specific knockout or knockdown phenotype can be obtained in a target cell, e.g. in cell culture or in a target organism.


Thus, a further subject matter of the invention is a eukaryotic cell or a eukaryotic non-human organism exhibiting a target gene-specific knockout or knockdown phenotype comprising a fully or at least partially deficient expression of at least one endogenous target gene wherein said cell or organism is transfected with at least one vector comprising DNA encoding an RNAi agent capable of inhibiting the expression of the target gene. It should be noted that the present invention allows a target-specific knockout or knockdown of several different endogenous genes due to the specificity of the RNAi agent.


Gene-specific knockout or knockdown phenotypes of cells or non-human organisms, particularly of human cells or non-human mammals may be used in analytic to procedures, e.g. in the functional and/or phenotypical analysis of complex physiological processes such as analysis of gene expression profiles and/or proteomes. Preferably the analysis is carried out by high throughput methods using oligonucleotide based chips.


Therapeutic Use


By inhibiting the expression of a gene, the oligonucleotide compositions of the present invention can be used to treat any disease involving the expression of a protein. Examples of diseases that can be treated by oligonucleotide compositions, just to illustrate, include: cancer, retinopathies, autoimmune diseases, inflammatory diseases (i.e., ICAM-1 related disorders, Psoriasis, Ulcerative Colitus, Crohn's disease), viral diseases (i.e., HIV, Hepatitis C), miRNA disorders, and cardiovascular diseases.


In one embodiment, in vitro treatment of cells with oligonucleotides can be used for ex vivo therapy of cells removed from a subject (e.g., for treatment of leukemia or viral infection) or for treatment of cells which did not originate in the subject, but are to be administered to the subject (e.g., to eliminate transplantation antigen expression on cells to be transplanted into a subject). In addition, in vitro treatment of cells can be used in non-therapeutic settings, e.g., to evaluate gene function, to study gene regulation and protein synthesis or to evaluate improvements made to oligonucleotides designed to modulate gene expression or protein synthesis. In vivo treatment of cells can be useful in certain clinical settings where it is desirable to inhibit the expression of a protein. There are numerous medical conditions for which antisense therapy is reported to be suitable (see, e.g., U.S. Pat. No. 5,830,653) as well as respiratory syncytial virus infection (WO 95/22,553) influenza virus (WO 94/23,028), and malignancies (WO 94/08,003). Other examples of clinical uses of antisense sequences are reviewed, e.g., in Glaser. 1996. Genetic Engineering News 16:1. Exemplary targets for cleavage by oligonucleotides include, e.g., protein kinase Ca, ICAM-1, c-raf kinase, p53, c-myb, and the bcr/abl fusion gene found in chronic myelogenous leukemia.


The subject nucleic acids can be used in RNAi-based therapy in any animal having RNAi pathway, such as human, non-human primate, non-human mammal, non-human vertebrates, rodents (mice, rats, hamsters, rabbits, etc.), domestic livestock animals, pets (cats, dogs, etc.), Xenopus, fish, insects (Drosophila, etc.), and worms (C. elegans), etc.


The invention provides methods for inhibiting or preventing in a subject, a disease or condition associated with an aberrant or unwanted target gene expression or activity, by administering to the subject a nucleic acid of the invention. If appropriate, subjects are first treated with a priming agent so as to be more responsive to the subsequent RNAi therapy. Subjects at risk for a disease which is caused or contributed to by aberrant or unwanted target gene expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays known in the art. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the target gene aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of target gene aberrancy, for example, a target gene, target gene agonist or target gene antagonist agent can be used for treating the subject.


In another aspect, the invention pertains to methods of modulating target gene expression, protein expression or activity for therapeutic purposes. Accordingly, in an exemplary embodiment, the methods of the invention involve contacting a cell capable of expressing target gene with a nucleic acid of the invention that is specific for the target gene or protein (e.g., is specific for the mRNA encoded by said gene or specifying the amino acid sequence of said protein) such that expression or one or more of the activities of target protein is modulated. These methods can be performed in vitro (e.g., by culturing the cell with the agent), in vivo (e.g., by administering the agent to a subject), or ex vivo. The subjects may be first treated with a priming agent so as to be more responsive to the subsequent RNAi therapy if desired. As such, the present invention provides methods of treating a subject afflicted with a disease or disorder characterized by aberrant or unwanted expression or activity of a target gene polypeptide or nucleic acid molecule Inhibition of target gene activity is desirable in situations in which target gene is abnormally unregulated and/or in which decreased target gene activity is likely to have a beneficial effect.


Thus the therapeutic agents of the invention can be administered to subjects to treat (prophylactically or therapeutically) disorders associated with aberrant or unwanted target gene activity. In conjunction with such treatment, pharmacogenomics (i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, a physician or clinician may consider applying knowledge obtained in relevant pharmacogenomics studies in determining whether to administer a therapeutic agent as well as tailoring the dosage and/or therapeutic regimen of treatment with a therapeutic agent. Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons.


For the purposes of the invention, ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


Moreover, for the purposes of the present invention, the term “a” or “an” entity refers to one or more of that entity; for example, “a protein” or “a nucleic acid molecule” refers to one or more of those compounds or at least one compound. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising”, “including”, and “having” can be used interchangeably. Furthermore, a compound “selected from the group consisting of” refers to one or more of the compounds in the list that follows, including mixtures (i.e., combinations) of two or more of the compounds. According to the present invention, an isolated, or biologically pure, protein or nucleic acid molecule is a compound that has been removed from its natural milieu. As such, “isolated” and “biologically pure” do not necessarily reflect the extent to which the compound has been purified. An isolated compound of the present invention can be obtained from its natural source, can be produced using molecular biology techniques or can be produced by chemical synthesis.


The present invention is further illustrated by the following Examples, which in no way should be construed as further limiting. The entire contents of all of the references (including literature references, issued patents, published patent applications, and co-pending patent applications) cited throughout this application are hereby expressly incorporated by reference.


EXAMPLES
Example 1: Inhibition of Gene Expression Using Minimum Length Trigger RNAs

Transfection of Minimum Length Trigger (mlt) RNA


mltRNA constructs were chemically synthesized (Integrated DNA Technologies, Coralville, Iowa) and transfected into HEK293 cells (ATCC, Manassas, Va.) using the Lipofectamine RNAiMAX (Invitrogen, Carlsbad, Calif.) reagent according to manufacturer's instructions. In brief, RNA was diluted to a 12× concentration and then combined with a 12× concentration of Lipofectamine RNAiMAX to complex. The RNA and transfection reagent were allowed to complex at room temperature for 20 minutes and make a 6× concentration. While complexing, HEK293 cells were washed, trypsinized and counted. The cells were diluted to a concentration recommended by the manufacturer and previously described conditions which was at 1×105 cells/ml. When RNA had completed complexing with the RNAiMAX transfection reagent, 20 ul of the complexes were added to the appropriate well of the 96-well plate in triplicate. Cells were added to each well (100 ul volume) to make the final cell count per well at 1×104 cells/well. The volume of cells diluted the 6× concentration of complex to 1× which was equal to a concentration noted (between 10-0.05 nM). Cells were incubated for 24 or 48 hours under normal growth conditions.


After 24 or 48 hour incubation cells were lysed and gene silencing activity was measured using the QuantiGene assay (Panomics, Freemont, Calif.) which employs bDNA hybridization technology. The assay was carried out according to manufacturer's instructions.


ΔG Calculation


ΔG was calculated using Mfold, available through the Mfold internet site (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi). Methods for calculating ΔG are described in, and are incorporated by reference from, the following references: Zuker, M. (2003) Nucleic Acids Res., 31(13):3406-15; Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) J. Mol. Biol. 288:911-940; Mathews, D. H., Disney, M. D., Childs, J. L., Schroeder, S. J., Zuker, M., and Turner, D. H. (2004) Proc. Natl. Acad. Sci. 101:7287-7292; Duan, S., Mathews, D. H., and Turner, D. H. (2006) Biochemistry 45:9819-9832; Wuchty, S., Fontana, W., Hofacker, I. L., and Schuster, P. (1999) Biopolymers 49:145-165.


Example 2: Optimization of sd-rxRNAnano Molecules for Gene Silencing

Asymmetric double stranded RNAi molecules, with minimal double stranded regions, were developed herein and are highly effective at gene silencing. These molecules can contain a variety of chemical modifications on the sense and/or anti-sense strands, and can be conjugated to sterol-like compounds such as cholesterol.



FIGS. 1-3 present schematics of RNAi molecules associated with the invention. In the asymmetric molecules, which contain a sense and anti-sense strand, either of the strands can be the longer strand. Either strand can also contain a single-stranded region. There can also be mismatches between the sense and anti-sense strand, as indicated in FIG. 1D. Preferably, one end of the double-stranded molecule is either blunt-ended or contains a short overhang such as an overhang of one nucleotide. FIG. 2 indicates types of chemical modifications applied to the sense and anti-sense strands including 2′F, 2′OMe, hydrophobic modifications and phosphorothioate modifications. Preferably, the single stranded region of the molecule contains multiple phosphorothioate modifications. Hydrophobicity of molecules can be increased using such compounds as 4-pyridyl at 5-U, 2-pyridyl at 5-U, isobutyl at 5-U and indolyl at 5-U (FIG. 2). Proteins or peptides such as protamine (or other Arg rich peptides), spermidine or other similar chemical structures can also be used to block duplex charge and facilitate cellular entry (FIG. 3). Increased hydrophobicity can be achieved through either covalent or non-covalent modifications. Several positively charged chemicals, which might be used for polynucleotide charge blockage are depicted in FIG. 4.


Chemical modifications of polynucleotides, such as the guide strand in a duplex molecule, can facilitate RISC entry. FIG. 5 depicts single stranded polynucleotides, representing a guide strand in a duplex molecule, with a variety of chemical modifications including 2′d, 2′OMe, 2′F, hydrophobic modifications, phosphorothioate modifications, and attachment of conjugates such as “X” in FIG. 5, where X can be a small molecule with high affinity to a PAZ domain, or sterol-type entity. Similarly, FIG. 6 depicts single stranded polynucleotides, representing a passenger strand in a duplex molecule, with proposed structural and chemical compositions of RISC substrate inhibitors. Combinations of chemical modifications can ensure efficient uptake and efficient binding to preloaded RISC complexes.



FIG. 7 depicts structures of polynucleotides with sterol-type molecules attached, where R represents a polycarbonic tail of 9 carbons or longer. FIG. 8 presents examples of naturally occurring phytosterols with a polycarbon chain longer than 8 attached at position 17. More than 250 different types of phytosterols are known. FIG. 9 presents examples of sterol-like structures with variations in the sizes of the polycarbon chains attached at position 17. FIG. 91 presents further examples of sterol-type molecules that can be used as a hydrophobic entity in place of cholesterol. FIG. 92 presents further examples of hydrophobic molecules that might be used as hydrophobic entities in place of cholestesterol. Optimization of such characteristics can improve uptake properties of the RNAi molecules. FIG. 10 presents data adapted from Martins et al. (J Lipid Research), showing that the percentage of liver uptake and plasma clearance of lipid emulsions containing sterol-type molecules is directly affected by the size of the attached polycarbon chain at position 17. FIG. 11 depicts a micelle formed from a mixture of polynucleotides attached to hydrophobic conjugates and fatty acids. FIG. 12 describes how alteration in lipid composition can affect pharmacokinetic behavior and tissue distribution of hydrophobically modified and/or hydrophobically conjugated polynucleotides. In particular, the use of lipid mixtures that are enriched in linoleic acid and cardiolipin results in preferential uptake by cardiomyocites.



FIG. 13 depicts examples of RNAi constructs and controls designed to target MAP4K4 expression. FIGS. 14 and 15 reveal that RNAi constructs with minimal duplex regions (such as duplex regions of approximately 13 nucleotides) are effective in mediating RNA silencing in cell culture. Parameters associated with these RNA molecules are shown in FIG. 16. FIG. 17 depicts examples of RNAi constructs and controls designed to target SOD1 expression. FIGS. 18 and 19 reveal the results of gene silencing experiments using these RNAi molecules to target SOD1 in cells. FIG. 20 presents a schematic indicating that RNA molecules with double stranded regions that are less than 10 nucleotides are not cleaved by Dicer, and FIG. 21 presents a schematic of a hypothetical RNAi model for RNA induced gene silencing.


The RNA molecules described herein were subject to a variety of chemical modifications on the sense and antisense strands, and the effects of such modifications were observed. RNAi molecules were synthesized and optimized through testing of a variety of modifications. In first generation optimization, the sense (passenger) and anti-sense (guide) strands of the sd-rxRNAnano molecules were modified for example through incorporation of C and U 2′OMe modifications, 2′F modifications, phosphorothioate modifications, phosphorylation, and conjugation of cholesterol. Molecules were tested for inhibition of MAP4K4 expression in cells including HeLa, primary mouse hepatocytes and primary human hepatocytes through both lipid-mediated and passive uptake transfection.



FIG. 22 reveals that chemical modifications can enhance gene silencing. In particular, modifying the guide strand with 2′F UC modifications, and with a stretch of phosphorothioate modifications, combined with complete CU O′Me modification of the passenger strands, resulted in molecules that were highly effective in gene silencing. The effect of chemical modification on in vitro efficacy in un-assisted delivery in HeLa cells was also examined FIG. 23 reveals that compounds lacking any of 2′F, 2′OMe, a stretch of phosphorothioate modifications, or cholesterol conjugates, were completely inactive in passive uptake. A combination of all 4 types of chemical modifications, for example in compound 12386, was found to be highly effective in gene silencing. FIG. 24 also shows the effectiveness of compound 12386 in gene silencing.


Optimization of the length of the oligonucleotide was also investigated. FIGS. 25 and 26 reveal that oligonucleotides with a length of 21 nucleotides were more effective than oligonucleotides with a length of 25 nucleotides, indicating that reduction in the size of an RNA molecule can improve efficiency, potentially by assisting in its uptake. Screening was also conducted to optimize the size of the duplex region of double stranded RNA molecules. FIG. 88 reveals that compounds with duplexes of 10 nucleotides were effective in inducing gene silencing. Positioning of the sense strand relative to the guide strand can also be critical for silencing gene expression (FIG. 89). In this assay, a blunt end was found to be most effective. 3′ overhangs were tolerated, but 5′ overhangs resulted in a complete loss of functionality. The guide strand can be effective in gene silencing when hybridized to a sense strand of varying lengths (FIG. 90). In this assay presented in FIG. 90, the compounds were introduced into HeLa cells via lipid mediated transfection.


The importance of phosphorothioate content of the RNA molecule for unassisted delivery was also investigated. FIG. 27 presents the results of a systematic screen that identified that the presence of at least 2-12 phosphorothioates in the guide strand as being highly advantageous for achieving uptake, with 4-8 being the preferred number. FIG. 27 also shows that presence or absence of phosphorothioate modifications in the sense strand did not alter efficacy.



FIGS. 28-29 reveal the effects of passive uptake of RNA compounds on gene silencing in primary mouse hepatocytes. nanoRNA molecules were found to be highly effective, especially at a concentration of 1 μM (FIG. 28). FIGS. 30 and 31 reveal that the RNA compounds associated with the invention were also effective in gene silencing following passive uptake in primary human hepatocytes. The cellular localization of the RNA molecules associated with the invention was examined and compared to the localization of Chol-siRNA (Alnylam) molecules, as shown in FIGS. 32 and 33.


A summary of 1st generation sd-rxRNA molecules is presented in FIG. 21. Chemical modifications were introduced into the RNA molecules, at least in part, to increase potency, such as through optimization of nucleotide length and phosphorothioate content, to reduce toxicity, such as through replacing 2′F modifications on the guide strand with other modifications, to improve delivery such as by adding or conjugating the RNA molecules to linker and sterol modalities, and to improve the ease of manufacturing the RNA molecules. FIG. 35 presents schematic depictions of some of the chemical modifications that were screened in 1st generation molecules. Parameters that were optimized for the guide strand included nucleotide length (e.g., 19, 21 and 25 nucleotides), phosphorothioate content (e.g., 0-18 phosphorothioate linkages) and replacement of 2′F groups with 2′OMe and 5 Me C or riboThymidine. Parameters that were optimized for the sense strand included nucleotide length (e.g., 11, 13 and 19 nucleotides), phosphorothioate content (e.g., 0-4 phosphorothioate linkages), and 2′OMe modifications. FIG. 36 summarizes parameters that were screened. For example, the nucleotide length and the phosphorothioate tail length were modified and screened for optimization, as were the additions of 2′OMe C and U modifications. Guide strand length and the length of the phosphorothioate modified stretch of nucleotides were found to influence efficacy (FIGS. 37-38). Phosphorothioate modifications were tolerated in the guide strand and were found to influence passive uptake (FIGS. 39-42).



FIG. 43 presents a schematic revealing guide strand chemical modifications that were screened. FIGS. 44 and 45 reveal that 2′OMe modifications were tolerated in the 3′ end of the guide strand. In particular, 2′OMe modifications in positions 1 and 11-18 were well tolerated. The 2′OMe modifications in the seed area were tolerated but resulted in slight reduction of efficacy. Ribo-modifications in the seed were also well tolerated. These data indicate that the molecules associated with the invention offer the significant advantage of having reduced or no 2′F modification content. This is advantageous because 2′F modifications are thought to generate toxicity in vivo. In some instances, a complete substitution of 2′F modifications with 2′OMe was found to lead to some reduction in potency. However, the 2′ OMe substituted molecules were still very active. A molecule with 50% reduction in 2′F content (including at positions 11, 16-18 which were changed to 2′OMe modifications), was found to have comparable efficacy to a compound with complete 2′F C and U modification. 2′OMe modification in position was found in some instances to reduce efficacy, although this can be at least partially compensated by 2′OMe modification in position 1 (with chemical phosphate). In some instances, 5 Me C and/or ribothymidine substitution for 2′F modifications led to a reduction in passive uptake efficacy, but increased potency in lipid mediated transfections compared to 2′F modifications. Optimization results for lipid mediated transfection were not necessarily the same as for passive uptake.


Modifications to the sense strand were also developed and tested, as depicted in FIG. 46. FIG. 47 reveals that in some instances, a sense strand length between 10-15 bases was found to be optimal. For the molecules tested in FIG. 47, an increase in the sense strand length resulted in reduction of passive uptake, however an increase in sense strand length may be tolerated for some compounds. FIG. 47 also reveals that LNA modification of the sense strand demonstrated similar efficacy to non-LNA containing compounds. In general, the addition of LNA or other thermodynamically stabilizing compounds has been found to be beneficial, in some instances resulting in converting non-functional sequences to functional sequences. FIG. 48 also presents data on sense strand length optimization, while FIG. 49 shows that phosphorothioate modification of the sense strand is not required for passive uptake.


Based on the above-described optimization experiments, 2nd generation RNA molecules were developed. As shown in FIG. 50, these molecules contained reduced phosphorothioate modification content and reduced 2′F modification content, relative to 1st generation RNA molecules. Significantly, these RNA molecules exhibit spontaneous cellular uptake and efficacy without a delivery vehicle (FIG. 51). These molecules can achieve self-delivery (i.e., with no transfection reagent) and following self-delivery can exhibit nanomolar activity in cell culture. These molecules can also be delivered using lipid-mediated transfection, and exhibit picomolar activity levels following transfection. Significantly, these molecules exhibit highly efficient uptake, 95% by most cells in cell culture, and are stable for more than three days in the presence of 100% human serum. These molecules are also highly specific and exhibit little or no immune induction. FIGS. 52 and 53 reveal the significance of chemical modifications and the configurations of such modifications in influencing the properties of the RNA molecules associated with the invention.


Linker chemistry was also tested in conjunction with the RNA molecules associated with the invention. As depicted in FIG. 54, 2nd generation RNA molecules were synthesized with sterol-type molecules attached through TEG and amino caproic acid linkers. Both linkers showed identical potency. This functionality of the RNA molecules, independent of linker chemistry offers additional advantages in terms of scale up and synthesis and demonstrates that the mechanism of function of these RNA molecules is very different from other previously described RNA molecules.


Stability of the chemically modified sd-rxRNA molecules described herein in human serum is shown in FIG. 55 in comparison to unmodified RNA. The duplex molecules were incubated in 75% serum at 37° C. for the indicated periods of time. The level of degradation was determined by running the samples on non-denaturing gels and staining with SYBGR.



FIGS. 56 and 57 present data on cellular uptake of the sd-rxRNA molecules. FIG. 56 shows that minimizing the length of the RNA molecule is importance for cellular uptake, while FIG. 57 presents data showing target gene silencing after spontaneous cellular uptake in mouse PEC-derived macrophages. FIG. 58 demonstrates spontaneous uptake and target gene silencing in primary cells. FIG. 59 shows the results of delivery of sd-rxRNA molecules associated with the invention to RPE cells with no formulation. Imaging with Hoechst and DY547 reveals the clear presence of a signal representing the RNA molecule in the sd-rxRNA sample, while no signal is detectable in the other samples including the samples competing a competing conjugate, an rxRNA, and an untransfected control. FIG. 60 reveals silencing of target gene expression in RPE cells treated with sd-rxRNA molecules associated with the invention following 24-48 hours without any transfection formulation.



FIG. 61 shows further optimization of the chemical/structural composition of sd-rxRNA compounds. In some instances, preferred properties included an antisense strand that was 17-21 nucleotides long, a sense strand that was 10-15 nucleotides long, phosphorothioate modification of 2-12 nucleotides within the single stranded region of the molecule, preferentially phosphorothioate modification of 6-8 nucleotides within the single stranded region, and 2′OMe modification at the majority of positions within the sense strand, with or without phosphorothioate modification. Any linker chemistry can be used to attach the hydrophobic moiety, such as cholesterol, to the 3′ end of the sense strand. Version GIIb molecules, as shown in FIG. 61, have no 2′F modifications. Significantly, there is was no impact on efficacy in these molecules.



FIG. 62 demonstrates the superior performance of sd-rxRNA compounds compared to compounds published by Wolfrum et. al. Nature Biotech, 2007. Both generation I and II compounds (GI and GIIa) developed herein show great efficacy in reducing target gene expression. By contrast, when the chemistry described in Wolfrum et al. (all oligos contain cholesterol conjugated to the 3′ end of the sense strand) was applied to the same sequence in a context of conventional siRNA (19 bp duplex with two overhang) the compound was practically inactive. These data emphasize the significance of the combination of chemical modifications and asymmetrical molecules described herein, producing highly effective RNA compounds.



FIG. 63 shows localization of sd-rxRNA molecules developed herein compared to localization of other RNA molecules such as those described in Soutschek et al. (2004) Nature, 432:173. sd-rxRNA molecules accumulate inside the cells whereas competing conjugate RNAs accumulate on the surface of cells. Significantly, FIG. 64 shows that sd-rxRNA molecules, but not competitor molecules such as those described in Soutschek et al. are internalized within minutes. FIG. 65 compares localization of sd-rxRNA molecules compared to regular siRNA-cholesterol, as described in Soutschek et al. A signal representing the RNA molecule is clearly detected for the sd-rxRNA molecule in tissue culture RPE cells, following local delivery to compromised skin, and following systemic delivery where uptake to the liver is seen. In each case, no signal is detected for the regular siRNA-cholesterol molecule. The sd-rxRNA molecule thus has drastically better cellular and tissue uptake characteristics when compared to conventional cholesterol conjugated siRNAs such as those described in Soutschek et al. The level of uptake is at least order of magnitude higher and is due at least in part to the unique combination of chemistries and conjugated structure. Superior delivery of sd-rxRNA relative to previously described RNA molecules is also demonstrated in FIGS. 66 and 67.


Based on the analysis of 2nd generation RNA molecules associated with the invention, a screen was performed to identify functional molecules for targeting the SPP1/PPIB gene. As revealed in FIG. 68, several effective molecules were identified, with 14131 being the most effective. The compounds were added to A-549 cells and then the level of SPP1/PPIB ratio was determined by B-DNA after 48 hours.



FIG. 69 reveals efficient cellular uptake of sd-rxRNA within minutes of exposure. This is a unique characteristics of these molecules, not observed with any other RNAi compounds. Compounds described in Soutschek et al. were used as negative controls. FIG. 70 reveals that the uptake and gene silencing of the sd-rxRNA is effective in multiple different cell types including SH-SY5Y neuroblastoma derived cells, ARPE-19 (retinal pigment epithelium) cells, primary hepatocytes, and primary macrophages. In each case silencing was confirmed by looking at target gene expression by a Branched DNA assay.



FIG. 70 reveals that sd-rxRNA is active in the presence or absence of serum. While a slight reduction in efficacy (2-5 fold) was observed in the presence of serum, this small reduction in efficacy in the presence of serum differentiate the sd-rxRNA molecules from previously described molecules which exhibited a larger reduction in efficacy in the presence of serum. This demonstrated level of efficacy in the presence of serum creates a foundation for in vivo efficacy.



FIG. 72 reveals efficient tissue penetration and cellular uptake upon single intradermal injection. This data indicates the potential of the sd-rxRNA compounds described herein for silencing genes in any dermatology applications, and also represents a model for local delivery of sd-rxRNA compounds. FIG. 73 also demonstrates efficient cellular uptake and in vivo silencing with sd-rxRNA following intradermal injection. Silencing is determined as the level of MAP4K4 knockdown in several individual biopsies taken from the site of injection as compared to biopsies taken from a site injected with a negative control. FIG. 74 reveals that sd-rxRNA compounds has improved blood clearance and induced effective gene silencing in vivo in the liver upon systemic administration. In comparison to the RNA molecules described by Soutschek et al., the level of liver uptake at identical dose level is at least 50 fold higher with the sd-rxRNA molecules. The uptake results in productive silencing. sd-rxRNA compounds are also characterized by improved blood clearance kinetics.


The effect of 5-Methyl C modifications was also examined. FIG. 75 demonstrates that the presence of 5-Methyl C in an RNAi molecule resulted in increased potency in lipid mediated transfection. This suggests that hydrophobic modification of Cs and Us in an RNAi molecule can be beneficial. These types of modifications can also be used in the context 2′ ribose modified bases to ensure optimal stability and efficacy. FIG. 76 presents data showing that incorporation of 5-Methyl C and/or ribothymidine in the guide strand can in some instances reduce efficacy.



FIG. 77 reveals that sd-rxRNA molecules are more effective than competitor molecules such as molecules described in Soutschek et al., in systemic delivery to the liver. A signal representing the RNA molecule is clearly visible in the sample containing sd-rxRNA, while no signal representing the RNA molecule is visible in the sample containing the competitor RNA molecule.


The addition of hydrophobic conjugates to the sd-rxRNA molecules was also explored (FIGS. 78-83). FIG. 78 presents schematics demonstrating 5-uridyl modifications with improved hydrophobicity characteristics. Incorporation of such modifications into sd-rxRNA compounds can increase cellular and tissue uptake properties. FIG. 78B presents a new type of RNAi compound modification which can be applied to compounds to improve cellular uptake and pharmacokinetic behavior. Significantly, this type of modification, when applied to sd-rxRNA compounds, may contribute to making such compounds orally available. FIG. 79 presents schematics revealing the structures of synthesized modified sterol-type molecules, where the length and structure of the C17 attached tail is modified. Without wishing to be bound by any theory, the length of the C17 attached tail may contribute to improving in vitro and in vivo efficacy of sd-rxRNA compounds.



FIG. 80 presents a schematic demonstrating the lithocholic acid route to long side chain cholesterols. FIG. 81 presents a schematic demonstrating a route to 5-uridyl phosphoramidite synthesis. FIG. 82 presents a schematic demonstrating synthesis of tri-functional hydroxyprolinol linker for 3′-cholesterol attachment. FIG. 83 presents a schematic demonstrating synthesis of solid support for the manufacture of a shorter asymmetric RNAi compound strand.


A screen was conducted to identify compounds that could effectively silence expression of SPP1 (Osteopontin). Compounds targeting SPP1 were added to A549 cells (using passive transfection), and the level of SPP1 expression was evaluated at 48 hours. Several novel compounds effective in SPP1 silencing were identified. Compounds that were effective in silencing of SPP1 included 14116, 14121, 14131, 14134, 14139, 14149, and 14152 (FIGS. 84-86). The most potent compound in this assay was 14131 (FIG. 84). The efficacy of these sd-rxRNA compounds in silencing SPP1 expression was independently validated (FIG. 85).


A similar screen was conducted to identify compounds that could effectively silence expression of CTGF (FIGS. 86-87). Compounds that were effective in silencing of CTGF included 14017, 14013, 14016, 14022, 14025, 14027.


Methods


Transfection of sd-rxRNAnano


Lipid Mediated Transfection


sd-rxRNAnano constructs were chemically synthesized (Dharmacon, Lafayette, Colo.) and transfected into HEK293 cells (ATCC, Manassas, Va.) using Lipofectamine RNAiMAX (Invitrogen, Carlsbad, Calif.) according to the manufacturer's instructions. In brief, RNA was diluted to a 12× concentration in Opti-MEM®1 Reduced Serum Media (Invitrogen, Carlsbad, Calif.) and then combined with a 12× concentration of Lipofectamine RNAiMAX. The RNA and transfection reagent were allowed to complex at room temperature for 20 minutes and make a 6× concentration. While complexing, HEK293 cells were washed, trypsinized and counted. The cells were diluted to a concentration recommended by the manufacturer and previously described of 1×105 cells/ml. When RNA had completed complexing with the RNAiMAX transfection reagent, 20 ul of the complexes were added to the appropriate well of the 96-well plate in triplicate. Cells were added to each well (100 ul volume) to make the final cell count per well 1×104 cells/well. The volume of cells diluted the 6× concentration of complex to 1× (between 10-0.05 nM). Cells were incubated for 24 or 48 hours under normal growth conditions. After 24 or 48 hour incubation, cells were lysed and gene silencing activity was measured using the QuantiGene assay (Panomics, Freemont, Calif.) which employs bDNA hybridization technology. The assay was carried out according to manufacturer's instructions.


Passive Uptake Transfection


sd-rxRNAnano constructs were chemically synthesized (Dharmacon, Lafayette, Colo.). 24 hours prior to transfection, HeLa cells (ATCC, Manassas, Va.) were plated at 1×104 cells/well in a 96 well plate under normal growth conditions (DMEM, 10% FBS and 1% Penicillin and Streptomycin). Prior to transfection of HeLa cells, sd-rxRNAnano were diluted to a final concentration of 0.01 uM to 1 uM in Accell siRNA Delivery Media (Dharmacon, Lafayette, Colo.). Normal growth media was aspirated off cells and 100 uL of Accell Delivery media containing the appropriate concentration of sd-rxRNAnano was applied to the cells. 48 hours post transfection, delivery media was aspirated off the cells and normal growth media was applied to cells for an additional 24 hours.


After 48 or 72 hour incubation, cells were lysed and gene silencing activity was measured using the QuantiGene assay (Panomics, Freemont, Calif.) according to manufacturer's instructions.













TABLE 1






Oligo
Accession

Gene


ID Number
Number
number
Gene Name
Symbol



















APOB-10167-20-12138
12138
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-10167-20-12139
12139
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


MAP4K4-2931-13-12266
12266
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-16-12293
12293
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-16-12383
12383
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-16-12384
12384
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-16-12385
12385
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-16-12386
12386
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-16-12387
12387
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-15-12388
12388
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-13-12432
12432
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-13-12266.2
12266.2
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


APOB--21-12434
12434
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--21-12435
12435
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


MAP4K4-2931-16-12451
12451
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-16-12452
12452
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-16-12453
12453
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-17-12454
12454
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-17-12455
12455
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-19-12456
12456
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


--27-12480
12480


--27-12481
12481


APOB-10167-21-12505
12505
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-10167-21-12506
12506
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


MAP4K4-2931-16-12539
12539
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


APOB-10167-21-12505.2
12505.2
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-10167-21-12506.2
12506.2
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


MAP4K4--13-12565
12565


MAP4K4


MAP4K4-2931-16-12386.2
12386.2
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-13-12815
12815
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


APOB--13-12957
12957
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


MAP4K4--16-12983
12983

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12984
12984

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12985
12985

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12986
12986

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12987
12987

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12988
12988

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12989
12989

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12990
12990

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12991
12991

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12992
12992

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12993
12993

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12994
12994

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4--16-12995
12995

Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-19-13012
13012
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


MAP4K4-2931-19-13016
13016
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


PPIB--13-13021
13021
NM_000942
Peptidylprolyl Isomerase B
PPIB





(cyclophilin B)


pGL3-1172-13-13038
13038
U47296
Cloning vector pGL3-Control
pGL3


pGL3-1172-13-13040
13040
U47296
Cloning vector pGL3-Control
pGL3


--16-13047
13047


SOD1-530-13-13090
13090
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-523-13-13091
13091
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-535-13-13092
13092
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-536-13-13093
13093
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-396-13-13094
13094
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-385-13-13095
13095
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-195-13-13096
13096
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


APOB-4314-13-13115
13115
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-3384-13-13116
13116
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-3547-13-13117
13117
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-4318-13-13118
13118
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-3741-13-13119
13119
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


PPIB--16-13136
13136
NM_000942
Peptidylprolyl Isomerase B
PPIB





(cyclophilin B)


APOB-4314-15-13154
13154
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-3547-15-13155
13155
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-4318-15-13157
13157
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-3741-15-13158
13158
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--13-13159
13159
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--15-13160
13160
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


SOD1-530-16-13163
13163
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-523-16-13164
13164
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-535-16-13165
13165
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-536-16-13166
13166
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-396-16-13167
13167
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-385-16-13168
13168
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


SOD1-195-16-13169
13169
NM_000454
Superoxide Dismutase 1, soluble
SOD1





(amyotrophic lateral sclerosis 1





(adult))


pGL3-1172-16-13170
13170
U47296
Cloning vector pGL3-Control
pGL3


pGL3-1172-16-13171
13171
U47296
Cloning vector pGL3-Control
pGL3


MAP4k4-2931-19-13189
13189
NM_004834
Mitogen-Activated Protein Kinase
MAP4k4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


CTGF-1222-13-13190
13190
NM_001901.2
connective tissue growth factor
CTGF


CTGF-813-13-13192
13192
NM_001901.2
connective tissue growth factor
CTGF


CTGF-747-13-13194
13194
NM_001901.2
connective tissue growth factor
CTGF


CTGF-817-13-13196
13196
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1174-13-13198
13198
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1005-13-13200
13200
NM_001901.2
connective tissue growth factor
CTGF


CTGF-814-13-13202
13202
NM_001901.2
connective tissue growth factor
CTGF


CTGF-816-13-13204
13204
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1001-13-13206
13206
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1173-13-13208
13208
NM_001901.2
connective tissue growth factor
CTGF


CTGF-749-13-13210
13210
NM_001901.2
connective tissue growth factor
CTGF


CTGF-792-13-13212
13212
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1162-13-13214
13214
NM_001901.2
connective tissue growth factor
CTGF


CTGF-811-13-13216
13216
NM_001901.2
connective tissue growth factor
CTGF


CTGF-797-13-13218
13218
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1175-13-13220
13220
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1172-13-13222
13222
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1177-13-13224
13224
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1176-13-13226
13226
NM_001901.2
connective tissue growth factor
CTGF


CTGF-812-13-13228
13228
NM_001901.2
connective tissue growth factor
CTGF


CTGF-745-13-13230
13230
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1230-13-13232
13232
NM_001901.2
connective tissue growth factor
CTGF


CTGF-920-13-13234
13234
NM_001901.2
connective tissue growth factor
CTGF


CTGF-679-13-13236
13236
NM_001901.2
connective tissue growth factor
CTGF


CTGF-992-13-13238
13238
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1045-13-13240
13240
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1231-13-13242
13242
NM_001901.2
connective tissue growth factor
CTGF


CTGF-991-13-13244
13244
NM_001901.2
connective tissue growth factor
CTGF


CTGF-998-13-13246
13246
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1049-13-13248
13248
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1044-13-13250
13250
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1327-13-13252
13252
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1196-13-13254
13254
NM_001901.2
connective tissue growth factor
CTGF


CTGF-562-13-13256
13256
NM_001901.2
connective tissue growth factor
CTGF


CTGF-752-13-13258
13258
NM_001901.2
connective tissue growth factor
CTGF


CTGF-994-13-13260
13260
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1040-13-13262
13262
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1984-13-13264
13264
NM_001901.2
connective tissue growth factor
CTGF


CTGF-2195-13-13266
13266
NM_001901.2
connective tissue growth factor
CTGF


CTGF-2043-13-13268
13268
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1892-13-13270
13270
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1567-13-13272
13272
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1780-13-13274
13274
NM_001901.2
connective tissue growth factor
CTGF


CTGF-2162-13-13276
13276
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1034-13-13278
13278
NM_001901.2
connective tissue growth factor
CTGF


CTGF-2264-13-13280
13280
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1032-13-13282
13282
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1535-13-13284
13284
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1694-13-13286
13286
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1588-13-13288
13288
NM_001901.2
connective tissue growth factor
CTGF


CTGF-928-13-13290
13290
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1133-13-13292
13292
NM_001901.2
connective tissue growth factor
CTGF


CTGF-912-13-13294
13294
NM_001901.2
connective tissue growth factor
CTGF


CTGF-753-13-13296
13296
NM_001901.2
connective tissue growth factor
CTGF


CTGF-918-13-13298
13298
NM_001901.2
connective tissue growth factor
CTGF


CTGF-744-13-13300
13300
NM_001901.2
connective tissue growth factor
CTGF


CTGF-466-13-13302
13302
NM_001901.2
connective tissue growth factor
CTGF


CTGF-917-13-13304
13304
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1038-13-13306
13306
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1048-13-13308
13308
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1235-13-13310
13310
NM_001901.2
connective tissue growth factor
CTGF


CTGF-868-13-13312
13312
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1131-13-13314
13314
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1043-13-13316
13316
NM_001901.2
connective tissue growth factor
CTGF


CTGF-751-13-13318
13318
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1227-13-13320
13320
NM_001901.2
connective tissue growth factor
CTGF


CTGF-867-13-13322
13322
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1128-13-13324
13324
NM_001901.2
connective tissue growth factor
CTGF


CTGF-756-13-13326
13326
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1234-13-13328
13328
NM_001901.2
connective tissue growth factor
CTGF


CTGF-916-13-13330
13330
NM_001901.2
connective tissue growth factor
CTGF


CTGF-925-13-13332
13332
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1225-13-13334
13334
NM_001901.2
connective tissue growth factor
CTGF


CTGF-445-13-13336
13336
NM_001901.2
connective tissue growth factor
CTGF


CTGF-446-13-13338
13338
NM_001901.2
connective tissue growth factor
CTGF


CTGF-913-13-13340
13340
NM_001901.2
connective tissue growth factor
CTGF


CTGF-997-13-13342
13342
NM_001901.2
connective tissue growth factor
CTGF


CTGF-277-13-13344
13344
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1052-13-13346
13346
NM_001901.2
connective tissue growth factor
CTGF


CTGF-887-13-13348
13348
NM_001901.2
connective tissue growth factor
CTGF


CTGF-914-13-13350
13350
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1039-13-13352
13352
NM_001901.2
connective tissue growth factor
CTGF


CTGF-754-13-13354
13354
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1130-13-13356
13356
NM_001901.2
connective tissue growth factor
CTGF


CTGF-919-13-13358
13358
NM_001901.2
connective tissue growth factor
CTGF


CTGF-922-13-13360
13360
NM_001901.2
connective tissue growth factor
CTGF


CTGF-746-13-13362
13362
NM_001901.2
connective tissue growth factor
CTGF


CTGF-993-13-13364
13364
NM_001901.2
connective tissue growth factor
CTGF


CTGF-825-13-13366
13366
NM_001901.2
connective tissue growth factor
CTGF


CTGF-926-13-13368
13368
NM_001901.2
connective tissue growth factor
CTGF


CTGF-923-13-13370
13370
NM_001901.2
connective tissue growth factor
CTGF


CTGF-866-13-13372
13372
NM_001901.2
connective tissue growth factor
CTGF


CTGF-563-13-13374
13374
NM_001901.2
connective tissue growth factor
CTGF


CTGF-823-13-13376
13376
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1233-13-13378
13378
NM_001901.2
connective tissue growth factor
CTGF


CTGF-924-13-13380
13380
NM_001901.2
connective tissue growth factor
CTGF


CTGF-921-13-13382
13382
NM_001901.2
connective tissue growth factor
CTGF


CTGF-443-13-13384
13384
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1041-13-13386
13386
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1042-13-13388
13388
NM_001901.2
connective tissue growth factor
CTGF


CTGF-755-13-13390
13390
NM_001901.2
connective tissue growth factor
CTGF


CTGF-467-13-13392
13392
NM_001901.2
connective tissue growth factor
CTGF


CTGF-995-13-13394
13394
NM_001901.2
connective tissue growth factor
CTGF


CTGF-927-13-13396
13396
NM_001901.2
connective tissue growth factor
CTGF


SPP1-1025-13-13398
13398
NM_000582.2
Osteopontin
SPP1


SPP1-1049-13-13400
13400
NM_000582.2
Osteopontin
SPP1


SPP1-1051-13-13402
13402
NM_000582.2
Osteopontin
SPP1


SPP1-1048-13-13404
13404
NM_000582.2
Osteopontin
SPP1


SPP1-1050-13-13406
13406
NM_000582.2
Osteopontin
SPP1


SPP1-1047-13-13408
13408
NM_000582.2
Osteopontin
SPP1


SPP1-800-13-13410
13410
NM_000582.2
Osteopontin
SPP1


SPP1-492-13-13412
13412
NM_000582.2
Osteopontin
SPP1


SPP1-612-13-13414
13414
NM_000582.2
Osteopontin
SPP1


SPP1-481-13-13416
13416
NM_000582.2
Osteopontin
SPP1


SPP1-614-13-13418
13418
NM_000582.2
Osteopontin
SPP1


SPP1-951-13-13420
13420
NM_000582.2
Osteopontin
SPP1


SPP1-482-13-13422
13422
NM_000582.2
Osteopontin
SPP1


SPP1-856-13-13424
13424
NM_000582.2
Osteopontin
SPP1


SPP1-857-13-13426
13426
NM_000582.2
Osteopontin
SPP1


SPP1-365-13-13428
13428
NM_000582.2
Osteopontin
SPP1


SPP1-359-13-13430
13430
NM_000582.2
Osteopontin
SPP1


SPP1-357-13-13432
13432
NM_000582.2
Osteopontin
SPP1


SPP1-858-13-13434
13434
NM_000582.2
Osteopontin
SPP1


SPP1-1012-13-13436
13436
NM_000582.2
Osteopontin
SPP1


SPP1-1014-13-13438
13438
NM_000582.2
Osteopontin
SPP1


SPP1-356-13-13440
13440
NM_000582.2
Osteopontin
SPP1


SPP1-368-13-13442
13442
NM_000582.2
Osteopontin
SPP1


SPP1-1011-13-13444
13444
NM_000582.2
Osteopontin
SPP1


SPP1-754-13-13446
13446
NM_000582.2
Osteopontin
SPP1


SPP1-1021-13-13448
13448
NM_000582.2
Osteopontin
SPP1


SPP1-1330-13-13450
13450
NM_000582.2
Osteopontin
SPP1


SPP1-346-13-13452
13452
NM_000582.2
Osteopontin
SPP1


SPP1-869-13-13454
13454
NM_000582.2
Osteopontin
SPP1


SPP1-701-13-13456
13456
NM_000582.2
Osteopontin
SPP1


SPP1-896-13-13458
13458
NM_000582.2
Osteopontin
SPP1


SPP1-1035-13-13460
13460
NM_000582.2
Osteopontin
SPP1


SPP1-1170-13-13462
13462
NM_000582.2
Osteopontin
SPP1


SPP1-1282-13-13464
13464
NM_000582.2
Osteopontin
SPP1


SPP1-1537-13-13466
13466
NM_000582.2
Osteopontin
SPP1


SPP1-692-13-13468
13468
NM_000582.2
Osteopontin
SPP1


SPP1-840-13-13470
13470
NM_000582.2
Osteopontin
SPP1


SPP1-1163-13-13472
13472
NM_000582.2
Osteopontin
SPP1


SPP1-789-13-13474
13474
NM_000582.2
Osteopontin
SPP1


SPP1-841-13-13476
13476
NM_000582.2
Osteopontin
SPP1


SPP1-852-13-13478
13478
NM_000582.2
Osteopontin
SPP1


SPP1-209-13-13480
13480
NM_000582.2
Osteopontin
SPP1


SPP1-1276-13-13482
13482
NM_000582.2
Osteopontin
SPP1


SPP1-137-13-13484
13484
NM_000582.2
Osteopontin
SPP1


SPP1-711-13-13486
13486
NM_000582.2
Osteopontin
SPP1


SPP1-582-13-13488
13488
NM_000582.2
Osteopontin
SPP1


SPP1-839-13-13490
13490
NM_000582.2
Osteopontin
SPP1


SPP1-1091-13-13492
13492
NM_000582.2
Osteopontin
SPP1


SPP1-884-13-13494
13494
NM_000582.2
Osteopontin
SPP1


SPP1-903-13-13496
13496
NM_000582.2
Osteopontin
SPP1


SPP1-1090-13-13498
13498
NM_000582.2
Osteopontin
SPP1


SPP1-474-13-13500
13500
NM_000582.2
Osteopontin
SPP1


SPP1-575-13-13502
13502
NM_000582.2
Osteopontin
SPP1


SPP1-671-13-13504
13504
NM_000582.2
Osteopontin
SPP1


SPP1-924-13-13506
13506
NM_000582.2
Osteopontin
SPP1


SPP1-1185-13-13508
13508
NM_000582.2
Osteopontin
SPP1


SPP1-1221-13-13510
13510
NM_000582.2
Osteopontin
SPP1


SPP1-347-13-13512
13512
NM_000582.2
Osteopontin
SPP1


SPP1-634-13-13514
13514
NM_000582.2
Osteopontin
SPP1


SPP1-877-13-13516
13516
NM_000582.2
Osteopontin
SPP1


SPP1-1033-13-13518
13518
NM_000582.2
Osteopontin
SPP1


SPP1-714-13-13520
13520
NM_000582.2
Osteopontin
SPP1


SPP1-791-13-13522
13522
NM_000582.2
Osteopontin
SPP1


SPP1-813-13-13524
13524
NM_000582.2
Osteopontin
SPP1


SPP1-939-13-13526
13526
NM_000582.2
Osteopontin
SPP1


SPP1-1161-13-13528
13528
NM_000582.2
Osteopontin
SPP1


SPP1-1164-13-13530
13530
NM_000582.2
Osteopontin
SPP1


SPP1-1190-13-13532
13532
NM_000582.2
Osteopontin
SPP1


SPP1-1333-13-13534
13534
NM_000582.2
Osteopontin
SPP1


SPP1-537-13-13536
13536
NM_000582.2
Osteopontin
SPP1


SPP1-684-13-13538
13538
NM_000582.2
Osteopontin
SPP1


SPP1-707-13-13540
13540
NM_000582.2
Osteopontin
SPP1


SPP1-799-13-13542
13542
NM_000582.2
Osteopontin
SPP1


SPP1-853-13-13544
13544
NM_000582.2
Osteopontin
SPP1


SPP1-888-13-13546
13546
NM_000582.2
Osteopontin
SPP1


SPP1-1194-13-13548
13548
NM_000582.2
Osteopontin
SPP1


SPP1-1279-13-13550
13550
NM_000582.2
Osteopontin
SPP1


SPP1-1300-13-13552
13552
NM_000582.2
Osteopontin
SPP1


SPP1-1510-13-13554
13554
NM_000582.2
Osteopontin
SPP1


SPP1-1543-13-13556
13556
NM_000582.2
Osteopontin
SPP1


SPP1-434-13-13558
13558
NM_000582.2
Osteopontin
SPP1


SPP1-600-13-13560
13560
NM_000582.2
Osteopontin
SPP1


SPP1-863-13-13562
13562
NM_000582.2
Osteopontin
SPP1


SPP1-902-13-13564
13564
NM_000582.2
Osteopontin
SPP1


SPP1-921-13-13566
13566
NM_000582.2
Osteopontin
SPP1


SPP1-154-13-13568
13568
NM_000582.2
Osteopontin
SPP1


SPP1-217-13-13570
13570
NM_000582.2
Osteopontin
SPP1


SPP1-816-13-13572
13572
NM_000582.2
Osteopontin
SPP1


SPP1-882-13-13574
13574
NM_000582.2
Osteopontin
SPP1


SPP1-932-13-13576
13576
NM_000582.2
Osteopontin
SPP1


SPP1-1509-13-13578
13578
NM_000582.2
Osteopontin
SPP1


SPP1-157-13-13580
13580
NM_000582.2
Osteopontin
SPP1


SPP1-350-13-13582
13582
NM_000582.2
Osteopontin
SPP1


SPP1-511-13-13584
13584
NM_000582.2
Osteopontin
SPP1


SPP1-605-13-13586
13586
NM_000582.2
Osteopontin
SPP1


SPP1-811-13-13588
13588
NM_000582.2
Osteopontin
SPP1


SPP1-892-13-13590
13590
NM_000582.2
Osteopontin
SPP1


SPP1-922-13-13592
13592
NM_000582.2
Osteopontin
SPP1


SPP1-1169-13-13594
13594
NM_000582.2
Osteopontin
SPP1


SPP1-1182-13-13596
13596
NM_000582.2
Osteopontin
SPP1


SPP1-1539-13-13598
13598
NM_000582.2
Osteopontin
SPP1


SPP1-1541-13-13600
13600
NM_000582.2
Osteopontin
SPP1


SPP1-427-13-13602
13602
NM_000582.2
Osteopontin
SPP1


SPP1-533-13-13604
13604
NM_000582.2
Osteopontin
SPP1


APOB--13-13763
13763
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--13-13764
13764
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


MAP4K4--16-13766
13766


MAP4K4


PPIB--13-13767
13767
NM_000942
peptidylprolyl isomerase B
PPIB





(cyclophilin B)


PPIB--15-13768
13768
NM_000942
peptidylprolyl isomerase B
PPIB





(cyclophilin B)


PPIB--17-13769
13769
NM_000942
peptidylprolyl isomerase B
PPIB





(cyclophilin B)


MAP4K4--16-13939
13939


MAP4K4


APOB-4314-16-13940
13940
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-4314-17-13941
13941
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--16-13942
13942
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--18-13943
13943
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--17-13944
13944
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--19-13945
13945
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-4314-16-13946
13946
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB-4314-17-13947
13947
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--16-13948
13948
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--17-13949
13949
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--16-13950
13950
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--18-13951
13951
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--17-13952
13952
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


APOB--19-13953
13953
NM_000384
Apolipoprotein B (including
APOB





Ag(x) antigen)


MAP4K4--16-13766.2
13766.2


MAP4K4


CTGF-1222-16-13980
13980
NM_001901.2
connective tissue growth factor
CTGF


CTGF-813-16-13981
13981
NM_001901.2
connective tissue growth factor
CTGF


CTGF-747-16-13982
13982
NM_001901.2
connective tissue growth factor
CTGF


CTGF-817-16-13983
13983
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1174-16-13984
13984
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1005-16-13985
13985
NM_001901.2
connective tissue growth factor
CTGF


CTGF-814-16-13986
13986
NM_001901.2
connective tissue growth factor
CTGF


CTGF-816-16-13987
13987
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1001-16-13988
13988
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1173-16-13989
13989
NM_001901.2
connective tissue growth factor
CTGF


CTGF-749-16-13990
13990
NM_001901.2
connective tissue growth factor
CTGF


CTGF-792-16-13991
13991
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1162-16-13992
13992
NM_001901.2
connective tissue growth factor
CTGF


CTGF-811-16-13993
13993
NM_001901.2
connective tissue growth factor
CTGF


CTGF-797-16-13994
13994
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1175-16-13995
13995
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1172-16-13996
13996
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1177-16-13997
13997
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1176-16-13998
13998
NM_001901.2
connective tissue growth factor
CTGF


CTGF-812-16-13999
13999
NM_001901.2
connective tissue growth factor
CTGF


CTGF-745-16-14000
14000
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1230-16-14001
14001
NM_001901.2
connective tissue growth factor
CTGF


CTGF-920-16-14002
14002
NM_001901.2
connective tissue growth factor
CTGF


CTGF-679-16-14003
14003
NM_001901.2
connective tissue growth factor
CTGF


CTGF-992-16-14004
14004
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1045-16-14005
14005
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1231-16-14006
14006
NM_001901.2
connective tissue growth factor
CTGF


CTGF-991-16-14007
14007
NM_001901.2
connective tissue growth factor
CTGF


CTGF-998-16-14008
14008
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1049-16-14009
14009
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1044-16-14010
14010
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1327-16-14011
14011
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1196-16-14012
14012
NM_001901.2
connective tissue growth factor
CTGF


CTGF-562-16-14013
14013
NM_001901.2
connective tissue growth factor
CTGF


CTGF-752-16-14014
14014
NM_001901.2
connective tissue growth factor
CTGF


CTGF-994-16-14015
14015
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1040-16-14016
14016
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1984-16-14017
14017
NM_001901.2
connective tissue growth factor
CTGF


CTGF-2195-16-14018
14018
NM_001901.2
connective tissue growth factor
CTGF


CTGF-2043-16-14019
14019
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1892-16-14020
14020
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1567-16-14021
14021
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1780-16-14022
14022
NM_001901.2
connective tissue growth factor
CTGF


CTGF-2162-16-14023
14023
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1034-16-14024
14024
NM_001901.2
connective tissue growth factor
CTGF


CTGF-2264-16-14025
14025
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1032-16-14026
14026
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1535-16-14027
14027
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1694-16-14028
14028
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1588-16-14029
14029
NM_001901.2
connective tissue growth factor
CTGF


CTGF-928-16-14030
14030
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1133-16-14031
14031
NM_001901.2
connective tissue growth factor
CTGF


CTGF-912-16-14032
14032
NM_001901.2
connective tissue growth factor
CTGF


CTGF-753-16-14033
14033
NM_001901.2
connective tissue growth factor
CTGF


CTGF-918-16-14034
14034
NM_001901.2
connective tissue growth factor
CTGF


CTGF-744-16-14035
14035
NM_001901.2
connective tissue growth factor
CTGF


CTGF-466-16-14036
14036
NM_001901.2
connective tissue growth factor
CTGF


CTGF-917-16-14037
14037
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1038-16-14038
14038
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1048-16-14039
14039
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1235-16-14040
14040
NM_001901.2
connective tissue growth factor
CTGF


CTGF-868-16-14041
14041
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1131-16-14042
14042
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1043-16-14043
14043
NM_001901.2
connective tissue growth factor
CTGF


CTGF-751-16-14044
14044
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1227-16-14045
14045
NM_001901.2
connective tissue growth factor
CTGF


CTGF-867-16-14046
14046
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1128-16-14047
14047
NM_001901.2
connective tissue growth factor
CTGF


CTGF-756-16-14048
14048
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1234-16-14049
14049
NM_001901.2
connective tissue growth factor
CTGF


CTGF-916-16-14050
14050
NM_001901.2
connective tissue growth factor
CTGF


CTGF-925-16-14051
14051
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1225-16-14052
14052
NM_001901.2
connective tissue growth factor
CTGF


CTGF-445-16-14053
14053
NM_001901.2
connective tissue growth factor
CTGF


CTGF-446-16-14054
14054
NM_001901.2
connective tissue growth factor
CTGF


CTGF-913-16-14055
14055
NM_001901.2
connective tissue growth factor
CTGF


CTGF-997-16-14056
14056
NM_001901.2
connective tissue growth factor
CTGF


CTGF-277-16-14057
14057
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1052-16-14058
14058
NM_001901.2
connective tissue growth factor
CTGF


CTGF-887-16-14059
14059
NM_001901.2
connective tissue growth factor
CTGF


CTGF-914-16-14060
14060
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1039-16-14061
14061
NM_001901.2
connective tissue growth factor
CTGF


CTGF-754-16-14062
14062
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1130-16-14063
14063
NM_001901.2
connective tissue growth factor
CTGF


CTGF-919-16-14064
14064
NM_001901.2
connective tissue growth factor
CTGF


CTGF-922-16-14065
14065
NM_001901.2
connective tissue growth factor
CTGF


CTGF-746-16-14066
14066
NM_001901.2
connective tissue growth factor
CTGF


CTGF-993-16-14067
14067
NM_001901.2
connective tissue growth factor
CTGF


CTGF-825-16-14068
14068
NM_001901.2
connective tissue growth factor
CTGF


CTGF-926-16-14069
14069
NM_001901.2
connective tissue growth factor
CTGF


CTGF-923-16-14070
14070
NM_001901.2
connective tissue growth factor
CTGF


CTGF-866-16-14071
14071
NM_001901.2
connective tissue growth factor
CTGF


CTGF-563-16-14072
14072
NM_001901.2
connective tissue growth factor
CTGF


CTGF-823-16-14073
14073
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1233-16-14074
14074
NM_001901.2
connective tissue growth factor
CTGF


CTGF-924-16-14075
14075
NM_001901.2
connective tissue growth factor
CTGF


CTGF-921-16-14076
14076
NM_001901.2
connective tissue growth factor
CTGF


CTGF-443-16-14077
14077
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1041-16-14078
14078
NM_001901.2
connective tissue growth factor
CTGF


CTGF-1042-16-14079
14079
NM_001901.2
connective tissue growth factor
CTGF


CTGF-755-16-14080
14080
NM_001901.2
connective tissue growth factor
CTGF


CTGF-467-16-14081
14081
NM_001901.2
connective tissue growth factor
CTGF


CTGF-995-16-14082
14082
NM_001901.2
connective tissue growth factor
CTGF


CTGF-927-16-14083
14083
NM_001901.2
connective tissue growth factor
CTGF


SPP1-1091-16-14131
14131
NM_000582.2
Osteopontin
SPP1


PPIB--16-14188
14188
NM_000942
peptidylprolyl isomerase B
PPIB





(cyclophilin B)


PPIB--17-14189
14189
NM_000942
peptidylprolyl isomerase B
PPIB





(cyclophilin B)


PPIB--18-14190
14190
NM_000942
peptidylprolyl isomerase B
PPIB





(cyclophilin B)


pGL3-1172-16-14386
14386
U47296
Cloning vector pGL3-Control
pGL3


pGL3-1172-16-14387
14387
U47296
Cloning vector pGL3-Control
pGL3


MAP4K4-2931-25-14390
14390
NM_004834
Mitogen-Activated Protein Kinase
MAP4K4





Kinase Kinase Kinase 4





(MAP4K4), transcript variant 1


miR-122--23-14391
14391


miR-122



14084
NM_000582.2
Osteopontin
SPP1



14085
NM_000582.2
Osteopontin
SPP1



14086
NM_000582.2
Osteopontin
SPP1



14087
NM_000582.2
Osteopontin
SPP1



14088
NM_000582.2
Osteopontin
SPP1



14089
NM_000582.2
Osteopontin
SPP1



14090
NM_000582.2
Osteopontin
SPP1



14091
NM_000582.2
Osteopontin
SPP1



14092
NM_000582.2
Osteopontin
SPP1



14093
NM_000582.2
Osteopontin
SPP1



14094
NM_000582.2
Osteopontin
SPP1



14095
NM_000582.2
Osteopontin
SPP1



14096
NM_000582.2
Osteopontin
SPP1



14097
NM_000582.2
Osteopontin
SPP1



14098
NM_000582.2
Osteopontin
SPP1



14099
NM_000582.2
Osteopontin
SPP1



14100
NM_000582.2
Osteopontin
SPP1



14101
NM_000582.2
Osteopontin
SPP1



14102
NM_000582.2
Osteopontin
SPP1



14103
NM_000582.2
Osteopontin
SPP1



14104
NM_000582.2
Osteopontin
SPP1



14105
NM_000582.2
Osteopontin
SPP1



14106
NM_000582.2
Osteopontin
SPP1



14107
NM_000582.2
Osteopontin
SPP1



14108
NM_000582.2
Osteopontin
SPP1



14109
NM_000582.2
Osteopontin
SPP1



14110
NM_000582.2
Osteopontin
SPP1



14111
NM_000582.2
Osteopontin
SPP1



14112
NM_000582.2
Osteopontin
SPP1



14113
NM_000582.2
Osteopontin
SPP1



14114
NM_000582.2
Osteopontin
SPP1



14115
NM_000582.2
Osteopontin
SPP1



14116
NM_000582.2
Osteopontin
SPP1



14117
NM_000582.2
Osteopontin
SPP1



14118
NM_000582.2
Osteopontin
SPP1



14119
NM_000582.2
Osteopontin
SPP1



14120
NM_000582.2
Osteopontin
SPP1



14121
NM_000582.2
Osteopontin
SPP1



14122
NM_000582.2
Osteopontin
SPP1



14123
NM_000582.2
Osteopontin
SPP1



14124
NM_000582.2
Osteopontin
SPP1



14125
NM_000582.2
Osteopontin
SPP1



14126
NM_000582.2
Osteopontin
SPP1



14127
NM_000582.2
Osteopontin
SPP1



14128
NM_000582.2
Osteopontin
SPP1



14129
NM_000582.2
Osteopontin
SPP1



14130
NM_000582.2
Osteopontin
SPP1



14132
NM_000582.2
Osteopontin
SPP1



14133
NM_000582.2
Osteopontin
SPP1



14134
NM_000582.2
Osteopontin
SPP1



14135
NM_000582.2
Osteopontin
SPP1



14136
NM_000582.2
Osteopontin
SPP1



14137
NM_000582.2
Osteopontin
SPP1



14138
NM_000582.2
Osteopontin
SPP1



14139
NM_000582.2
Osteopontin
SPP1



14140
NM_000582.2
Osteopontin
SPP1



14141
NM_000582.2
Osteopontin
SPP1



14142
NM_000582.2
Osteopontin
SPP1



14143
NM_000582.2
Osteopontin
SPP1



14144
NM_000582.2
Osteopontin
SPP1



14145
NM_000582.2
Osteopontin
SPP1



14146
NM_000582.2
Osteopontin
SPP1



14147
NM_000582.2
Osteopontin
SPP1



14148
NM_000582.2
Osteopontin
SPP1



14149
NM_000582.2
Osteopontin
SPP1



14150
NM_000582.2
Osteopontin
SPP1



14151
NM_000582.2
Osteopontin
SPP1



14152
NM_000582.2
Osteopontin
SPP1



14153
NM_000582.2
Osteopontin
SPP1



14154
NM_000582.2
Osteopontin
SPP1



14155
NM_000582.2
Osteopontin
SPP1



14156
NM_000582.2
Osteopontin
SPP1



14157
NM_000582.2
Osteopontin
SPP1



14158
NM_000582.2
Osteopontin
SPP1



14159
NM_000582.2
Osteopontin
SPP1



14160
NM_000582.2
Osteopontin
SPP1



14161
NM_000582.2
Osteopontin
SPP1



14162
NM_000582.2
Osteopontin
SPP1



14163
NM_000582.2
Osteopontin
SPP1



14164
NM_000582.2
Osteopontin
SPP1



14165
NM_000582.2
Osteopontin
SPP1



14166
NM_000582.2
Osteopontin
SPP1



14167
NM_000582.2
Osteopontin
SPP1



14168
NM_000582.2
Osteopontin
SPP1



14169
NM_000582.2
Osteopontin
SPP1



14170
NM_000582.2
Osteopontin
SPP1



14171
NM_000582.2
Osteopontin
SPP1



14172
NM_000582.2
Osteopontin
SPP1



14173
NM_000582.2
Osteopontin
SPP1



14174
NM_000582.2
Osteopontin
SPP1



14175
NM_000582.2
Osteopontin
SPP1



14176
NM_000582.2
Osteopontin
SPP1



14177
NM_000582.2
Osteopontin
SPP1



14178
NM_000582.2
Osteopontin
SPP1



14179
NM_000582.2
Osteopontin
SPP1



14180
NM_000582.2
Osteopontin
SPP1



14181
NM_000582.2
Osteopontin
SPP1



14182
NM_000582.2
Osteopontin
SPP1



14183
NM_000582.2
Osteopontin
SPP1



14184
NM_000582.2
Osteopontin
SPP1



14185
NM_000582.2
Osteopontin
SPP1



14186
NM_000582.2
Osteopontin
SPP1



14187
NM_000582.2
Osteopontin
SPP1





















TABLE 2










SEQ



Oligo



ID


ID Number
#
AntiSense Backbone
AntiSense Chemistry
AntiSense Sequence
NO:




















APOB-10167-20-12138
12138
ooooooooooooooooooo
00000000000000000000m
AUUGGUAUUCAGUGUGAUG
1





APOB-10167-20-12139
12139
ooooooooooooooooooo
00000000000000000000m
AUUCGUAUUGAGUCUGAUC
2





MAP4K4-2931-16-12293
12293
ooooooooooooooooooo
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
3





MAP4K4-2931-16-12383
12383
ooooooooooooooooooo
0000000000000000000
UAGACUUCCACAGAACUCU
4





MAP4K4-2931-16-12384
12384
ooooooooooooooooooo
P0000000000000000000
UAGACUUCCACAGAACUCU
5





MAP4K4-2931-16-12385
12385
ooooooooooooooooooo
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
6





MAP4K4-2931-16-12386
12386
oooooooooosssssssso
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
7





MAP4K4-2931-16-12387
12387
oooooooooosssssssso
P0000000000000000000
UAGACUUCCACAGAACUCU
8





MAP4K4-2931-15-12388
12388
ooooooooooooooooo
00000000000000000
UAGACUUCCACAGAACU
9





APOB-21-12434
12434
ooooooooooooooooooooo
0000000000000000000m
AUUGGUAUUCAGUGUGAUG
10






AC






APOB-21-12435
12435
ooooooooooooooooooooo
0000000000000000000m
AUUCGUAUUGAGUCUGAUC
11






AC






MAP4K4-2931-16-12451
12451
oooooooooosssssssso
Pf000fffff0f0000ffmm
UAGACUUCCACAGAACUCU
12





MAP4K4-2931-16-12452
12452
oooooooooosssssssso
Pm000fffff0f0000ffmm
UAGACUUCCACAGAACUCU
13





MAP4K4-2931-16-12453
12453
oooooosssssssssssso
Pm000fffff0f0000ffmm
UAGACUUCCACAGAACUCU
14





MAP4K4-2931-17-12454
12454
oooooooooooosssssssso
Pm000fffff0f0000ffffmm
UAGACUUCCACAGAACUCU
15






UC






MAP4K4-2931-17-12455
12455
oooooooosssssssssssso
Pm000fffff0f0000ffffmm
UAGACUUCCACAGAACUCU
16






UC






MAP4K4-2931-19-12456
12456
oooooooooooosssssssssssso
Pm000fffff0f0000ffffff
UAGACUUCCACAGAACUCU
17





00mm
UCAAAG






apob-10167-21-12505
12505
oooooooooooooooooooos
00000000000000000000m
AUUGGUAUUCAGUGUGAUG
18






AC






APOB-10167-21-12506
12506
oooooooooooooooooooos
00000000000000000000m
AUUCGUAUUGAGUCUGAUC
19






AC






MAP4K4-2931-16-12539
12539
ooooooooooossssssss
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
20





APOB-10167-21-12505.2
12505.2
ooooooooooooooooooooo
00000000000000000000m
AUUGGUAUUCAGUGUGAUG
21






AC






APOB-10167-21-12506.2
12506.2
ooooooooooooooooooooo
00000000000000000000m
AUUCGUAUUGAGUCUGAUC
22






AC






MAP4K4-2931-16-12386.2
12386.2
oooooooooosssssssso
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
23





MAP4K4--16-12983
12983
oooooooooooosssssso
Pm000fffff0m0000mmm0
uagacuuccacagaacucu
24





MAP4K4--16-12984
12984
oooooooooooossssss
Pm000fffff0m0000mmm0
uagacuuccacagaacucu
25





MAP4K4--16-12985
12985
oooooooooooosssssso
Pm000fffff0m0000mmm0
uagacuuccacagaacucu
26





MAP4K4--16-12986
12986
oooooooooosssssssso
Pf000fffff0f0000fff0
UAGACUUCCACAGAACUCU
27





MAP4K4--16-12987
12987
ooooooooooooossssss
P0000f00ff0m0000m0m0
UagacUUccacagaacUcU
28





MAP4K4--16-12988
12988
ooooooooooooossssss
P0000f00ff0m0000m0m0
UagacUUccacagaacUcu
29





MAP4K4--16-12989
12989
ooooooooooooossssss
P0000ff0ff0m0000m0m0
UagacuUccacagaacUcu
30





MAP4K4--16-12990
12990
ooooooooooooossssss
Pf0000ff000000000m00
uagaCuuCCaCagaaCuCu
31





MAP4K4--16-12991
12991
ooooooooooooossssss
Pf0000fff00m00000mm0
uagaCuucCacagaaCucu
32





MAP4K4--16-12992
12992
ooooooooooooossssss
Pf000fffff0000000m00
uagacuuccaCagaaCuCu
33





MAP4K4--16-12993
12993
ooooooooooooossssss
P0000000000000000000
UagaCUUCCaCagaaCUCU
34





MAP4K4--16-12994
12994
ooooooooooooossssss
P0000f0f0f0000000m00
UagacUcCcaCagaaCuCu
35





MAP4K4--16-12995
12995
oooooooooooosssssso
Pf000fffff0000000000
uagacuuccaCagaaCUCU
36





--16-13047
13047
oooooooooooossssss
Pm000000000m0000mmm0
UAGACUUCCACAGAACUCU
37





PPIB--16-13136
13136
oooooooooooossssss
Pm0fffff0f00mm000mm0
UGUUUUUGUAGCCAAAUCC
38





SOD1-530-16-13163
13163
oooooooooooosssssso
Pm0ffffffff0mmmmm0m0
UACUUUCUUCAUUUCCACC
39





SOD1-523-16-13164
13164
oooooooooooosssssso
Pmff0fffff0fmmmm0mm0
UUCAUUUCCACCUUUGCCC
40





SOD1-535-16-13165
13165
oooooooooooosssssso
Pmfff0f0ffffmmmm0mm0
CUUUGUACUUUCUUCAUUU
41





SOD1-536-16-13166
13166
oooooooooooosssssso
Pmffff0f0fffmmmmm0m0
UCUUUGUACUUUCUUCAUU
42





SOD1-396-16-13167
13167
oooooooooooosssssso
Pmf00f00ff0f0mm0mmm0
UCAGCAGUCACAUUGCCCA
43





SOD1-385-16-13168
13168
oooooooooooosssssso
Pmff0fff000fmmmm00m0
AUUGCCCAAGUCUCCAACA
44





SOD1-195-16-13169
13169
oooooooooooosssssso
Pmfff0fff0000mm00m00
UUCUGCUCGAAAUUGAUGA
45





pGL3-1172-16-13170
13170
oooooooooooosssssso
Pm00ff0f0ffm0ff00mm0
AAAUCGUAUUUGUCAAUCA
46





pGL3-1172-16-13171
13171
ooooooooooooossssss
Pm00ff0f0ffm0ff00mm0
AAAUCGUAUUUGUCAAUCA
47





MAP4k4-2931-19-13189
13189
ooooooooooooooooooo
0000000000000000000
UAGACUUCCACAGAACUCU
48





MAP4K4--16-13766
13766
oooooooooooosssssso
Pm000fffff0m0000mmm0
UAGACUUCCACAGAACUCU
49





MAP4K4--16-13939
13939
oooooooooooosssssso
m000f0ffff0m0m00m0m
UAGACAUCCUACACAGCAC
50





APOB-4314-16-13940
13940
oooooooooooosssssso
Pm0fffffff000mmmmm00
UGUUUCUCCAGAUCCUUGC
51





APOB-4314-17-13941
13941
oooooooooooosssssso
Pm0fffffff000mmmmm00
UGUUUCUCCAGAUCCUUGC
52





APOB-16-13942
13942
oooooooooooosssssso
Pm00f000f000mmm0mmm0
UAGCAGAUGAGUCCAUUUG
53





APOB--18-13943
13943
oooooooooooooooosssssso
Pm00f000f000mmm0mmm0
UAGCAGAUGAGUCCAUUUG
54





0000
GAGA






APOB--17-13944
13944
oooooooooooosssssso
Pm00f000f000mmm0mmm0
UAGCAGAUGAGUCCAUUUG
55





APOB--19-13945
13945
oooooooooooooooosssssso
Pm00f000f000mmm0mmm0
UAGCAGAUGAGUCCAUUUG
56





0000
GAGA






APOB-4314-16-13946
13946
oooooooooooosssssso
Pmf0ff0ffffmmm000mm0
AUGUUGUUUCUCCAGAUCC
57





APOB-4314-17-13947
13947
oooooooooooosssssso
Pmf0ff0ffffmmm000mm0
AUGUUGUUUCUCCAGAUCC
58





APOB--16-13948
13948
oooooooooooosssssso
Pm0fff000000mmmm0m00
UGUUUGAGGGACUCUGUGA
59





APOB--17-13949
13949
oooooooooooosssssso
Pm0fff000000mmmm0m00
UGUUUGAGGGACUCUGUGA
60





APOB--16-13950
13950
oooooooooooosssssso
Pmff00f0fff00m0m00m0
AUUGGUAUUCAGUGUGAUG
61





APOB--18-13951
13951
oooooooooooooooosssssso
Pmff00f0fff00m0m00m0
AUUGGUAUUCAGUGUGAUG
62





0m00
ACAC






APOB--17-13952
13952
oooooooooooosssssso
Pmff00f0fff00m0m00m0
AUUGGUAUUCAGUGUGAUG
63





APOB--19-13953
13953
oooooooooooooooosssssso
Pmff00f0fff00m0m00m0
AUUGGUAUUCAGUGUGAUG
64





0m00
ACAC






MAP4K4--16-13766.2
13766.2
oooooooooooosssssso
Pm000fffff0m0000mmm0
UAGACUUCCACAGAACUCU
65





CTGF-1222-16-13980
13980
oooooooooooosssssso
Pm0f0ffffffm0m00m0m0
UACAUCUUCCUGUAGUACA
66





CTGF-813-16-13981
13981
oooooooooooosssssso
Pm0f0ffff0mmmm0m000
AGGCGCUCCACUCUGUGGU
67





CTGF-747-16-13982
13982
oooooooooooosssssso
Pm0ffffff00mm0m0000
UGUCUUCCAGUCGGUAAGC
68





CTGF-817-16-13983
13983
oooooooooooosssssso
Pm00f000f0fmmm0mmmm0
GAACAGGCGCUCCACUCUG
69





CTGF-1174-16-13984
13984
oooooooooooosssssso
Pm00ff0f00f00m000m00
CAGUUGUAAUGGCAGGCAC
70





CTGF-1005-16-13985
13985
oooooooooooosssssso
Pmff000000mmm000mm0
AGCCAGAAAGCUCAAACUU
71





CTGF-814-16-13986
13986
oooooooooooosssssso
Pm000f0ffff0mmmm0m00
CAGGCGCUCCACUCUGUGG
72





CTGF-816-16-13987
13987
oooooooooooosssssso
Pm0f000f0ffmm0mmmm00
AACAGGCGCUCCACUCUGU
73





CTGF-1001-16-13988
13988
oooooooooooosssssso
Pm0000fff000mmm00m0
AGAAAGCUCAAACUUGAUA
74





CTGF-1173-16-13989
13989
oooooooooooosssssso
Pmff0f00f00m000m0m0
AGUUGUAAUGGCAGGCACA
75





CTGF-749-16-13990
13990
oooooooooooosssssso
Pmf0ffffff00mm00m00
CGUGUCUUCCAGUCGGUAA
76





CTGF-792-16-13991
13991
oooooooooooosssssso
Pm00ff000f00mm00mmm0
GGACCAGGCAGUUGGCUCU
77





CTGF-1162-16-13992
13992
oooooooooooosssssso
Pm000f0f000mmmm00m00
CAGGCACAGGUCUUGAUGA
78





CTGF-811-16-13993
13993
oooooooooooosssssso
Pmf0ffff0ffmm0m00mm0
GCGCUCCACUCUGUGGUCU
79





CTGF-797-16-13994
13994
oooooooooooosssssso
Pm0fff000ff000m00mm0
GGUCUGGACCAGGCAGUUG
80





CTGF-1175-16-13995
13995
oooooooooooosssssso
Pmf00ff0f00m00m000m0
ACAGUUGUAAUGGCAGGCA
81





CTGF-1172-16-13996
13996
oooooooooooosssssso
Pmff0f00f00m000m0m00
GUUGUAAUGGCAGGCACAG
82





CTGF-1177-16-13997
13997
oooooooooooosssssso
Pm00f00ff0f00m00m000
GGACAGUUGUAAUGGCAGG
83





CTGF-1176-16-13998
13998
oooooooooooosssssso
Pm0f00ff0f00m00m0000
GACAGUUGUAAUGGCAGGC
84





CTGF-812-16-13999
13999
oooooooooooosssssso
Pm0f0ffff0fmmm0m00m0
GGCGCUCCACUCUGUGGUC
85





CTGF-745-16-14000
14000
oooooooooooosssssso
Pmfffff00ff00m000mm0
UCUUCCAGUCGGUAAGCCG
86





CTGF-1230-16-14001
14001
oooooooooooosssssso
Pm0fffff0f0m0mmmmmm0
UGUCUCCGUACAUCUUCCU
87





CTGF-920-16-14002
14002
oooooooooooosssssso
Pmffff0f0000mmm00m0
AGCUUCGCAAGGCCUGACC
88





CTGF-679-16-14003
14003
oooooooooooosssssso
Pm0ffffff0f00m0mmm0
CACUCCUCGCAGCAUUUCC
89





CTGF-992-16-14004
14004
oooooooooooosssssso
Pm00fff00f000mmm0000
AAACUUGAUAGGCUUGGAG
90





CTGF-1045-16-14005
14005
oooooooooooosssssso
Pmffff0f0000mmm00mm0
ACUCCACAGAAUUUAGCUC
91





CTGF-1231-16-14006
14006
oooooooooooosssssso
Pmf0fffff0f0m0mmmmm0
AUGUCUCCGUACAUCUUCC
92





CTGF-991-16-14007
14007
oooooooooooosssssso
Pm0fff00f000mmm00000
AACUUGAUAGGCUUGGAGA
93





CTGF-998-16-14008
14008
oooooooooooosssssso
Pm00fff000fmm00m0000
AAGCUCAAACUUGAUAGGC
94





CTGF-1049-16-14009
14009
oooooooooooosssssso
Pmf0f0ffff0m0000mmm0
ACAUACUCCACAGAAUUUA
95





CTGF-1044-16-14010
14010
oooooooooooosssssso
Pmfff0f0000mmm00mmm0
CUCCACAGAAUUUAGCUCG
96





CTGF-1327-16-14011
14011
oooooooooooosssssso
Pm0f0ff0ff0000mm0mm0
UGUGCUACUGAAAUCAUUU
97





CTGF-1196-16-14012
14012
oooooooooooosssssso
Pm0000f0ff0mm0mmmmm0
AAAGAUGUCAUUGUCUCCG
98





CTGF-562-16-14013
14013
oooooooooooosssssso
Pmf0f0ff00f0mmm0m000
GUGCACUGGUACUUGCAGC
99





CTGF-752-16-14014
14014
oooooooooooosssssso
Pm00f0f0fffmmm00mm00
AAACGUGUCUUCCAGUCGG
100





CTGF-994-16-14015
14015
oooooooooooosssssso
Pmf000fff00m000mmm00
UCAAACUUGAUAGGCUUGG
101





CTGF-1040-16-14016
14016
oooooooooooosssssso
Pmf0000fff00mmm00m00
ACAGAAUUUAGCUCGGUAU
102





CTGF-1984-16-14017
14017
oooooooooooosssssso
Pmf0f0ffff0mmm0m00m0
UUACAUUCUACCUAUGGUG
103





CTGF-2195-16-14018
14018
oooooooooooosssssso
Pm00ff00ff00mm0m0m00
AAACUGAUCAGCUAUAUAG
104





CTGF-2043-16-14019
14019
oooooooooooosssssso
Pm0fff000f0000mmmmm0
UAUCUGAGCAGAAUUUCCA
105





CTGF-1892-16-14020
14020
oooooooooooosssssso
Pmf00fff000m00mm0m00
UUAACUUAGAUAACUGUAC
106





CTGF-1567-16-14021
14021
oooooooooooosssssso
Pm0ff0fff0f0m0000m00
UAUUACUCGUAUAAGAUGC
107





CTGF-1780-16-14022
14022
oooooooooooosssssso
Pm00ff0fff00mmm00mm0
AAGCUGUCCAGUCUAAUCG
108





CTGF-2162-16-14023
14023
oooooooooooosssssso
Pm00f00000fm0mmm0mm0
UAAUAAAGGCCAUUUGUUC
109





CTGF-1034-16-14024
14024
oooooooooooosssssso
Pmff00fff00m0m0mmmm0
UUUAGCUCGGUAUGUCUUC
110





CTGF-2264-16-14025
14025
oooooooooooosssssso
Pmf0fffff00m000m0000
ACACUCUCAACAAAUAAAC
111





CTGF-1032-16-14026
14026
oooooooooooosssssso
Pm00fff00f0m0mmmmm00
UAGCUCGGUAUGUCUUCAU
112





CTGF-1535-16-14027
14027
oooooooooooosssssso
Pm00fffffff0mm00m0m0
UAACCUUUCUGCUGGUACC
113





CTGF-1694-16-14028
14028
oooooooooooosssssso
Pmf000000f00mmm00mm0
UUAAGGAACAACUUGACUC
114





CTGF-1588-16-14029
14029
oooooooooooosssssso
Pmf0f0ffff000m00m000
UUACACUUCAAAUAGCAGG
115





CTGF-928-16-14030
14030
oooooooooooosssssso
Pmff000ff00mmmm0m000
UCCAGGUCAGCUUCGCAAG
116





CTGF-1133-16-14031
14031
oooooooooooosssssso
Pmffffff0f00mmmm0mm0
CUUCUUCAUGACCUCGCCG
117





CTGF-912-16-14032
14032
oooooooooooosssssso
Pm000fff00fm0m0m0m00
AAGGCCUGACCAUGCACAG
118





CTGF-753-16-14033
14033
oooooooooooosssssso
Pm000f0f0ffmmmm00mm0
CAAACGUGUCUUCCAGUCG
119





CTGF-918-16-14034
14034
oooooooooooosssssso
Pmfff0f0000mmm00mm00
CUUCGCAAGGCCUGACCAU
120





CTGF-744-16-14035
14035
oooooooooooosssssso
Pmffff00ff00m000mm00
CUUCCAGUCGGUAAGCCGC
121





CTGF-466-16-14036
14036
oooooooooooosssssso
Pmf00ffff0f00mm00mm0
CCGAUCUUGCGGUUGGCCG
122





CTGF-917-16-14037
14037
oooooooooooosssssso
Pmff0f0000fmm00mm0m0
UUCGCAAGGCCUGACCAUG
123





CTGF-1038-16-14038
14038
oooooooooooosssssso
Pm00fff00fmm0m0m00
AGAAUUUAGCUCGGUAUGU
124





CTGF-1048-16-14039
14039
oooooooooooosssssso
Pm0f0ffff0f0000mmm00
CAUACUCCACAGAAUUUAG
125





CTGF-1235-16-14040
14040
oooooooooooosssssso
Pm0ff0f0ffmmm0m0m0
UGCCAUGUCUCCGUACAUC
126





CTGF-868-16-14041
14041
oooooooooooosssssso
Pm000f0ff0fm0mm00m00
GAGGCGUUGUCAUUGGUAA
127





CTGF-1131-16-14042
14042
oooooooooooosssssso
Pmffff0f00fmmm0mm0m0
UCUUCAUGACCUCGCCGUC
128





CTGF-1043-16-14043
14043
oooooooooooosssssso
Pmff0f0000fmm00mmm00
UCCACAGAAUUUAGCUCGG
129





CTGF-751-16-14044
14044
oooooooooooosssssso
Pm0f0f0ffffmm00mm000
AACGUGUCUUCCAGUCGGU
130





CTGF-1227-16-14045
14045
oooooooooooosssssso
Pmfff0f0f0fmmmmmm0m0
CUCCGUACAUCUUCCUGUA
131





CTGF-867-16-14046
14046
oooooooooooosssssso
Pm0f0ff0ff0mm00m000
AGGCGUUGUCAUUGGUAAC
132





CTGF-1128-16-14047
14047
oooooooooooosssssso
Pmf0f00ffff0mm0mm000
UCAUGACCUCGCCGUCAGG
133





CTGF-756-16-14048
14048
oooooooooooosssssso
Pm0ff000f0f0mmmmmm00
GGCCAAACGUGUCUUCCAG
134





CTGF-1234-16-14049
14049
oooooooooooosssssso
Pmff0f0ffffmm0m0mm0
GCCAUGUCUCCGUACAUCU
135





CTGF-916-16-14050
14050
oooooooooooosssssso
Pmf0f0000ffm00mm0m00
UCGCAAGGCCUGACCAUGC
136





CTGF-925-16-14051
14051
oooooooooooosssssso
Pm0ff00fffmm0000m0
AGGUCAGCUUCGCAAGGCC
137





CTGF-1225-16-14052
14052
oooooooooooosssssso
Pmf0f0f0fffmmmm0m000
CCGUACAUCUUCCUGUAGU
138





CTGF-445-16-14053
14053
oooooooooooosssssso
Pm00ff0000fm0m000000
GAGCCGAAGUCACAGAAGA
139





CTGF-446-16-14054
14054
oooooooooooosssssso
Pm000ff0000mm0m00000
GGAGCCGAAGUCACAGAAG
140





CTGF-913-16-14055
14055
oooooooooooosssssso
Pm0000fff00mm0m0m0m0
CAAGGCCUGACCAUGCACA
141





CTGF-997-16-14056
14056
oooooooooooosssssso
Pmfff000ffm00m000m0
AGCUCAAACUUGAUAGGCU
142





CTGF-277-16-14057
14057
oooooooooooosssssso
Pmf0f00ffff00mm00m00
CUGCAGUUCUGGCCGACGG
143





CTGF-1052-16-14058
14058
oooooooooooosssssso
Pm0f0f0f0ffmm0m00000
GGUACAUACUCCACAGAAU
144





CTGF-887-16-14059
14059
oooooooooooosssssso
Pmf0fffffff00mmm0m00
CUGCUUCUCUAGCCUGCAG
145





CTGF-914-16-14060
14060
oooooooooooosssssso
Pmf0000fff00mm0m0m00
GCAAGGCCUGACCAUGCAC
146





CTGF-1039-16-14061
14061
oooooooooooosssssso
Pm0000fff00mmm00m0m0
CAGAAUUUAGCUCGGUAUG
147





CTGF-754-16-14062
14062
oooooooooooosssssso
Pmf000f0f0fmmmmm00m0
CCAAACGUGUCUUCCAGUC
148





CTGF-1130-16-14063
14063
oooooooooooosssssso
Pmfff0f00ffmmmm0mm0
CUUCAUGACCUCGCCGUCA
149





CTGF-919-16-14064
14064
oooooooooooosssssso
Pmffff0f0000mmm00mm0
GCUUCGCAAGGCCUGACCA
150





CTGF-922-16-14065
14065
oooooooooooosssssso
Pmf00ffff0f0000mmm00
UCAGCUUCGCAAGGCCUGA
151





CTGF-746-16-14066
14066
oooooooooooosssssso
Pmffffff00fm0m000m0
GUCUUCCAGUCGGUAAGCC
152





CTGF-993-16-14067
14067
oooooooooooosssssso
Pm000fff00f000mmm000
CAAACUUGAUAGGCUUGGA
153





CTGF-825-16-14068
14068
oooooooooooosssssso
Pm0ffff0000m000m0m0
AGGUCUUGGAACAGGCGCU
154





CTGF-926-16-14069
14069
oooooooooooosssssso
Pm000ff00ffmmm00000
CAGGUCAGCUUCGCAAGGC
155





CTGF-923-16-14070
14070
oooooooooooosssssso
Pmff00ffff0m0000mmm0
GUCAGCUUCGCAAGGCCUG
156





CTGF-866-16-14071
14071
oooooooooooosssssso
Pm0f0ff0ff0mm00m00m0
GGCGUUGUCAUUGGUAACC
157





CTGF-563-16-14072
14072
oooooooooooosssssso
Pmf0f0ff00m0mmm0m00
CGUGCACUGGUACUUGCAG
158





CTGF-823-16-14073
14073
oooooooooooosssssso
Pmffff0000f000m0mmm0
GUCUUGGAACAGGCGCUCC
159





CTGF-1233-16-14074
14074
oooooooooooosssssso
Pmf0f0fffff0m0m0mmm0
CCAUGUCUCCGUACAUCUU
160





CTGF-924-16-14075
14075
oooooooooooosssssso
Pm0ff00ffff0m0000mm0
GGUCAGCUUCGCAAGGCCU
161





CTGF-921-16-14076
14076
oooooooooooosssssso
Pm00ffff0f0000mmm000
CAGCUUCGCAAGGCCUGAC
162





CTGF-443-16-14077
14077
oooooooooooosssssso
Pmff0000ff0m00000000
GCCGAAGUCACAGAAGAGG
163





CTGF-1041-16-14078
14078
oooooooooooosssssso
Pm0f0000fff00mmm00m0
CACAGAAUUUAGCUCGGUA
164





CTGF-1042-16-14079
14079
oooooooooooosssssso
Pmf0f0000ffm00mmm000
CCACAGAAUUUAGCUCGGU
165





CTGF-755-16-14080
14080
oooooooooooosssssso
Pmff000f0f0mmmmmm000
GCCAAACGUGUCUUCCAGU
166





CTGF-467-16-14081
14081
oooooooooooosssssso
Pmf0f00ffff0m0mm00m0
GCCGAUCUUGCGGUUGGCC
167





CTGF-995-16-14082
14082
oooooooooooosssssso
Pmff000fff00m000mmm0
CUCAAACUUGAUAGGCUUG
168





CTGF-927-16-14083
14083
oooooooooooosssssso
Pmf000ff00fmmm0m0000
CCAGGUCAGCUUCGCAAGG
169





SPP1-1091-16-14131
14131
oooooooooooosssssso
Pmff00ff000m0m0000m0
UUUGACUAAAUGCAAAGUG
170





PPIB--16-14188
14188
oooooooooooosssssso
Pm0fffff0f00mm000mm0
UGUUUUUGUAGCCAAAUCC
171





PPIB--17-14189
14189
oooooooooooosssssso
Pm0fffff0f00mm000mm0
UGUUUUUGUAGCCAAAUCC
172





PPIB--18-14190
14190
oooooooooooosssssso
Pm0fffff0f00mm000mm0
UGUUUUUGUAGCCAAAUCC
173





pGL3-1172-16-14386
14386
oooooooooooosssssso
Pm00ff0f0ffm0mm00mm0
AAAUCGUAUUUGUCAAUCA
174





pGL3-1172-16-14387
14387
oooooooooooosssssso
Pm00ff0f0ffm0mm00mm0
AAAUCGUAUUUGUCAAUCA
175





miR-122--23-14391
14391










14084
oooooooooooosssssso
Pmff00fff0f000000m00
UCUAAUUCAUGAGAAAUAC
616






14085
oooooooooooosssssso
Pm00ff00fffm000000m0
UAAUUGACCUCAGAAGAUG
617






14086
oooooooooooosssssso
Pmff00ff00fmmm000000
UUUAAUUGACCUCAGAAGA
618






14087
oooooooooooosssssso
Pm0ff00ffff000000m00
AAUUGACCUCAGAAGAUGC
619






14088
oooooooooooosssssso
Pmf00ff00ffmm0000000
UUAAUUGACCUCAGAAGAU
620






14089
oooooooooooosssssso
Pmff00ffff000000m0m0
AUUGACCUCAGAAGAUGCA
621






14090
oooooooooooosssssso
Pmf0fff00ff00mmm0mm0
UCAUCCAGCUGACUCGUUU
622






14091
oooooooooooosssssso
Pm0fff0ff0000m00m00
AGAUUCAUCAGAAUGGUGA
623






14092
oooooooooooosssssso
Pm00ffff00fmm0m000m0
UGACCUCAGUCCAUAAACC
624






14093
oooooooooooosssssso
Pm0f00f0000mmm0mm000
AAUGGUGAGACUCAUCAGA
625






14094
oooooooooooosssssso
Pmff00ffff00mmm0m000
UUUGACCUCAGUCCAUAAA
626






14095
oooooooooooosssssso
Pmff0f00ff0m0000mmm0
UUCAUGGCUGUGAAAUUCA
627






14096
oooooooooooosssssso
Pm00f00f0000mmm0mm00
GAAUGGUGAGACUCAUCAG
628






14097
oooooooooooosssssso
Pm00ffffff0mmm0m0m00
UGGCUUUCCGCUUAUAUAA
629






14098
oooooooooooosssssso
Pmf00ffffff0mmm0m0m0
UUGGCUUUCCGCUUAUAUA
630






14099
oooooooooooosssssso
Pmf0fff0f0f00mm0m000
UCAUCCAUGUGGUCAUGGC
631






14100
oooooooooooosssssso
Pmf0f00ff0f00mmmmm00
AUGUGGUCAUGGCUUUCGU
632






14101
oooooooooooosssssso
Pmf00ff0f00mmmmm0mm0
GUGGUCAUGGCUUUCGUUG
633






14102
oooooooooooosssssso
Pmff00fffffmmmm0m00
AUUGGCUUUCCGCUUAUAU
634






14103
oooooooooooosssssso
Pm00f0f0000mmmm000m0
AAAUACGAAAUUUCAGGUG
635






14104
oooooooooooosssssso
Pm000f0f0000mmmm000
AGAAAUACGAAAUUUCAGG
636






14105
oooooooooooosssssso
Pm00ff0f00fmmmm0mm00
UGGUCAUGGCUUUCGUUGG
637






14106
oooooooooooosssssso
Pmf0ff0fff0m0m00mm00
AUAUCAUCCAUGUGGUCAU
638






14107
oooooooooooosssssso
Pm0f0f0000fmmmm000m00
AAUACGAAAUUUCAGGUGU
639






14108
oooooooooooosssssso
Pm0ff000000mm0mmm00
AAUCAGAAGGCGCGUUCAG
640






14109
oooooooooooosssssso
Pmfff0f000000m0m0000
AUUCAUGAGAAAUACGAAA
641






14110
oooooooooooosssssso
Pmf0fff0f0000000m000
CUAUUCAUGAGAGAAUAAC
642






14111
oooooooooooosssssso
Pmfff0ff000mmm0mmm00
UUUCGUUGGACUUACUUGG
643






14112
oooooooooooosssssso
Pmf0fffff0fm0mm00mm0
UUGCUCUCAUCAUUGGCUU
644






14113
oooooooooooosssssso
Pmff00fffffmmmmmmm0
UUCAACUCCUCGCUUUCCA
645






14114
oooooooooooosssssso
Pm00ff0ff00mm0m0mm00
UGACUAUCAAUCACAUCGG
646






14115
oooooooooooosssssso
Pm0f0f0ff0mmm00mmm0
AGAUGCACUAUCUAAUUCA
647






14116
oooooooooooosssssso
Pm0f000f0f0m0mmm00m0
AAUAGAUACACAUUCAACC
648






14117
oooooooooooosssssso
Pmffffff0f0000m000m0
UUCUUCUAUAGAAUGAACA
649






14118
oooooooooooosssssso
Pm0ff0ff000m00mm0m00
AAUUGCUGGACAACCGUGG
650






14119
oooooooooooosssssso
Pmf0ffffff0m0m0m0000
UCGCUUUCCAUGUGUGAGG
651






14120
oooooooooooosssssso
Pm00fff000fm0mmm0m00
UAAUCUGGACUGCUUGUGG
652






14121
oooooooooooosssssso
Pmf0f0fff00mm00m0000
ACACAUUCAACCAAUAAAC
653






14122
oooooooooooosssssso
Pmfff0ffff0m00mm0mm0
ACUCGUUUCAUAACUGUCC
654






14121
oooooooooooosssssso
Pmf00fff000mm0mmm0m0
AUAAUCUGGACUGCUUGUG
655






14124
oooooooooooosssssso
Pmffff0fff0m0m00mmm0
UUUCCGCUUAUAUAAUCUG
656






14125
oooooooooooosssssso
Pm0fff00ff00m0m00m00
UGUUUAACUGGUAUGGCAC
657






14126
oooooooooooosssssso
Pm0f0000f000m0m000m0
UAUAGAAUGAACAUAGACA
658






14127
oooooooooooosssssso
Pmffffff00fm0m0mmm0
UUUCCUUGGUCGGCGUUUG
659






14128
oooooooooooosssssso
Pmf0f0f0ff0mmm00mmm0
GUAUGCACCAUUCAACUCC
660






14129
oooooooooooosssssso
Pmf00ff0ff0m0m0m0mm0
UCGGCCAUCAUAUGUGUCU
661






14130
oooooooooooosssssso
Pm0fff000ff0mmm0m000
AAUCUGGACUGCUUGUGGC
662






14132
oooooooooooosssssso
Pmf0ff0000f0mmm0mm00
ACAUCGGAAUGCUCAUUGC
663






14133
oooooooooooosssssso
Pm00fffff00mm0mm00m0
AAGUUCCUGACUAUCAAUC
664






14134
oooooooooooosssssso
Pmf00ff000f0m0000m00
UUGACUAAAUGCAAAGUGA
665






14135
oooooooooooosssssso
Pm0fff0ff000mm00m00
AGACUCAUCAGACUGGUGA
666






14136
oooooooooooosssssso
Pmf0f0f0f0fmm0mm0m00
UCAUAUGUGUCUACUGUGG
667






14137
oooooooooooosssssso
Pmf0fffff0fmm0m00m00
AUGUCCUCGUCUGUAGCAU
668






14138
oooooooooooosssssso
Pm00fff0f00mm00mmmm0
GAAUUCACGGCUGACUUUG
669






14139
oooooooooooosssssso
Pmf0fffff000mmm000m0
UUAUUUCCAGACUCAAAUA
670






14140
oooooooooooosssssso
Pm000ff0f000mm000mm0
GAAGCCACAAACUAAACUA
671






14141
oooooooooooosssssso
Pmffff0ff000mmm0mmm0
CUUUCGUUGGACUUACUUG
672






14142
oooooooooooosssssso
Pmfff0f0000mmmmmm000
GUCUGCGAAACUUCUUAGA
673






14143
oooooooooooosssssso
Pm0f0fff0ff0mmmmm0m0
AAUGCUCAUUGCUCUCAUC
674






14144
oooooooooooosssssso
Pmf0f0ff0ffm00mmm0m0
AUGCACUAUCUAAUUCAUG
675






14145
oooooooooooosssssso
Pmff0f0f0f0mm0mmm000
CUUGUAUGCACCAUUCAAC
676






14146
oooooooooooosssssso
Pm00fff0ffm0m00mm00
UGACUCGUUUCAUAACUGU
677






14147
oooooooooooosssssso
Pmff00f0fffm00mm0mm0
UUCAGCACUCUGGUCAUCC
678






14148
oooooooooooosssssso
Pm00fff0f00mm0m00000
AAAUUCAUGGCUGUGGAAU
679






14149
oooooooooooosssssso
Pmf0fff00ff00m000mm0
ACAUUCAACCAAUAAACUG
680






14150
oooooooooooosssssso
Pm0f0f0fff00mm00m000
UACACAUUCAACCAAUAAA
681






14151
oooooooooooosssssso
Pmff00ff0ffmmm000mm0
AUUAGUUAUUUCCAGACUC
682






14152
oooooooooooosssssso
Pmffff0fff0m00000000
UUUCUAUUCAUGAGAGAAU
683






14153
oooooooooooosssssso
Pmff00ff0ff00m000mm0
UUCGGUUGCUGGCAGGUCC
684






14154
oooooooooooosssssso
Pm0f0f0f0000m00m0mm0
CAUGUGUGAGGUGAUGUCC
685






14155
oooooooooooosssssso
Pmf0ff0fff00mmmmmm00
GCACCAUUCAACUCCUCGC
686






14156
oooooooooooosssssso
Pm0fff00ff00mmm0mmm0
CAUCCAGCUGACUCGUUUC
687






14157
oooooooooooosssssso
Pmfffff0fff0m0m00mm0
CUUUCCGCUUAUAUAAUCU
688






14158
oooooooooooosssssso
Pm0ff0f0ff0000m0mmm0
AAUCACAUCGGAAUGCUCA
689






14159
oooooooooooosssssso
Pmf0f0ff00fm0mmmmm00
ACACAUUAGUUAUUUCCAG
690






14160
oooooooooooosssssso
Pmfff0f0000m000m0m00
UUCUAUAGAAUGAACAUAG
691






14161
oooooooooooosssssso
Pm0f00f00f00mmm0m0m0
UACAGUGAUAGUUUGCAUU
692






14162
oooooooooooosssssso
Pmf000f00ff00m0mm0m0
AUAAGCAAUUGACACCACC
693






14163
oooooooooooosssssso
Pmff0ff00ff0mm000m00
UUUAUUAAUUGCUGGACAA
694






14164
oooooooooooosssssso
Pmf0ff0000fmmmm0000
UCAUCAGAGUCGUUCGAGU
695






14165
oooooooooooosssssso
Pmf000ff0f0mm0mm0mm0
AUAAACCACACUAUCACCU
696






14166
oooooooooooosssssso
Pmf0ff0ff00mmmmmm0m0
UCAUCAUUGGCUUUCCGCU
697






14167
oooooooooooosssssso
Pmfffff00fm0mm00mm0
AGUUCCUGACUAUCAAUCA
698






14168
oooooooooooosssssso
Pmff0f00ff00mmmm0000
UUCACGGCUGACUUUGGAA
699






14169
oooooooooooosssssso
Pmffff0f00f00m000mm0
UUCUCAUGGUAGUGAGUUU
700






14170
oooooooooooosssssso
Pm0ff00fff0mmm00mm00
AAUCAGCCUGUUUAACUGG
701






14171
oooooooooooosssssso
Pm0ffff00f0mmmm00mm0
GGUUUCAGCACUCUGGUCA
702






14172
oooooooooooosssssso
Pmff0000f0fmm0mm0mm0
AUCGGAAUGCUCAUUGCUC
703






14173
oooooooooooosssssso
Pm00ff0f0000mmm0m000
UGGCUGUGGAAUUCACGGC
704






14174
oooooooooooosssssso
Pm000f00ff00m0mm0mm0
UAAGCAAUUGACACCACCA
705






14175
oooooooooooosssssso
Pm00fffff0f00m00m000
CAAUUCUCAUGGUAGUGAG
706






14176
oooooooooooosssssso
Pm00fffff0fm000mmm00
UGGCUUUCGUUGGACUUAC
707






14177
oooooooooooosssssso
Pm0ff00f00fm00mmm0m0
AAUCAGUGACCAGUUCAUC
708






14178
oooooooooooosssssso
Pmfff0f000mm0m0mm00
AGUCCAUAAACCACACUAU
709






14179
oooooooooooosssssso
Pm00f0ffff00mm0mmm00
CAGCACUCUGGUCAUCCAG
710






14180
oooooooooooosssssso
Pm0ff00ff0f0mm0000m0
UAUCAAUCACAUCGGAAUG
711






14181
oooooooooooosssssso
Pmfff0f00ff00mmmm000
AUUCACGGCUGACUUUGGA
712






14182
oooooooooooosssssso
Pmf000f0f0f0mmm00mm0
AUAGAUACACAUUCAACCA
713






14183
oooooooooooosssssso
Pmffff000ffm000m0000
UUUCCAGACUCAAAUAGAU
714






14184
oooooooooooosssssso
Pmf00ff0ff000m00mm00
UUAAUUGCUGGACAACCGU
715






14185
oooooooooooosssssso
Pm0ff00ff0fm000m00m0
UAUUAAUUGCUGGACAACC
716






14186
oooooooooooosssssso
Pmff0fff000mm00m000
AGUCGUUCGAGUCAAUGGA
717






14187
oooooooooooosssssso
Pmff0ff00f000mmm0m00
GUUGCUGGCAGGUCCGUGG
718





TABLE 2: Antisense backbone, chemistry, and sequence information. o: phosphodiester; s: phosphorothioate;


P: 5′ phosphorylation; 0: 2′-OH; F: 2′-fluoro; m: 2′ O-methyl; +: LNA modification. Capital letters in the


sequence signify riobonucleotides, lower case letters signify deoxyribonucleotides.













TABLE 3







Sense backbone, chemistry, and sequence information.
















OHang



SEQ




Oligo
Sense
Sense


ID


ID Number
Number
Chem.
Backbone
Sense Chemistry
Sense Sequence
NO:

















APOB-10167-
12138
chl
ooooooooooooo
00000000000000000
GUCAUCACACUGAA
176



20-12138


ooooooso
000
UACCAAU





APOB-10167-
12139
chl
ooooooooooooo
00000000000000000
GUGAUCAGACUCAA
177


20-12139


ooooooso
000
UACGAAU





MAP4K4-2931-
12266
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
178


13-12266





MAP4K4-2931-
12293
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
179


16-12293





MAP4K4-2931-
12383
chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
180


16-12383





MAP4K4-2931-
12384
chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
181


16-12384





MAP4K4-2931-
12385
chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
182


16-12385





MAP4K4-2931-
12386
chl
oooooooooosso
0mm0m00000mmm0
CUGUGGAAGUCUA
183


16-12386





MAP4K4-2931-
12387
chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
184


16-12387





MAP4K4-2931-
12388
chl
ooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
185


15-12388





MAP4K4-2931-
12432
chl
ooooooooooooo
DY547mm0m00000mmm0
CUGUGGAAGUCUA
186


13-12432





MAP4K4-2931-
12266.2
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
187


13-12266.2





APOB--21-
12434
chl
ooooooooooooo
00000000000000000
GUCAUCACACUGAA
188


12434


ooooooso
000
UACCAAU





APOB--21-
12435
chl
ooooooooooooo
DY547000000000000
GUGAUCAGACUCAA
189


12435


ooooooso
00000000
UACGAAU





MAP4K4-2931-
12451
chl
oooooooooooss
0mm0m00000mmm0
CUGUGGAAGUCUA
190


16-12451





MAP4K4-2931-
12452
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
191


16-12452





MAP4K4-2931-
12453
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
192


16-12453





MAP4K4-2931-
12454
chl
oooooooooooss
0mm0m00000mmm0
CUGUGGAAGUCUA
193


17-12454





MAP4K4-2931-
12455
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
194


17-12455





MAP4K4-2931-
12456
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
195


19-12456





--27-12480
12480
chl
ooooooooooooo
DY547mm0f000f0055
UCAUAGGUAACCUC
196





ooooooooooosso
f5f00mm00000m000
UGGUUGAAAGUGA





--27-12481
12481
chl
ooooooooooooo
DY547mm05f05000f0
CGGCUACAGGUGCU
197





ooooooooooosso
5ff0m00000000m00
UAUGAAGAAAGUA





APOB-10167-
12505
chl
ooooooooooooo
00000000000000000
GUCAUCACACUGAA
198


21-12505


ooooooos
0000
UACCAAU





APOB-10167-
12506
chl
ooooooooooooo
00000000000000000
GUGAUCAGACUCAA
199


21-12506


ooooooos
0000
UACGAAU





MAP4K4-2931-
12539
chl
oooooooooooss
DY547mm0m00000mmm0
CUGUGGAAGUCUA
200


16-12539





APOB-10167-
12505.2
chl
ooooooooooooo
00000000000000000
GUCAUCACACUGAA
201


21-12505.2


ooooooso
000
UACCAAU





APOB-10167-
12506.2
chl
ooooooooooooo
00000000000000000
GUGAUCAGACUCAA
202


21-12506.2


ooooooso
000
UACGAAU





MAP4K4--13-
12565
Chl
ooooooooooooo
m0m0000m0mmm0
UGUAGGAUGUCUA
203


12565





MAP4K4-2931-
12386.2
chl
ooooooooooooo
0mm0m00000mmm0
CUGUGGAAGUCUA
204


16-12386.2





MAP4K4-2931-
12815
chl
ooooooooooooo
m0m0m0m0m0m0m0m0m
CUGUGGAAGUCUA
205


13-12815



0m0m0m0m0





APOB--13-
12957
Chl
oooooooooooss
0mmmmmmmmmmmmm
ACUGAAUACCAAU
206


12957

TEG





MAP4K4--16-
12983
chl
oooooooooooss
mm0m00000mmm0
CUGUGGAAGUCUA
207


12983





MAP4K4--16-
12984
Chl
oooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
208


12984





MAP4K4--16-
12985
chl
oooooooooosso
mmmmmmmmmmmmm
CUGUGGAAGUCUA
209


12985





MAP4K4--16-
12986
chl
oooooooooosso
mmmmmmmmmmmmm
CUGUGGAAGUCUA
210


12986





MAP4K4--16-
12987
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
211


12987





MAP4K4--16-
12988
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
212


12988





MAP4K4--16-
12989
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
213


12989





MAP4K4--16-
12990
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
214


12990





MAP4K4--16-
12991
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
215


12991





MAP4K4--16-
12992
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
216


12992





MAP4K4--16-
12993
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
217


12993





MAP4K4--16-
12994
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
218


12994





MAP4K4--16-
12995
chl
oooooooooosso
mm0m00000mmm0
CUGUGGAAGUCUA
219


12995





MAP4K4-2931-
13012
chl
ooooooooooooo
00000000000000000
AGAGUUCUGUGGAA
220


19-13012


oooooo
0000
GUCUA





MAP4K4-2931-
13016
chl
ooooooooooooo
DY547000000000000
AGAGUUCUGUGGAA
221


19-13016


oooooo
000000000
GUCUA





PPIB--13-
13021
Chl
ooooooooooooo
0mmm00mm0m000
AUUUGGCUACAAA
222


13021





pGL3-1172-
13038
chl
ooooooooooooo
00m000m0m00mmm
ACAAAUACGAUUU
223


13-13038





pGL3-1172-
13040
chl
ooooooooooooo
DY5470m000m0m00mmm
ACAAAUACGAUUU
224


13-13040





--16-13047
13047
Chl
oooooooooooooo
mm0m00000mmm0
CUGUGGAAGUCUA
225





SOD1-530-13-
13090
chl
ooooooooooooo
00m00000000m0
AAUGAAGAAAGUA
226


13090





SOD1-523-13-
13091
chl
ooooooooooooo
000m00000m000
AGGUGGAAAUGAA
227


13091





SOD1-535-13-
13092
chl
ooooooooooooo
000000m0m0000
AGAAAGUACAAAG
228


13092





SOD1-536-13-
13093
chl
ooooooooooooo
00000m0m00000
GAAAGUACAAAGA
229


13093





SOD1-396-13-
13094
chl
ooooooooooooo
0m0m00mm0mm00
AUGUGACUGCUGA
230


13094





SOD1-385-13-
13095
chl
ooooooooooooo
000mmm000m00m
AGACUUGGGCAAU
231


13095





SOD1-195-13-
13096
chl
ooooooooooooo
0mmmm000m0000
AUUUCGAGCAGAA
232


13096





APOB-4314-
13115
Chl
ooooooooooooo
0mmm0000000m0
AUCUGGAGAAACA
233


13-13115





APOB-3384-
13116
Chl
ooooooooooooo
mm0000m000000
UCAGAACAAGAAA
234


13-13116





APOB-3547-
13117
Chl
ooooooooooooo
00mmm0mmm0mm0
GACUCAUCUGCUA
235


13-13117





APOB-4318-
13118
Chl
ooooooooooooo
0000000m00m0m
GGAGAAACAACAU
236


13-13118





APOB-3741-
13119
Chl
ooooooooooooo
00mmmmmm000m0
AGUCCCUCAAACA
237


13-13119





PPIB--16-
13136
Chl
oooooooooooooo
00mm0m00000m0
GGCUACAAAAACA
238


13136





APOB-4314-
13154
chl
oooooooooooooo
000mmm0000000m0
AGAUCUGGAGAAACA
239


15-13154





APOB-3547-
13155
chl
oooooooooooooo
m000mmm0mmm0mm0
UGGACUCAUCUGCUA
240


15-13155





APOB-4318-
13157
chl
oooooooooooooo
mm0000000m00m0m
CUGGAGAAACAACAU
241


15-13157





APOB-3741-
13158
chl
oooooooooooooo
0000mmmmmm000m0
AGAGUCCCUCAAACA
242


15-13158





APOB--13-
13159
chl
oooooooooooo
0mm000m0mm00m
ACUGAAUACCAAU
243


13159





APOB--15-
13160
chl
oooooooooooooo
0m0mm000m0mm00m
ACACUGAAUACCAAU
244


13160





SOD1-530-16-
13163
chl
ooooooooooooo
00m00000000m0
AAUGAAGAAAGUA
245


13163





SOD1-523-16-
13164
chl
ooooooooooooo
000m00000m000
AGGUGGAAAUGAA
246


13164





SOD1-535-16-
13165
chl
ooooooooooooo
000000m0m0000
AGAAAGUACAAAG
247


13165





SOD1-536-16-
13166
chl
ooooooooooooo
00000m0m00000
GAAAGUACAAAGA
248


13166





SOD1-396-16-
13167
chl
ooooooooooooo
0m0m00mm0mm00
AUGUGACUGCUGA
249


13167





SOD1-385-16-
13168
chl
ooooooooooooo
000mmm000m00m
AGACUUGGGCAAU
250


13168





SOD1-195-16-
13169
chl
ooooooooooooo
0mmmm000m0000
AUUUCGAGCAGAA
251


13169





pGL3-1172-
13170
chl
ooooooooooooo
0m000m0m00mmm
ACAAAUACGAUUU
252


16-13170





pGL3-1172-
13171
chl
ooooooooooooo
DY5470m000m0m00mmm
ACAAAUACGAUUU
253


16-13171





MAP4k4-2931-
13189
chl
ooooooooooooo
00000000000000000
AGAGUUCUGUGGAA
254


19-13189


oooooo
0000
GUCUA





CTGF-1222-
13190
Chl
ooooooooooooo
0m0000000m0m0
ACAGGAAGAUGUA
255


13-13190





CTGF-813-13-
13192
Chl
ooooooooooooo
000m0000m0mmm
GAGUGGAGCGCCU
256


13192





CTGF-747-13-
13194
Chl
ooooooooooooo
m00mm000000m0
CGACUGGAAGACA
257


13194





CTGF-817-13-
13196
Chl
ooooooooooooo
0000m0mmm0mmm
GGAGCGCCUGUUC
258


13196





CTGF-1174-
13198
Chl
ooooooooooooo
0mm0mm0m00mm0
GCCAUUACAACUG
259


13-13198





CTGF-1005-
13200
Chl
ooooooooooooo
000mmmmmm00mm
GAGCUUUCUGGCU
260


13-13200





CTGF-814-13-
13202
Chl
ooooooooooooo
00m0000m0mmm0
AGUGGAGCGCCUG
261


13202





CTGF-816-13-
13204
Chl
ooooooooooooo
m0000m0mmm0mm
UGGAGCGCCUGUU
262


13204





CTGF-1001-
13206
Chl
ooooooooooooo
0mmm000mmmmmm
GUUUGAGCUUUCU
263


13-13206





CTGF-1173-
13208
Chl
ooooooooooooo
m0mm0mm0m00mm
UGCCAUUACAACU
264


13-13208





CTGF-749-13-
13210
Chl
ooooooooooooo
0mm000000m0m0
ACUGGAAGACACG
265


13210





CTGF-792-13-
13212
Chl
ooooooooooooo
00mm0mmm00mmm
AACUGCCUGGUCC
266


13212





CTGF-1162-
13214
Chl
ooooooooooooo
000mmm0m0mmm0
AGACCUGUGCCUG
267


13-13214





CTGF-811-13-
13216
Chl
ooooooooooooo
m0000m0000m0m
CAGAGUGGAGCGC
268


13216





CTGF-797-13-
13218
Chl
ooooooooooooo
mmm00mmm000mm
CCUGGUCCAGACC
269


13218





CTGF-1175-
13220
Chl
ooooooooooooo
mm0mm0m00mm0m
CCAUUACAACUGU
270


13-13220





CTGF-1172-
13222
Chl
ooooooooooooo
mm0mm0mm0m00m
CUGCCAUUACAAC
271


13-13222





CTGF-1177-
13224
Chl
ooooooooooooo
0mm0m00mm0mmm
AUUACAACUGUCC
272


13-13224





CTGF-1176-
13226
Chl
ooooooooooooo
m0mm0m00mm0mm
CAUUACAACUGUC
273


13-13226





CTGF-812-13-
13228
Chl
ooooooooooooo
0000m0000m0mm
AGAGUGGAGCGCC
274


13228





CTGF-745-13-
13230
Chl
ooooooooooooo
0mm00mm000000
ACCGACUGGAAGA
275


13230





CTGF-1230-
13232
Chl
ooooooooooooo
0m0m0m00000m0
AUGUACGGAGACA
276


13-13232





CTGF-920-13-
13234
Chl
ooooooooooooo
0mmmm0m0000mm
GCCUUGCGAAGCU
277


13234





CTGF-679-13-
13236
Chl
ooooooooooooo
0mm0m000000m0
GCUGCGAGGAGUG
278


13236





CTGF-992-13-
13238
Chl
ooooooooooooo
0mmm0mm000mmm
GCCUAUCAAGUUU
279


13238





CTGF-1045-
13240
Chl
ooooooooooooo
00mmmm0m0000m
AAUUCUGUGGAGU
280


13-13240





CTGF-1231-
13242
Chl
ooooooooooooo
m0m0m00000m0m
UGUACGGAGACAU
281


13-13242





CTGF-991-13-
13244
Chl
ooooooooooooo
00mmm0mm000mm
AGCCUAUCAAGUU
282


13244





CTGF-998-13-
13246
Chl
ooooooooooooo
m000mmm000mmm
CAAGUUUGAGCUU
283


13246





CTGF-1049-
13248
Chl
ooooooooooooo
mm0m0000m0m0m
CUGUGGAGUAUGU
284


13-13248





CTGF-1044-
13250
Chl
ooooooooooooo
000mmmm0m0000
AAAUUCUGUGGAG
285


13-13250





CTGF-1327-
13252
Chl
ooooooooooooo
mmmm00m00m0m0
UUUCAGUAGCACA
286


13-13252





CTGF-1196-
13254
Chl
ooooooooooooo
m00m00m0mmmmm
CAAUGACAUCUUU
287


13-13254





CTGF-562-13-
13256
Chl
ooooooooooooo
00m0mm00m0m0m
AGUACCAGUGCAC
288


13256





CTGF-752-13-
13258
Chl
ooooooooooooo
000000m0m0mmm
GGAAGACACGUUU
289


13258





CTGF-994-13-
13260
Chl
ooooooooooooo
mm0mm000mmm00
CUAUCAAGUUUGA
290


13260





CTGF-1040-
13262
Chl
ooooooooooooo
00mm000mmmm0m
AGCUAAAUUCUGU
291


13-13262





CTGF-1984-
13264
Chl
ooooooooooooo
000m0000m0m00
AGGUAGAAUGUAA
292


13-13264





CTGF-2195-
13266
Chl
ooooooooooooo
00mm00mm00mmm
AGCUGAUCAGUUU
293


13-13266





CTGF-2043-
13268
Chl
ooooooooooooo
mmmm0mmm000m0
UUCUGCUCAGAUA
294


13-13268





CTGF-1892-
13270
Chl
ooooooooooooo
mm0mmm000mm00
UUAUCUAAGUUAA
295


13-13270





CTGF-1567-
13272
Chl
ooooooooooooo
m0m0m000m00m0
UAUACGAGUAAUA
296


13-13272





CTGF-1780-
13274
Chl
ooooooooooooo
00mm000m00mmm
GACUGGACAGCUU
297


13-13274





CTGF-2162-
13276
Chl
ooooooooooooo
0m00mmmmm0mm0
AUGGCCUUUAUUA
298


13-13276





CTGF-1034-
13278
Chl
ooooooooooooo
0m0mm000mm000
AUACCGAGCUAAA
299


13-13278





CTGF-2264-
13280
Chl
ooooooooooooo
mm0mm00000m0m
UUGUUGAGAGUGU
300


13-13280





CTGF-1032-
13282
Chl
ooooooooooooo
0m0m0mm000mm0
ACAUACCGAGCUA
301


13-13282





CTGF-1535-
13284
Chl
ooooooooooooo
00m0000000mm0
AGCAGAAAGGUUA
302


13-13284





CTGF-1694-
13286
Chl
ooooooooooooo
00mm0mmmmmm00
AGUUGUUCCUUAA
303


13-13286





CTGF-1588-
13288
Chl
ooooooooooooo
0mmm0000m0m00
AUUUGAAGUGUAA
304


13-13288





CTGF-928-13-
13290
Chl
ooooooooooooo
000mm00mmm000
AAGCUGACCUGGA
305


13290





CTGF-1133-
13292
Chl
ooooooooooooo
00mm0m0000000
GGUCAUGAAGAAG
306


13-13292





CTGF-912-13-
13294
Chl
ooooooooooooo
0m00mm000mmmm
AUGGUCAGGCCUU
307


13294





CTGF-753-13-
13296
Chl
ooooooooooooo
00000m0m0mmm0
GAAGACACGUUUG
308


13296





CTGF-918-13-
13298
Chl
ooooooooooooo
000mmmm0m0000
AGGCCUUGCGAAG
309


13298





CTGF-744-13-
13300
Chl
ooooooooooooo
m0mm0mm00000
UACCGACUGGAAG
310


13300





CTGF-466-13-
13302
Chl
ooooooooooooo
0mm0m0000mm0
ACCGCAAGAUCGG
311


13302





CTGF-917-13-
13304
Chl
ooooooooooooo
m000mmmm0m000
CAGGCCUUGCGAA
312


13304





CTGF-1038-
13306
Chl
ooooooooooooo
m000mm000mmmm
CGAGCUAAAUUCU
313


13-13306





CTGF-1048-
13308
Chl
ooooooooooooo
mmm0m0000m0m0
UCUGUGGAGUAUG
314


13-13308





CTGF-1235-
13310
Chl
ooooooooooooo
m00000m0m00m0
CGGAGACAUGGCA
315


13-13310





CTGF-868-13-
13312
Chl
ooooooooooooo
0m00m00m0mmmm
AUGACAACGCCUC
316


13312





CTGF-1131-
13314
Chl
ooooooooooooo
0000mm0m00000
GAGGUCAUGAAGA
317


13-13314





CTGF-1043-
13316
Chl
ooooooooooooo
m000mmmm0m000
UAAAUUCUGUGGA
318


13-13316





CTGF-751-13-
13318
Chl
ooooooooooooo
m000000m0m0mm
UGGAAGACACGUU
319


13318





CTGF-1227-
13320
Chl
ooooooooooooo
0000m0m0m0000
AAGAUGUACGGAG
320


13-13320





CTGF-867-13-
13322
Chl
ooooooooooooo
00m00m00m0mmm
AAUGACAACGCCU
321


13322





CTGF-1128-
13324
Chl
ooooooooooooo
00m0000mm0m00
GGCGAGGUCAUGA
322


13-13324





CTGF-756-13-
13326
Chl
ooooooooooooo
00m0m0mmm00mm
GACACGUUUGGCC
323


13326





CTGF-1234-
13328
Chl
ooooooooooooo
0m00000m0m00m
ACGGAGACAUGGC
324


13-13328





CTGF-916-13-
13330
Chl
ooooooooooooo
mm000mmmm0m00
UCAGGCCUUGCGA
325


13330





CTGF-925-13-
13332
Chl
ooooooooooooo
0m0000mm00mmm
GCGAAGCUGACCU
326


13332





CTGF-1225-
13334
Chl
ooooooooooooo
000000m0m0m00
GGAAGAUGUACGG
327


13-13334





CTGF-445-13-
13336
Chl
ooooooooooooo
0m00mmmm00mmm
GUGACUUCGGCUC
328


13336





CTGF-446-13-
13338
Chl
ooooooooooooo
m00mmmm00mmmm
UGACUUCGGCUCC
329


13338





CTGF-913-13-
13340
Chl
ooooooooooooo
m00mm000mmmm0
UGGUCAGGCCUUG
330


13340





CTGF-997-13-
13342
Chl
ooooooooooooo
mm000mmm000mm
UCAAGUUUGAGCU
331


13342





CTGF-277-13-
13344
Chl
ooooooooooooo
0mm0000mm0m00
GCCAGAACUGCAG
332


13344





CTGF-1052-
13346
Chl
ooooooooooooo
m0000m0m0m0mm
UGGAGUAUGUACC
333


13-13346





CTGF-887-13-
13348
Chl
ooooooooooooo
0mm0000000m00
GCUAGAGAAGCAG
334


13348





CTGF-914-13-
13350
Chl
ooooooooooooo
00mm000mmmm0m
GGUCAGGCCUUGC
335


13350





CTGF-1039-
13352
Chl
ooooooooooooo
000mm000mmmm0
GAGCUAAAUUCUG
336


13-13352





CTGF-754-13-
13354
Chl
ooooooooooooo
0000m0m0mmm00
AAGACACGUUUGG
337


13354





CTGF-1130-
13356
Chl
ooooooooooooo
m0000mm0m0000
CGAGGUCAUGAAG
338


13-13356





CTGF-919-13-
13358
Chl
ooooooooooooo
00mmmm0m0000m
GGCCUUGCGAAGC
339


13358





CTGF-922-13-
13360
Chl
ooooooooooooo
mmm0m0000mm00
CUUGCGAAGCUGA
340


13360





CTGF-746-13-
13362
Chl
ooooooooooooo
mm00mm000000m
CCGACUGGAAGAC
341


13362





CTGF-993-13-
13364
Chl
ooooooooooooo
mmm0mm000mmm0
CCUAUCAAGUUUG
342


13364





CTGF-825-13-
13366
Chl
ooooooooooooo
m0mmmm0000mmm
UGUUCCAAGACCU
343


13366





CTGF-926-13-
13368
Chl
ooooooooooooo
m0000mm00mmm0
CGAAGCUGACCUG
344


13368





CTGF-923-13-
13370
Chl
ooooooooooooo
mm0m0000mm00m
UUGCGAAGCUGAC
345


13370





CTGF-866-13-
13372
Chl
ooooooooooooo
m00m00m00m0mm
CAAUGACAACGCC
346


13372





CTGF-563-13-
13374
Chl
ooooooooooooo
0m0mm00m0m0m0
GUACCAGUGCACG
347


13374





CTGF-823-13-
13376
Chl
ooooooooooooo
mmm0mmmm0000m
CCUGUUCCAAGAC
348


13376





CTGF-1233-
13378
Chl
ooooooooooooo
m0m00000m0m00
UACGGAGACAUGG
349


13-13378





CTGF-924-13-
13380
Chl
ooooooooooooo
m0m0000mm00mm
UGCGAAGCUGACC
350


13380





CTGF-921-13-
13382
Chl
ooooooooooooo
mmmm0m0000mm0
CCUUGCGAAGCUG
351


13382





CTGF-443-13-
13384
Chl
ooooooooooooo
mm0m00mmmm00m
CUGUGACUUCGGC
352


13384





CTGF-1041-
13386
Chl
ooooooooooooo
0mm000mmmm0m0
GCUAAAUUCUGUG
353


13-13386





CTGF-1042-
13388
Chl
ooooooooooooo
mm000mmmm0m00
CUAAAUUCUGUGG
354


13-13388





CTGF-755-13-
13390
Chl
ooooooooooooo
000m0m0mmm00m
AGACACGUUUGGC
355


13390





CTGF-467-13-
13392
Chl
ooooooooooooo
mm0m0000mm00m
CCGCAAGAUCGGC
356


13392





CTGF-995-13-
13394
Chl
ooooooooooooo
m0mm000mmm000
UAUCAAGUUUGAG
357


13394





CTGF-927-13-
13396
Chl
ooooooooooooo
0000mm00mmm00
GAAGCUGACCUGG
358


13396





SPP1-1025-
13398
Chl
ooooooooooooo
mmm0m000mm000
CUCAUGAAUUAGA
359


13-13398





SPP1-1049-
13400
Chl
ooooooooooooo
mm0000mm00mm0
CUGAGGUCAAUUA
360


13-13400





SPP1-1051-
13402
Chl
ooooooooooooo
0000mm00mm000
GAGGUCAAUUAAA
361


13-13402





SPP1-1048-
13404
Chl
ooooooooooooo
mmm0000mm00mm
UCUGAGGUCAAUU
362


13-13404





SPP1-1050-
13406
Chl
ooooooooooooo
m0000mm00mm00
UGAGGUCAAUUAA
363


13-13406





SPP1-1047-
13408
Chl
ooooooooooooo
mmmm0000mm00m
UUCUGAGGUCAAU
364


13-13408





SPP1-800-13-
13410
Chl
ooooooooooooo
0mm00mm000m00
GUCAGCUGGAUGA
365


13410





SPP1-492-13-
13412
Chl
ooooooooooooo
mmmm00m000mmm
UUCUGAUGAAUCU
366


13412





SPP1-612-13-
13414
Chl
ooooooooooooo
m000mm0000mm0
UGGACUGAGGUCA
367


13414





SPP1-481-13-
13416
Chl
ooooooooooooo
000mmmm0mm0mm
GAGUCUCACCAUU
368


13416





SPP1-614-13-
13418
Chl
ooooooooooooo
00mm0000mm000
GACUGAGGUCAAA
369


13418





SPP1-951-13-
13420
Chl
ooooooooooooo
mm0m00mm0m000
UCACAGCCAUGAA
370


13420





SPP1-482-13-
13422
Chl
ooooooooooooo
00mmmm0mm0mmm
AGUCUCACCAUUC
371


13422





SPP1-856-13-
13424
Chl
ooooooooooooo
000m000000mm0
AAGCGGAAAGCCA
372


13424





SPP1-857-13-
13426
Chl
ooooooooooooo
00m000000mm00
AGCGGAAAGCCAA
373


13426





SPP1-365-13-
13428
Chl
ooooooooooooo
0mm0m0m000m00
ACCACAUGGAUGA
374


13428





SPP1-359-13-
13430
Chl
ooooooooooooo
0mm0m00mm0m0m
GCCAUGACCACAU
375


13430





SPP1-357-13-
13432
Chl
ooooooooooooo
000mm0m00mm0m
AAGCCAUGACCAC
376


13432





SPP1-858-13-
13434
Chl
ooooooooooooo
0m000000mm00m
GCGGAAAGCCAAU
377


13434





SPP1-1012-
13436
Chl
ooooooooooooo
000mmmm0m0mmm
AAAUUUCGUAUUU
378


13-13436





SPP1-1014-
13438
Chl
ooooooooooooo
0mmmm0m0mmmmm
AUUUCGUAUUUCU
379


13-13438





SPP1-356-13-
13440
Chl
ooooooooooooo
0000mm0m00mm0
AAAGCCAUGACCA
380


13440





SPP1-368-13-
13442
Chl
ooooooooooooo
0m0m000m00m0m
ACAUGGAUGAUAU
381


13442





SPP1-1011-
13444
Chl
ooooooooooooo
0000mmmm0m0mm
GAAAUUUCGUAUU
382


13-13444





SPP1-754-13-
13446
Chl
ooooooooooooo
0m0mmmmmm00mm
GCGCCUUCUGAUU
383


13446





SPP1-1021-
13448
Chl
ooooooooooooo
0mmmmmm0m000m
AUUUCUCAUGAAU
384


13-13448





SPP1-1330-
13450
Chl
ooooooooooooo
mmmmm0m000m00
CUCUCAUGAAUAG
385


13-13450





SPP1-346-13-
13452
Chl
ooooooooooooo
000mmm00m0000
AAGUCCAACGAAA
386


13452





SPP1-869-13-
13454
Chl
ooooooooooooo
0m00m00000m00
AUGAUGAGAGCAA
387


13454





SPP1-701-13-
13456
Chl
ooooooooooooo
0m000000mm000
GCGAGGAGUUGAA
388


13456





SPP1-896-13-
13458
Chl
ooooooooooooo
m00mm00m00mm0
UGAUUGAUAGUCA
389


13458





SPP1-1035-
13460
Chl
ooooooooooooo
000m00m0m0mmm
AGAUAGUGCAUCU
390


13-13460





SPP1-1170-
13462
Chl
ooooooooooooo
0m0m0m0mmm0mm
AUGUGUAUCUAUU
391


13-13462





SPP1-1282-
13464
Chl
ooooooooooooo
mmmm0m0000000
UUCUAUAGAAGAA
392


13-13464





SPP1-1537-
13466
Chl
ooooooooooooo
mm0mmm00m00mm
UUGUCCAGCAAUU
393


13-13466





SPP1-692-13-
13468
Chl
ooooooooooooo
0m0m000000m00
ACAUGGAAAGCGA
394


13468





SPP1-840-13-
13470
Chl
ooooooooooooo
0m00mmm000mm0
GCAGUCCAGAUUA
395


13470





SPP1-1163-
13472
Chl
ooooooooooooo
m00mm000m0m0m
UGGUUGAAUGUGU
396


13-13472





SPP1-789-13-
13474
Chl
ooooooooooooo
mm0m0000m000m
UUAUGAAACGAGU
397


13474





SPP1-841-13-
13476
Chl
ooooooooooooo
m00mmm000mm0m
CAGUCCAGAUUAU
398


13476





SPP1-852-13-
13478
Chl
ooooooooooooo
0m0m000m00000
AUAUAAGCGGAAA
399


13478





SPP1-209-13-
13480
Chl
ooooooooooooo
m0mm00mm000m0
UACCAGUUAAACA
400


13480





SPP1-1276-
13482
Chl
ooooooooooooo
m0mmm0mmmm0m0
UGUUCAUUCUAUA
401


13-13482





SPP1-137-13-
13484
Chl
ooooooooooooo
mm00mm0000000
CCGACCAAGGAAA
402


13484





SPP1-711-13-
13486
Chl
ooooooooooooo
000m00m0m0m0m
GAAUGGUGCAUAC
403


13486





SPP1-582-13-
13488
Chl
ooooooooooooo
0m0m00m00mm00
AUAUGAUGGCCGA
404


13488





SPP1-839-13-
13490
Chl
ooooooooooooo
00m00mmm000mm
AGCAGUCCAGAUU
405


13490





SPP1-1091-
13492
Chl
ooooooooooooo
0m0mmm00mm000
GCAUUUAGUCAAA
406


13-13492





SPP1-884-13-
13494
Chl
ooooooooooooo
00m0mmmm00m0m
AGCAUUCCGAUGU
407


13494





SPP1-903-13-
13496
Chl
ooooooooooooo
m00mm00000mmm
UAGUCAGGAACUU
408


13496





SPP1-1090-
13498
Chl
ooooooooooooo
m0m0mmm00mm00
UGCAUUUAGUCAA
409


13-13498





SPP1-474-13-
13500
Chl
ooooooooooooo
0mmm00m000mmm
GUCUGAUGAGUCU
410


13500





SPP1-575-13-
13502
Chl
ooooooooooooo
m000m0m0m0m00
UAGACACAUAUGA
411


13502





SPP1-671-13-
13504
Chl
ooooooooooooo
m000m00000m0m
CAGACGAGGACAU
412


13504





SPP1-924-13-
13506
Chl
ooooooooooooo
m00mm0m000mmm
CAGCCGUGAAUUC
413


13506





SPP1-1185-
13508
Chl
ooooooooooooo
00mmm00000m00
AGUCUGGAAAUAA
414


13-13508





SPP1-1221-
13510
Chl
ooooooooooooo
00mmm0m00mmmm
AGUUUGUGGCUUC
415


13-13510





SPP1-347-13-
13512
Chl
ooooooooooooo
00mmm00m00000
AGUCCAACGAAAG
416


13512





SPP1-634-13-
13514
Chl
ooooooooooooo
000mmmm0m000m
AAGUUUCGCAGAC
417


13514





SPP1-877-13-
13516
Chl
ooooooooooooo
00m00m000m0mm
AGCAAUGAGCAUU
418


13516





SPP1-1033-
13518
Chl
ooooooooooooo
mm000m00m0m0m
UUAGAUAGUGCAU
419


13-13518





SPP1-714-13-
13520
Chl
ooooooooooooo
m00m0m0m0m000
UGGUGCAUACAAG
420


13520





SPP1-791-13-
13522
Chl
ooooooooooooo
0m0000m000mm0
AUGAAACGAGUCA
421


13522





SPP1-813-13-
13524
Chl
ooooooooooooo
mm0000m0mm000
CCAGAGUGCUGAA
422


13524





SPP1-939-13-
13526
Chl
ooooooooooooo
m00mm0m000mmm
CAGCCAUGAAUUU
423


13526





SPP1-1161-
13528
Chl
ooooooooooooo
0mm00mm000m0m
AUUGGUUGAAUGU
424


13-13528





SPP1-1164-
13530
Chl
ooooooooooooo
00mm000m0m0m0
GGUUGAAUGUGUA
425


13-13530





SPP1-1190-
13532
Chl
ooooooooooooo
00000m00mm00m
GGAAAUAACUAAU
426


13-13532





SPP1-1333-
13534
Chl
ooooooooooooo
mm0m000m00000
UCAUGAAUAGAAA
427


13-13534





SPP1-537-13-
13536
Chl
ooooooooooooo
0mm00m00mm000
GCCAGCAACCGAA
428


13536





SPP1-684-13-
13538
Chl
ooooooooooooo
m0mmmm0m0m0m0
CACCUCACACAUG
429


13538





SPP1-707-13-
13540
Chl
ooooooooooooo
00mm000m00m0m
AGUUGAAUGGUGC
430


13540





SPP1-799-13-
13542
Chl
ooooooooooooo
00mm00mm000m0
AGUCAGCUGGAUG
431


13542





SPP1-853-13-
13544
Chl
ooooooooooooo
m0m000m000000
UAUAAGCGGAAAG
432


13544





SPP1-888-13-
13546
Chl
ooooooooooooo
mmmm00m0m00mm
UUCCGAUGUGAUU
433


13546





SPP1-1194-
13548
Chl
ooooooooooooo
0m00mm00m0m0m
AUAACUAAUGUGU
434


13-13548





SPP1-1279-
13550
Chl
ooooooooooooo
mm0mmmm0m0000
UCAUUCUAUAGAA
435


13-13550





SPP1-1300-
13552
Chl
ooooooooooooo
00mm0mm0mm0m0
AACUAUCACUGUA
436


13-13552





SPP1-1510-
13554
Chl
ooooooooooooo
0mm00mm0mmm0m
GUCAAUUGCUUAU
437


13-13554





SPP1-1543-
13556
Chl
ooooooooooooo
00m00mm00m000
AGCAAUUAAUAAA
438


13-13556





SPP1-434-13-
13558
Chl
ooooooooooooo
0m00mmmm00m00
ACGACUCUGAUGA
439


13558





SPP1-600-13-
13560
Chl
ooooooooooooo
m00m0m00mmm0m
UAGUGUGGUUUAU
440


13560





SPP1-863-13-
13562
Chl
ooooooooooooo
000mm00m00m00
AAGCCAAUGAUGA
441


13562





SPP1-902-13-
13564
Chl
ooooooooooooo
0m00mm00000mm
AUAGUCAGGAACU
442


13564





SPP1-921-13-
13566
Chl
ooooooooooooo
00mm00mm0m000
AGUCAGCCGUGAA
443


13566





SPP1-154-13-
13568
Chl
ooooooooooooo
0mm0mm0m00000
ACUACCAUGAGAA
444


13568





SPP1-217-13-
13570
Chl
ooooooooooooo
000m000mm00mm
AAACAGGCUGAUU
445


13570





SPP1-816-13-
13572
Chl
ooooooooooooo
000m0mm0000mm
GAGUGCUGAAACC
446


13572





SPP1-882-13-
13574
Chl
ooooooooooooo
m000m0mmmm00m
UGAGCAUUCCGAU
447


13574





SPP1-932-13-
13576
Chl
ooooooooooooo
00mmmm0m00mm0
AAUUCCACAGCCA
448


13576





SPP1-1509-
13578
Chl
ooooooooooooo
m0mm00mm0mmm0
UGUCAAUUGCUUA
449


13-13578





SPP1-157-13-
13580
Chl
ooooooooooooo
0mm0m00000mm0
ACCAUGAGAAUUG
450


13580





SPP1-350-13-
13582
Chl
ooooooooooooo
mm00m00000mm0
CCAACGAAAGCCA
451


13582





SPP1-511-13-
13584
Chl
ooooooooooooo
mm00mm0mm00mm
CUGGUCACUGAUU
452


13584





SPP1-605-13-
13586
Chl
ooooooooooooo
m00mmm0m000mm
UGGUUUAUGGACU
453


13586





SPP1-811-13-
13588
Chl
ooooooooooooo
00mm0000m0mm0
GACCAGAGUGCUG
454


13588





SPP1-892-13-
13590
Chl
ooooooooooooo
00m0m00mm00m0
GAUGUGAUUGAUA
455


13590





SPP1-922-13-
13592
Chl
ooooooooooooo
0mm00mm0m000m
GUCAGCCGUGAAU
456


13592





SPP1-1169-
13594
Chl
ooooooooooooo
00m0m0m0mmm0m
AAUGUGUAUCUAU
457


13-13594





SPP1-1182-
13596
Chl
ooooooooooooo
mm000mmm00000
UUGAGUCUGGAAA
458


13-13596





SPP1-1539-
13598
Chl
ooooooooooooo
0mmm00m00mm00
GUCCAGCAAUUAA
459


13-13598





SPP1-1541-
13600
Chl
ooooooooooooo
mm00m00mm00m0
CCAGCAAUUAAUA
460


13-13600





SPP1-427-13-
13602
Chl
ooooooooooooo
00mmm000m00mm
GACUCGAACGACU
461


13602





SPP1-533-13-
13604
Chl
ooooooooooooo
0mmm0mm00m00m
ACCUGCCAGCAAC
462


13604





APOB--13-
13763
Chl
ooooooooooooo
0m+00+m0+m0+m
ACtGAaUAcCAaU
463


13763

TEG





APOB--13-
13764
Chl
ooooooooooooo
0mm000m0mm00m
ACUGAAUACCAAU
464


13764

TEG





MAP4K4--16-
13766
Chl
ooooooooooooo
DY547mm0m00000mmm0
CUGUGGAAGUCUA
465


13766





PPIB--13-
13767
Chl
ooooooooooooo
mmmmmmmmmmmmm
GGCUACAAAAACA
466


13767





PPIB--15-
13768
Chl
ooooooooooooo
mm00mm0m00000m0
UUGGCUACAAAAACA
467


13768


oo





PPIB--17-
13769
Chl
ooooooooooooo
0mmm00mm0m00000m0
AUUUGGCUACAAAA
468


13769


oooo

ACA





MAP4K4--16-
13939
Chl
ooooooooooooo
m0m0000m0mmm0
UGUAGGAUGUCUA
469


13939





APOB-4314-
13940
Chl
ooooooooooooo
0mmm0000000m0
AUCUGGAGAAACA
470


16-13940





APOB-4314-
13941
Chl
ooooooooooooo
000mmm0000000m0
AGAUCUGGAGAAACA
471


17-13941


oo





APOB--16-
13942
Chl
ooooooooooooo
00mmm0mmm0mm0
GACUCAUCUGCUA
472


13942





APOB--18-
13943
Chl
ooooooooooooo
00mmm0mmm0mm0
GACUCAUCUGCUA
473


13943





APOB--17-
13944
Chl
ooooooooooooo
m000mmm0mmm0mm0
UGGACUCAUCUGCUA
474


13944


oo





APOB--19-
13945
Chl
ooooooooooooo
m000mmm0mmm0mm0
UGGACUCAUCUGCUA
475


13945


oo





APOB-4314-
13946
Chl
ooooooooooooo
0000000m00m0m
GGAGAAACAACAU
476


16-13946





APOB-4314-
13947
Chl
ooooooooooooo
mm0000000m00m0m
CUGGAGAAACAACAU
477


17-13947


oo





APOB--16-
13948
Chl
ooooooooooooo
00mmmmmm000m0
AGUCCCUCAAACA
478


13948





APOB--17-
13949
Chl
ooooooooooooo
0000mmmmmm000m0
AGAGUCCCUCAAACA
479


13949


oo





APOB--16-
13950
Chl
ooooooooooooo
0mm000m0mm00m
ACUGAAUACCAAU
480


13950





APOB--18-
13951
Chl
ooooooooooooo
0mm000m0mm00m
ACUGAAUACCAAU
481


13951





APOB--17-
13952
Chl
ooooooooooooo
0m0mm000m0mm00m
ACACUGAAUACCAAU
482


13952


oo





APOB--19-
13953
Chl
ooooooooooooo
0m0mm000m0mm00m
ACACUGAAUACCAAU
483


13953


oo





MAP4K4--16-
13766.2
Chl
ooooooooooooo
DY547mm0m00000mmm0
CUGUGGAAGUCUA
484


13766.2





CTGF-1222-
13980
Chl
ooooooooooooo
0m0000000m0m0
ACAGGAAGAUGUA
485


16-13980





CTGF-813-16-
13981
Chl
ooooooooooooo
000m0000mmmm
GAGUGGAGCGCCU
486


13981





CTGF-747-16-
13982
Chl
ooooooooooooo
m0mm000000m0
CGACUGGAAGACA
487


13982





CTGF-817-16-
13983
Chl
ooooooooooooo
0000mmmm0mmm
GGAGCGCCUGUUC
488


13983





CTGF-1174-
13984
Chl
ooooooooooooo
0mm0mm0m00mm0
GCCAUUACAACUG
489


16-13984





CTGF-1005-
13985
Chl
ooooooooooooo
000mmmmmm00mm
GAGCUUUCUGGCU
490


16-13985





CTGF-814-16-
13986
Chl
ooooooooooooo
00m0000mmmm0
AGUGGAGCGCCUG
491


13986





CTGF-816-16-
13987
Chl
ooooooooooooo
m0000mmmm0mm
UGGAGCGCCUGUU
492


13987





CTGF-1001-
13988
Chl
ooooooooooooo
0mmm000mmmmmm
GUUUGAGCUUUCU
493


16-13988





CTGF-1173-
13989
Chl
ooooooooooooo
m0mm0mm0m00mm
UGCCAUUACAACU
494


16-13989





CTGF-749-16-
13990
Chl
ooooooooooooo
0mm000000m0m
ACUGGAAGACACG
495


13990





CTGF-792-16-
13991
Chl
ooooooooooooo
00mm0mmm00mmm
AACUGCCUGGUCC
496


13991





CTGF-1162-
13992
Chl
ooooooooooooo
000mmm0m0mmm0
AGACCUGUGCCUG
497


16-13992





CTGF-811-16-
13993
Chl
ooooooooooooo
m0000m0000mm
CAGAGUGGAGCGC
498


13993





CTGF-797-16-
13994
Chl
ooooooooooooo
mmm00mmm000mm
CCUGGUCCAGACC
499


13994





CTGF-1175-
13995
Chl
ooooooooooooo
mm0mm0m00mm0m
CCAUUACAACUGU
500


16-13995





CTGF-1172-
13996
Chl
ooooooooooooo
mm0mm0mm0m00m
CUGCCAUUACAAC
501


16-13996





CTGF-1177-
13997
Chl
ooooooooooooo
0mm0m00mm0mmm
AUUACAACUGUCC
502


16-13997





CTGF-1176-
13998
Chl
ooooooooooooo
m0mm0m00mm0mm
CAUUACAACUGUC
503


16-13998





CTGF-812-16-
13999
Chl
ooooooooooooo
0000m0000mmm
AGAGUGGAGCGCC
504


13999





CTGF-745-16-
14000
Chl
ooooooooooooo
0mm0mm000000
ACCGACUGGAAGA
505


14000





CTGF-1230-
14001
Chl
ooooooooooooo
0m0m0m0000m0
AUGUACGGAGACA
506


16-14001





CTGF-920-16-
14002
Chl
ooooooooooooo
0mmmm0m000mm
GCCUUGCGAAGCU
507


14002





CTGF-679-16-
14003
Chl
ooooooooooooo
0mm0m00000m0
GCUGCGAGGAGUG
508


14003





CTGF-992-16-
14004
Chl
ooooooooooooo
0mmm0mm000mmm
GCCUAUCAAGUUU
509


14004





CTGF-1045-
14005
Chl
ooooooooooooo
00mmmm0m0000m
AAUUCUGUGGAGU
510


16-14005





CTGF-1231-
14006
Chl
ooooooooooooo
m0m0m0000m0m
UGUACGGAGACAU
511


16-14006





CTGF-991-16-
14007
Chl
ooooooooooooo
00mmm0mm000mm
AGCCUAUCAAGUU
512


14007





CTGF-998-16-
14008
Chl
ooooooooooooo
m000mmm000mmm
CAAGUUUGAGCUU
513


14008





CTGF-1049-
14009
Chl
ooooooooooooo
mm0m0000m0m0m
CUGUGGAGUAUGU
514


16-14009





CTGF-1044-
14010
Chl
ooooooooooooo
000mmmm0m0000
AAAUUCUGUGGAG
515


16-14010





CTGF-1327-
14011
Chl
ooooooooooooo
mmmm00m00m0m0
UUUCAGUAGCACA
516


16-14011





CTGF-1196-
14012
Chl
ooooooooooooo
m00m00m0mmmmm
CAAUGACAUCUUU
517


16-14012





CTGF-562-16-
14013
Chl
ooooooooooooo
00m0mm00m0m0m
AGUACCAGUGCAC
518


14013





CTGF-752-16-
14014
Chl
ooooooooooooo
000000m0mmmm
GGAAGACACGUUU
519


14014





CTGF-994-16-
14015
Chl
ooooooooooooo
mm0mm000mmm00
CUAUCAAGUUUGA
520


14015





CTGF-1040-
14016
Chl
ooooooooooooo
00mm000mmmm0m
AGCUAAAUUCUGU
521


16-14016





CTGF-1984-
14017
Chl
ooooooooooooo
000m0000m0m00
AGGUAGAAUGUAA
522


16-14017





CTGF-2195-
14018
Chl
ooooooooooooo
00mm00mm00mmm
AGCUGAUCAGUUU
523


16-14018





CTGF-2043-
14019
Chl
ooooooooooooo
mmmm0mmm000m0
UUCUGCUCAGAUA
524


16-14019





CTGF-1892-
14020
Chl
ooooooooooooo
mm0mmm000mm00
UUAUCUAAGUUAA
525


16-14020





CTGF-1567-
14021
Chl
ooooooooooooo
m0m0m00m00m0
UAUACGAGUAAUA
526


16-14021





CTGF-1780-
14022
Chl
ooooooooooooo
00mm000m00mmm
GACUGGACAGCUU
527


16-14022





CTGF-2162-
14023
Chl
ooooooooooooo
0m00mmmmm0mm0
AUGGCCUUUAUUA
528


16-14023





CTGF-1034-
14024
Chl
ooooooooooooo
0m0mm00mm000
AUACCGAGCUAAA
529


16-14024





CTGF-2264-
14025
Chl
ooooooooooooo
mm0mm00000m0m
UUGUUGAGAGUGU
530


16-14025





CTGF-1032-
14026
Chl
ooooooooooooo
0m0m0mm00mm0
ACAUACCGAGCUA
531


16-14026





CTGF-1535-
14027
Chl
ooooooooooooo
00m0000000mm0
AGCAGAAAGGUUA
532


16-14027





CTGF-1694-
14028
Chl
ooooooooooooo
00mm0mmmmmm00
AGUUGUUCCUUAA
533


16-14028





CTGF-1588-
14029
Chl
ooooooooooooo
0mmm0000m0m00
AUUUGAAGUGUAA
534


16-14029





CTGF-928-16-
14030
Chl
ooooooooooooo
000mm00mmm000
AAGCUGACCUGGA
535


14030





CTGF-1133-
14031
Chl
ooooooooooooo
00mm0m0000000
GGUCAUGAAGAAG
536


16-14031





CTGF-912-16-
14032
Chl
ooooooooooooo
0m00mm000mmmm
AUGGUCAGGCCUU
537


14032





CTGF-753-16-
14033
Chl
ooooooooooooo
00000m0mmmm0
GAAGACACGUUUG
538


14033





CTGF-918-16-
14034
Chl
ooooooooooooo
000mmmm0m000
AGGCCUUGCGAAG
539


14034





CTGF-744-16-
14035
Chl
ooooooooooooo
m0mm0mm00000
UACCGACUGGAAG
540


14035





CTGF-466-16-
14036
Chl
ooooooooooooo
0mmm0000mm0
ACCGCAAGAUCGG
541


14036





CTGF-917-16-
14037
Chl
ooooooooooooo
m000mmmm0m00
CAGGCCUUGCGAA
542


14037





CTGF-1038-
14038
Chl
ooooooooooooo
m00mm000mmmm
CGAGCUAAAUUCU
543


16-14038





CTGF-1048-
14039
Chl
ooooooooooooo
mmm0m0000m0m0
UCUGUGGAGUAUG
544


16-14039





CTGF-1235-
14040
Chl
ooooooooooooo
m0000m0m00m0
CGGAGACAUGGCA
545


16-14040





CTGF-868-16-
14041
Chl
ooooooooooooo
0m00m00mmmmm
AUGACAACGCCUC
546


14041





CTGF-1131-
14042
Chl
ooooooooooooo
0000mm0m00000
GAGGUCAUGAAGA
547


16-14042





CTGF-1043-
14043
Chl
ooooooooooooo
m000mmmm0m000
UAAAUUCUGUGGA
548


16-14043





CTGF-751-16-
14044
Chl
ooooooooooooo
m000000m0mmm
UGGAAGACACGUU
549


14044





CTGF-1227-
14045
Chl
ooooooooooooo
0000m0m0m000
AAGAUGUACGGAG
550


16-14045





CTGF-867-16-
14046
Chl
ooooooooooooo
00m00m00mmmm
AAUGACAACGCCU
551


14046





CTGF-1128-
14047
Chl
ooooooooooooo
00m000mm0m00
GGCGAGGUCAUGA
552


16-14047





CTGF-756-16-
14048
Chl
ooooooooooooo
00m0m0mmm00mm
GACACGUUUGGCC
553


14048





CTGF-1234-
14049
Chl
ooooooooooooo
0m00000m0m00m
ACGGAGACAUGGC
554


16-14049





CTGF-916-16-
14050
Chl
ooooooooooooo
mm000mmmm0m00
UCAGGCCUUGCGA
555


14050





CTGF-925-16-
14051
Chl
ooooooooooooo
0m0000mm00mmm
GCGAAGCUGACCU
556


14051





CTGF-1225-
14052
Chl
ooooooooooooo
000000m0m0m00
GGAAGAUGUACGG
557


16-14052





CTGF-445-16-
14053
Chl
ooooooooooooo
0m00mmmm00mmm
GUGACUUCGGCUC
558


14053





CTGF-446-16-
14054
Chl
ooooooooooooo
m00mmmm00mmmm
UGACUUCGGCUCC
559


14054





CTGF-913-16-
14055
Chl
ooooooooooooo
m00mm000mmmm0
UGGUCAGGCCUUG
560


14055





CTGF-997-16-
14056
Chl
ooooooooooooo
mm000mmm000mm
UCAAGUUUGAGCU
561


14056





CTGF-277-16-
14057
Chl
ooooooooooooo
0mm0000mm0m00
GCCAGAACUGCAG
562


14057





CTGF-1052-
14058
Chl
ooooooooooooo
m0000m0m0m0mm
UGGAGUAUGUACC
563


16-14058





CTGF-887-16-
14059
Chl
ooooooooooooo
0mm0000000m00
GCUAGAGAAGCAG
564


14059





CTGF-914-16-
14060
Chl
ooooooooooooo
00mm000mmmm0m
GGUCAGGCCUUGC
565


14060





CTGF-1039-
14061
Chl
ooooooooooooo
000mm000mmmm0
GAGCUAAAUUCUG
566


16-14061





CTGF-754-16-
14062
Chl
ooooooooooooo
0000m0m0mmm00
AAGACACGUUUGG
567


14062





CTGF-1130-
14063
Chl
ooooooooooooo
m0000mm0m0000
CGAGGUCAUGAAG
568


16-14063





CTGF-919-16-
14064
Chl
ooooooooooooo
00mmmm0m0000m
GGCCUUGCGAAGC
569


14064





CTGF-922-16-
14065
Chl
ooooooooooooo
mmm0m0000mm00
CUUGCGAAGCUGA
570


14065





CTGF-746-16-
14066
Chl
ooooooooooooo
mm00mm000000m
CCGACUGGAAGAC
571


14066





CTGF-993-16-
14067
Chl
ooooooooooooo
mmm0mm000mmm0
CCUAUCAAGUUUG
572


14067





CTGF-825-16-
14068
Chl
ooooooooooooo
m0mmmm0000mmm
UGUUCCAAGACCU
573


14068





CTGF-926-16-
14069
Chl
ooooooooooooo
m0000mm00mmm0
CGAAGCUGACCUG
574


14069





CTGF-923-16-
14070
Chl
ooooooooooooo
mm0m0000mm00m
UUGCGAAGCUGAC
575


14070





CTGF-866-16-
14071
Chl
ooooooooooooo
m00m00m00m0mm
CAAUGACAACGCC
576


14071





CTGF-563-16-
14072
Chl
ooooooooooooo
0m0mm00m0m0m0
GUACCAGUGCACG
577


14072





CTGF-823-16-
14073
Chl
ooooooooooooo
mmm0mmmm0000m
CCUGUUCCAAGAC
578


14073





CTGF-1233-
14074
Chl
ooooooooooooo
m0m00000m0m00
UACGGAGACAUGG
579


16-14074





CTGF-924-16-
14075
Chl
ooooooooooooo
m0m0000mm00mm
UGCGAAGCUGACC
580


14075





CTGF-921-16-
14076
Chl
ooooooooooooo
mmmm0m0000mm0
CCUUGCGAAGCUG
581


14076





CTGF-443-16-
14077
Chl
ooooooooooooo
mm0m00mmmm00m
CUGUGACUUCGGC
582


14077





CTGF-1041-
14078
Chl
ooooooooooooo
0mm000mmmm0m0
GCUAAAUUCUGUG
583


16-14078





CTGF-1042-
14079
Chl
ooooooooooooo
mm000mmmm0m00
CUAAAUUCUGUGG
584


16-14079





CTGF-755-16-
14080
Chl
ooooooooooooo
000m0m0mmm00m
AGACACGUUUGGC
585


14080





CTGF-467-16-
14081
Chl
ooooooooooooo
mm0m0000mm00m
CCGCAAGAUCGGC
586


14081





CTGF-995-16-
14082
Chl
ooooooooooooo
m0mm000mmm000
UAUCAAGUUUGAG
587


14082





CTGF-927-16-
14083
Chl
ooooooooooooo
0000mm00mmm00
GAAGCUGACCUGG
588


14083





SPP1-1091-
14131
Chl
ooooooooooooo
0m0mmm00mm000
GCAUUUAGUCAAA
589


16-14131





PPIB--16-
14188
Chl
ooooooooooooo
mmmmmmmmmmmmm
GGCUACAAAAACA
590


14188





PPIB--17-
14189
Chl
ooooooooooooo
mm00mm0m00000m0
UUGGCUACAAAAACA
591


14189


oo





PPIB--18-
14190
Chl
ooooooooooooo
0mmm00mm0m00000m0
AUUUGGCUACAAAA
592


14190


oooo

ACA





pGL3-1172-
14386
Chl
ooooooooooooo
0m000m0m00mmm
ACAAAUACGAUUU
593


16-14386





pGL3-1172-
14387
Chl
ooooooooooooo
DY5470m000m0m00mmm
ACAAAUACGAUUU
594


16-14387





MAP4K4-2931-
14390
Chl
ooooooooooooo
Pmmmmmmmmmmmm000m
CUUUGAAGAGUUCU
595


25-14390


oooooooooooo
mmmmmmmmm
GUGGAAGUCUA





miR-122--23-
14391
Chl
ssooooooooooo
mmmmmmmmmmmmmmmmm
ACAAACACCAUUGU
596


14391


oooooossss
mmmmmm
CACACUCCA






14084
Chl
ooooooooooooo
mmm0m000mm000
CUCAUGAAUUAGA
719






14085
Chl
ooooooooooooo
mm0000mm00mm0
CUGAGGUCAAUUA
720






14086
Chl
ooooooooooooo
0000mm00mm000
GAGGUCAAUUAAA
721






14087
Chl
ooooooooooooo
mmm0000mm00mm
UCUGAGGUCAAUU
722






14088
Chl
ooooooooooooo
m0000mm00mm00
UGAGGUCAAUUAA
723






14089
Chl
ooooooooooooo
mmmm0000mm00m
UUCUGAGGUCAAU
724






14090
Chl
ooooooooooooo
0mm00mm000m00
GUCAGCUGGAUGA
725






14091
Chl
ooooooooooooo
mmmm00m000mmm
UUCUGAUGAAUCU
726






14092
Chl
ooooooooooooo
m000mm0000mm0
UGGACUGAGGUCA
727






14093
Chl
ooooooooooooo
000mmmm0mm0mm
GAGUCUCACCAUU
728






14094
Chl
ooooooooooooo
00mm0000mm000
GACUGAGGUCAAA
729






14095
Chl
ooooooooooooo
mm0m00mm0m000
UCACAGCCAUGAA
730






14096
Chl
ooooooooooooo
00mmmm0mm0mmm
AGUCUCACCAUUC
731






14097
Chl
ooooooooooooo
000m00000mm0
AAGCGGAAAGCCA
732






14098
Chl
ooooooooooooo
00m00000mm00
AGCGGAAAGCCAA
733






14099
Chl
ooooooooooooo
0mm0m0m000m00
ACCACAUGGAUGA
734






14100
Chl
ooooooooooooo
0mm0m00mm0m0m
GCCAUGACCACAU
735






14101
Chl
ooooooooooooo
000mm0m00mm0m
AAGCCAUGACCAC
736






14102
Chl
ooooooooooooo
0m00000mm00m
GCGGAAAGCCAAU
737






14103
Chl
ooooooooooooo
000mmmmm0mmm
AAAUUUCGUAUUU
738






14104
Chl
ooooooooooooo
0mmmmm0mmmmm
AUUUCGUAUUUCU
739






14105
Chl
ooooooooooooo
0000mm0m00mm0
AAAGCCAUGACCA
740






14106
Chl
ooooooooooooo
0m0m000m00m0m
ACAUGGAUGAUAU
741






14107
Chl
ooooooooooooo
0000mmmmm0mm
GAAAUUUCGUAUU
742






14108
Chl
ooooooooooooo
0mmmmmmm00mm
GCGCCUUCUGAUU
743






14109
Chl
ooooooooooooo
0mmmmmm0m000m
AUUUCUCAUGAAU
744






14110
Chl
ooooooooooooo
mmmmm0m000m00
CUCUCAUGAAUAG
745






14111
Chl
ooooooooooooo
000mmm00m000
AAGUCCAACGAAA
746






14112
Chl
ooooooooooooo
0m00m00000m00
AUGAUGAGAGCAA
747






14113
Chl
ooooooooooooo
0m00000mm000
GCGAGGAGUUGAA
748






14114
Chl
ooooooooooooo
m00mm00m00mm0
UGAUUGAUAGUCA
749






14115
Chl
ooooooooooooo
000m00m0m0mmm
AGAUAGUGCAUCU
750






14116
Chl
ooooooooooooo
0m0m0m0mmm0mm
AUGUGUAUCUAUU
751






14117
Chl
ooooooooooooo
mmmm0m0000000
UUCUAUAGAAGAA
752






14118
Chl
ooooooooooooo
mm0mmm00m00mm
UUGUCCAGCAAUU
753






14119
Chl
ooooooooooooo
0m0m000000m0
ACAUGGAAAGCGA
754






14120
Chl
ooooooooooooo
0m00mmm000mm0
GCAGUCCAGAUUA
755






14121
Chl
ooooooooooooo
m00mm000m0m0m
UGGUUGAAUGUGU
756






14122
Chl
ooooooooooooo
mm0m0000m00m
UUAUGAAACGAGU
757






14123
Chl
ooooooooooooo
m00mmm000mm0m
CAGUCCAGAUUAU
758






14124
Chl
ooooooooooooo
0m0m000m0000
AUAUAAGCGGAAA
759






14125
Chl
ooooooooooooo
m0mm00mm000m0
UACCAGUUAAACA
760






14126
Chl
ooooooooooooo
m0mmm0mmmm0m0
UGUUCAUUCUAUA
761






14127
Chl
ooooooooooooo
mm0mm0000000
CCGACCAAGGAAA
762






14128
Chl
ooooooooooooo
000m00m0m0m0m
GAAUGGUGCAUAC
763






14129
Chl
ooooooooooooo
0m0m00m00mm0
AUAUGAUGGCCGA
764






14130
Chl
ooooooooooooo
00m00mmm000mm
AGCAGUCCAGAUU
765






14132
Chl
ooooooooooooo
00m0mmmm0m0m
AGCAUUCCGAUGU
766






14133
Chl
ooooooooooooo
m00mm00000mmm
UAGUCAGGAACUU
767






14134
Chl
ooooooooooooo
m0m0mmm00mm00
UGCAUUUAGUCAA
768






14135
Chl
ooooooooooooo
0mmm00m000mmm
GUCUGAUGAGUCU
769






14136
Chl
ooooooooooooo
m000m0m0m0m00
UAGACACAUAUGA
770






14137
Chl
ooooooooooooo
m000m0000m0m
CAGACGAGGACAU
771






14138
Chl
ooooooooooooo
m00mmm000mmm
CAGCCGUGAAUUC
772






14139
Chl
ooooooooooooo
00mmm00000m00
AGUCUGGAAAUAA
773






14140
Chl
ooooooooooooo
00mmm0m00mmmm
AGUUUGUGGCUUC
774






14141
Chl
ooooooooooooo
00mmm00m0000
AGUCCAACGAAAG
775






14142
Chl
ooooooooooooo
000mmmmm000m
AAGUUUCGCAGAC
776






14143
Chl
ooooooooooooo
00m00m000m0mm
AGCAAUGAGCAUU
777






14144
Chl
ooooooooooooo
mm000m00m0m0m
UUAGAUAGUGCAU
778






14145
Chl
ooooooooooooo
m00m0m0m0m000
UGGUGCAUACAAG
779






14146
Chl
ooooooooooooo
0m0000m00mm0
AUGAAACGAGUCA
780






14147
Chl
ooooooooooooo
mm0000m0mm000
CCAGAGUGCUGAA
781






14148
Chl
ooooooooooooo
m00mm0m000mmm
CAGCCAUGAAUUU
782






14149
Chl
ooooooooooooo
0mm00mm000m0m
AUUGGUUGAAUGU
783






14150
Chl
ooooooooooooo
00mm000m0m0m0
GGUUGAAUGUGUA
784






14151
Chl
ooooooooooooo
00000m00mm00m
GGAAAUAACUAAU
785






14152
Chl
ooooooooooooo
mm0m000m00000
UCAUGAAUAGAAA
786






14153
Chl
ooooooooooooo
0mm00m00mm00
GCCAGCAACCGAA
787






14154
Chl
ooooooooooooo
m0mmmm0m0m0m0
CACCUCACACAUG
788






14155
Chl
ooooooooooooo
00mm000m00m0m
AGUUGAAUGGUGC
789






14156
Chl
ooooooooooooo
00mm00mm000m0
AGUCAGCUGGAUG
790






14157
Chl
ooooooooooooo
m0m000m00000
UAUAAGCGGAAAG
791






14158
Chl
ooooooooooooo
mmmm0m0m00mm
UUCCGAUGUGAUU
792






14159
Chl
ooooooooooooo
0m00mm00m0m0m
AUAACUAAUGUGU
793






14160
Chl
ooooooooooooo
mm0mmmm0m0000
UCAUUCUAUAGAA
794






14161
Chl
ooooooooooooo
00mm0mm0mm0m0
AACUAUCACUGUA
795






14162
Chl
ooooooooooooo
0mm00mm0mmm0m
GUCAAUUGCUUAU
796






14163
Chl
ooooooooooooo
00m00mm00m000
AGCAAUUAAUAAA
797






14164
Chl
ooooooooooooo
0m0mmmm00m00
ACGACUCUGAUGA
798






14165
Chl
ooooooooooooo
m00m0m00mmm0m
UAGUGUGGUUUAU
799






14166
Chl
ooooooooooooo
000mm00m00m00
AAGCCAAUGAUGA
800






14167
Chl
ooooooooooooo
0m00mm00000mm
AUAGUCAGGAACU
801






14168
Chl
ooooooooooooo
00mm00mmm000
AGUCAGCCGUGAA
802






14169
Chl
ooooooooooooo
0mm0mm0m00000
ACUACCAUGAGAA
803






14170
Chl
ooooooooooooo
000m000mm00mm
AAACAGGCUGAUU
804






14171
Chl
ooooooooooooo
000m0mm0000mm
GAGUGCUGAAACC
805






14172
Chl
ooooooooooooo
m000m0mmmm0m
UGAGCAUUCCGAU
806






14173
Chl
ooooooooooooo
00mmmm0m00mm0
AAUUCCACAGCCA
807






14174
Chl
ooooooooooooo
m0mm00mm0mmm0
UGUCAAUUGCUUA
808






14175
Chl
ooooooooooooo
0mm0m00000mm0
ACCAUGAGAAUUG
809






14176
Chl
ooooooooooooo
mm00m0000mm0
CCAACGAAAGCCA
810






14177
Chl
ooooooooooooo
mm00mm0mm00mm
CUGGUCACUGAUU
811






14178
Chl
ooooooooooooo
m00mmm0m000mm
UGGUUUAUGGACU
812






14179
Chl
ooooooooooooo
00mm0000m0mm0
GACCAGAGUGCUG
813






14180
Chl
ooooooooooooo
00m0m00mm00m0
GAUGUGAUUGAUA
814






14181
Chl
ooooooooooooo
0mm00mmm000m
GUCAGCCGUGAAU
815






14182
Chl
ooooooooooooo
00m0m0m0mmm0m
AAUGUGUAUCUAU
816






14183
Chl
ooooooooooooo
mm000mmm00000
UUGAGUCUGGAAA
817






14184
Chl
ooooooooooooo
0mmm00m00mm00
GUCCAGCAAUUAA
818






14185
Chl
ooooooooooooo
mm00m00mm00m0
CCAGCAAUUAAUA
819






14186
Chl
ooooooooooooo
00mmm00m0mm
GACUCGAACGACU
820






14187
Chl
ooooooooooooo
0mmm0mm00m00m
ACCUGCCAGCAAC
821





o: phosphodiester;


s: phosphorothioate;


P: 5′ phosphorylation;


0: 2′-OH;


F: 2′-fluoro;


m: 2′ O-methyl;


+: LNA modification.


Capital letters in the sequence signify ribonucleotides,


lower case letters signify deoxyribonucleotides.













TABLE 4







sd-rxRNA miRNA designs















SEQ
miRNA Sequence
SEQ ID
sd-rxRNA
SEQ
sd-rxRNA



miRNA Name
ID NO
mature
NO
Antisense
ID NO
Sense

















hsa-let-7a
822
UGAGGUAGUAGGUUGUA
823
UGAGGUAGUAGG
824
AACCUACUACC



MIMAT0000062

UAGUU

UUGUAUAG

UCA





hsa-let-7a*
825
CUAUACAAUCUACUGUC
826
CUAUACAAUCUA
827
AGUAGAUUGUA


MIMAT0004481

UUUC

CUGUCUUU

UAG





hsa-let-7a-2*
828
CUGUACAGCCUCCUAGC
829
CUGUACAGCCUC
830
AGGAGGCUGUA


MIMAT0010195

UUUCC

CUAGCUUU

CAG





hsa-let-7b
831
UGAGGUAGUAGGUUGUG
832
UGAGGUAGUAGG
833
AACCUACUACC


MIMAT0000063

UGGUU

UUGUGUGG

UCA





hsa-let-7b*
834
CUAUACAACCUACUGCC
835
CUAUACAACCUA
836
AGUAGGUUGUA


MIMAT0004482

UUCCC

CUGCCUUC

UAG





hsa-let-7c
837
UGAGGUAGUAGGUUGUA
838
UGAGGUAGUAGG
839
AACCUACUACC


MIMAT0000064

UGGUU

UUGUAUGG

UCA





hsa-let-7c*
840
UAGAGUUACACCCUGGG
841
UAGAGUUACACC
842
AGGGUGUAACU


MIMAT0004483

AGUUA

CUGGGAGU

CUA





hsa-let-7d
843
AGAGGUAGUAGGUUGCA
844
AGAGGUAGUAGG
845
AACCUACUACC


MIMAT0000065

UAGUU

UUGCAUAG

UCU





hsa-let-7d*
846
CUAUACGACCUGCUGCC
847
CUAUACGACCUG
848
AGCAGGUCGUA


MIMAT0004484

UUUCU

CUGCCUUU

UAG





hsa-let-7e
849
UGAGGUAGGAGGUUGUA
850
UGAGGUAGGAGG
851
AACCUCCUACC


MIMAT0000066

UAGUU

UUGUAUAG

UCA





hsa-let-7e*
852
CUAUACGGCCUCCUAGC
853
CUAUACGGCCUC
854
AGGAGGCCGUA


MIMAT0004485

UUUCC

CUAGCUUU

UAG





hsa-let-7f
855
UGAGGUAGUAGAUUGUA
856
UGAGGUAGUAGA
857
AAUCUACUACC


MIMAT0000067

UAGUU

UUGUAUAG

UCA





hsa-let-7f-1*
858
CUAUACAAUCUAUUGCC
859
CUAUACAAUCUA
860
AAUAGAUUGUA


MIMAT0004486

UUCCC

UUGCCUUC

UAG





hsa-let-7f-2*
861
CUAUACAGUCUACUGUC
862
CUAUACAGUCUA
863
AGUAGACUGUA


MIMAT0004487

UUUCC

CUGUCUUU

UAG





hsa-let-7g
864
UGAGGUAGUAGUUUGUA
865
UGAGGUAGUAGU
866
AAACUACUACC


MIMAT0000414

CAGUU

UUGUACAG

UCA





hsa-let-7g*
867
CUGUACAGGCCACUGCC
868
CUGUACAGGCCA
869
AGUGGCCUGUA


MIMAT0004584

UUGC

CUGCCUUG

CAG





hsa-let-7i
870
UGAGGUAGUAGUUUGUG
871
UGAGGUAGUAGU
872
AAACUACUACC


MIMAT0000415

CUGUU

UUGUGCUG

UCA





hsa-let-7i*
873
CUGCGCAAGCUACUGCC
874
CUGCGCAAGCUA
875
AGUAGCUUGCG


MIMAT0004585

UUGCU

CUGCCUUG

CAG





hsa-miR-1
876
UGGAAUGUAAAGAAGUA
877
UGGAAUGUAAAG
878
UUCUUUACAUU


MIMAT0000416

UGUAU

AAGUAUGU

CCA





hsa-miR-100
879
AACCCGUAGAUCCGAAC
880
AACCCGUAGAUC
881
CGGAUCUACGG


MIMAT0000098

UUGUG

CGAACUUG

GUU





hsa-miR-100*
882
CAAGCUUGUAUCUAUAG
883
CAAGCUUGUAUC
884
UAGAUACAAGC


MIMAT0004512

GUAUG

UAUAGGUA

UUG





hsa-miR-101
885
UACAGUACUGUGAUAAC
886
UACAGUACUGUG
887
AUCACAGUACU


MIMAT0000099

UGAA

AUAACUGA

GUA





hsa-miR-101*
888
CAGUUAUCACAGUGCUG
889
CAGUUAUCACAG
890
CACUGUGAUAA


MIMAT0004513

AUGCU

UGCUGAUG

CUG





hsa-miR-103
891
AGCAGCAUUGUACAGGG
892
AGCAGCAUUGUA
893
UGUACAAUGCU


MIMAT0000101

CUAUGA

CAGGGCUA

GCU





hsa-miR-103-2*
894
AGCUUCUUUACAGUGCU
895
AGCUUCUUUACA
896
ACUGUAAAGAA


MIMAT0009196

GCCUUG

GUGCUGCC

GCU





hsa-miR-103-as
897
UCAUAGCCCUGUACAAU
898
UCAUAGCCCUGU
899
GUACAGGGCUA


MIMAT0007402

GCUGCU

ACAAUGCU

UGA





hsa-miR-105
900
UCAAAUGCUCAGACUCC
901
UCAAAUGCUCAG
902
GUCUGAGCAUU


MIMAT0000102

UGUGGU

ACUCCUGU

UGA





hsa-miR-105*
903
ACGGAUGUUUGAGCAUG
904
ACGGAUGUUUGA
905
GCUCAAACAUC


MIMAT0004516

UGCUA

GCAUGUGC

CGU





hsa-miR-106a
906
AAAGUGCUUACAGUGC
907
AAAAGUGCUUAC
908
CUGUAAGCACU


MIMAT0000103

AGGUAG

AGUGCAGG

UUU





hsa-miR-106a*
909
CUGCAAUGUAAGCACUU
910
CUGCAAUGUAAG
911
UGCUUACAUUG


MIMAT0004517

CUUAC

CACUUCUU

CAG





hsa-miR-106b
912
UAAAGUGCUGACAGUGC
913
UAAAGUGCUGAC
914
CUGUCAGCACU


MIMAT0000680

AGAU

AGUGCAGA

UUA





hsa-miR-106b*
915
CCGCACUGUGGGUACUU
916
CCGCACUGUGGG
917
UACCCACAGUG


MIMAT0004672

GCUGC

UACUUGCU

CGG





hsa-miR-107
918
AGCAGCAUUGUACAGGG
919
AGCAGCAUUGUA
920
UGUACAAUGCU


MIMAT0000104

CUAUCA

CAGGGCUA

GCU





hsa-miR-10a
921
UACCCUGUAGAUCCGAA
922
UACCCUGUAGAU
923
GGAUCUACAGG


MIMAT0000253

UUUGUG

CCGAAUUU

GUA





hsa-miR-10a*
924
CAAAUUCGUAUCUAGGG
925
CAAAUUCGUAUC
926
UAGAUACGAAU


MIMAT0004555

GAAUA

UAGGGGAA

UUG





hsa-miR-10b
927
UACCCUGUAGAACCGAA
928
UACCCUGUAGAA
929
GGUUCUACAGG


MIMAT0000254

UUUGUG

CCGAAUUU

GUA





hsa-miR-10b*
930
ACAGAUUCGAUUCUAGG
931
ACAGAUUCGAUU
932
AGAAUCGAAUC


MIMAT0004556

GGAAU

CUAGGGGA

UGU





hsa-miR-1178
933
UUGCUCACUGUUCUUCC
934
UUGCUCACUGUU
935
AGAACAGUGAG


MIMAT0005823

CUAG

CUUCCCUA

CAA





hsa-miR-1179
936
AAGCAUUCUUUCAUUGG
937
AAGCAUUCUUUC
938
AUGAAAGAAUG


MIMAT0005824

UUGG

AUUGGUUG

CUU





hsa-miR-1180
939
UUUCCGGCUCGCGUGGG
940
UUUCCGGCUCGC
941
ACGCGAGCCGG


MIMAT0005825

UGUGU

GUGGGUGU

AAA





hsa-miR-1181
942
CCGUCGCCGCCACCCGA
943
CCGUCGCCGCCA
944
GGUGGCGGCGA


MIMAT0005826

GCCG

CCCGAGCC

CGG





hsa-miR-1182
945
GAGGGUCUUGGGAGGGA
946
GAGGGUCUUGGG
947
CUCCCAAGACC


MIMAT0005827

UGUGAC

AGGGAUGU

CUC





hsa-miR-1183
948
CACUGUAGGUGAUGGUG
949
CACUGUAGGUGA
950
CAUCACCUACA


MIMAT0005828

AGAGUGGGCA

UGGUGAGA

GUG





hsa-miR-1184
951
CCUGCAGCGACUUGAUG
952
CCUGCAGCGACU
953
CAAGUCGCUGC


MIMAT0005829

GCUUCC

UGAUGGCU

AGG





hsa-miR-1185
954
AGAGGAUACCCUUUGUA
955
AGAGGAUACCCU
956
AAAGGGUAUCC


MIMAT0005798

UGUU

UUGUAUGU

UCU





hsa-miR-1193
957
GGGAUGGUAGACCGGUG
958
GGGAUGGUAGAC
959
CGGUCUACCAU


MIMAT0015049

ACGUGC

CGGUGACG

CCC





hsa-miR-1197
960
UAGGACACAUGGUCUAC
961
UAGGACACAUGG
962
GACCAUGUGUC


MIMAT0005955

UUCU

UCUACUUC

CUA





hsa-miR-1200
963
CUCCUGAGCCAUUCUGA
964
CUCCUGAGCCAU
965
GAAUGGCUCAG


MIMAT0005863

GCCUC

UCUGAGCC

GAG





hsa-miR-1202
966
GUGCCAGCUGCAGUGGG
967
GUGCCAGCUGCA
968
ACUGCAGCUGG


MIMAT0005865

GGAG

GUGGGGGA

CAC





hsa-miR-1203
969
CCCGGAGCCAGGAUGCA
970
CCCGGAGCCAGG
971
AUCCUGGCUCC


MIMAT0005866

GCUC

AUGCAGCU

GGG





hsa-miR-1204
972
UCGUGGCCUGGUCUCCA
973
UCGUGGCCUGGU
974
AGACCAGGCCA


MIMAT0005868

UUAU

CUCCAUUA

CGA





hsa-miR-1205
975
UCUGCAGGGUUUGCUUU
976
UCUGCAGGGUUU
977
GCAAACCCUGC


MIMAT0005869

GAG

GCUUUGAG

AGA





hsa-miR-1206
978
UGUUCAUGUAGAUGUUU
979
UGUUCAUGUAGA
980
CAUCUACAUGA


MIMAT0005870

AAGC

UGUUUAAG

ACA





hsa-miR-1207-
981
UCAGCUGGCCCUCAUUUC
982
UCAGCUGGCCCU
983
UGAGGGCCAGC


3p



CAUUUC

UGA


MIMAT0005872





hsa-miR-1207-
984
UGGCAGGGAGGCUGGGA
985
UGGCAGGGAGGC
986
CAGCCUCCCUG


5p

GGGG

UGGGAGGG

CCA


MIMAT0005871





hsa-miR-1208
987
UCACUGUUCAGACAGGC
988
UCACUGUUCAGA
989
UGUCUGAACAG


MIMAT0005873

GGA

CAGGCGGA

UGA





hsa-miR-122
990
UGGAGUGUGACAAUGGU
991
UGGAGUGUGACA
992
AUUGUCACACU


MIMAT0000421

GUUUG

AUGGUGUU

CCA





hsa-miR-122*
993
AACGCCAUUAUCACACU
994
AACGCCAUUAUC
995
GUGAUAAUGGC


MIMAT0004590

AAAUA

ACACUAAA

GUU





hsa-miR-1224-
996
CCCCACCUCCUCUCUCC
997
CCCCACCUCCUC
998
GAGAGGAGGUG


3p

UCAG

UCUCCUCA

GGG


MIMAT0005459





hsa-miR-1224-
999
GUGAGGACUCGGGAGGU
1000
GUGAGGACUCGG
1001
UCCCGAGUCCU


5p

GG

GAGGUGG

CAC


MIMAT0005458





hsa-miR-1225-
1002
UGAGCCCCUGUGCCGCC
1003
UGAGCCCCUGUG
1004
GGCACAGGGGC


3p

CCCAG

CCGCCCCC

UCA


MIMAT0005573





hsa-miR-1225-
1005
GUGGGUACGGCCCAGUG
1006
GUGGGUACGGCC
1007
UGGGCCGUACC


5p

GGGGG

CAGUGGGG

CAC


MIMAT0005572





hsa-miR-1226
1008
UCACCAGCCCUGUGUUC
1009
UCACCAGCCCUG
1010
CACAGGGCUGG


MIMAT0005577

CCUAG

UGUUCCCU

UGA





hsa-miR-1226*
1011
GUGAGGGCAUGCAGGCC
1012
GUGAGGGCAUGC
1013
CUGCAUGCCCU


MIMAT0005576

UGGAUGGGG

AGGCCUGG

CAC





hsa-miR-1227
1014
CGUGCCACCCUUUUCCC
1015
CGUGCCACCCUU
1016
AAAAGGGUGGC


MIMAT0005580

CAG

UUCCCCAG

ACG





hsa-miR-1228
1017
UCACACCUGCCUCGCCC
1018
UCACACCUGCCU
1019
CGAGGCAGGUG


MIMAT0005583

CCC

CGCCCCCC

UGA





hsa-miR-1228*
1020
GUGGGCGGGGGCAGGUG
1021
GUGGGCGGGGGC
1022
CUGCCCCCGCC


MIMAT0005582

UGUG

AGGUGUGU

CAC





hsa-miR-1229
1023
CUCUCACCACUGCCCUC
1024
CUCUCACCACUG
1025
GGCAGUGGUGA


MIMAT0005584

CCACAG

CCCUCCCA

GAG





hsa-miR-1231
1026
GUGUCUGGGCGGACAGC
1027
GUGUCUGGGCGG
1028
GUCCGCCCAGA


MIMAT0005586

UGC

ACAGCUGC

CAC





hsa-miR-1233
1029
UGAGCCCUGUCCUCCCG
1030
UGAGCCCUGUCC
1031
GAGGACAGGGC


MIMAT0005588

CAG

UCCCGCAG

UCA





hsa-miR-1234
1032
UCGGCCUGACCACCCAC
1033
UCGGCCUGACCA
1034
GGUGGUCAGGC


MIMAT0005589

CCCAC

CCCACCCC

CGA





hsa-miR-1236
1035
CCUCUUCCCCUUGUCUC
1036
CCUCUUCCCCUU
1037
ACAAGGGGAAG


MIMAT0005591

UCCAG

GUCUCUCC

AGG





hsa-miR-1237
1038
UCCUUCUGCUCCGUCCC
1039
UCCUUCUGCUCC
1040
ACGGAGCAGAA


MIMAT0005592

CCAG

GUCCCCCA

GGA





hsa-miR-1238
1041
CUUCCUCGUCUGUCUGC
1042
CUUCCUCGUCUG
1043
GACAGACGAGG


MIMAT0005593

CCC

UCUGCCCC

AAG





hsa-miR-124
1044
UAAGGCACGCGGUGAAU
1045
UAAGGCACGCGG
1046
CACCGCGUGCC


MIMAT0000422

GCC

UGAAUGCC

UUA





hsa-miR-124*
1047
CGUGUUCACAGCGGACC
1048
CGUGUUCACAGC
1049
CCGCUGUGAAC


MIMAT0004591

UUGAU

GGACCUUG

ACG





hsa-miR-1243
1050
AACUGGAUCAAUUAUAG
1051
AACUGGAUCAAU
1052
UAAUUGAUCCA


MIMAT0005894

GAGUG

UAUAGGAG

GUU





hsa-miR-1244
1053
AAGUAGUUGGUUUGUAU
1054
AAGUAGUUGGUU
1055
CAAACCAACUA


MIMAT0005896

GAGAUGGUU

UGUAUGAG

CUU





hsa-miR-1245
1056
AAGUGAUCUAAAGGCCU
1057
AAGUGAUCUAAA
1058
CCUUUAGAUCA


MIMAT0005897

ACAU

GGCCUACA

CUU





hsa-miR-1246
1059
AAUGGAUUUUUGGAGCA
1060
AAUGGAUUUUUG
1061
UCCAAAAAUCC


MIMAT0005898

GG

GAGCAGG

AUU





hsa-miR-1247
1062
ACCCGUCCCGUUCGUCC
1063
ACCCGUCCCGUU
1064
CGAACGGGACG


MIMAT0005899

CCGGA

CGUCCCCG

GGU





hsa-miR-1248
1065
ACCUUCUUGUAUAAGCA
1066
ACCUUCUUGUAU
1067
UUAUACAAGAA


MIMAT0005900

CUGUGCUAAA

AAGCACUG

GGU





hsa-miR-1249
1068
ACGCCCUUCCCCCCCUU
1069
ACGCCCUUCCCC
1070
GGGGGGAAGGG


MIMAT0005901

CUUCA

CCCUUCUU

CGU





hsa-miR-1250
1071
ACGGUGCUGGAUGUGGC
1072
ACGGUGCUGGAU
1073
ACAUCCAGCAC


MIMAT0005902

CUUU

GUGGCCUU

CGU





hsa-miR-1251
1074
ACUCUAGCUGCCAAAGG
1075
ACUCUAGCUGCC
1076
UUGGCAGCUAG


MIMAT0005903

CGCU

AAAGGCGC

AGU





hsa-miR-1252
1077
AGAAGGAAAUUGAAUUC
1078
AGAAGGAAAUUG
1079
UUCAAUUUCCU


MIMAT0005944

AUUUA

AAUUCAUU

UCU





hsa-miR-1253
1080
AGAGAAGAAGAUCAGCC
1081
AGAGAAGAAGAU
1082
UGAUCUUCUUC


MIMAT0005904

UGCA

CAGCCUGC

UCU





hsa-miR-1254
1083
AGCCUGGAAGCUGGAGC
1084
AGCCUGGAAGCU
1085
CCAGCUUCCAG


MIMAT0005905

CUGCAGU

GGAGCCUG

GCU





hsa-miR-1255a
1086
AGGAUGAGCAAAGAAAG
1087
AGGAUGAGCAAA
1088
UCUUUGCUCAU


MIMAT0005906

UAGAUU

GAAAGUAG

CCU





hsa-miR-1255b
1089
CGGAUGAGCAAAGAAAG
1090
CGGAUGAGCAAA
1091
UCUUUGCUCAU


MIMAT0005945

UGGUU

GAAAGUGG

CCG





hsa-miR-1256
1092
AGGCAUUGACUUCUCAC
1093
AGGCAUUGACUU
1094
AGAAGUCAAUG


MIMAT0005907

UAGCU

CUCACUAG

CCU





hsa-miR-1257
1095
AGUGAAUGAUGGGUUCU
1096
AGUGAAUGAUGG
1097
ACCCAUCAUUC


MIMAT0005908

GACC

GUUCUGAC

ACU





hsa-miR-1258
1098
AGUUAGGAUUAGGUCGU
1099
AGUUAGGAUUAG
1100
ACCUAAUCCUA


MIMAT0005909

GGAA

GUCGUGGA

ACU





hsa-miR-125a-
1101
ACAGGUGAGGUUCUUGG
1102
ACAGGUGAGGUU
1103
AGAACCUCACC


3p

GAGCC

CUUGGGAG

UGU


MIMAT0004602





hsa-miR-125a-
1104
UCCCUGAGACCCUUUAA
1105
UCCCUGAGACCC
1106
AAGGGUCUCAG


5p

CCUGUGA

UUUAACCU

GGA


MIMAT0000443





hsa-miR-125b
1107
UCCCUGAGACCCUAACU
1108
UCCCUGAGACCC
1109
UAGGGUCUCAG


MIMAT0000423

UGUGA

UAACUUGU

GGA





hsa-miR-125b-
1110
ACGGGUUAGGCUCUUGG
1111
ACGGGUUAGGCU
1112
AGAGCCUAACC


1*

GAGCU

CUUGGGAG

CGU


MIMAT0004592





hsa-miR-125b-
1113
UCACAAGUCAGGCUCUU
1114
UCACAAGUCAGG
1115
AGCCUGACUUG


2*

GGGAC

CUCUUGGG

UGA


MIMAT0004603





hsa-miR-126
1116
UCGUACCGUGAGUAAUA
1117
UCGUACCGUGAG
1118
UACUCACGGUA


MIMAT0000445

AUGCG

UAAUAAUG

CGA





hsa-miR-126*
1119
CAUUAUUACUUUUGGUA
1120
CAUUAUUACUUU
1121
CAAAAGUAAUA


MIMAT0000444

CGCG

UGGUACGC

AUG





hsa-miR-1260
1122
AUCCCACCUCUGCCACCA
1123
AUCCCACCUCUG
1124
GGCAGAGGUGG


MIMAT0005911



CCACCA

GAU





hsa-miR-1260b
1125
AUCCCACCACUGCCACC
1126
AUCCCACCACUG
1127
GGCAGUGGUGG


MIMAT0015041

AU

CCACCAU

GAU





hsa-miR-1261
1128
AUGGAUAAGGCUUUGGC
1129
AUGGAUAAGGCU
1130
AAAGCCUUAUC


MIMAT0005913

UU

UUGGCUU

CAU





hsa-miR-1262
1131
AUGGGUGAAUUUGUAGA
1132
AUGGGUGAAUUU
1133
ACAAAUUCACC


MIMAT0005914

AGGAU

GUAGAAGG

CAU





hsa-miR-1263
1134
AUGGUACCCUGGCAUAC
1135
AUGGUACCCUGG
1136
UGCCAGGGUAC


MIMAT0005915

UGAGU

CAUACUGA

CAU





hsa-miR-1264
1137
CAAGUCUUAUUUGAGCA
1138
CAAGUCUUAUUU
1139
UCAAAUAAGAC


MIMAT0005791

CCUGUU

GAGCACCU

UUG





hsa-miR-1265
1140
CAGGAUGUGGUCAAGUG
1141
CAGGAUGUGGUC
1142
UUGACCACAUC


MIMAT0005918

UUGUU

AAGUGUUG

CUG





hsa-miR-1266
1143
CCUCAGGGCUGUAGAAC
1144
CCUCAGGGCUGU
1145
CUACAGCCCUG


MIMAT0005920

AGGGCU

AGAACAGG

AGG





hsa-miR-1267
1146
CCUGUUGAAGUGUAAUC
1147
CCUGUUGAAGUG
1148
UACACUUCAAC


MIMAT0005921

CCCA

UAAUCCCC

AGG





hsa-miR-1268
1149
CGGGCGUGGUGGUGGGGG
1150
CGGGCGUGGUGG
1151
CACCACCACGC


MIMAT0005922



UGGGGG

CCG





hsa-miR-1269
1152
CUGGACUGAGCCGUGCU
1153
CUGGACUGAGCC
1154
ACGGCUCAGUC


MIMAT0005923

ACUGG

GUGCUACU

CAG





hsa-miR-1270
1155
CUGGAGAUAUGGAAGAG
1156
CUGGAGAUAUGG
1157
UUCCAUAUCUC


MIMAT0005924

CUGUGU

AAGAGCUG

CAG





hsa-miR-1271
1158
CUUGGCACCUAGCAAGC
1159
CUUGGCACCUAG
1160
UGCUAGGUGCC


MIMAT0005796

ACUCA

CAAGCACU

AAG





hsa-miR-1272
1161
GAUGAUGAUGGCAGCAA
1162
GAUGAUGAUGGC
1163
CUGCCAUCAUC


MIMAT0005925

AUUCUGAAA

AGCAAAUU

AUC





hsa-miR-1273
1164
GGGCGACAAAGCAAGAC
1165
GGGCGACAAAGC
1166
UUGCUUUGUCG


MIMAT0005926

UCUUUCUU

AAGACUCU

CCC





hsa-miR-1273c
1167
GGCGACAAAACGAGACC
1168
GGCGACAAAACG
1169
CUCGUUUUGUC


MIMAT0015017

CUGUC

AGACCCUG

GCC





hsa-miR-1273d
1170
GAACCCAUGAGGUUGAG
1171
GAACCCAUGAGG
1172
AACCUCAUGGG


MIMAT0015090

GCUGCAGU

UUGAGGCU

UUC





hsa-miR-1273e
1173
UUGCUUGAACCCAGGAA
1174
UUGCUUGAACCC
1175
CUGGGUUCAAG


MIMAT0018079

GUGGA

AGGAAGUG

CAA





hsa-miR-127-3p
1176
UCGGAUCCGUCUGAGCU
1177
UCGGAUCCGUCU
1178
UCAGACGGAUC


MIMAT0000446

UGGCU

GAGCUUGG

CGA





hsa-miR-1274a
1179
GUCCCUGUUCAGGCGCCA
1180
GUCCCUGUUCAG
1181
GCCUGAACAGG


MIMAT0005927



GCGCCA

GAC





hsa-miR-1274b
1182
UCCCUGUUCGGGCGCCA
1183
UCCCUGUUCGGG
1184
CGCCCGAACAG


MIMAT0005938



CGCCA

GGA





hsa-miR-1275
1185
GUGGGGGAGAGGCUGUC
1186
GUGGGGGAGAGG
1187
AGCCUCUCCCC


MIMAT0005929



CUGUC

CAC





hsa-miR-127-5p
1188
CUGAAGCUCAGAGGGCU
1189
CUGAAGCUCAGA
1190
CCUCUGAGCUU


MIMAT0004604

CUGAU

GGGCUCUG

CAG





hsa-miR-1276
1191
UAAAGAGCCCUGUGGAG
1192
UAAAGAGCCCUG
1193
CACAGGGCUCU


MIMAT0005930

ACA

UGGAGACA

UUA





hsa-miR-1277
1194
UACGUAGAUAUAUAUGU
1195
UACGUAGAUAUA
1196
UAUAUAUCUAC


MIMAT0005933

AUUUU

UAUGUAUU

GUA





hsa-miR-1278
1197
UAGUACUGUGCAUAUCA
1198
UAGUACUGUGCA
1199
UAUGCACAGUA


MIMAT0005936

UCUAU

UAUCAUCU

CUA





hsa-miR-1279
1200
UCAUAUUGCUUCUUUCU
1201
UCAUAUUGCUUC
1202
AAGAAGCAAUA


MIMAT0005937



UUUCU

UGA





hsa-miR-128
1203
UCACAGUGAACCGGUCU
1204
UCACAGUGAACC
1205
CCGGUUCACUG


MIMAT0000424

CUUU

GGUCUCUU

UGA





hsa-miR-1280
1206
UCCCACCGCUGCCACCC
1207
UCCCACCGCUGC
1208
UGGCAGCGGUG


MIMAT0005946



CACCC

GGA





hsa-miR-1281
1209
UCGCCUCCUCCUCUCCC
1210
UCGCCUCCUCCU
1211
AGAGGAGGAGG


MIMAT0005939



CUCCC

CGA





hsa-miR-1282
1212
UCGUUUGCCUUUUUCUG
1213
UCGUUUGCCUUU
1214
AAAAAGGCAAA


MIMAT0005940

CUU

UUCUGCUU

CGA





hsa-miR-1283
1215
UCUACAAAGGAAAGCGC
1216
UCUACAAAGGAA
1217
CUUUCCUUUGU


MIMAT0005799

UUUCU

AGCGCUUU

AGA





hsa-miR-1284
1218
UCUAUACAGACCCUGGC
1219
UCUAUACAGACC
1220
AGGGUCUGUAU


MIMAT0005941

UUUUC

CUGGCUUU

AGA





hsa-miR-1285
1221
UCUGGGCAACAAAGUGA
1222
UCUGGGCAACAA
1223
CUUUGUUGCCC


MIMAT0005876

GACCU

AGUGAGAC

AGA





hsa-miR-1286
1224
UGCAGGACCAAGAUGAG
1225
UGCAGGACCAAG
1226
AUCUUGGUCCU


MIMAT0005877

CCCU

AUGAGCCC

GCA





hsa-miR-1287
1227
UGCUGGAUCAGUGGUUC
1228
UGCUGGAUCAGU
1229
CCACUGAUCCA


MIMAT0005878

GAGUC

GGUUCGAG

GCA





hsa-miR-1288
1230
UGGACUGCCCUGAUCUG
1231
UGGACUGCCCUG
1232
AUCAGGGCAGU


MIMAT0005942

GAGA

AUCUGGAG

CCA





hsa-miR-1289
1233
UGGAGUCCAGGAAUCUG
1234
UGGAGUCCAGGA
1235
AUUCCUGGACU


MIMAT0005879

CAUUUU

AUCUGCAU

CCA





hsa-miR-129*
1236
AAGCCCUUACCCCAAAA
1237
AAGCCCUUACCC
1238
UGGGGUAAGGG


MIMAT0004548

AGUAU

CAAAAAGU

CUU





hsa-miR-1290
1239
UGGAUUUUUGGAUCAGG
1240
UGGAUUUUUGGA
1241
GAUCCAAAAAU


MIMAT0005880

GA

UCAGGGA

CCA





hsa-miR-1291
1242
UGGCCCUGACUGAAGAC
1243
UGGCCCUGACUG
1244
UUCAGUCAGGG


MIMAT0005881

CAGCAGU

AAGACCAG

CCA





hsa-miR-1292
1245
UGGGAACGGGUUCCGGC
1246
UGGGAACGGGUU
1247
GGAACCCGUUC


MIMAT0005943

AGACGCUG

CCGGCAGA

CCA





hsa-miR-1293
1248
UGGGUGGUCUGGAGAUU
1249
UGGGUGGUCUGG
1250
CUCCAGACCAC


MIMAT0005883

UGUGC

AGAUUUGU

CCA





hsa-miR-129-3p
1251
AAGCCCUUACCCCAAAA
1252
AAGCCCUUACCC
1253
UGGGGUAAGGG


MIMAT0004605

AGCAU

CAAAAAGC

CUU





hsa-miR-1294
1254
UGUGAGGUUGGCAUUGU
1255
UGUGAGGUUGGC
1256
AUGCCAACCUC


MIMAT0005884

UGUCU

AUUGUUGU

ACA





hsa-miR-1295
1257
UUAGGCCGCAGAUCUGG
1258
UUAGGCCGCAGA
1259
GAUCUGCGGCC


MIMAT0005885

GUGA

UCUGGGUG

UAA





hsa-miR-129-5p
1260
CUUUUUGCGGUCUGGGC
1261
CUUUUUGCGGUC
1262
CAGACCGCAAA


MIMAT0000242

UUGC

UGGGCUUG

AAG





hsa-miR-1296
1263
UUAGGGCCCUGGCUCCA
1264
UUAGGGCCCUGG
1265
AGCCAGGGCCC


MIMAT0005794

UCUCC

CUCCAUCU

UAA





hsa-miR-1297
1266
UUCAAGUAAUUCAGGUG
1267
UUCAAGUAAUUC
1268
CUGAAUUACUU


MIMAT0005886



AGGUG

GAA





hsa-miR-1298
1269
UUCAUUCGGCUGUCCAG
1270
UUCAUUCGGCUG
1271
GACAGCCGAAU


MIMAT0005800

AUGUA

UCCAGAUG

GAA





hsa-miR-1299
1272
UUCUGGAAUUCUGUGUG
1273
UUCUGGAAUUCU
1274
ACAGAAUUCCA


MIMAT0005887

AGGGA

GUGUGAGG

GAA





hsa-miR-1301
1275
UUGCAGCUGCCUGGGAG
1276
UUGCAGCUGCCU
1277
CCAGGCAGCUG


MIMAT0005797

UGACUUC

GGGAGUGA

CAA





hsa-miR-1302
1278
UUGGGACAUACUUAUGC
1279
UUGGGACAUACU
1280
UAAGUAUGUCC


MIMAT0005890

UAAA

UAUGCUAA

CAA





hsa-miR-1303
1281
UUUAGAGACGGGGUCUU
1282
UUUAGAGACGGG
1283
ACCCCGUCUCU


MIMAT0005891

GCUCU

GUCUUGCU

AAA





hsa-miR-1304
1284
UUUGAGGCUACAGUGAG
1285
UUUGAGGCUACA
1286
ACUGUAGCCUC


MIMAT0005892

AUGUG

GUGAGAUG

AAA





hsa-miR-1305
1287
UUUUCAACUCUAAUGGG
1288
UUUUCAACUCUA
1289
AUUAGAGUUGA


MIMAT0005893

AGAGA

AUGGGAGA

AAA





hsa-miR-1306
1290
ACGUUGGCUCUGGUGGUG
1291
ACGUUGGCUCUG
1292
ACCAGAGCCAA


MIMAT0005950



GUGGUG

CGU





hsa-miR-1307
1293
ACUCGGCGUGGCGUCGG
1294
ACUCGGCGUGGC
1295
ACGCCACGCCG


MIMAT0005951

UCGUG

GUCGGUCG

AGU





hsa-miR-130a
1296
CAGUGCAAUGUUAAAAG
1297
CAGUGCAAUGUU
1298
UUAACAUUGCA


MIMAT0000425

GGCAU

AAAAGGGC

CUG





hsa-miR-130a*
1299
UUCACAUUGUGCUACUG
1300
UUCACAUUGUGC
1301
UAGCACAAUGU


MIMAT0004593

UCUGC

UACUGUCU

GAA





hsa-miR-130b
1302
CAGUGCAAUGAUGAAAG
1303
CAGUGCAAUGAU
1304
UCAUCAUUGCA


MIMAT0000691

GGCAU

GAAAGGGC

CUG





hsa-miR-130b*
1305
ACUCUUUCCCUGUUGCA
1306
ACUCUUUCCCUG
1307
AACAGGGAAAG


MIMAT0004680

CUAC

UUGCACUA

AGU





hsa-miR-132
1308
UAACAGUCUACAGCCAU
1309
UAACAGUCUACA
1310
GCUGUAGACUG


MIMAT0000426

GGUCG

GCCAUGGU

UUA





hsa-miR-132*
1311
ACCGUGGCUUUCGAUUG
1312
ACCGUGGCUUUC
1313
UCGAAAGCCAC


MIMAT0004594

UUACU

GAUUGUUA

GGU





hsa-miR-1321
1314
CAGGGAGGUGAAUGUGAU
1315
CAGGGAGGUGAA
1316
CAUUCACCUCC


MIMAT0005952



UGUGAU

CUG





hsa-miR-1322
1317
GAUGAUGCUGCUGAUGC
1318
GAUGAUGCUGCU
1319
UCAGCAGCAUC


MIMAT0005953

UG

GAUGCUG

AUC





hsa-miR-1323
1320
UCAAAACUGAGGGGCAU
1321
UCAAAACUGAGG
1322
CCCCUCAGUUU


MIMAT0005795

UUUCU

GGCAUUUU

UGA





hsa-miR-1324
1323
CCAGACAGAAUUCUAUG
1324
CCAGACAGAAUU
1325
AGAAUUCUGUC


MIMAT0005956

CACUUUC

CUAUGCAC

UGG





hsa-miR-133a
1326
UUUGGUCCCCUUCAACC
1327
UUUGGUCCCCUU
1328
UGAAGGGGACC


MIMAT0000427

AGCUG

CAACCAGC

AAA





hsa-miR-133b
1329
UUUGGUCCCCUUCAACC
1330
UUUGGUCCCCUU
1331
UGAAGGGGACC


MIMAT0000770

AGCUA

CAACCAGC

AAA





hsa-miR-134
1332
UGUGACUGGUUGACCAG
1333
UGUGACUGGUUG
1334
GUCAACCAGUC


MIMAT0000447

AGGGG

ACCAGAGG

ACA





hsa-miR-135a
1335
UAUGGCUUUUUAUUCCU
1336
UAUGGCUUUUUA
1337
AAUAAAAAGCC


MIMAT0000428

AUGUGA

UUCCUAUG

AUA





hsa-miR-135a*
1338
UAUAGGGAUUGGAGCCG
1339
UAUAGGGAUUGG
1340
CUCCAAUCCCU


MIMAT0004595

UGGCG

AGCCGUGG

AUA





hsa-miR-135b
1341
UAUGGCUUUUCAUUCCU
1342
UAUGGCUUUUCA
1343
AAUGAAAAGCC


MIMAT0000758

AUGUGA

UUCCUAUG

AUA





hsa-miR-135b*
1344
AUGUAGGGCUAAAAGCC
1345
AUGUAGGGCUAA
1346
UUUUAGCCCUA


MIMAT0004698

AUGGG

AAGCCAUG

CAU





hsa-miR-136
1347
ACUCCAUUUGUUUUGAU
1348
ACUCCAUUUGUU
1349
AAAACAAAUGG


MIMAT0000448

GAUGGA

UUGAUGAU

AGU





hsa-miR-136*
1350
CAUCAUCGUCUCAAAUG
1351
CAUCAUCGUCUC
1352
UUGAGACGAUG


MIMAT0004606

AGUCU

AAAUGAGU

AUG





hsa-miR-137
1353
UUAUUGCUUAAGAAUAC
1354
UUAUUGCUUAAG
1355
UUCUUAAGCAA


MIMAT0000429

GCGUAG

AAUACGCG

UAA





hsa-miR-138
1356
AGCUGGUGUUGUGAAUC
1357
AGCUGGUGUUGU
1358
UCACAACACCA


MIMAT0000430

AGGCCG

GAAUCAGG

GCU





hsa-miR-138-1*
1359
GCUACUUCACAACACCA
1360
GCUACUUCACAA
1361
UGUUGUGAAGU


MIMAT0004607

GGGCC

CACCAGGG

AGC





hsa-miR-138-2*
1362
GCUAUUUCACGACACCA
1363
GCUAUUUCACGA
1364
UGUCGUGAAAU


MIMAT0004596

GGGUU

CACCAGGG

AGC





hsa-miR-139-3p
1365
GGAGACGCGGCCCUGUU
1366
GGAGACGCGGCC
1367
AGGGCCGCGUC


MIMAT0004552

GGAGU

CUGUUGGA

UCC





hsa-miR-139-5p
1368
UCUACAGUGCACGUGUC
1369
UCUACAGUGCAC
1370
ACGUGCACUGU


MIMAT0000250

UCCAG

GUGUCUCC

AGA





hsa-miR-140-3p
1371
UACCACAGGGUAGAACC
1372
UACCACAGGGUA
1373
UCUACCCUGUG


MIMAT0004597

ACGG

GAACCACG

GUA





hsa-miR-140-5p
1374
CAGUGGUUUUACCCUAU
1375
CAGUGGUUUUAC
1376
GGGUAAAACCA


MIMAT0000431

GGUAG

CCUAUGGU

CUG





hsa-miR-141
1377
UAACACUGUCUGGUAAA
1378
UAACACUGUCUG
1379
ACCAGACAGUG


MIMAT0000432

GAUGG

GUAAAGAU

UUA





hsa-miR-141*
1380
CAUCUUCCAGUACAGUG
1381
CAUCUUCCAGUA
1382
UGUACUGGAAG


MIMAT0004598

UUGGA

CAGUGUUG

AUG





hsa-miR-142-3p
1383
UGUAGUGUUUCCUACUU
1384
UGUAGUGUUUCC
1385
UAGGAAACACU


MIMAT0000434

UAUGGA

UACUUUAU

ACA





hsa-miR-142-5p
1386
CAUAAAGUAGAAAGCAC
1387
CAUAAAGUAGAA
1388
CUUUCUACUUU


MIMAT0000433

UACU

AGCACUAC

AUG





hsa-miR-143
1389
UGAGAUGAAGCACUGUA
1390
UGAGAUGAAGCA
1391
AGUGCUUCAUC


MIMAT0000435

GCUC

CUGUAGCU

UCA





hsa-miR-143*
1392
GGUGCAGUGCUGCAUCU
1393
GGUGCAGUGCUG
1394
UGCAGCACUGC


MIMAT0004599

CUGGU

CAUCUCUG

ACC





hsa-miR-144
1395
UACAGUAUAGAUGAUGU
1396
UACAGUAUAGAU
1397
UCAUCUAUACU


MIMAT0000436

ACU

GAUGUACU

GUA





hsa-miR-144*
1398
GGAUAUCAUCAUAUACU
1399
GGAUAUCAUCAU
1400
AUAUGAUGAUA


MIMAT0004600

GUAAG

AUACUGUA

UCC





hsa-miR-145
1401
GUCCAGUUUUCCCAGGA
1402
GUCCAGUUUUCC
1403
UGGGAAAACUG


MIMAT0000437

AUCCCU

CAGGAAUC

GAC





hsa-miR-145*
1404
GGAUUCCUGGAAAUACU
1405
GGAUUCCUGGAA
1406
AUUUCCAGGAA


MIMAT0004601

GUUCU

AUACUGUU

UCC





hsa-miR-1468
1407
CUCCGUUUGCCUGUUUC
1408
CUCCGUUUGCCU
1409
ACAGGCAAACG


MIMAT0006789

GCUG

GUUUCGCU

GAG





hsa-miR-1469
1410
CUCGGCGCGGGGCGCGG
1411
CUCGGCGCGGGG
1412
CGCCCCGCGCC


MIMAT0007347

GCUCC

CGCGGGCU

GAG





hsa-miR-146a
1413
UGAGAACUGAAUUCCAU
1414
UGAGAACUGAAU
1415
GAAUUCAGUUC


MIMAT0000449

GGGUU

UCCAUGGG

UCA





hsa-miR-146a*
1416
CCUCUGAAAUUCAGUUC
1417
CCUCUGAAAUUC
1418
CUGAAUUUCAG


MIMAT0004608

UUCAG

AGUUCUUC

AGG





hsa-miR-146b-
1419
UGCCCUGUGGACUCAGU
1420
UGCCCUGUGGAC
1421
GAGUCCACAGG


3p

UCUGG

UCAGUUCU

GCA


MIMAT0004766





hsa-miR-146b-
1422
UGAGAACUGAAUUCCAU
1423
UGAGAACUGAAU
1424
GAAUUCAGUUC


5p

AGGCU

UCCAUAGG

UCA


MIMAT0002809





hsa-miR-147
1425
GUGUGUGGAAAUGCUUC
1426
GUGUGUGGAAAU
1427
GCAUUUCCACA


MIMAT0000251

UGC

GCUUCUGC

CAC





hsa-miR-1470
1428
GCCCUCCGCCCGUGCAC
1429
GCCCUCCGCCCG
1430
CACGGGCGGAG


MIMAT0007348

CCCG

UGCACCCC

GGC





hsa-miR-1471
1431
GCCCGCGUGUGGAGCCA
1432
GCCCGCGUGUGG
1433
CUCCACACGCG


MIMAT0007349

GGUGU

AGCCAGGU

GGC





hsa-miR-147b
1434
GUGUGCGGAAAUGCUUC
1435
GUGUGCGGAAAU
1436
GCAUUUCCGCA


MIMAT0004928

UGCUA

GCUUCUGC

CAC





hsa-miR-148a
1437
UCAGUGCACUACAGAAC
1438
UCAGUGCACUAC
1439
CUGUAGUGCAC


MIMAT0000243

UUUGU

AGAACUUU

UGA





hsa-miR-148a*
1440
AAAGUUCUGAGACACUC
1441
AAAGUUCUGAGA
1442
UGUCUCAGAAC


MIMAT0004549

CGACU

CACUCCGA

UUU





hsa-miR-148b
1443
UCAGUGCAUCACAGAAC
1444
UCAGUGCAUCAC
1445
CUGUGAUGCAC


MIMAT0000759

UUUGU

AGAACUUU

UGA





hsa-miR-148b*
1446
AAGUUCUGUUAUACACU
1447
AAGUUCUGUUAU
1448
GUAUAACAGAA


MIMAT0004699

CAGGC

ACACUCAG

CUU





hsa-miR-149
1449
UCUGGCUCCGUGUCUUC
1450
UCUGGCUCCGUG
1451
GACACGGAGCC


MIMAT0000450

ACUCCC

UCUUCACU

AGA





hsa-miR-149*
1452
AGGGAGGGACGGGGGCU
1453
AGGGAGGGACGG
1454
CCCCGUCCCUC


MIMAT0004609

GUGC

GGGCUGUG

CCU





hsa-miR-150
1455
UCUCCCAACCCUUGUAC
1456
UCUCCCAACCCU
1457
CAAGGGUUGGG


MIMAT0000451

CAGUG

UGUACCAG

AGA





hsa-miR-150*
1458
CUGGUACAGGCCUGGGG
1459
CUGGUACAGGCC
1460
CAGGCCUGUAC


MIMAT0004610

GACAG

UGGGGGAC

CAG





hsa-miR-151-3p
1461
CUAGACUGAAGCUCCUU
1462
CUAGACUGAAGC
1463
GAGCUUCAGUC


MIMAT0000757

GAGG

UCCUUGAG

UAG





hsa-miR-151-5p
1464
UCGAGGAGCUCACAGUC
1465
UCGAGGAGCUCA
1466
UGUGAGCUCCU


MIMAT0004697

UAGU

CAGUCUAG

CGA





hsa-miR-152
1467
UCAGUGCAUGACAGAAC
1468
UCAGUGCAUGAC
1469
CUGUCAUGCAC


MIMAT0000438

UUGG

AGAACUUG

UGA





hsa-miR-153
1470
UUGCAUAGUCACAAAAG
1471
UUGCAUAGUCAC
1472
UUGUGACUAUG


MIMAT0000439

UGAUC

AAAAGUGA

CAA





hsa-miR-1537
1473
AAAACCGUCUAGUUACA
1474
AAAACCGUCUAG
1475
AACUAGACGGU


MIMAT0007399

GUUGU

UUACAGUU

UUU





hsa-miR-1538
1476
CGGCCCGGGCUGCUGCU
1477
CGGCCCGGGCUG
1478
AGCAGCCCGGG


MIMAT0007400

GUUCCU

CUGCUGUU

CCG





hsa-miR-1539
1479
UCCUGCGCGUCCCAGAU
1480
UCCUGCGCGUCC
1481
UGGGACGCGCA


MIMAT0007401

GCCC

CAGAUGCC

GGA





hsa-miR-154
1482
UAGGUUAUCCGUGUUGC
1483
UAGGUUAUCCGU
1484
ACACGGAUAAC


MIMAT0000452

CUUCG

GUUGCCUU

CUA





hsa-miR-154*
1485
AAUCAUACACGGUUGAC
1486
AAUCAUACACGG
1487
AACCGUGUAUG


MIMAT0000453

CUAUU

UUGACCUA

AUU





hsa-miR-155
1488
UUAAUGCUAAUCGUGAU
1489
UUAAUGCUAAUC
1490
ACGAUUAGCAU


MIMAT0000646

AGGGGU

GUGAUAGG

UAA





hsa-miR-155*
1491
CUCCUACAUAUUAGCAU
1492
CUCCUACAUAUU
1493
CUAAUAUGUAG


MIMAT0004658

UAACA

AGCAUUAA

GAG





hsa-miR-15a
1494
UAGCAGCACAUAAUGGU
1495
UAGCAGCACAUA
1496
AUUAUGUGCUG


MIMAT0000068

UUGUG

AUGGUUUG

CUA





hsa-miR-15a*
1497
CAGGCCAUAUUGUGCUG
1498
CAGGCCAUAUUG
1499
CACAAUAUGGC


MIMAT0004488

CCUCA

UGCUGCCU

CUG





hsa-miR-15b
1500
UAGCAGCACAUCAUGGU
1501
UAGCAGCACAUC
1502
AUGAUGUGCUG


MIMAT0000417

UUACA

AUGGUUUA

CUA





hsa-miR-15b*
1503
CGAAUCAUUAUUUGCUG
1504
CGAAUCAUUAUU
1505
CAAAUAAUGAU


MIMAT0004586

CUCUA

UGCUGCUC

UCG





hsa-miR-16
1506
UAGCAGCACGUAAAUAU
1507
UAGCAGCACGUA
1508
UUUACGUGCUG


MIMAT0000069

UGGCG

AAUAUUGG

CUA





hsa-miR-16-1*
1509
CCAGUAUUAACUGUGCU
1510
CCAGUAUUAACU
1511
ACAGUUAAUAC


MIMAT0004489

GCUGA

GUGCUGCU

UGG





hsa-miR-16-2*
1512
CCAAUAUUACUGUGCUG
1513
CCAAUAUUACUG
1514
CACAGUAAUAU


MIMAT0004518

CUUUA

UGCUGCUU

UGG





hsa-miR-17
1515
CAAAGUGCUUACAGUGC
1516
CAAAGUGCUUAC
1517
CUGUAAGCACU


MIMAT0000070

AGGUAG

AGUGCAGG

UUG





hsa-miR-17*
1518
ACUGCAGUGAAGGCACU
1519
ACUGCAGUGAAG
1520
GCCUUCACUGC


MIMAT0000071

UGUAG

GCACUUGU

AGU





hsa-miR-181a
1521
AACAUUCAACGCUGUCG
1522
AACAUUCAACGC
1523
CAGCGUUGAAU


MIMAT0000256

GUGAGU

UGUCGGUG

GUU





hsa-miR-181a*
1524
ACCAUCGACCGUUGAUU
1525
ACCAUCGACCGU
1526
CAACGGUCGAU


MIMAT0000270

GUACC

UGAUUGUA

GGU





hsa-miR-181a-
1527
ACCACUGACCGUUGACU
1528
ACCACUGACCGU
1529
CAACGGUCAGU


2*

GUACC

UGACUGUA

GGU


MIMAT0004558





hsa-miR-181b
1530
AACAUUCAUUGCUGUCG
1531
AACAUUCAUUGC
1532
CAGCAAUGAAU


MIMAT0000257

GUGGGU

UGUCGGUG

GUU





hsa-miR-181c
1533
AACAUUCAACCUGUCGG
1534
AACAUUCAACCU
1535
ACAGGUUGAAU


MIMAT0000258

UGAGU

GUCGGUGA

GUU





hsa-miR-181c*
1536
AACCAUCGACCGUUGAG
1537
AACCAUCGACCG
1538
AACGGUCGAUG


MIMAT0004559

UGGAC

UUGAGUGG

GUU





hsa-miR-181d
1539
AACAUUCAUUGUUGUCG
1540
AACAUUCAUUGU
1541
CAACAAUGAAU


MIMAT0002821

GUGGGU

UGUCGGUG

GUU





hsa-miR-182
1542
UUUGGCAAUGGUAGAAC
1543
UUUGGCAAUGGU
1544
CUACCAUUGCC


MIMAT0000259

UCACACU

AGAACUCA

AAA





hsa-miR-182*
1545
UGGUUCUAGACUUGCCA
1546
UGGUUCUAGACU
1547
CAAGUCUAGAA


MIMAT0000260

ACUA

UGCCAACU

CCA





hsa-miR-1825
1548
UCCAGUGCCCUCCUCUCC
1549
UCCAGUGCCCUC
1550
AGGAGGGCACU


MIMAT0006765



CUCUCC

GGA





hsa-miR-1827
1551
UGAGGCAGUAGAUUGAAU
1552
UGAGGCAGUAGA
1553
AAUCUACUGCC


MIMAT0006767



UUGAAU

UCA





hsa-miR-183
1554
UAUGGCACUGGUAGAAU
1555
UAUGGCACUGGU
1556
CUACCAGUGCC


MIMAT0000261

UCACU

AGAAUUCA

AUA





hsa-miR-183*
1557
GUGAAUUACCGAAGGGC
1558
GUGAAUUACCGA
1559
CUUCGGUAAUU


MIMAT0004560

CAUAA

AGGGCCAU

CAC





hsa-miR-184
1560
UGGACGGAGAACUGAUA
1561
UGGACGGAGAAC
1562
CAGUUCUCCGU


MIMAT0000454

AGGGU

UGAUAAGG

CCA





hsa-miR-185
1563
UGGAGAGAAAGGCAGUU
1564
UGGAGAGAAAGG
1565
UGCCUUUCUCU


MIMAT0000455

CCUGA

CAGUUCCU

CCA





hsa-miR-185*
1566
AGGGGCUGGCUUUCCUC
1567
AGGGGCUGGCUU
1568
GAAAGCCAGCC


MIMAT0004611

UGGUC

UCCUCUGG

CCU





hsa-miR-186
1569
CAAAGAAUUCUCCUUUU
1570
CAAAGAAUUCUC
1571
AGGAGAAUUCU


MIMAT0000456

GGGCU

CUUUUGGG

UUG





hsa-miR-186*
1572
GCCCAAAGGUGAAUUUU
1573
GCCCAAAGGUGA
1574
AUUCACCUUUG


MIMAT0004612

UUGGG

AUUUUUUG

GGC





hsa-miR-187
1575
UCGUGUCUUGUGUUGCA
1576
UCGUGUCUUGUG
1577
AACACAAGACA


MIMAT0000262

GCCGG

UUGCAGCC

CGA





hsa-miR-187*
1578
GGCUACAACACAGGACC
1579
GGCUACAACACA
1580
CCUGUGUUGUA


MIMAT0004561

CGGGC

GGACCCGG

GCC





hsa-miR-188-3p
1581
CUCCCACAUGCAGGGUU
1582
CUCCCACAUGCA
1583
CCUGCAUGUGG


MIMAT0004613

UGCA

GGGUUUGC

GAG





hsa-miR-188-5p
1584
CAUCCCUUGCAUGGUGG
1585
CAUCCCUUGCAU
1586
CCAUGCAAGGG


MIMAT0000457

AGGG

GGUGGAGG

AUG





hsa-miR-18a
1587
UAAGGUGCAUCUAGUGC
1588
UAAGGUGCAUCU
1589
CUAGAUGCACC


MIMAT0000072

AGAUAG

AGUGCAGA

UUA





hsa-miR-18a*
1590
ACUGCCCUAAGUGCUCC
1591
ACUGCCCUAAGU
1592
GCACUUAGGGC


MIMAT0002891

UUCUGG

GCUCCUUC

AGU





hsa-miR-18b
1593
UAAGGUGCAUCUAGUGC
1594
UAAGGUGCAUCU
1595
CUAGAUGCACC


MIMAT0001412

AGUUAG

AGUGCAGU

UUA





hsa-miR-18b*
1596
UGCCCUAAAUGCCCCUU
1597
UGCCCUAAAUGC
1598
GGGCAUUUAGG


MIMAT0004751

CUGGC

CCCUUCUG

GCA





hsa-miR-190
1599
UGAUAUGUUUGAUAUAU
1600
UGAUAUGUUUGA
1601
UAUCAAACAUA


MIMAT0000458

UAGGU

UAUAUUAG

UCA





hsa-miR-1908
1602
CGGCGGGGACGGCGAUU
1603
CGGCGGGGACGG
1604
CGCCGUCCCCG


MIMAT0007881

GGUC

CGAUUGGU

CCG





hsa-miR-1909
1605
CGCAGGGGCCGGGUGCU
1606
CGCAGGGGCCGG
1607
ACCCGGCCCCU


MIMAT0007883

CACCG

GUGCUCAC

GCG





hsa-miR-1909*
1608
UGAGUGCCGGUGCCUGC
1609
UGAGUGCCGGUG
1610
GGCACCGGCAC


MIMAT0007882

CCUG

CCUGCCCU

UCA





hsa-miR-190b
1611
UGAUAUGUUUGAUAUUG
1612
UGAUAUGUUUGA
1613
UAUCAAACAUA


MIMAT0004929

GGUU

UAUUGGGU

UCA





hsa-miR-191
1614
CAACGGAAUCCCAAAAG
1615
CAACGGAAUCCC
1616
UUGGGAUUCCG


MIMAT0000440

CAGCUG

AAAAGCAG

UUG





hsa-miR-191*
1617
GCUGCGCUUGGAUUUCG
1618
GCUGCGCUUGGA
1619
AAUCCAAGCGC


MIMAT0001618

UCCCC

UUUCGUCC

AGC





hsa-miR-1910
1620
CCAGUCCUGUGCCUGCC
1621
CCAGUCCUGUGC
1622
AGGCACAGGAC


MIMAT0007884

GCCU

CUGCCGCC

UGG





hsa-miR-1911
1623
UGAGUACCGCCAUGUCU
1624
UGAGUACCGCCA
1625
CAUGGCGGUAC


MIMAT0007885

GUUGGG

UGUCUGUU

UCA





hsa-miR-1911*
1626
CACCAGGCAUUGUGGUC
1627
CACCAGGCAUUG
1628
CACAAUGCCUG


MIMAT0007886

UCC

UGGUCUCC

GUG





hsa-miR-1912
1629
UACCCAGAGCAUGCAGU
1630
UACCCAGAGCAU
1631
GCAUGCUCUGG


MIMAT0007887

GUGAA

GCAGUGUG

GUA





hsa-miR-1913
1632
UCUGCCCCCUCCGCUGC
1633
UCUGCCCCCUCC
1634
GCGGAGGGGGC


MIMAT0007888

UGCCA

GCUGCUGC

AGA





hsa-miR-1914
1635
CCCUGUGCCCGGCCCAC
1636
CCCUGUGCCCGG
1637
GGCCGGGCACA


MIMAT0007889

UUCUG

CCCACUUC

GGG





hsa-miR-1914*
1638
GGAGGGGUCCCGCACUG
1639
GGAGGGGUCCCG
1640
UGCGGGACCCC


MIMAT0007890

GGAGG

CACUGGGA

UCC





hsa-miR-1915
1641
CCCCAGGGCGACGCGGC
1642
CCCCAGGGCGAC
1643
GCGUCGCCCUG


MIMAT0007892

GGG

GCGGCGGG

GGG





hsa-miR-1915*
1644
ACCUUGCCUUGCUGCCC
1645
ACCUUGCCUUGC
1646
CAGCAAGGCAA


MIMAT0007891

GGGCC

UGCCCGGG

GGU





hsa-miR-192
1647
CUGACCUAUGAAUUGAC
1648
CUGACCUAUGAA
1649
AAUUCAUAGGU


MIMAT0000222

AGCC

UUGACAGC

CAG





hsa-miR-192*
1650
CUGCCAAUUCCAUAGGU
1651
CUGCCAAUUCCA
1652
UAUGGAAUUGG


MIMAT0004543

CACAG

UAGGUCAC

CAG





hsa-miR-193a-
1653
AACUGGCCUACAAAGUC
1654
AACUGGCCUACA
1655
UUUGUAGGCCA


3p

CCAGU

AAGUCCCA

GUU


MIMAT0000459





hsa-miR-193a-
1656
UGGGUCUUUGCGGGCGA
1657
UGGGUCUUUGCG
1658
CCCGCAAAGAC


5p

GAUGA

GGCGAGAU

CCA


MIMAT0004614





hsa-miR-193b
1659
AACUGGCCCUCAAAGUC
1660
AACUGGCCCUCA
1661
UUUGAGGGCCA


MIMAT0002819

CCGCU

AAGUCCCG

GUU





hsa-miR-193b*
1662
CGGGGUUUUGAGGGCGA
1663
CGGGGUUUUGAG
1664
CCCUCAAAACC


MIMAT0004767

GAUGA

GGCGAGAU

CCG





hsa-miR-194
1665
UGUAACAGCAACUCCAU
1666
UGUAACAGCAAC
1667
GAGUUGCUGUU


MIMAT0000460

GUGGA

UCCAUGUG

ACA





hsa-miR-194*
1668
CCAGUGGGGCUGCUGUU
1669
CCAGUGGGGCUG
1670
AGCAGCCCCAC


MIMAT0004671

AUCUG

CUGUUAUC

UGG





hsa-miR-195
1671
UAGCAGCACAGAAAUAU
1672
UAGCAGCACAGA
1673
UUUCUGUGCUG


MIMAT0000461

UGGC

AAUAUUGG

CUA





hsa-miR-195*
1674
CCAAUAUUGGCUGUGCU
1675
CCAAUAUUGGCU
1676
ACAGCCAAUAU


MIMAT0004615

GCUCC

GUGCUGCU

UGG





hsa-miR-196a
1677
UAGGUAGUUUCAUGUUG
1678
UAGGUAGUUUCA
1679
CAUGAAACUAC


MIMAT0000226

UUGGG

UGUUGUUG

CUA





hsa-miR-196a*
1680
CGGCAACAAGAAACUGC
1681
CGGCAACAAGAA
1682
GUUUCUUGUUG


MIMAT0004562

CUGAG

ACUGCCUG

CCG





hsa-miR-196b
1683
UAGGUAGUUUCCUGUUG
1684
UAGGUAGUUUCC
1685
CAGGAAACUAC


MIMAT0001080

UUGGG

UGUUGUUG

CUA





hsa-miR-196b*
1686
UCGACAGCACGACACUG
1687
UCGACAGCACGA
1688
UGUCGUGCUGU


MIMAT0009201

CCUUC

CACUGCCU

CGA





hsa-miR-197
1689
UUCACCACCUUCUCCAC
1690
UUCACCACCUUC
1691
GAGAAGGUGGU


MIMAT0000227

CCAGC

UCCACCCA

GAA





hsa-miR-1972
1692
UCAGGCCAGGCACAGUG
1693
UCAGGCCAGGCA
1694
UGUGCCUGGCC


MIMAT0009447

GCUCA

CAGUGGCU

UGA





hsa-miR-1973
1695
ACCGUGCAAAGGUAGCA
1696
ACCGUGCAAAGG
1697
UACCUUUGCAC


MIMAT0009448

UA

UAGCAUA

GGU





hsa-miR-1976
1698
CCUCCUGCCCUCCUUGC
1699
CCUCCUGCCCUC
1700
AGGAGGGCAGG


MIMAT0009451

UGU

CUUGCUGU

AGG





hsa-miR-198
1701
GGUCCAGAGGGGAGAUA
1702
GGUCCAGAGGGG
1703
CUCCCCUCUGG


MIMAT0000228

GGUUC

AGAUAGGU

ACC





hsa-miR-199a-
1704
ACAGUAGUCUGCACAUU
1705
ACAGUAGUCUGC
1706
GUGCAGACUAC


3p

GGUUA

ACAUUGGU

UGU


MIMAT0000232





hsa-miR-199a-
1707
CCCAGUGUUCAGACUAC
1708
CCCAGUGUUCAG
1709
GUCUGAACACU


5p

CUGUUC

ACUACCUG

GGG


MIMAT0000231





hsa-miR-199b-
1710
ACAGUAGUCUGCACAUU
1711
ACAGUAGUCUGC
1712
GUGCAGACUAC


3p

GGUUA

ACAUUGGU

UGU


MIMAT0004563





hsa-miR-199b-
1713
CCCAGUGUUUAGACUAU
1714
CCCAGUGUUUAG
1715
GUCUAAACACU


5p

CUGUUC

ACUAUCUG

GGG


MIMAT0000263





hsa-miR-19a
1716
UGUGCAAAUCUAUGCAA
1717
UGUGCAAAUCUA
1718
CAUAGAUUUGC


MIMAT0000073

AACUGA

UGCAAAAC

ACA





hsa-miR-19a*
1719
AGUUUUGCAUAGUUGCA
1720
AGUUUUGCAUAG
1721
AACUAUGCAAA


MIMAT0004490

CUACA

UUGCACUA

ACU





hsa-miR-19b
1722
UGUGCAAAUCCAUGCAA
1723
UGUGCAAAUCCA
1724
CAUGGAUUUGC


MIMAT0000074

AACUGA

UGCAAAAC

ACA





hsa-miR-19b-1*
1725
AGUUUUGCAGGUUUGCA
1726
AGUUUUGCAGGU
1727
AAACCUGCAAA


MIMAT0004491

UCCAGC

UUGCAUCC

ACU





hsa-miR-19b-2*
1728
AGUUUUGCAGGUUUGCA
1729
AGUUUUGCAGGU
1730
AAACCUGCAAA


MIMAT0004492

UUUCA

UUGCAUUU

ACU





hsa-miR-200a
1731
UAACACUGUCUGGUAAC
1732
UAACACUGUCUG
1733
ACCAGACAGUG


MIMAT0000682

GAUGU

GUAACGAU

UUA





hsa-miR-200a*
1734
CAUCUUACCGGACAGUG
1735
CAUCUUACCGGA
1736
UGUCCGGUAAG


MIMAT0001620

CUGGA

CAGUGCUG

AUG





hsa-miR-200b
1737
UAAUACUGCCUGGUAAU
1738
UAAUACUGCCUG
1739
ACCAGGCAGUA


MIMAT0000318

GAUGA

GUAAUGAU

UUA





hsa-miR-200b*
1740
CAUCUUACUGGGCAGCA
1741
CAUCUUACUGGG
1742
UGCCCAGUAAG


MIMAT0004571

UUGGA

CAGCAUUG

AUG





hsa-miR-200c
1743
UAAUACUGCCGGGUAAU
1744
UAAUACUGCCGG
1745
ACCCGGCAGUA


MIMAT0000617

GAUGGA

GUAAUGAU

UUA





hsa-miR-200c*
1746
CGUCUUACCCAGCAGUG
1747
CGUCUUACCCAG
1748
UGCUGGGUAAG


MIMAT0004657

UUUGG

CAGUGUUU

ACG





hsa-miR-202
1749
AGAGGUAUAGGGCAUGG
1750
AGAGGUAUAGGG
1751
UGCCCUAUACC


MIMAT0002811

GAA

CAUGGGAA

UCU





hsa-miR-202*
1752
UUCCUAUGCAUAUACUU
1753
UUCCUAUGCAUA
1754
UAUAUGCAUAG


MIMAT0002810

CUUUG

UACUUCUU

GAA





hsa-miR-203
1755
GUGAAAUGUUUAGGACC
1756
GUGAAAUGUUUA
1757
CCUAAACAUUU


MIMAT0000264

ACUAG

GGACCACU

CAC





hsa-miR-204
1758
UUCCCUUUGUCAUCCUA
1759
UUCCCUUUGUCA
1760
GAUGACAAAGG


MIMAT0000265

UGCCU

UCCUAUGC

GAA





hsa-miR-205
1761
UCCUUCAUUCCACCGGA
1762
UCCUUCAUUCCA
1763
GGUGGAAUGAA


MIMAT0000266

GUCUG

CCGGAGUC

GGA





hsa-miR-205*
1764
GAUUUCAGUGGAGUGAA
1765
GAUUUCAGUGGA
1766
ACUCCACUGAA


MIMAT0009197

GUUC

GUGAAGUU

AUC





hsa-miR-2052
1767
UGUUUUGAUAACAGUAA
1768
UGUUUUGAUAAC
1769
CUGUUAUCAAA


MIMAT0009977

UGU

AGUAAUGU

ACA





hsa-miR-2053
1770
GUGUUAAUUAAACCUCU
1771
GUGUUAAUUAAA
1772
GGUUUAAUUAA


MIMAT0009978

AUUUAC

CCUCUAUU

CAC





hsa-miR-2054
1773
CUGUAAUAUAAAUUUAA
1774
CUGUAAUAUAAA
1775
AAUUUAUAUUA


MIMAT0009979

UUUAUU

UUUAAUUU

CAG





hsa-miR-206
1776
UGGAAUGUAAGGAAGUG
1777
UGGAAUGUAAGG
1778
UUCCUUACAUU


MIMAT0000462

UGUGG

AAGUGUGU

CCA





hsa-miR-208a
1779
AUAAGACGAGCAAAAAG
1780
AUAAGACGAGCA
1781
UUUGCUCGUCU


MIMAT0000241

CUUGU

AAAAGCUU

UAU





hsa-miR-208b
1782
AUAAGACGAACAAAAGG
1783
AUAAGACGAACA
1784
UUUGUUCGUCU


MIMAT0004960

UUUGU

AAAGGUUU

UAU





hsa-miR-20a
1785
UAAAGUGCUUAUAGUGC
1786
UAAAGUGCUUAU
1787
CUAUAAGCACU


MIMAT0000075

AGGUAG

AGUGCAGG

UUA





hsa-miR-20a*
1788
ACUGCAUUAUGAGCACU
1789
ACUGCAUUAUGA
1790
GCUCAUAAUGC


MIMAT0004493

UAAAG

GCACUUAA

AGU





hsa-miR-20b
1791
CAAAGUGCUCAUAGUGC
1792
CAAAGUGCUCAU
1793
CUAUGAGCACU


MIMAT0001413

AGGUAG

AGUGCAGG

UUG





hsa-miR-20b*
1794
ACUGUAGUAUGGGCACU
1795
ACUGUAGUAUGG
1796
GCCCAUACUAC


MIMAT0004752

UCCAG

GCACUUCC

AGU





hsa-miR-21
1797
UAGCUUAUCAGACUGAU
1798
UAGCUUAUCAGA
1799
AGUCUGAUAAG


MIMAT0000076

GUUGA

CUGAUGUU

CUA





hsa-miR-21*
1800
CAACACCAGUCGAUGGG
1801
CAACACCAGUCG
1802
AUCGACUGGUG


MIMAT0004494

CUGU

AUGGGCUG

UUG





hsa-miR-210
1803
CUGUGCGUGUGACAGCG
1804
CUGUGCGUGUGA
1805
UGUCACACGCA


MIMAT0000267

GCUGA

CAGCGGCU

CAG





hsa-miR-211
1806
UUCCCUUUGUCAUCCUU
1807
UUCCCUUUGUCA
1808
GAUGACAAAGG


MIMAT0000268

CGCCU

UCCUUCGC

GAA





hsa-miR-2110
1809
UUGGGGAAACGGCCGCU
1810
UUGGGGAAACGG
1811
GGCCGUUUCCC


MIMAT0010133

GAGUG

CCGCUGAG

CAA





hsa-miR-2113
1812
AUUUGUGCUUGGCUCUG
1813
AUUUGUGCUUGG
1814
AGCCAAGCACA


MIMAT0009206

UCAC

CUCUGUCA

AAU





hsa-miR-2114
1815
UAGUCCCUUCCUUGAAG
1816
UAGUCCCUUCCU
1817
CAAGGAAGGGA


MIMAT0011156

CGGUC

UGAAGCGG

CUA





hsa-miR-2114*
1818
CGAGCCUCAAGCAAGGG
1819
CGAGCCUCAAGC
1820
UUGCUUGAGGC


MIMAT0011157

ACUU

AAGGGACU

UCG





hsa-miR-2115
1821
AGCUUCCAUGACUCCUG
1822
AGCUUCCAUGAC
1823
GAGUCAUGGAA


MIMAT0011158

AUGGA

UCCUGAUG

GCU





hsa-miR-2115*
1824
CAUCAGAAUUCAUGGAG
1825
CAUCAGAAUUCA
1826
CAUGAAUUCUG


MIMAT0011159

GCUAG

UGGAGGCU

AUG





hsa-miR-2116
1827
GGUUCUUAGCAUAGGAG
1828
GGUUCUUAGCAU
1829
CUAUGCUAAGA


MIMAT0011160

GUCU

AGGAGGUC

ACC





hsa-miR-2116*
1830
CCUCCCAUGCCAAGAAC
1831
CCUCCCAUGCCA
1832
CUUGGCAUGGG


MIMAT0011161

UCCC

AGAACUCC

AGG





hsa-miR-2117
1833
UGUUCUCUUUGCCAAGG
1834
UGUUCUCUUUGC
1835
UGGCAAAGAGA


MIMAT0011162

ACAG

CAAGGACA

ACA





hsa-miR-212
1836
UAACAGUCUCCAGUCAC
1837
UAACAGUCUCCA
1838
ACUGGAGACUG


MIMAT0000269

GGCC

GUCACGGC

UUA





hsa-miR-214
1839
ACAGCAGGCACAGACAG
1840
ACAGCAGGCACA
1841
UCUGUGCCUGC


MIMAT0000271

GCAGU

GACAGGCA

UGU





hsa-miR-214*
1842
UGCCUGUCUACACUUGC
1843
UGCCUGUCUACA
1844
AGUGUAGACAG


MIMAT0004564

UGUGC

CUUGCUGU

GCA





hsa-miR-215
1845
AUGACCUAUGAAUUGAC
1846
AUGACCUAUGAA
1847
AAUUCAUAGGU


MIMAT0000272

AGAC

UUGACAGA

CAU





hsa-miR-216a
1848
UAAUCUCAGCUGGCAAC
1849
UAAUCUCAGCUG
1850
GCCAGCUGAGA


MIMAT0000273

UGUGA

GCAACUGU

UUA





hsa-miR-216b
1851
AAAUCUCUGCAGGCAAA
1852
AAAUCUCUGCAG
1853
GCCUGCAGAGA


MIMAT0004959

UGUGA

GCAAAUGU

UUU





hsa-miR-217
1854
UACUGCAUCAGGAACUG
1855
UACUGCAUCAGG
1856
UUCCUGAUGCA


MIMAT0000274

AUUGGA

AACUGAUU

GUA





hsa-miR-218
1857
UUGUGCUUGAUCUAACC
1858
UUGUGCUUGAUC
1859
UAGAUCAAGCA


MIMAT0000275

AUGU

UAACCAUG

CAA





hsa-miR-218-1*
1860
AUGGUUCCGUCAAGCAC
1861
AUGGUUCCGUCA
1862
CUUGACGGAAC


MIMAT0004565

CAUGG

AGCACCAU

CAU





hsa-miR-218-2*
1863
CAUGGUUCUGUCAAGCA
1864
CAUGGUUCUGUC
1865
UUGACAGAACC


MIMAT0004566

CCGCG

AAGCACCG

AUG





hsa-miR-219-1-
1866
AGAGUUGAGUCUGGACG
1867
AGAGUUGAGUCU
1868
CCAGACUCAAC


3p

UCCCG

GGACGUCC

UCU


MIMAT0004567





hsa-miR-219-2-
1869
AGAAUUGUGGCUGGACA
1870
AGAAUUGUGGCU
1871
CCAGCCACAAU


3p

UCUGU

GGACAUCU

UCU


MIMAT0004675





hsa-miR-219-5p
1872
UGAUUGUCCAAACGCAA
1873
UGAUUGUCCAAA
1874
CGUUUGGACAA


MIMAT0000276

UUCU

CGCAAUUC

UCA





hsa-miR-22
1875
AAGCUGCCAGUUGAAGA
1876
AAGCUGCCAGUU
1877
UCAACUGGCAG


MIMAT0000077

ACUGU

GAAGAACU

CUU





hsa-miR-22*
1878
AGUUCUUCAGUGGCAAG
1879
AGUUCUUCAGUG
1880
GCCACUGAAGA


MIMAT0004495

CUUUA

GCAAGCUU

ACU





hsa-miR-221
1881
AGCUACAUUGUCUGCUG
1882
AGCUACAUUGUC
1883
CAGACAAUGUA


MIMAT0000278

GGUUUC

UGCUGGGU

GCU





hsa-miR-221*
1884
ACCUGGCAUACAAUGUA
1885
ACCUGGCAUACA
1886
AUUGUAUGCCA


MIMAT0004568

GAUUU

AUGUAGAU

GGU





hsa-miR-222
1887
AGCUACAUCUGGCUACU
1888
AGCUACAUCUGG
1889
AGCCAGAUGUA


MIMAT0000279

GGGU

CUACUGGG

GCU





hsa-miR-222*
1890
CUCAGUAGCCAGUGUAG
1891
CUCAGUAGCCAG
1892
CACUGGCUACU


MIMAT0004569

AUCCU

UGUAGAUC

GAG





hsa-miR-223
1893
UGUCAGUUUGUCAAAUA
1894
UGUCAGUUUGUC
1895
UUGACAAACUG


MIMAT0000280

CCCCA

AAAUACCC

ACA





hsa-miR-223*
1896
CGUGUAUUUGACAAGCU
1897
CGUGUAUUUGAC
1898
UUGUCAAAUAC


MIMAT0004570

GAGUU

AAGCUGAG

ACG





hsa-miR-224
1899
CAAGUCACUAGUGGUUC
1900
CAAGUCACUAGU
1901
CCACUAGUGAC


MIMAT0000281

CGUU

GGUUCCGU

UUG





hsa-miR-224*
1902
AAAAUGGUGCCCUAGUG
1903
AAAAUGGUGCCC
1904
UAGGGCACCAU


MIMAT0009198

ACUACA

UAGUGACU

UUU





hsa-miR-2276
1905
UCUGCAAGUGUCAGAGG
1906
UCUGCAAGUGUC
1907
CUGACACUUGC


MIMAT0011775

CGAGG

AGAGGCGA

AGA





hsa-miR-2277-
1908
UGACAGCGCCCUGCCUG
1909
UGACAGCGCCCU
1910
GCAGGGCGCUG


3p

GCUC

GCCUGGCU

UCA


MIMAT0011777





hsa-miR-2277-
1911
AGCGCGGGCUGAGCGCU
1912
AGCGCGGGCUGA
1913
GCUCAGCCCGC


5p

GCCAGUC

GCGCUGCC

GCU


MIMAT0017352





hsa-miR-2278
1914
GAGAGCAGUGUGUGUUG
1915
GAGAGCAGUGUG
1916
CACACACUGCU


MIMAT0011778

CCUGG

UGUUGCCU

CUC





hsa-miR-2355-
1917
AUUGUCCUUGCUGUUUG
1918
AUUGUCCUUGCU
1919
ACAGCAAGGAC


3p

GAGAU

GUUUGGAG

AAU


MIMAT0017950





hsa-miR-2355-
1920
AUCCCCAGAUACAAUGG
1921
AUCCCCAGAUAC
1922
UUGUAUCUGGG


5p

ACAA

AAUGGACA

GAU


MIMAT0016895





hsa-miR-23a
1923
AUCACAUUGCCAGGGAU
1924
AUCACAUUGCCA
1925
CCUGGCAAUGU


MIMAT0000078

UUCC

GGGAUUUC

GAU





hsa-miR-23a*
1926
GGGGUUCCUGGGGAUGG
1927
GGGGUUCCUGGG
1928
UCCCCAGGAAC


MIMAT0004496

GAUUU

GAUGGGAU

CCC





hsa-miR-23b
1929
AUCACAUUGCCAGGGAU
1930
AUCACAUUGCCA
1931
CCUGGCAAUGU


MIMAT0000418

UACC

GGGAUUAC

GAU





hsa-miR-23b*
1932
UGGGUUCCUGGCAUGCU
1933
UGGGUUCCUGGC
1934
AUGCCAGGAAC


MIMAT0004587

GAUUU

AUGCUGAU

CCA





hsa-miR-23c
1935
AUCACAUUGCCAGUGAU
1936
AUCACAUUGCCA
1937
ACUGGCAAUGU


MIMAT0018000

UACCC

GUGAUUAC

GAU





hsa-miR-24
1938
UGGCUCAGUUCAGCAGG
1939
UGGCUCAGUUCA
1940
GCUGAACUGAG


MIMAT0000080

AACAG

GCAGGAAC

CCA





hsa-miR-24-1*
1941
UGCCUACUGAGCUGAUA
1942
UGCCUACUGAGC
1943
CAGCUCAGUAG


MIMAT0000079

UCAGU

UGAUAUCA

GCA





hsa-miR-24-2*
1944
UGCCUACUGAGCUGAAA
1945
UGCCUACUGAGC
1946
CAGCUCAGUAG


MIMAT0004497

CACAG

UGAAACAC

GCA





hsa-miR-25
1947
CAUUGCACUUGUCUCGG
1948
CAUUGCACUUGU
1949
AGACAAGUGCA


MIMAT0000081

UCUGA

CUCGGUCU

AUG





hsa-miR-25*
1950
AGGCGGAGACUUGGGCA
1951
AGGCGGAGACUU
1952
CCAAGUCUCCG


MIMAT0004498

AUUG

GGGCAAUU

CCU





hsa-miR-26a
1953
UUCAAGUAAUCCAGGAU
1954
UUCAAGUAAUCC
1955
CUGGAUUACUU


MIMAT0000082

AGGCU

AGGAUAGG

GAA





hsa-miR-26a-1*
1956
CCUAUUCUUGGUUACUU
1957
CCUAUUCUUGGU
1958
UAACCAAGAAU


MIMAT0004499

GCACG

UACUUGCA

AGG





hsa-miR-26a-2*
1959
CCUAUUCUUGAUUACUU
1960
CCUAUUCUUGAU
1961
UAAUCAAGAAU


MIMAT0004681

GUUUC

UACUUGUU

AGG





hsa-miR-26b
1962
UUCAAGUAAUUCAGGAU
1963
UUCAAGUAAUUC
1964
CUGAAUUACUU


MIMAT0000083

AGGU

AGGAUAGG

GAA





hsa-miR-26b*
1965
CCUGUUCUCCAUUACUU
1966
CCUGUUCUCCAU
1967
UAAUGGAGAAC


MIMAT0004500

GGCUC

UACUUGGC

AGG





hsa-miR-27a
1968
UUCACAGUGGCUAAGUU
1969
UUCACAGUGGCU
1970
UUAGCCACUGU


MIMAT0000084

CCGC

AAGUUCCG

GAA





hsa-miR-27a*
1971
AGGGCUUAGCUGCUUGU
1972
AGGGCUUAGCUG
1973
AGCAGCUAAGC


MIMAT0004501

GAGCA

CUUGUGAG

CCU





hsa-miR-27b
1974
UUCACAGUGGCUAAGUU
1975
UUCACAGUGGCU
1976
UUAGCCACUGU


MIMAT0000419

CUGC

AAGUUCUG

GAA





hsa-miR-27b*
1977
AGAGCUUAGCUGAUUGG
1978
AGAGCUUAGCUG
1979
AUCAGCUAAGC


MIMAT0004588

UGAAC

AUUGGUGA

UCU





hsa-miR-28-3p
1980
CACUAGAUUGUGAGCUC
1981
CACUAGAUUGUG
1982
CUCACAAUCUA


MIMAT0004502

CUGGA

AGCUCCUG

GUG





hsa-miR-28-5p
1983
AAGGAGCUCACAGUCUA
1984
AAGGAGCUCACA
1985
ACUGUGAGCUC


MIMAT0000085

UUGAG

GUCUAUUG

CUU





hsa-miR-2861
1986
GGGGCCUGGCGGUGGGC
1987
GGGGCCUGGCGG
1988
CACCGCCAGGC


MIMAT0013802

GG

UGGGCGG

CCC





hsa-miR-2909
1989
GUUAGGGCCAACAUCUC
1990
GUUAGGGCCAAC
1991
AUGUUGGCCCU


MIMAT0013863

UUGG

AUCUCUUG

AAC





hsa-miR-296-3p
1992
GAGGGUUGGGUGGAGGC
1993
GAGGGUUGGGUG
1994
UCCACCCAACC


MIMAT0004679

UCUCC

GAGGCUCU

CUC





hsa-miR-296-5p
1995
AGGGCCCCCCCUCAAUC
1996
AGGGCCCCCCCU
1997
UGAGGGGGGGC


MIMAT0000690

CUGU

CAAUCCUG

CCU





hsa-miR-297
1998
AUGUAUGUGUGCAUGUG
1999
AUGUAUGUGUGC
2000
AUGCACACAUA


MIMAT0004450

CAUG

AUGUGCAU

CAU





hsa-miR-298
2001
AGCAGAAGCAGGGAGGU
2002
AGCAGAAGCAGG
2003
UCCCUGCUUCU


MIMAT0004901

UCUCCCA

GAGGUUCU

GCU





hsa-miR-299-3p
2004
UAUGUGGGAUGGUAAAC
2005
UAUGUGGGAUGG
2006
UACCAUCCCAC


MIMAT0000687

CGCUU

UAAACCGC

AUA





hsa-miR-299-5p
2007
UGGUUUACCGUCCCACA
2008
UGGUUUACCGUC
2009
GGGACGGUAAA


MIMAT0002890

UACAU

CCACAUAC

CCA





hsa-miR-29a
2010
UAGCACCAUCUGAAAUC
2011
UAGCACCAUCUG
2012
UUCAGAUGGUG


MIMAT0000086

GGUUA

AAAUCGGU

CUA





hsa-miR-29a*
2013
ACUGAUUUCUUUUGGUG
2014
ACUGAUUUCUUU
2015
CAAAAGAAAUC


MIMAT0004503

UUCAG

UGGUGUUC

AGU





hsa-miR-29b
2016
UAGCACCAUUUGAAAUC
2017
UAGCACCAUUUG
2018
UUCAAAUGGUG


MIMAT0000100

AGUGUU

AAAUCAGU

CUA





hsa-miR-29b-1*
2019
GCUGGUUUCAUAUGGUG
2020
GCUGGUUUCAUA
2021
CAUAUGAAACC


MIMAT0004514

GUUUAGA

UGGUGGUU

AGC





hsa-miR-29b-2*
2022
CUGGUUUCACAUGGUGG
2023
CUGGUUUCACAU
2024
CCAUGUGAAAC


MIMAT0004515

CUUAG

GGUGGCUU

CAG





hsa-miR-29c
2025
UAGCACCAUUUGAAAUC
2026
UAGCACCAUUUG
2027
UUCAAAUGGUG


MIMAT0000681

GGUUA

AAAUCGGU

CUA





hsa-miR-29c*
2028
UGACCGAUUUCUCCUGG
2029
UGACCGAUUUCU
2030
GGAGAAAUCGG


MIMAT0004673

UGUUC

CCUGGUGU

UCA





hsa-miR-300
2031
UAUACAAGGGCAGACUC
2032
UAUACAAGGGCA
2033
UCUGCCCUUGU


MIMAT0004903

UCUCU

GACUCUCU

AUA





hsa-miR-301a
2034
CAGUGCAAUAGUAUUGU
2035
CAGUGCAAUAGU
2036
AUACUAUUGCA


MIMAT0000688

CAAAGC

AUUGUCAA

CUG





hsa-miR-301b
2037
CAGUGCAAUGAUAUUGU
2038
CAGUGCAAUGAU
2039
AUAUCAUUGCA


MIMAT0004958

CAAAGC

AUUGUCAA

CUG





hsa-miR-302a
2040
UAAGUGCUUCCAUGUUU
2041
UAAGUGCUUCCA
2042
CAUGGAAGCAC


MIMAT0000684

UGGUGA

UGUUUUGG

UUA





hsa-miR-302a*
2043
ACUUAAACGUGGAUGUA
2044
ACUUAAACGUGG
2045
AUCCACGUUUA


MIMAT0000683

CUUGCU

AUGUACUU

AGU





hsa-miR-302b
2046
UAAGUGCUUCCAUGUUU
2047
UAAGUGCUUCCA
2048
CAUGGAAGCAC


MIMAT0000715

UAGUAG

UGUUUUAG

UUA





hsa-miR-302b*
2049
ACUUUAACAUGGAAGUG
2050
ACUUUAACAUGG
2051
UUCCAUGUUAA


MIMAT0000714

CUUUC

AAGUGCUU

AGU





hsa-miR-302c
2052
UAAGUGCUUCCAUGUUU
2053
UAAGUGCUUCCA
2054
CAUGGAAGCAC


MIMAT0000717

CAGUGG

UGUUUCAG

UUA





hsa-miR-302c*
2055
UUUAACAUGGGGGUACC
2056
UUUAACAUGGGG
2057
ACCCCCAUGUU


MIMAT0000716

UGCUG

GUACCUGC

AAA





hsa-miR-302d
2058
UAAGUGCUUCCAUGUUU
2059
UAAGUGCUUCCA
2060
CAUGGAAGCAC


MIMAT0000718

GAGUGU

UGUUUGAG

UUA





hsa-miR-302d*
2061
ACUUUAACAUGGAGGCA
2062
ACUUUAACAUGG
2063
CUCCAUGUUAA


MIMAT0004685

CUUGC

AGGCACUU

AGU





hsa-miR-302e
2064
UAAGUGCUUCCAUGCUU
2065
UAAGUGCUUCCA
2066
CAUGGAAGCAC


MIMAT0005931



UGCUU

UUA





hsa-miR-302f
2067
UAAUUGCUUCCAUGUUU
2068
UAAUUGCUUCCA
2069
CAUGGAAGCAA


MIMAT0005932



UGUUU

UUA





hsa-miR-3065-
2070
UCAGCACCAGGAUAUUG
2071
UCAGCACCAGGA
2072
UAUCCUGGUGC


3p

UUGGAG

UAUUGUUG

UGA


MIMAT0015378





hsa-miR-3065-
2073
UCAACAAAAUCACUGAU
2074
UCAACAAAAUCA
2075
AGUGAUUUUGU


5p

GCUGGA

CUGAUGCU

UGA


MIMAT0015066





hsa-miR-3074
2076
GAUAUCAGCUCAGUAGG
2077
GAUAUCAGCUCA
2078
ACUGAGCUGAU


MIMAT0015027

CACCG

GUAGGCAC

AUC





hsa-miR-30a
2079
UGUAAACAUCCUCGACU
2080
UGUAAACAUCCU
2081
CGAGGAUGUUU


MIMAT0000087

GGAAG

CGACUGGA

ACA





hsa-miR-30a*
2082
CUUUCAGUCGGAUGUUU
2083
CUUUCAGUCGGA
2084
CAUCCGACUGA


MIMAT0000088

GCAGC

UGUUUGCA

AAG





hsa-miR-30b
2085
UGUAAACAUCCUACACU
2086
UGUAAACAUCCU
2087
GUAGGAUGUUU


MIMAT0000420

CAGCU

ACACUCAG

ACA





hsa-miR-30b*
2088
CUGGGAGGUGGAUGUUU
2089
CUGGGAGGUGGA
2090
CAUCCACCUCC


MIMAT0004589

ACUUC

UGUUUACU

CAG





hsa-miR-30c
2091
UGUAAACAUCCUACACU
2092
UGUAAACAUCCU
2093
GUAGGAUGUUU


MIMAT0000244

CUCAGC

ACACUCUC

ACA





hsa-miR-30c-1*
2094
CUGGGAGAGGGUUGUUU
2095
CUGGGAGAGGGU
2096
CAACCCUCUCC


MIMAT0004674

ACUCC

UGUUUACU

CAG





hsa-miR-30c-2*
2097
CUGGGAGAAGGCUGUUU
2098
CUGGGAGAAGGC
2099
CAGCCUUCUCC


MIMAT0004550

ACUCU

UGUUUACU

CAG





hsa-miR-30d
2100
UGUAAACAUCCCCGACU
2101
UGUAAACAUCCC
2102
CGGGGAUGUUU


MIMAT0000245

GGAAG

CGACUGGA

ACA





hsa-miR-30d*
2103
CUUUCAGUCAGAUGUUU
2104
CUUUCAGUCAGA
2105
CAUCUGACUGA


MIMAT0004551

GCUGC

UGUUUGCU

AAG





hsa-miR-30e
2106
UGUAAACAUCCUUGACU
2107
UGUAAACAUCCU
2108
CAAGGAUGUUU


MIMAT0000692

GGAAG

UGACUGGA

ACA





hsa-miR-30e*
2109
CUUUCAGUCGGAUGUUU
2110
CUUUCAGUCGGA
2111
CAUCCGACUGA


MIMAT0000693

ACAGC

UGUUUACA

AAG





hsa-miR-31
2112
AGGCAAGAUGCUGGCAU
2113
AGGCAAGAUGCU
2114
CCAGCAUCUUG


MIMAT0000089

AGCU

GGCAUAGC

CCU





hsa-miR-31*
2115
UGCUAUGCCAACAUAUU
2116
UGCUAUGCCAAC
2117
AUGUUGGCAUA


MIMAT0004504

GCCAU

AUAUUGCC

GCA





hsa-miR-3115
2118
AUAUGGGUUUACUAGUU
2119
AUAUGGGUUUAC
2120
UAGUAAACCCA


MIMAT0014977

GGU

UAGUUGGU

UAU





hsa-miR-3116
2121
UGCCUGGAACAUAGUAG
2122
UGCCUGGAACAU
2123
CUAUGUUCCAG


MIMAT0014978

GGACU

AGUAGGGA

GCA





hsa-miR-3117
2124
AUAGGACUCAUAUAGUG
2125
AUAGGACUCAUA
2126
UAUAUGAGUCC


MIMAT0014979

CCAG

UAGUGCCA

UAU





hsa-miR-3118
2127
UGUGACUGCAUUAUGAA
2128
UGUGACUGCAUU
2129
AUAAUGCAGUC


MIMAT0014980

AAUUCU

AUGAAAAU

ACA





hsa-miR-3119
2130
UGGCUUUUAACUUUGAU
2131
UGGCUUUUAACU
2132
AAAGUUAAAAG


MIMAT0014981

GGC

UUGAUGGC

CCA





hsa-miR-3120
2133
CACAGCAAGUGUAGACA
2134
CACAGCAAGUGU
2135
CUACACUUGCU


MIMAT0014982

GGCA

AGACAGGC

GUG





hsa-miR-3121
2136
UAAAUAGAGUAGGCAAA
2137
UAAAUAGAGUAG
2138
GCCUACUCUAU


MIMAT0014983

GGACA

GCAAAGGA

UUA





hsa-miR-3122
2139
GUUGGGACAAGAGGACG
2140
GUUGGGACAAGA
2141
CCUCUUGUCCC


MIMAT0014984

GUCUU

GGACGGUC

AAC





hsa-miR-3123
2142
CAGAGAAUUGUUUAAUC
2143
CAGAGAAUUGUU
2144
UAAACAAUUCU


MIMAT0014985



UAAUC

CUG





hsa-miR-3124
2145
UUCGCGGGCGAAGGCAA
2146
UUCGCGGGCGAA
2147
CCUUCGCCCGC


MIMAT0014986

AGUC

GGCAAAGU

GAA





hsa-miR-3125
2148
UAGAGGAAGCUGUGGAG
2149
UAGAGGAAGCUG
2150
CACAGCUUCCU


MIMAT0014988

AGA

UGGAGAGA

CUA





hsa-miR-3126-
2151
CAUCUGGCAUCCGUCAC
2152
CAUCUGGCAUCC
2153
ACGGAUGCCAG


3p

ACAGA

GUCACACA

AUG


MIMAT0015377





hsa-miR-3126-
2154
UGAGGGACAGAUGCCAG
2155
UGAGGGACAGAU
2156
GCAUCUGUCCC


5p

AAGCA

GCCAGAAG

UCA


MIMAT0014989





hsa-miR-3127
2157
AUCAGGGCUUGUGGAAU
2158
AUCAGGGCUUGU
2159
CCACAAGCCCU


MIMAT0014990

GGGAAG

GGAAUGGG

GAU





hsa-miR-3128
2160
UCUGGCAAGUAAAAAAC
2161
UCUGGCAAGUAA
2162
UUUUACUUGCC


MIMAT0014991

UCUCAU

AAAACUCU

AGA





hsa-miR-3129
2163
GCAGUAGUGUAGAGAUU
2164
GCAGUAGUGUAG
2165
CUCUACACUAC


MIMAT0014992

GGUUU

AGAUUGGU

UGC





hsa-miR-3130-
2166
GCUGCACCGGAGACUGG
2167
GCUGCACCGGAG
2168
GUCUCCGGUGC


3p

GUAA

ACUGGGUA

AGC


MIMAT0014994





hsa-miR-3130-
2169
UACCCAGUCUCCGGUGC
2170
UACCCAGUCUCC
2171
CCGGAGACUGG


5p

AGCC

GGUGCAGC

GUA


MIMAT0014995





hsa-miR-3131
2172
UCGAGGACUGGUGGAAG
2173
UCGAGGACUGGU
2174
CCACCAGUCCU


MIMAT0014996

GGCCUU

GGAAGGGC

CGA





hsa-miR-3132
2175
UGGGUAGAGAAGGAGCU
2176
UGGGUAGAGAAG
2177
UCCUUCUCUAC


MIMAT0014997

CAGAGGA

GAGCUCAG

CCA





hsa-miR-3133
2178
UAAAGAACUCUUAAAAC
2179
UAAAGAACUCUU
2180
UUAAGAGUUCU


MIMAT0014998

CCAAU

AAAACCCA

UUA





hsa-miR-3134
2181
UGAUGGAUAAAAGACUA
2182
UGAUGGAUAAAA
2183
UCUUUUAUCCA


MIMAT0015000

CAUAUU

GACUACAU

UCA





hsa-miR-3135
2184
UGCCUAGGCUGAGACUG
2185
UGCCUAGGCUGA
2186
UCUCAGCCUAG


MIMAT0015001

CAGUG

GACUGCAG

GCA





hsa-miR-3136
2187
CUGACUGAAUAGGUAGG
2188
CUGACUGAAUAG
2189
ACCUAUUCAGU


MIMAT0015003

GUCAUU

GUAGGGUC

CAG





hsa-miR-3137
2190
UCUGUAGCCUGGGAGCA
2191
UCUGUAGCCUGG
2192
UCCCAGGCUAC


MIMAT0015005

AUGGGGU

GAGCAAUG

AGA





hsa-miR-3138
2193
UGUGGACAGUGAGGUAG
2194
UGUGGACAGUGA
2195
CCUCACUGUCC


MIMAT0015006

AGGGAGU

GGUAGAGG

ACA





hsa-miR-3139
2196
UAGGAGCUCAACAGAUG
2197
UAGGAGCUCAAC
2198
CUGUUGAGCUC


MIMAT0015007

CCUGUU

AGAUGCCU

CUA





hsa-miR-3140
2199
AGCUUUUGGGAAUUCAG
2200
AGCUUUUGGGAA
2201
AAUUCCCAAAA


MIMAT0015008

GUAGU

UUCAGGUA

GCU





hsa-miR-3141
2202
GAGGGCGGGUGGAGGAG
2203
GAGGGCGGGUGG
2204
CUCCACCCGCC


MIMAT0015010

GA

AGGAGGA

CUC





hsa-miR-3142
2205
AAGGCCUUUCUGAACCU
2206
AAGGCCUUUCUG
2207
UUCAGAAAGGC


MIMAT0015011

UCAGA

AACCUUCA

CUU





hsa-miR-3143
2208
AUAACAUUGUAAAGCGC
2209
AUAACAUUGUAA
2210
CUUUACAAUGU


MIMAT0015012

UUCUUUCG

AGCGCUUC

UAU





hsa-miR-3144-
2211
AUAUACCUGUUCGGUCU
2212
AUAUACCUGUUC
2213
CCGAACAGGUA


3p

CUUUA

GGUCUCUU

UAU


MIMAT0015015





hsa-miR-3144-
2214
AGGGGACCAAAGAGAUA
2215
AGGGGACCAAAG
2216
CUCUUUGGUCC


5p

UAUAG

AGAUAUAU

CCU


MIMAT0015014





hsa-miR-3145
2217
AGAUAUUUUGAGUGUUU
2218
AGAUAUUUUGAG
2219
CACUCAAAAUA


MIMAT0015016

GGAAUUG

UGUUUGGA

UCU





hsa-miR-3146
2220
CAUGCUAGGAUAGAAAG
2221
CAUGCUAGGAUA
2222
UCUAUCCUAGC


MIMAT0015018

AAUGG

GAAAGAAU

AUG





hsa-miR-3147
2223
GGUUGGGCAGUGAGGAG
2224
GGUUGGGCAGUG
2225
CUCACUGCCCA


MIMAT0015019

GGUGUGA

AGGAGGGU

ACC





hsa-miR-3148
2226
UGGAAAAAACUGGUGUG
2227
UGGAAAAAACUG
2228
ACCAGUUUUUU


MIMAT0015021

UGCUU

GUGUGUGC

CCA





hsa-miR-3149
2229
UUUGUAUGGAUAUGUGU
2230
UUUGUAUGGAUA
2231
CAUAUCCAUAC


MIMAT0015022

GUGUAU

UGUGUGUG

AAA





hsa-miR-3150
2232
CUGGGGAGAUCCUCGAG
2233
CUGGGGAGAUCC
2234
GAGGAUCUCCC


MIMAT0015023

GUUGG

UCGAGGUU

CAG





hsa-miR-3150b
2235
UGAGGAGAUCGUCGAGG
2236
UGAGGAGAUCGU
2237
CGACGAUCUCC


MIMAT0018194

UUGG

CGAGGUUG

UCA





hsa-miR-3151
2238
GGUGGGGCAAUGGGAUC
2239
GGUGGGGCAAUG
2240
CCCAUUGCCCC


MIMAT0015024

AGGU

GGAUCAGG

ACC





hsa-miR-3152
2241
UGUGUUAGAAUAGGGGC
2242
UGUGUUAGAAUA
2243
CCUAUUCUAAC


MIMAT0015025

AAUAA

GGGGCAAU

ACA





hsa-miR-3153
2244
GGGGAAAGCGAGUAGGG
2245
GGGGAAAGCGAG
2246
UACUCGCUUUC


MIMAT0015026

ACAUUU

UAGGGACA

CCC





hsa-miR-3154
2247
CAGAAGGGGAGUUGGGA
2248
CAGAAGGGGAGU
2249
CAACUCCCCUU


MIMAT0015028

GCAGA

UGGGAGCA

CUG





hsa-miR-3155
2250
CCAGGCUCUGCAGUGGG
2251
CCAGGCUCUGCA
2252
ACUGCAGAGCC


MIMAT0015029

AACU

GUGGGAAC

UGG





hsa-miR-3156
2253
AAAGAUCUGGAAGUGGG
2254
AAAGAUCUGGAA
2255
ACUUCCAGAUC


MIMAT0015030

AGACA

GUGGGAGA

UUU





hsa-miR-3157
2256
UUCAGCCAGGCUAGUGC
2257
UUCAGCCAGGCU
2258
CUAGCCUGGCU


MIMAT0015031

AGUCU

AGUGCAGU

GAA





hsa-miR-3158
2259
AAGGGCUUCCUCUCUGC
2260
AAGGGCUUCCUC
2261
GAGAGGAAGCC


MIMAT0015032

AGGAC

UCUGCAGG

CUU





hsa-miR-3159
2262
UAGGAUUACAAGUGUCG
2263
UAGGAUUACAAG
2264
CACUUGUAAUC


MIMAT0015033

GCCAC

UGUCGGCC

CUA





hsa-miR-3160
2265
AGAGCUGAGACUAGAAA
2266
AGAGCUGAGACU
2267
CUAGUCUCAGC


MIMAT0015034

GCCCA

AGAAAGCC

UCU





hsa-miR-3161
2268
CUGAUAAGAACAGAGGC
2269
CUGAUAAGAACA
2270
UCUGUUCUUAU


MIMAT0015035

CCAGAU

GAGGCCCA

CAG





hsa-miR-3162
2271
UUAGGGAGUAGAAGGGU
2272
UUAGGGAGUAGA
2273
CUUCUACUCCC


MIMAT0015036

GGGGAG

AGGGUGGG

UAA





hsa-miR-3163
2274
UAUAAAAUGAGGGCAGU
2275
UAUAAAAUGAGG
2276
GCCCUCAUUUU


MIMAT0015037

AAGAC

GCAGUAAG

AUA





hsa-miR-3164
2277
UGUGACUUUAAGGGAAA
2278
UGUGACUUUAAG
2279
CCCUUAAAGUC


MIMAT0015038

UGGCG

GGAAAUGG

ACA





hsa-miR-3165
2280
AGGUGGAUGCAAUGUGA
2281
AGGUGGAUGCAA
2282
CAUUGCAUCCA


MIMAT0015039

CCUCA

UGUGACCU

CCU





hsa-miR-3166
2283
CGCAGACAAUGCCUACU
2284
CGCAGACAAUGC
2285
AGGCAUUGUCU


MIMAT0015040

GGCCUA

CUACUGGC

GCG





hsa-miR-3167
2286
AGGAUUUCAGAAAUACU
2287
AGGAUUUCAGAA
2288
AUUUCUGAAAU


MIMAT0015042

GGUGU

AUACUGGU

CCU





hsa-miR-3168
2289
GAGUUCUACAGUCAGAC
2290
GAGUUCUACAGU
2291
UGACUGUAGAA


MIMAT0015043



CAGAC

CUC





hsa-miR-3169
2292
UAGGACUGUGCUUGGCA
2293
UAGGACUGUGCU
2294
CAAGCACAGUC


MIMAT0015044

CAUAG

UGGCACAU

CUA





hsa-miR-3170
2295
CUGGGGUUCUGAGACAG
2296
CUGGGGUUCUGA
2297
UCUCAGAACCC


MIMAT0015045

ACAGU

GACAGACA

CAG





hsa-miR-3171
2298
AGAUGUAUGGAAUCUGU
2299
AGAUGUAUGGAA
2300
GAUUCCAUACA


MIMAT0015046

AUAUAUC

UCUGUAUA

UCU





hsa-miR-3173
2301
AAAGGAGGAAAUAGGCA
2302
AAAGGAGGAAAU
2303
CUAUUUCCUCC


MIMAT0015048

GGCCA

AGGCAGGC

UUU





hsa-miR-3174
2304
UAGUGAGUUAGAGAUGC
2305
UAGUGAGUUAGA
2306
UCUCUAACUCA


MIMAT0015051

AGAGCC

GAUGCAGA

CUA





hsa-miR-3175
2307
CGGGGAGAGAACGCAGU
2308
CGGGGAGAGAAC
2309
GCGUUCUCUCC


MIMAT0015052

GACGU

GCAGUGAC

CCG





hsa-miR-3176
2310
ACUGGCCUGGGACUACC
2311
ACUGGCCUGGGA
2312
AGUCCCAGGCC


MIMAT0015053

GG

CUACCGG

AGU





hsa-miR-3177
2313
UGCACGGCACUGGGGAC
2314
UGCACGGCACUG
2315
CCCAGUGCCGU


MIMAT0015054

ACGU

GGGACACG

GCA





hsa-miR-3178
2316
GGGGCGCGGCCGGAUCG
2317
GGGGCGCGGCCG
2318
UCCGGCCGCGC


MIMAT0015055



GAUCG

CCC





hsa-miR-3179
2319
AGAAGGGGUGAAAUUUA
2320
AGAAGGGGUGAA
2321
AUUUCACCCCU


MIMAT0015056

AACGU

AUUUAAAC

UCU





hsa-miR-3180
2322
UGGGGCGGAGCUUCCGG
2323
UGGGGCGGAGCU
2324
GAAGCUCCGCC


MIMAT0018178

AG

UCCGGAG

CCA





hsa-miR-3180-
2325
UGGGGCGGAGCUUCCGG
2326
UGGGGCGGAGCU
2327
GAAGCUCCGCC


3p

AGGCC

UCCGGAGG

CCA


MIMAT0015058





hsa-miR-3180-
2328
CUUCCAGACGCUCCGCC
2329
CUUCCAGACGCU
2330
GGAGCGUCUGG


5p

CCACGUCG

CCGCCCCA

AAG


MIMAT0015057





hsa-miR-3181
2331
AUCGGGCCCUCGGCGCC
2332
AUCGGGCCCUCG
2333
GCCGAGGGCCC


MIMAT0015061

GG

GCGCCGG

GAU





hsa-miR-3182
2334
GCUUCUGUAGUGUAGUC
2335
GCUUCUGUAGUG
2336
UACACUACAGA


MIMAT0015062



UAGUC

AGC





hsa-miR-3183
2337
GCCUCUCUCGGAGUCGC
2338
GCCUCUCUCGGA
2339
ACUCCGAGAGA


MIMAT0015063

UCGGA

GUCGCUCG

GGC





hsa-miR-3184
2340
UGAGGGGCCUCAGACCG
2341
UGAGGGGCCUCA
2342
UCUGAGGCCCC


MIMAT0015064

AGCUUUU

GACCGAGC

UCA





hsa-miR-3185
2343
AGAAGAAGGCGGUCGGU
2344
AGAAGAAGGCGG
2345
GACCGCCUUCU


MIMAT0015065

CUGCGG

UCGGUCUG

UCU





hsa-miR-3186-
2346
UCACGCGGAGAGAUGGC
2347
UCACGCGGAGAG
2348
AUCUCUCCGCG


3p

UUUG

AUGGCUUU

UGA


MIMAT0015068





hsa-miR-3186-
2349
CAGGCGUCUGUCUACGU
2350
CAGGCGUCUGUC
2351
UAGACAGACGC


5p

GGCUU

UACGUGGC

CUG


MIMAT0015067





hsa-miR-3187
2352
UUGGCCAUGGGGCUGCG
2353
UUGGCCAUGGGG
2354
AGCCCCAUGGC


MIMAT0015069

CGG

CUGCGCGG

CAA





hsa-miR-3188
2355
AGAGGCUUUGUGCGGAU
2356
AGAGGCUUUGUG
2357
CGCACAAAGCC


MIMAT0015070

ACGGGG

CGGAUACG

UCU





hsa-miR-3189
2358
CCCUUGGGUCUGAUGGG
2359
CCCUUGGGUCUG
2360
AUCAGACCCAA


MIMAT0015071

GUAG

AUGGGGUA

GGG





hsa-miR-3190
2361
UGUGGAAGGUAGACGGC
2362
UGUGGAAGGUAG
2363
GUCUACCUUCC


MIMAT0015073

CAGAGA

ACGGCCAG

ACA





hsa-miR-3191
2364
UGGGGACGUAGCUGGCC
2365
UGGGGACGUAGC
2366
CAGCUACGUCC


MIMAT0015075

AGACAG

UGGCCAGA

CCA





hsa-miR-3192
2367
UCUGGGAGGUUGUAGCA
2368
UCUGGGAGGUUG
2369
UACAACCUCCC


MIMAT0015076

GUGGAA

UAGCAGUG

AGA





hsa-miR-3193
2370
UCCUGCGUAGGAUCUGA
2371
UCCUGCGUAGGA
2372
GAUCCUACGCA


MIMAT0015077

GGAGU

UCUGAGGA

GGA





hsa-miR-3194
2373
GGCCAGCCACCAGGAGG
2374
GGCCAGCCACCA
2375
CCUGGUGGCUG


MIMAT0015078

GCUG

GGAGGGCU

GCC





hsa-miR-3195
2376
CGCGCCGGGCCCGGGUU
2377
CGCGCCGGGCCC
2378
CCGGGCCCGGC


MIMAT0015079



GGGUU

GCG





hsa-miR-3196
2379
CGGGGCGGCAGGGGCCUC
2380
CGGGGCGGCAGG
2381
CCCCUGCCGCC


MIMAT0015080



GGCCUC

CCG





hsa-miR-3197
2382
GGAGGCGCAGGCUCGGA
2383
GGAGGCGCAGGC
2384
GAGCCUGCGCC


MIMAT0015082

AAGGCG

UCGGAAAG

UCC





hsa-miR-3198
2385
GUGGAGUCCUGGGGAAU
2386
GUGGAGUCCUGG
2387
CCCCAGGACUC


MIMAT0015083

GGAGA

GGAAUGGA

CAC





hsa-miR-3199
2388
AGGGACUGCCUUAGGAG
2389
AGGGACUGCCUU
2390
CUAAGGCAGUC


MIMAT0015084

AAAGUU

AGGAGAAA

CCU





hsa-miR-32
2391
UAUUGCACAUUACUAAG
2392
UAUUGCACAUUA
2393
AGUAAUGUGCA


MIMAT0000090

UUGCA

CUAAGUUG

AUA





hsa-miR-32*
2394
CAAUUUAGUGUGUGUGA
2395
CAAUUUAGUGUG
2396
CACACACUAAA


MIMAT0004505

UAUUU

UGUGAUAU

UUG





hsa-miR-3200-
2397
CACCUUGCGCUACUCAG
2398
CACCUUGCGCUA
2399
AGUAGCGCAAG


3p

GUCUG

CUCAGGUC

GUG


MIMAT0015085





hsa-miR-3200-
2400
AAUCUGAGAAGGCGCAC
2401
AAUCUGAGAAGG
2402
CGCCUUCUCAG


5p

AAGGU

CGCACAAG

AUU


MIMAT0017392





hsa-miR-3201
2403
GGGAUAUGAAGAAAAAU
2404
GGGAUAUGAAGA
2405
UUUCUUCAUAU


MIMAT0015086



AAAAU

CCC





hsa-miR-3202
2406
UGGAAGGGAGAAGAGCU
2407
UGGAAGGGAGAA
2408
UCUUCUCCCUU


MIMAT0015089

UUAAU

GAGCUUUA

CCA





hsa-miR-320a
2409
AAAAGCUGGGUUGAGAG
2410
AAAAGCUGGGUU
2411
UCAACCCAGCU


MIMAT0000510

GGCGA

GAGAGGGC

UUU





hsa-miR-320b
2412
AAAAGCUGGGUUGAGAG
2413
AAAAGCUGGGUU
2414
UCAACCCAGCU


MIMAT0005792

GGCAA

GAGAGGGC

UUU





hsa-miR-320c
2415
AAAAGCUGGGUUGAGAG
2416
AAAAGCUGGGUU
2417
UCAACCCAGCU


MIMAT0005793

GGU

GAGAGGGU

UUU





hsa-miR-320d
2418
AAAAGCUGGGUUGAGAG
2419
AAAAGCUGGGUU
2420
UCAACCCAGCU


MIMAT0006764

GA

GAGAGGA

UUU





hsa-miR-320e
2421
AAAGCUGGGUUGAGAAGG
2422
AAAGCUGGGUUG
2423
CUCAACCCAGC


MIMAT0015072



AGAAGG

UUU





hsa-miR-323-3p
2424
CACAUUACACGGUCGAC
2425
CACAUUACACGG
2426
GACCGUGUAAU


MIMAT0000755

CUCU

UCGACCUC

GUG





hsa-miR-323-5p
2427
AGGUGGUCCGUGGCGCG
2428
AGGUGGUCCGUG
2429
GCCACGGACCA


MIMAT0004696

UUCGC

GCGCGUUC

CCU





hsa-miR-323b-
2430
CCCAAUACACGGUCGAC
2431
CCCAAUACACGG
2432
GACCGUGUAUU


3p

CUCUU

UCGACCUC

GGG


MIMAT0015050





hsa-miR-323b-
2433
AGGUUGUCCGUGGUGAG
2434
AGGUUGUCCGUG
2435
ACCACGGACAA


5p

UUCGCA

GUGAGUUC

CCU


MIMAT0001630





hsa-miR-324-3p
2436
ACUGCCCCAGGUGCUGC
2437
ACUGCCCCAGGU
2438
GCACCUGGGGC


MIMAT0000762

UGG

GCUGCUGG

AGU





hsa-miR-324-5p
2439
CGCAUCCCCUAGGGCAU
2440
CGCAUCCCCUAG
2441
CCCUAGGGGAU


MIMAT0000761

UGGUGU

GGCAUUGG

GCG





hsa-miR-325
2442
CCUAGUAGGUGUCCAGU
2443
CCUAGUAGGUGU
2444
GGACACCUACU


MIMAT0000771

AAGUGU

CCAGUAAG

AGG





hsa-miR-326
2445
CCUCUGGGCCCUUCCUC
2446
CCUCUGGGCCCU
2447
GAAGGGCCCAG


MIMAT0000756

CAG

UCCUCCAG

AGG





hsa-miR-328
2448
CUGGCCCUCUCUGCCCU
2449
CUGGCCCUCUCU
2450
GCAGAGAGGGC


MIMAT0000752

UCCGU

GCCCUUCC

CAG





hsa-miR-329
2451
AACACACCUGGUUAACC
2452
AACACACCUGGU
2453
UAACCAGGUGU


MIMAT0001629

UCUUU

UAACCUCU

GUU





hsa-miR-330-3p
2454
GCAAAGCACACGGCCUG
2455
GCAAAGCACACG
2456
GCCGUGUGCUU


MIMAT0000751

CAGAGA

GCCUGCAG

UGC





hsa-miR-330-5p
2457
UCUCUGGGCCUGUGUCU
2458
UCUCUGGGCCUG
2459
CACAGGCCCAG


MIMAT0004693

UAGGC

UGUCUUAG

AGA





hsa-miR-331-3p
2460
GCCCCUGGGCCUAUCCU
2461
GCCCCUGGGCCU
2462
AUAGGCCCAGG


MIMAT0000760

AGAA

AUCCUAGA

GGC





hsa-miR-331-5p
2463
CUAGGUAUGGUCCCAGG
2464
CUAGGUAUGGUC
2465
GGGACCAUACC


MIMAT0004700

GAUCC

CCAGGGAU

UAG





hsa-miR-335
2466
UCAAGAGCAAUAACGAA
2467
UCAAGAGCAAUA
2468
GUUAUUGCUCU


MIMAT0000765

AAAUGU

ACGAAAAA

UGA





hsa-miR-335*
2469
UUUUUCAUUAUUGCUCC
2470
UUUUUCAUUAUU
2471
GCAAUAAUGAA


MIMAT0004703

UGACC

GCUCCUGA

AAA





hsa-miR-337-3p
2472
CUCCUAUAUGAUGCCUU
2473
CUCCUAUAUGAU
2474
GCAUCAUAUAG


MIMAT0000754

UCUUC

GCCUUUCU

GAG





hsa-miR-337-5p
2475
GAACGGCUUCAUACAGG
2476
GAACGGCUUCAU
2477
GUAUGAAGCCG


MIMAT0004695

AGUU

ACAGGAGU

UUC





hsa-miR-338-3p
2478
UCCAGCAUCAGUGAUUU
2479
UCCAGCAUCAGU
2480
UCACUGAUGCU


MIMAT0000763

UGUUG

GAUUUUGU

GGA





hsa-miR-338-5p
2481
AACAAUAUCCUGGUGCU
2482
AACAAUAUCCUG
2483
ACCAGGAUAUU


MIMAT0004701

GAGUG

GUGCUGAG

GUU





hsa-miR-339-3p
2484
UGAGCGCCUCGACGACA
2485
UGAGCGCCUCGA
2486
CGUCGAGGCGC


MIMAT0004702

GAGCCG

CGACAGAG

UCA





hsa-miR-339-5p
2487
UCCCUGUCCUCCAGGAG
2488
UCCCUGUCCUCC
2489
CUGGAGGACAG


MIMAT0000764

CUCACG

AGGAGCUC

GGA





hsa-miR-33a
2490
GUGCAUUGUAGUUGCAU
2491
GUGCAUUGUAGU
2492
CAACUACAAUG


MIMAT0000091

UGCA

UGCAUUGC

CAC





hsa-miR-33a*
2493
CAAUGUUUCCACAGUGC
2494
CAAUGUUUCCAC
2495
CUGUGGAAACA


MIMAT0004506

AUCAC

AGUGCAUC

UUG





hsa-miR-33b
2496
GUGCAUUGCUGUUGCAU
2497
GUGCAUUGCUGU
2498
CAACAGCAAUG


MIMAT0003301

UGC

UGCAUUGC

CAC





hsa-miR-33b*
2499
CAGUGCCUCGGCAGUGC
2500
CAGUGCCUCGGC
2501
CUGCCGAGGCA


MIMAT0004811

AGCCC

AGUGCAGC

CUG





hsa-miR-340
2502
UUAUAAAGCAAUGAGAC
2503
UUAUAAAGCAAU
2504
UCAUUGCUUUA


MIMAT0004692

UGAUU

GAGACUGA

UAA





hsa-miR-340*
2505
UCCGUCUCAGUUACUUU
2506
UCCGUCUCAGUU
2507
GUAACUGAGAC


MIMAT0000750

AUAGC

ACUUUAUA

GGA





hsa-miR-342-3p
2508
UCUCACACAGAAAUCGC
2509
UCUCACACAGAA
2510
AUUUCUGUGUG


MIMAT0000753

ACCCGU

AUCGCACC

AGA





hsa-miR-342-5p
2511
AGGGGUGCUAUCUGUGA
2512
AGGGGUGCUAUC
2513
CAGAUAGCACC


MIMAT0004694

UUGA

UGUGAUUG

CCU





hsa-miR-345
2514
GCUGACUCCUAGUCCAG
2515
GCUGACUCCUAG
2516
GACUAGGAGUC


MIMAT0000772

GGCUC

UCCAGGGC

AGC





hsa-miR-346
2517
UGUCUGCCCGCAUGCCU
2518
UGUCUGCCCGCA
2519
CAUGCGGGCAG


MIMAT0000773

GCCUCU

UGCCUGCC

ACA





hsa-miR-34a
2520
UGGCAGUGUCUUAGCUG
2521
UGGCAGUGUCUU
2522
CUAAGACACUG


MIMAT0000255

GUUGU

AGCUGGUU

CCA





hsa-miR-34a*
2523
CAAUCAGCAAGUAUACU
2524
CAAUCAGCAAGU
2525
AUACUUGCUGA


MIMAT0004557

GCCCU

AUACUGCC

UUG





hsa-miR-34b
2526
CAAUCACUAACUCCACU
2527
CAAUCACUAACU
2528
GGAGUUAGUGA


MIMAT0004676

GCCAU

CCACUGCC

UUG





hsa-miR-34b*
2529
UAGGCAGUGUCAUUAGC
2530
UAGGCAGUGUCA
2531
AAUGACACUGC


MIMAT0000685

UGAUUG

UUAGCUGA

CUA





hsa-miR-34c-3p
2532
AAUCACUAACCACACGG
2533
AAUCACUAACCA
2534
UGUGGUUAGUG


MIMAT0004677

CCAGG

CACGGCCA

AUU





hsa-miR-34c-5p
2535
AGGCAGUGUAGUUAGCU
2536
AGGCAGUGUAGU
2537
UAACUACACUG


MIMAT0000686

GAUUGC

UAGCUGAU

CCU





hsa-miR-3605-
2538
CCUCCGUGUUACCUGUC
2539
CCUCCGUGUUAC
2540
AGGUAACACGG


3p

CUCUAG

CUGUCCUC

AGG


MIMAT0017982





hsa-miR-3605-
2541
UGAGGAUGGAUAGCAAG
2542
UGAGGAUGGAUA
2543
GCUAUCCAUCC


5p

GAAGCC

GCAAGGAA

UCA


MIMAT0017981





hsa-miR-3606
2544
UUAGUGAAGGCUAUUUU
2545
UUAGUGAAGGCU
2546
AUAGCCUUCAC


MIMAT0017983

AAUU

AUUUUAAU

UAA





hsa-miR-3607-
2547
ACUGUAAACGCUUUCUG
2548
ACUGUAAACGCU
2549
AAAGCGUUUAC


3p

AUG

UUCUGAUG

AGU


MIMAT0017985





hsa-miR-3607-
2550
GCAUGUGAUGAAGCAAA
2551
GCAUGUGAUGAA
2552
GCUUCAUCACA


5p

UCAGU

GCAAAUCA

UGC


MIMAT0017984





hsa-miR-3609
2553
CAAAGUGAUGAGUAAUA
2554
CAAAGUGAUGAG
2555
UACUCAUCACU


MIMAT0017986

CUGGCUG

UAAUACUG

UUG





hsa-miR-3610
2556
GAAUCGGAAAGGAGGCG
2557
GAAUCGGAAAGG
2558
CUCCUUUCCGA


MIMAT0017987

CCG

AGGCGCCG

UUC





hsa-miR-3611
2559
UUGUGAAGAAAGAAAUU
2560
UUGUGAAGAAAG
2561
UUCUUUCUUCA


MIMAT0017988

CUUA

AAAUUCUU

CAA





hsa-miR-3612
2562
AGGAGGCAUCUUGAGAA
2563
AGGAGGCAUCUU
2564
UCAAGAUGCCU


MIMAT0017989

AUGGA

GAGAAAUG

CCU





hsa-miR-3613-
2565
ACAAAAAAAAAAGCCCA
2566
ACAAAAAAAAAA
2567
GCUUUUUUUUU


3p

ACCCUUC

GCCCAACC

UGU


MIMAT0017991





hsa-miR-3613-
2568
UGUUGUACUUUUUUUUU
2569
UGUUGUACUUUU
2570
AAAAAAGUACA


5p

UGUUC

UUUUUUGU

ACA


MIMAT0017990





hsa-miR-361-3p
2571
UCCCCCAGGUGUGAUUC
2572
UCCCCCAGGUGU
2573
UCACACCUGGG


MIMAT0004682

UGAUUU

GAUUCUGA

GGA





hsa-miR-3614-
2574
UAGCCUUCAGAUCUUGG
2575
UAGCCUUCAGAU
2576
AGAUCUGAAGG


3p

UGUUUU

CUUGGUGU

CUA


MIMAT0017993





hsa-miR-3614-
2577
CCACUUGGAUCUGAAGG
2578
CCACUUGGAUCU
2579
UCAGAUCCAAG


5p

CUGCCC

GAAGGCUG

UGG


MIMAT0017992





hsa-miR-3615
2580
UCUCUCGGCUCCUCGCG
2581
UCUCUCGGCUCC
2582
GAGGAGCCGAG


MIMAT0017994

GCUC

UCGCGGCU

AGA





hsa-miR-361-5p
2583
UUAUCAGAAUCUCCAGG
2584
UUAUCAGAAUCU
2585
GGAGAUUCUGA


MIMAT0000703

GGUAC

CCAGGGGU

UAA





hsa-miR-3616-
2586
CGAGGGCAUUUCAUGAU
2587
CGAGGGCAUUUC
2588
AUGAAAUGCCC


3p

GCAGGC

AUGAUGCA

UCG


MIMAT0017996





hsa-miR-3616-
2589
AUGAAGUGCACUCAUGA
2590
AUGAAGUGCACU
2591
UGAGUGCACUU


5p

UAUGU

CAUGAUAU

CAU


MIMAT0017995





hsa-miR-3617
2592
AAAGACAUAGUUGCAAG
2593
AAAGACAUAGUU
2594
GCAACUAUGUC


MIMAT0017997

AUGGG

GCAAGAUG

UUU





hsa-miR-3618
2595
UGUCUACAUUAAUGAAA
2596
UGUCUACAUUAA
2597
CAUUAAUGUAG


MIMAT0017998

AGAGC

UGAAAAGA

ACA





hsa-miR-3619
2598
UCAGCAGGCAGGCUGGU
2599
UCAGCAGGCAGG
2600
AGCCUGCCUGC


MIMAT0017999

GCAGC

CUGGUGCA

UGA





hsa-miR-3620
2601
UCACCCUGCAUCCCGCA
2602
UCACCCUGCAUC
2603
GGGAUGCAGGG


MIMAT0018001

CCCAG

CCGCACCC

UGA





hsa-miR-3621
2604
CGCGGGUCGGGGUCUGC
2605
CGCGGGUCGGGG
2606
GACCCCGACCC


MIMAT0018002

AGG

UCUGCAGG

GCG





hsa-miR-3622a-
2607
UCACCUGACCUCCCAUG
2608
UCACCUGACCUC
2609
GGGAGGUCAGG


3p

CCUGU

CCAUGCCU

UGA


MIMAT0018004





hsa-miR-3622a-
2610
CAGGCACGGGAGCUCAG
2611
CAGGCACGGGAG
2612
AGCUCCCGUGC


5p

GUGAG

CUCAGGUG

CUG


MIMAT0018003





hsa-miR-3622b-
2613
UCACCUGAGCUCCCGUG
2614
UCACCUGAGCUC
2615
GGGAGCUCAGG


3p

CCUG

CCGUGCCU

UGA


MIMAT0018006





hsa-miR-3622b-
2616
AGGCAUGGGAGGUCAGG
2617
AGGCAUGGGAGG
2618
GACCUCCCAUG


5p

UGA

UCAGGUGA

CCU


MIMAT0018005





hsa-miR-362-3p
2619
AACACACCUAUUCAAGG
2620
AACACACCUAUU
2621
UGAAUAGGUGU


MIMAT0004683

AUUCA

CAAGGAUU

GUU





hsa-miR-362-5p
2622
AAUCCUUGGAACCUAGG
2623
AAUCCUUGGAAC
2624
AGGUUCCAAGG


MIMAT0000705

UGUGAGU

CUAGGUGU

AUU





hsa-miR-363
2625
AAUUGCACGGUAUCCAU
2626
AAUUGCACGGUA
2627
GAUACCGUGCA


MIMAT0000707

CUGUA

UCCAUCUG

AUU





hsa-miR-363*
2628
CGGGUGGAUCACGAUGC
2629
CGGGUGGAUCAC
2630
UCGUGAUCCAC


MIMAT0003385

AAUUU

GAUGCAAU

CCG





hsa-miR-3646
2631
AAAAUGAAAUGAGCCCA
2632
AAAAUGAAAUGA
2633
GCUCAUUUCAU


MIMAT0018065

GCCCA

GCCCAGCC

UUU





hsa-miR-3647-
2634
AGAAAAUUUUUGUGUGU
2635
AGAAAAUUUUUG
2636
CACAAAAAUUU


3p

CUGAUC

UGUGUCUG

UCU


MIMAT0018067





hsa-miR-3647-
2637
CUGAAGUGAUGAUUCAC
2638
CUGAAGUGAUGA
2639
AAUCAUCACUU


5p

AUUCAU

UUCACAUU

CAG


MIMAT0018066





hsa-miR-3648
2640
AGCCGCGGGGAUCGCCG
2641
AGCCGCGGGGAU
2642
CGAUCCCCGCG


MIMAT0018068

AGGG

CGCCGAGG

GCU





hsa-miR-3649
2643
AGGGACCUGAGUGUCUA
2644
AGGGACCUGAGU
2645
ACACUCAGGUC


MIMAT0018069

AG

GUCUAAG

CCU





hsa-miR-365
2646
UAAUGCCCCUAAAAAUC
2647
UAAUGCCCCUAA
2648
UUUUAGGGGCA


MIMAT0000710

CUUAU

AAAUCCUU

UUA





hsa-miR-365*
2649
AGGGACUUUCAGGGGCA
2650
AGGGACUUUCAG
2651
CCCUGAAAGUC


MIMAT0009199

GCUGU

GGGCAGCU

CCU





hsa-miR-3650
2652
AGGUGUGUCUGUAGAGU
2653
AGGUGUGUCUGU
2654
CUACAGACACA


MIMAT0018070

CC

AGAGUCC

CCU





hsa-miR-3651
2655
CAUAGCCCGGUCGCUGG
2656
CAUAGCCCGGUC
2657
GCGACCGGGCU


MIMAT0018071

UACAUGA

GCUGGUAC

AUG





hsa-miR-3652
2658
CGGCUGGAGGUGUGAGGA
2659
CGGCUGGAGGUG
2660
CACACCUCCAG


MIMAT0018072



UGAGGA

CCG





hsa-miR-3653
2661
CUAAGAAGUUGACUGAAG
2662
CUAAGAAGUUGA
2663
AGUCAACUUCU


MIMAT0018073



CUGAAG

UAG





hsa-miR-3654
2664
GACUGGACAAGCUGAGG
2665
GACUGGACAAGC
2666
CAGCUUGUCCA


MIMAT0018074

AA

UGAGGAA

GUC





hsa-miR-3655
2667
GCUUGUCGCUGCGGUGU
2668
GCUUGUCGCUGC
2669
CCGCAGCGACA


MIMAT0018075

UGCU

GGUGUUGC

AGC





hsa-miR-3656
2670
GGCGGGUGCGGGGGUGG
2671
GGCGGGUGCGGG
2672
CCCCCGCACCC


MIMAT0018076



GGUGG

GCC





hsa-miR-3657
2673
UGUGUCCCAUUAUUGGU
2674
UGUGUCCCAUUA
2675
AAUAAUGGGAC


MIMAT0018077

GAUU

UUGGUGAU

ACA





hsa-miR-3658
2676
UUUAAGAAAACACCAUG
2677
UUUAAGAAAACA
2678
GGUGUUUUCUU


MIMAT0018078

GAGAU

CCAUGGAG

AAA





hsa-miR-3659
2679
UGAGUGUUGUCUACGAG
2680
UGAGUGUUGUCU
2681
GUAGACAACAC


MIMAT0018080

GGCA

ACGAGGGC

UCA





hsa-miR-3660
2682
ACUGACAGGAGAGCAUU
2683
ACUGACAGGAGA
2684
GCUCUCCUGUC


MIMAT0018081

UUGA

GCAUUUUG

AGU





hsa-miR-3661
2685
UGACCUGGGACUCGGAC
2686
UGACCUGGGACU
2687
CGAGUCCCAGG


MIMAT0018082

AGCUG

CGGACAGC

UCA





hsa-miR-3662
2688
GAAAAUGAUGAGUAGUG
2689
GAAAAUGAUGAG
2690
UACUCAUCAUU


MIMAT0018083

ACUGAUG

UAGUGACU

UUC





hsa-miR-3663-
2691
UGAGCACCACACAGGCC
2692
UGAGCACCACAC
2693
CUGUGUGGUGC


3p

GGGCGC

AGGCCGGG

UCA


MIMAT0018085





hsa-miR-3663-
2694
GCUGGUCUGCGUGGUGC
2695
GCUGGUCUGCGU
2696
CCACGCAGACC


5p

UCGG

GGUGCUCG

AGC


MIMAT0018084





hsa-miR-3664
2697
AACUCUGUCUUCACUCA
2698
AACUCUGUCUUC
2699
GUGAAGACAGA


MIMAT0018086

UGAGU

ACUCAUGA

GUU





hsa-miR-3665
2700
AGCAGGUGCGGGGCGGCG
2701
AGCAGGUGCGGG
2702
GCCCCGCACCU


MIMAT0018087



GCGGCG

GCU





hsa-miR-3666
2703
CAGUGCAAGUGUAGAUG
2704
CAGUGCAAGUGU
2705
CUACACUUGCA


MIMAT0018088

CCGA

AGAUGCCG

CUG





hsa-miR-3667-
2706
ACCUUCCUCUCCAUGGG
2707
ACCUUCCUCUCC
2708
AUGGAGAGGAA


3p

UCUUU

AUGGGUCU

GGU


MIMAT0018090





hsa-miR-3667-
2709
AAAGACCCAUUGAGGAG
2710
AAAGACCCAUUG
2711
CUCAAUGGGUC


5p

AAGGU

AGGAGAAG

UUU


MIMAT0018089





hsa-miR-3668
2712
AAUGUAGAGAUUGAUCA
2713
AAUGUAGAGAUU
2714
UCAAUCUCUAC


MIMAT0018091

AAAU

GAUCAAAA

AUU





hsa-miR-3669
2715
ACGGAAUAUGUAUACGG
2716
ACGGAAUAUGUA
2717
UAUACAUAUUC


MIMAT0018092

AAUAUA

UACGGAAU

CGU





hsa-miR-367
2718
AAUUGCACUUUAGCAAU
2719
AAUUGCACUUUA
2720
GCUAAAGUGCA


MIMAT0000719

GGUGA

GCAAUGGU

AUU





hsa-miR-367*
2721
ACUGUUGCUAAUAUGCA
2722
ACUGUUGCUAAU
2723
AUAUUAGCAAC


MIMAT0004686

ACUCU

AUGCAACU

AGU





hsa-miR-3670
2724
AGAGCUCACAGCUGUCC
2725
AGAGCUCACAGC
2726
CAGCUGUGAGC


MIMAT0018093

UUCUCUA

UGUCCUUC

UCU





hsa-miR-3671
2727
AUCAAAUAAGGACUAGU
2728
AUCAAAUAAGGA
2729
AGUCCUUAUUU


MIMAT0018094

CUGCA

CUAGUCUG

GAU





hsa-miR-3672
2730
AUGAGACUCAUGUAAAA
2731
AUGAGACUCAUG
2732
UACAUGAGUCU


MIMAT0018095

CAUCUU

UAAAACAU

CAU





hsa-miR-3673
2733
AUGGAAUGUAUAUACGG
2734
AUGGAAUGUAUA
2735
UAUAUACAUUC


MIMAT0018096

AAUA

UACGGAAU

CAU





hsa-miR-3674
2736
AUUGUAGAACCUAAGAU
2737
AUUGUAGAACCU
2738
UUAGGUUCUAC


MIMAT0018097

UGGCC

AAGAUUGG

AAU





hsa-miR-3675-
2739
CAUCUCUAAGGAACUCC
2740
CAUCUCUAAGGA
2741
GUUCCUUAGAG


3p

CCCAA

ACUCCCCC

AUG


MIMAT0018099





hsa-miR-3675-
2742
UAUGGGGCUUCUGUAGA
2743
UAUGGGGCUUCU
2744
ACAGAAGCCCC


5p

GAUUUC

GUAGAGAU

AUA


MIMAT0018098





hsa-miR-3676
2745
CCGUGUUUCCCCCACGC
2746
CCGUGUUUCCCC
2747
UGGGGGAAACA


MIMAT0018100

UUU

CACGCUUU

CGG





hsa-miR-3677
2748
CUCGUGGGCUCUGGCCA
2749
CUCGUGGGCUCU
2750
CCAGAGCCCAC


MIMAT0018101

CGGCC

GGCCACGG

GAG





hsa-miR-3678-
2751
CUGCAGAGUUUGUACGG
2752
CUGCAGAGUUUG
2753
UACAAACUCUG


3p

ACCGG

UACGGACC

CAG


MIMAT0018103





hsa-miR-3678-
2754
UCCGUACAAACUCUGCU
2755
UCCGUACAAACU
2756
AGAGUUUGUAC


5p

GUG

CUGCUGUG

GGA


MIMAT0018102





hsa-miR-3679-
2757
CUUCCCCCCAGUAAUCU
2758
CUUCCCCCCAGU
2759
UUACUGGGGGG


3p

UCAUC

AAUCUUCA

AAG


MIMAT0018105





hsa-miR-3679-
2760
UGAGGAUAUGGCAGGGA
2761
UGAGGAUAUGGC
2762
CUGCCAUAUCC


5p

AGGGGA

AGGGAAGG

UCA


MIMAT0018104





hsa-miR-3680
2763
GACUCACUCACAGGAUU
2764
GACUCACUCACA
2765
CCUGUGAGUGA


MIMAT0018106

GUGCA

GGAUUGUG

GUC





hsa-miR-3680*
2766
UUUUGCAUGACCCUGGG
2767
UUUUGCAUGACC
2768
AGGGUCAUGCA


MIMAT0018107

AGUAGG

CUGGGAGU

AAA





hsa-miR-3681
2769
UAGUGGAUGAUGCACUC
2770
UAGUGGAUGAUG
2771
UGCAUCAUCCA


MIMAT0018108

UGUGC

CACUCUGU

CUA





hsa-miR-3681*
2772
ACACAGUGCUUCAUCCA
2773
ACACAGUGCUUC
2774
AUGAAGCACUG


MIMAT0018109

CUACU

AUCCACUA

UGU





hsa-miR-3682
2775
UGAUGAUACAGGUGGAG
2776
UGAUGAUACAGG
2777
CACCUGUAUCA


MIMAT0018110

GUAG

UGGAGGUA

UCA





hsa-miR-3683
2778
UGCGACAUUGGAAGUAG
2779
UGCGACAUUGGA
2780
CUUCCAAUGUC


MIMAT0018111

UAUCA

AGUAGUAU

GCA





hsa-miR-3684
2781
UUAGACCUAGUACACGU
2782
UUAGACCUAGUA
2783
UGUACUAGGUC


MIMAT0018112

CCUU

CACGUCCU

UAA





hsa-miR-3685
2784
UUUCCUACCCUACCUGA
2785
UUUCCUACCCUA
2786
GGUAGGGUAGG


MIMAT0018113

AGACU

CCUGAAGA

AAA





hsa-miR-3686
2787
AUCUGUAAGAGAAAGUA
2788
AUCUGUAAGAGA
2789
UUUCUCUUACA


MIMAT0018114

AAUGA

AAGUAAAU

GAU





hsa-miR-3687
2790
CCCGGACAGGCGUUCGU
2791
CCCGGACAGGCG
2792
AACGCCUGUCC


MIMAT0018115

GCGACGU

UUCGUGCG

GGG





hsa-miR-3688
2793
UAUGGAAAGACUUUGCC
2794
UAUGGAAAGACU
2795
AAAGUCUUUCC


MIMAT0018116

ACUCU

UUGCCACU

AUA





hsa-miR-3689a-
2796
CUGGGAGGUGUGAUAUC
2797
CUGGGAGGUGUG
2798
AUCACACCUCC


3p

GUGGU

AUAUCGUG

CAG


MIMAT0018118





hsa-miR-3689a-
2799
UGUGAUAUCAUGGUUCC
2800
UGUGAUAUCAUG
2801
ACCAUGAUAUC


5p

UGGGA

GUUCCUGG

ACA


MIMAT0018117





hsa-miR-3689b
2802
UGUGAUAUCAUGGUUCC
2803
UGUGAUAUCAUG
2804
ACCAUGAUAUC


MIMAT0018180

UGGGA

GUUCCUGG

ACA





hsa-miR-3689b*
2805
CUGGGAGGUGUGAUAUU
2806
CUGGGAGGUGUG
2807
AUCACACCUCC


MIMAT0018181

GUGGU

AUAUUGUG

CAG





hsa-miR-3690
2808
ACCUGGACCCAGCGUAG
2809
ACCUGGACCCAG
2810
CGCUGGGUCCA


MIMAT0018119

ACAAAG

CGUAGACA

GGU





hsa-miR-3691
2811
AGUGGAUGAUGGAGACU
2812
AGUGGAUGAUGG
2813
CUCCAUCAUCC


MIMAT0018120

CGGUAC

AGACUCGG

ACU





hsa-miR-3692
2814
GUUCCACACUGACACUG
2815
GUUCCACACUGA
2816
UGUCAGUGUGG


MIMAT0018122

CAGAAGU

CACUGCAG

AAC





hsa-miR-3692*
2817
CCUGCUGGUCAGGAGUG
2818
CCUGCUGGUCAG
2819
UCCUGACCAGC


MIMAT0018121

GAUACUG

GAGUGGAU

AGG





hsa-miR-369-3p
2820
AAUAAUACAUGGUUGAU
2821
AAUAAUACAUGG
2822
AACCAUGUAUU


MIMAT0000721

CUUU

UUGAUCUU

AUU





hsa-miR-369-5p
2823
AGAUCGACCGUGUUAUA
2824
AGAUCGACCGUG
2825
AACACGGUCGA


MIMAT0001621

UUCGC

UUAUAUUC

UCU





hsa-miR-370
2826
GCCUGCUGGGGUGGAAC
2827
GCCUGCUGGGGU
2828
CCACCCCAGCA


MIMAT0000722

CUGGU

GGAACCUG

GGC





hsa-miR-3713
2829
GGUAUCCGUUUGGGGAU
2830
GGUAUCCGUUUG
2831
CCCAAACGGAU


MIMAT0018164

GGU

GGGAUGGU

ACC





hsa-miR-371-3p
2832
AAGUGCCGCCAUCUUUU
2833
AAGUGCCGCCAU
2834
AGAUGGCGGCA


MIMAT0000723

GAGUGU

CUUUUGAG

CUU





hsa-miR-3714
2835
GAAGGCAGCAGUGCUCC
2836
GAAGGCAGCAGU
2837
GCACUGCUGCC


MIMAT0018165

CCUGU

GCUCCCCU

UUC





hsa-miR-371-5p
2838
ACUCAAACUGUGGGGGC
2839
ACUCAAACUGUG
2840
CCCACAGUUUG


MIMAT0004687

ACU

GGGGCACU

AGU





hsa-miR-372
2841
AAAGUGCUGCGACAUUU
2842
AAAGUGCUGCGA
2843
UGUCGCAGCAC


MIMAT0000724

GAGCGU

CAUUUGAG

UUU





hsa-miR-373
2844
GAAGUGCUUCGAUUUUG
2845
GAAGUGCUUCGA
2846
AAUCGAAGCAC


MIMAT0000726

GGGUGU

UUUUGGGG

UUC





hsa-miR-373*
2847
ACUCAAAAUGGGGGCGC
2848
ACUCAAAAUGGG
2849
CCCCCAUUUUG


MIMAT0000725

UUUCC

GGCGCUUU

AGU





hsa-miR-374a
2850
UUAUAAUACAACCUGAU
2851
UUAUAAUACAAC
2852
AGGUUGUAUUA


MIMAT0000727

AAGUG

CUGAUAAG

UAA





hsa-miR-374a*
2853
CUUAUCAGAUUGUAUUG
2854
CUUAUCAGAUUG
2855
UACAAUCUGAU


MIMAT0004688

UAAUU

UAUUGUAA

AAG





hsa-miR-374b
2856
AUAUAAUACAACCUGCU
2857
AUAUAAUACAAC
2858
AGGUUGUAUUA


MIMAT0004955

AAGUG

CUGCUAAG

UAU





hsa-miR-374b*
2859
CUUAGCAGGUUGUAUUA
2860
CUUAGCAGGUUG
2861
UACAACCUGCU


MIMAT0004956

UCAUU

UAUUAUCA

AAG





hsa-miR-374c
2862
AUAAUACAACCUGCUAA
2863
AUAAUACAACCU
2864
GCAGGUUGUAU


MIMAT0018443

GUGCU

GCUAAGUG

UAU





hsa-miR-375
2865
UUUGUUCGUUCGGCUCG
2866
UUUGUUCGUUCG
2867
GCCGAACGAAC


MIMAT0000728

CGUGA

GCUCGCGU

AAA





hsa-miR-376a
2868
AUCAUAGAGGAAAAUCC
2869
AUCAUAGAGGAA
2870
UUUUCCUCUAU


MIMAT0000729

ACGU

AAUCCACG

GAU





hsa-miR-376a*
2871
GUAGAUUCUCCUUCUAU
2872
GUAGAUUCUCCU
2873
GAAGGAGAAUC


MIMAT0003386

GAGUA

UCUAUGAG

UAC





hsa-miR-376b
2874
AUCAUAGAGGAAAAUCC
2875
AUCAUAGAGGAA
2876
UUUUCCUCUAU


MIMAT0002172

AUGUU

AAUCCAUG

GAU





hsa-miR-376c
2877
AACAUAGAGGAAAUUCC
2878
AACAUAGAGGAA
2879
AUUUCCUCUAU


MIMAT0000720

ACGU

AUUCCACG

GUU





hsa-miR-377
2880
AUCACACAAAGGCAACU
2881
AUCACACAAAGG
2882
UGCCUUUGUGU


MIMAT0000730

UUUGU

CAACUUUU

GAU





hsa-miR-377*
2883
AGAGGUUGCCCUUGGUG
2884
AGAGGUUGCCCU
2885
CAAGGGCAACC


MIMAT0004689

AAUUC

UGGUGAAU

UCU





hsa-miR-378
2886
ACUGGACUUGGAGUCAG
2887
ACUGGACUUGGA
2888
ACUCCAAGUCC


MIMAT0000732

AAGG

GUCAGAAG

AGU





hsa-miR-378*
2889
CUCCUGACUCCAGGUCC
2890
CUCCUGACUCCA
2891
CCUGGAGUCAG


MIMAT0000731

UGUGU

GGUCCUGU

GAG





hsa-miR-378b
2892
ACUGGACUUGGAGGCAG
2893
ACUGGACUUGGA
2894
CCUCCAAGUCC


MIMAT0014999

AA

GGCAGAA

AGU





hsa-miR-378c
2895
ACUGGACUUGGAGUCAG
2896
ACUGGACUUGGA
2897
ACUCCAAGUCC


MIMAT0016847

AAGAGUGG

GUCAGAAG

AGU





hsa-miR-379
2898
UGGUAGACUAUGGAACG
2899
UGGUAGACUAUG
2900
UCCAUAGUCUA


MIMAT0000733

UAGG

GAACGUAG

CCA





hsa-miR-379*
2901
UAUGUAACAUGGUCCAC
2902
UAUGUAACAUGG
2903
GACCAUGUUAC


MIMAT0004690

UAACU

UCCACUAA

AUA





hsa-miR-380
2904
UAUGUAAUAUGGUCCAC
2905
UAUGUAAUAUGG
2906
GACCAUAUUAC


MIMAT0000735

AUCUU

UCCACAUC

AUA





hsa-miR-380*
2907
UGGUUGACCAUAGAACA
2908
UGGUUGACCAUA
2909
UCUAUGGUCAA


MIMAT0000734

UGCGC

GAACAUGC

CCA





hsa-miR-381
2910
UAUACAAGGGCAAGCUC
2911
UAUACAAGGGCA
2912
CUUGCCCUUGU


MIMAT0000736

UCUGU

AGCUCUCU

AUA





hsa-miR-382
2913
GAAGUUGUUCGUGGUGG
2914
GAAGUUGUUCGU
2915
CCACGAACAAC


MIMAT0000737

AUUCG

GGUGGAUU

UUC





hsa-miR-383
2916
AGAUCAGAAGGUGAUUG
2917
AGAUCAGAAGGU
2918
UCACCUUCUGA


MIMAT0000738

UGGCU

GAUUGUGG

UCU





hsa-miR-384
2919
AUUCCUAGAAAUUGUUC
2920
AUUCCUAGAAAU
2921
CAAUUUCUAGG


MIMAT0001075

AUA

UGUUCAUA

AAU





hsa-miR-3907
2922
AGGUGCUCCAGGCUGGC
2923
AGGUGCUCCAGG
2924
AGCCUGGAGCA


MIMAT0018179

UCACA

CUGGCUCA

CCU





hsa-miR-3908
2925
GAGCAAUGUAGGUAGAC
2926
GAGCAAUGUAGG
2927
UACCUACAUUG


MIMAT0018182

UGUUU

UAGACUGU

CUC





hsa-miR-3909
2928
UGUCCUCUAGGGCCUGC
2929
UGUCCUCUAGGG
2930
GGCCCUAGAGG


MIMAT0018183

AGUCU

CCUGCAGU

ACA





hsa-miR-3910
2931
AAAGGCAUAAAACCAAG
2932
AAAGGCAUAAAA
2933
GGUUUUAUGCC


MIMAT0018184

ACA

CCAAGACA

UUU





hsa-miR-3911
2934
UGUGUGGAUCCUGGAGG
2935
UGUGUGGAUCCU
2936
CCAGGAUCCAC


MIMAT0018185

AGGCA

GGAGGAGG

ACA





hsa-miR-3912
2937
UAACGCAUAAUAUGGAC
2938
UAACGCAUAAUA
2939
CAUAUUAUGCG


MIMAT0018186

AUGU

UGGACAUG

UUA





hsa-miR-3913
2940
UUUGGGACUGAUCUUGA
2941
UUUGGGACUGAU
2942
AGAUCAGUCCC


MIMAT0018187

UGUCU

CUUGAUGU

AAA





hsa-miR-3914
2943
AAGGAACCAGAAAAUGA
2944
AAGGAACCAGAA
2945
UUUUCUGGUUC


MIMAT0018188

GAAGU

AAUGAGAA

CUU





hsa-miR-3915
2946
UUGAGGAAAAGAUGGUC
2947
UUGAGGAAAAGA
2948
CAUCUUUUCCU


MIMAT0018189

UUAUU

UGGUCUUA

CAA





hsa-miR-3916
2949
AAGAGGAAGAAAUGGCU
2950
AAGAGGAAGAAA
2951
CAUUUCUUCCU


MIMAT0018190

GGUUCUCAG

UGGCUGGU

CUU





hsa-miR-3917
2952
GCUCGGACUGAGCAGGU
2953
GCUCGGACUGAG
2954
UGCUCAGUCCG


MIMAT0018191

GGG

CAGGUGGG

AGC





hsa-miR-3918
2955
ACAGGGCCGCAGAUGGA
2956
ACAGGGCCGCAG
2957
AUCUGCGGCCC


MIMAT0018192

GACU

AUGGAGAC

UGU





hsa-miR-3919
2958
GCAGAGAACAAAGGACU
2959
GCAGAGAACAAA
2960
CCUUUGUUCUC


MIMAT0018193

CAGU

GGACUCAG

UGC





hsa-miR-3920
2961
ACUGAUUAUCUUAACUC
2962
ACUGAUUAUCUU
2963
UUAAGAUAAUC


MIMAT0018195

UCUGA

AACUCUCU

AGU





hsa-miR-3921
2964
UCUCUGAGUACCAUAUG
2965
UCUCUGAGUACC
2966
AUGGUACUCAG


MIMAT0018196

CCUUGU

AUAUGCCU

AGA





hsa-miR-3922
2967
UCUGGCCUUGACUUGAC
2968
UCUGGCCUUGAC
2969
AAGUCAAGGCC


MIMAT0018197

UCUUU

UUGACUCU

AGA





hsa-miR-3923
2970
AACUAGUAAUGUUGGAU
2971
AACUAGUAAUGU
2972
CAACAUUACUA


MIMAT0018198

UAGGG

UGGAUUAG

GUU





hsa-miR-3924
2973
AUAUGUAUAUGUGACUG
2974
AUAUGUAUAUGU
2975
UCACAUAUACA


MIMAT0018199

CUACU

GACUGCUA

UAU





hsa-miR-3925
2976
AAGAGAACUGAAAGUGG
2977
AAGAGAACUGAA
2978
CUUUCAGUUCU


MIMAT0018200

AGCCU

AGUGGAGC

CUU





hsa-miR-3926
2979
UGGCCAAAAAGCAGGCA
2980
UGGCCAAAAAGC
2981
CUGCUUUUUGG


MIMAT0018201

GAGA

AGGCAGAG

CCA





hsa-miR-3927
2982
CAGGUAGAUAUUUGAUA
2983
CAGGUAGAUAUU
2984
CAAAUAUCUAC


MIMAT0018202

GGCAU

UGAUAGGC

CUG





hsa-miR-3928
2985
GGAGGAACCUUGGAGCU
2986
GGAGGAACCUUG
2987
UCCAAGGUUCC


MIMAT0018205

UCGGC

GAGCUUCG

UCC





hsa-miR-3929
2988
GAGGCUGAUGUGAGUAG
2989
GAGGCUGAUGUG
2990
CUCACAUCAGC


MIMAT0018206

ACCACU

AGUAGACC

CUC





hsa-miR-3934
2991
UCAGGUGUGGAAACUGA
2992
UCAGGUGUGGAA
2993
GUUUCCACACC


MIMAT0018349

GGCAG

ACUGAGGC

UGA





hsa-miR-3935
2994
UGUAGAUACGAGCACCA
2995
UGUAGAUACGAG
2996
UGCUCGUAUCU


MIMAT0018350

GCCAC

CACCAGCC

ACA





hsa-miR-3936
2997
UAAGGGGUGUAUGGCAG
2998
UAAGGGGUGUAU
2999
CCAUACACCCC


MIMAT0018351

AUGCA

GGCAGAUG

UUA





hsa-miR-3937
3000
ACAGGCGGCUGUAGCAA
3001
ACAGGCGGCUGU
3002
CUACAGCCGCC


MIMAT0018352

UGGGGG

AGCAAUGG

UGU





hsa-miR-3938
3003
AAUUCCCUUGUAGAUAA
3004
AAUUCCCUUGUA
3005
UCUACAAGGGA


MIMAT0018353

CCCGG

GAUAACCC

AUU





hsa-miR-3939
3006
UACGCGCAGACCACAGG
3007
UACGCGCAGACC
3008
GUGGUCUGCGC


MIMAT0018355

AUGUC

ACAGGAUG

GUA





hsa-miR-3940
3009
CAGCCCGGAUCCCAGCC
3010
CAGCCCGGAUCC
3011
UGGGAUCCGGG


MIMAT0018356

CACUU

CAGCCCAC

CUG





hsa-miR-3941
3012
UUACACACAACUGAGGA
3013
UUACACACAACU
3014
UCAGUUGUGUG


MIMAT0018357

UCAUA

GAGGAUCA

UAA





hsa-miR-3942
3015
AAGCAAUACUGUUACCU
3016
AAGCAAUACUGU
3017
UAACAGUAUUG


MIMAT0018358

GAAAU

UACCUGAA

CUU





hsa-miR-3943
3018
UAGCCCCCAGGCUUCAC
3019
UAGCCCCCAGGC
3020
AAGCCUGGGGG


MIMAT0018359

UUGGCG

UUCACUUG

CUA





hsa-miR-3944
3021
UUCGGGCUGGCCUGCUG
3022
UUCGGGCUGGCC
3023
CAGGCCAGCCC


MIMAT0018360

CUCCGG

UGCUGCUC

GAA





hsa-miR-3945
3024
AGGGCAUAGGAGAGGGU
3025
AGGGCAUAGGAG
3026
CUCUCCUAUGC


MIMAT0018361

UGAUAU

AGGGUUGA

CCU





hsa-miR-409-3p
3027
GAAUGUUGCUCGGUGAA
3028
GAAUGUUGCUCG
3029
ACCGAGCAACA


MIMAT0001639

CCCCU

GUGAACCC

UUC





hsa-miR-409-5p
3030
AGGUUACCCGAGCAACU
3031
AGGUUACCCGAG
3032
UGCUCGGGUAA


MIMAT0001638

UUGCAU

CAACUUUG

CCU





hsa-miR-410
3033
AAUAUAACACAGAUGGC
3034
AAUAUAACACAG
3035
AUCUGUGUUAU


MIMAT0002171

CUGU

AUGGCCUG

AUU





hsa-miR-411
3036
UAGUAGACCGUAUAGCG
3037
UAGUAGACCGUA
3038
UAUACGGUCUA


MIMAT0003329

UACG

UAGCGUAC

CUA





hsa-miR-411*
3039
UAUGUAACACGGUCCAC
3040
UAUGUAACACGG
3041
GACCGUGUUAC


MIMAT0004813

UAACC

UCCACUAA

AUA





hsa-miR-412
3042
ACUUCACCUGGUCCACU
3043
ACUUCACCUGGU
3044
GGACCAGGUGA


MIMAT0002170

AGCCGU

CCACUAGC

AGU





hsa-miR-421
3045
AUCAACAGACAUUAAUU
3046
AUCAACAGACAU
3047
UAAUGUCUGUU


MIMAT0003339

GGGCGC

UAAUUGGG

GAU





hsa-miR-422a
3048
ACUGGACUUAGGGUCAG
3049
ACUGGACUUAGG
3050
ACCCUAAGUCC


MIMAT0001339

AAGGC

GUCAGAAG

AGU





hsa-miR-423-3p
3051
AGCUCGGUCUGAGGCCC
3052
AGCUCGGUCUGA
3053
CCUCAGACCGA


MIMAT0001340

CUCAGU

GGCCCCUC

GCU





hsa-miR-423-5p
3054
UGAGGGGCAGAGAGCGA
3055
UGAGGGGCAGAG
3056
CUCUCUGCCCC


MIMAT0004748

GACUUU

AGCGAGAC

UCA





hsa-miR-424
3057
CAGCAGCAAUUCAUGUU
3058
CAGCAGCAAUUC
3059
AUGAAUUGCUG


MIMAT0001341

UUGAA

AUGUUUUG

CUG





hsa-miR-424*
3060
CAAAACGUGAGGCGCUG
3061
CAAAACGUGAGG
3062
CGCCUCACGUU


MIMAT0004749

CUAU

CGCUGCUA

UUG





hsa-miR-425
3063
AAUGACACGAUCACUCC
3064
AAUGACACGAUC
3065
GUGAUCGUGUC


MIMAT0003393

CGUUGA

ACUCCCGU

AUU





hsa-miR-425*
3066
AUCGGGAAUGUCGUGUC
3067
AUCGGGAAUGUC
3068
ACGACAUUCCC


MIMAT0001343

CGCCC

GUGUCCGC

GAU





hsa-miR-4251
3069
CCUGAGAAAAGGGCCAA
3070
CCUGAGAAAAGG
3071
GCCCUUUUCUC


MIMAT0016883



GCCAA

AGG





hsa-miR-4252
3072
GGCCACUGAGUCAGCAC
3073
GGCCACUGAGUC
3074
CUGACUCAGUG


MIMAT0016886

CA

AGCACCA

GCC





hsa-miR-4253
3075
AGGGCAUGUCCAGGGGGU
3076
AGGGCAUGUCCA
3077
CCUGGACAUGC


MIMAT0016882



GGGGGU

CCU





hsa-miR-4254
3078
GCCUGGAGCUACUCCAC
3079
GCCUGGAGCUAC
3080
GAGUAGCUCCA


MIMAT0016884

CAUCUC

UCCACCAU

GGC





hsa-miR-4255
3081
CAGUGUUCAGAGAUGGA
3082
CAGUGUUCAGAG
3083
AUCUCUGAACA


MIMAT0016885



AUGGA

CUG





hsa-miR-4256
3084
AUCUGACCUGAUGAAGGU
3085
AUCUGACCUGAU
3086
UCAUCAGGUCA


MIMAT0016877



GAAGGU

GAU





hsa-miR-4257
3087
CCAGAGGUGGGGACUGAG
3088
CCAGAGGUGGGG
3089
GUCCCCACCUC


MIMAT0016878



ACUGAG

UGG





hsa-miR-4258
3090
CCCCGCCACCGCCUUGG
3091
CCCCGCCACCGC
3092
AGGCGGUGGCG


MIMAT0016879



CUUGG

GGG





hsa-miR-4259
3093
CAGUUGGGUCUAGGGGU
3094
CAGUUGGGUCUA
3095
CCUAGACCCAA


MIMAT0016880

CAGGA

GGGGUCAG

CUG





hsa-miR-4260
3096
CUUGGGGCAUGGAGUCC
3097
CUUGGGGCAUGG
3098
CUCCAUGCCCC


MIMAT0016881

CA

AGUCCCA

AAG





hsa-miR-4261
3099
AGGAAACAGGGACCCA
3100
AGGAAACAGGGA
3101
GGUCCCUGUUU


MIMAT0016890



CCCA

CCU





hsa-miR-4262
3102
GACAUUCAGACUACCUG
3103
GACAUUCAGACU
3104
GUAGUCUGAAU


MIMAT0016894



ACCUG

GUC





hsa-miR-4263
3105
AUUCUAAGUGCCUUGGCC
3106
AUUCUAAGUGCC
3107
AAGGCACUUAG


MIMAT0016898



UUGGCC

AAU





hsa-miR-4264
3108
ACUCAGUCAUGGUCAUU
3109
ACUCAGUCAUGG
3110
GACCAUGACUG


MIMAT0016899



UCAUU

AGU





hsa-miR-4265
3111
CUGUGGGCUCAGCUCUG
3112
CUGUGGGCUCAG
3113
AGCUGAGCCCA


MIMAT0016891

GG

CUCUGGG

CAG





hsa-miR-4266
3114
CUAGGAGGCCUUGGCC
3115
CUAGGAGGCCUU
3116
CCAAGGCCUCC


MIMAT0016892



GGCC

UAG





hsa-miR-4267
3117
UCCAGCUCGGUGGCAC
3118
UCCAGCUCGGUG
3119
GCCACCGAGCU


MIMAT0016893



GCAC

GGA





hsa-miR-4268
3120
GGCUCCUCCUCUCAGGA
3121
GGCUCCUCCUCU
3122
UGAGAGGAGGA


MIMAT0016896

UGUG

CAGGAUGU

GCC





hsa-miR-4269
3123
GCAGGCACAGACAGCCC
3124
GCAGGCACAGAC
3125
CUGUCUGUGCC


MIMAT0016897

UGGC

AGCCCUGG

UGC





hsa-miR-4270
3126
UCAGGGAGUCAGGGGAG
3127
UCAGGGAGUCAG
3128
CCCUGACUCCC


MIMAT0016900

GGC

GGGAGGGC

UGA





hsa-miR-4271
3129
GGGGGAAGAAAAGGUGG
3130
GGGGGAAGAAAA
3131
CCUUUUCUUCC


MIMAT0016901

GG

GGUGGGG

CCC





hsa-miR-4272
3132
CAUUCAACUAGUGAUUGU
3133
CAUUCAACUAGU
3134
UCACUAGUUGA


MIMAT0016902



GAUUGU

AUG





hsa-miR-4273
3135
GUGUUCUCUGAUGGACAG
3136
GUGUUCUCUGAU
3137
CCAUCAGAGAA


MIMAT0016903



GGACAG

CAC





hsa-miR-4274
3138
CAGCAGUCCCUCCCCCUG
3139
CAGCAGUCCCUC
3140
GGGAGGGACUG


MIMAT0016906



CCCCUG

CUG





hsa-miR-4275
3141
CCAAUUACCACUUCUUU
3142
CCAAUUACCACU
3143
GAAGUGGUAAU


MIMAT0016905



UCUUU

UGG





hsa-miR-4276
3144
CUCAGUGACUCAUGUGC
3145
CUCAGUGACUCA
3146
CAUGAGUCACU


MIMAT0016904



UGUGC

GAG





hsa-miR-4277
3147
GCAGUUCUGAGCACAGU
3148
GCAGUUCUGAGC
3149
GUGCUCAGAAC


MIMAT0016908

ACAC

ACAGUACA

UGC





hsa-miR-4278
3150
CUAGGGGGUUUGCCCUUG
3151
CUAGGGGGUUUG
3152
GGCAAACCCCC


MIMAT0016910



CCCUUG

UAG





hsa-miR-4279
3153
CUCUCCUCCCGGCUUC
3154
CUCUCCUCCCGG
3155
AGCCGGGAGGA


MIMAT0016909



CUUC

GAG





hsa-miR-4280
3156
GAGUGUAGUUCUGAGCA
3157
GAGUGUAGUUCU
3158
UCAGAACUACA


MIMAT0016911

GAGC

GAGCAGAG

CUC





hsa-miR-4281
3159
GGGUCCCGGGGAGGGGGG
3160
GGGUCCCGGGGA
3161
CCUCCCCGGGA


MIMAT0016907



GGGGGG

CCC





hsa-miR-4282
3162
UAAAAUUUGCAUCCAGGA
3163
UAAAAUUUGCAU
3164
GGAUGCAAAUU


MIMAT0016912



CCAGGA

UUA





hsa-miR-4283
3165
UGGGGCUCAGCGAGUUU
3166
UGGGGCUCAGCG
3167
CUCGCUGAGCC


MIMAT0016914



AGUUU

CCA





hsa-miR-4284
3168
GGGCUCACAUCACCCCAU
3169
GGGCUCACAUCA
3170
GGUGAUGUGAG


MIMAT0016915



CCCCAU

CCC





hsa-miR-4285
3171
GCGGCGAGUCCGACUCAU
3172
GCGGCGAGUCCG
3173
GUCGGACUCGC


MIMAT0016913



ACUCAU

CGC





hsa-miR-4286
3174
ACCCCACUCCUGGUACC
3175
ACCCCACUCCUG
3176
ACCAGGAGUGG


MIMAT0016916



GUACC

GGU





hsa-miR-4287
3177
UCUCCCUUGAGGGCACU
3178
UCUCCCUUGAGG
3179
GCCCUCAAGGG


MIMAT0016917

UU

GCACUUU

AGA





hsa-miR-4288
3180
UUGUCUGCUGAGUUUCC
3181
UUGUCUGCUGAG
3182
AACUCAGCAGA


MIMAT0016918



UUUCC

CAA





hsa-miR-4289
3183
GCAUUGUGCAGGGCUAU
3184
GCAUUGUGCAGG
3185
GCCCUGCACAA


MIMAT0016920

CA

GCUAUCA

UGC





hsa-miR-429
3186
UAAUACUGUCUGGUAAA
3187
UAAUACUGUCUG
3188
ACCAGACAGUA


MIMAT0001536

ACCGU

GUAAAACC

UUA





hsa-miR-4290
3189
UGCCCUCCUUUCUUCCC
3190
UGCCCUCCUUUC
3191
AAGAAAGGAGG


MIMAT0016921

UC

UUCCCUC

GCA





hsa-miR-4291
3192
UUCAGCAGGAACAGCU
3193
UUCAGCAGGAAC
3194
CUGUUCCUGCU


MIMAT0016922



AGCU

GAA





hsa-miR-4292
3195
CCCCUGGGCCGGCCUUGG
3196
CCCCUGGGCCGG
3197
GGCCGGCCCAG


MIMAT0016919



CCUUGG

GGG





hsa-miR-4293
3198
CAGCCUGACAGGAACAG
3199
CAGCCUGACAGG
3200
UUCCUGUCAGG


MIMAT0016848



AACAG

CUG





hsa-miR-4294
3201
GGGAGUCUACAGCAGGG
3202
GGGAGUCUACAG
3203
UGCUGUAGACU


MIMAT0016849



CAGGG

CCC





hsa-miR-4295
3204
CAGUGCAAUGUUUUCCUU
3205
CAGUGCAAUGUU
3206
AAAACAUUGCA


MIMAT0016844



UUCCUU

CUG





hsa-miR-4296
3207
AUGUGGGCUCAGGCUCA
3208
AUGUGGGCUCAG
3209
GCCUGAGCCCA


MIMAT0016845



GCUCA

CAU





hsa-miR-4297
3210
UGCCUUCCUGUCUGUG
3211
UGCCUUCCUGUC
3212
CAGACAGGAAG


MIMAT0016846



UGUG

GCA





hsa-miR-4298
3213
CUGGGACAGGAGGAGGA
3214
CUGGGACAGGAG
3215
UCCUCCUGUCC


MIMAT0016852

GGCAG

GAGGAGGC

CAG





hsa-miR-4299
3216
GCUGGUGACAUGAGAGGC
3217
GCUGGUGACAUG
3218
CUCAUGUCACC


MIMAT0016851



AGAGGC

AGC





hsa-miR-4300
3219
UGGGAGCUGGACUACUUC
3220
UGGGAGCUGGAC
3221
UAGUCCAGCUC


MIMAT0016853



UACUUC

CCA





hsa-miR-4301
3222
UCCCACUACUUCACUUG
3223
UCCCACUACUUC
3224
GUGAAGUAGUG


MIMAT0016850

UGA

ACUUGUGA

GGA





hsa-miR-4302
3225
CCAGUGUGGCUCAGCGAG
3226
CCAGUGUGGCUC
3227
CUGAGCCACAC


MIMAT0016855



AGCGAG

UGG





hsa-miR-4303
3228
UUCUGAGCUGAGGACAG
3229
UUCUGAGCUGAG
3230
UCCUCAGCUCA


MIMAT0016856



GACAG

GAA





hsa-miR-4304
3231
CCGGCAUGUCCAGGGCA
3232
CCGGCAUGUCCA
3233
CCUGGACAUGC


MIMAT0016854



GGGCA

CGG





hsa-miR-4305
3234
CCUAGACACCUCCAGUUC
3235
CCUAGACACCUC
3236
UGGAGGUGUCU


MIMAT0016857



CAGUUC

AGG





hsa-miR-4306
3237
UGGAGAGAAAGGCAGUA
3238
UGGAGAGAAAGG
3239
UGCCUUUCUCU


MIMAT0016858



CAGUA

CCA





hsa-miR-4307
3240
AAUGUUUUUUCCUGUUU
3241
AAUGUUUUUUCC
3242
CAGGAAAAAAC


MIMAT0016860

CC

UGUUUCC

AUU





hsa-miR-4308
3243
UCCCUGGAGUUUCUUCUU
3244
UCCCUGGAGUUU
3245
AGAAACUCCAG


MIMAT0016861



CUUCUU

GGA





hsa-miR-4309
3246
CUGGAGUCUAGGAUUCCA
3247
CUGGAGUCUAGG
3248
AUCCUAGACUC


MIMAT0016859



AUUCCA

CAG





hsa-miR-431
3249
UGUCUUGCAGGCCGUCA
3250
UGUCUUGCAGGC
3251
CGGCCUGCAAG


MIMAT0001625

UGCA

CGUCAUGC

ACA





hsa-miR-431*
3252
CAGGUCGUCUUGCAGGG
3253
CAGGUCGUCUUG
3254
UGCAAGACGAC


MIMAT0004757

CUUCU

CAGGGCUU

CUG





hsa-miR-4310
3255
GCAGCAUUCAUGUCCC
3256
GCAGCAUUCAUG
3257
GACAUGAAUGC


MIMAT0016862



UCCC

UGC





hsa-miR-4311
3258
GAAAGAGAGCUGAGUGUG
3259
GAAAGAGAGCUG
3260
CUCAGCUCUCU


MIMAT0016863



AGUGUG

UUC





hsa-miR-4312
3261
GGCCUUGUUCCUGUCCC
3262
GGCCUUGUUCCU
3263
ACAGGAACAAG


MIMAT0016864

CA

GUCCCCA

GCC





hsa-miR-4313
3264
AGCCCCCUGGCCCCAAA
3265
AGCCCCCUGGCC
3266
GGGGCCAGGGG


MIMAT0016865

CCC

CCAAACCC

GCU





hsa-miR-4314
3267
CUCUGGGAAAUGGGACAG
3268
CUCUGGGAAAUG
3269
CCCAUUUCCCA


MIMAT0016868



GGACAG

GAG





hsa-miR-4315
3270
CCGCUUUCUGAGCUGGAC
3271
CCGCUUUCUGAG
3272
AGCUCAGAAAG


MIMAT0016866



CUGGAC

CGG





hsa-miR-4316
3273
GGUGAGGCUAGCUGGUG
3274
GGUGAGGCUAGC
3275
CAGCUAGCCUC


MIMAT0016867



UGGUG

ACC





hsa-miR-4317
3276
ACAUUGCCAGGGAGUUU
3277
ACAUUGCCAGGG
3278
CUCCCUGGCAA


MIMAT0016872



AGUUU

UGU





hsa-miR-4318
3279
CACUGUGGGUACAUGCU
3280
CACUGUGGGUAC
3281
AUGUACCCACA


MIMAT0016869



AUGCU

GUG





hsa-miR-4319
3282
UCCCUGAGCAAAGCCAC
3283
UCCCUGAGCAAA
3284
GCUUUGCUCAG


MIMAT0016870



GCCAC

GGA





hsa-miR-432
3285
UCUUGGAGUAGGUCAUU
3286
UCUUGGAGUAGG
3287
GACCUACUCCA


MIMAT0002814

GGGUGG

UCAUUGGG

AGA





hsa-miR-432*
3288
CUGGAUGGCUCCUCCAU
3289
CUGGAUGGCUCC
3290
GAGGAGCCAUC


MIMAT0002815

GUCU

UCCAUGUC

CAG





hsa-miR-4320
3291
GGGAUUCUGUAGCUUCCU
3292
GGGAUUCUGUAG
3293
AGCUACAGAAU


MIMAT0016871



CUUCCU

CCC





hsa-miR-4321
3294
UUAGCGGUGGACCGCCC
3295
UUAGCGGUGGAC
3296
CGGUCCACCGC


MIMAT0016874

UGCG

CGCCCUGC

UAA





hsa-miR-4322
3297
CUGUGGGCUCAGCGCGU
3298
CUGUGGGCUCAG
3299
CGCUGAGCCCA


MIMAT0016873

GGGG

CGCGUGGG

CAG





hsa-miR-4323
3300
CAGCCCCACAGCCUCAGA
3301
CAGCCCCACAGC
3302
AGGCUGUGGGG


MIMAT0016875



CUCAGA

CUG





hsa-miR-4324
3303
CCCUGAGACCCUAACCU
3304
CCCUGAGACCCU
3305
UUAGGGUCUCA


MIMAT0016876

UAA

AACCUUAA

GGG





hsa-miR-4325
3306
UUGCACUUGUCUCAGUGA
3307
UUGCACUUGUCU
3308
UGAGACAAGUG


MIMAT0016887



CAGUGA

CAA





hsa-miR-4326
3309
UGUUCCUCUGUCUCCCA
3310
UGUUCCUCUGUC
3311
GAGACAGAGGA


MIMAT0016888

GAC

UCCCAGAC

ACA





hsa-miR-4327
3312
GGCUUGCAUGGGGGACU
3313
GGCUUGCAUGGG
3314
CCCCCAUGCAA


MIMAT0016889

GG

GGACUGG

GCC





hsa-miR-4328
3315
CCAGUUUUCCCAGGAUU
3316
CCAGUUUUCCCA
3317
CCUGGGAAAAC


MIMAT0016926



GGAUU

UGG





hsa-miR-4329
3318
CCUGAGACCCUAGUUCC
3319
CCUGAGACCCUA
3320
ACUAGGGUCUC


MIMAT0016923

AC

GUUCCAC

AGG





hsa-miR-433
3321
AUCAUGAUGGGCUCCUC
3322
AUCAUGAUGGGC
3323
GAGCCCAUCAU


MIMAT0001627

GGUGU

UCCUCGGU

GAU





hsa-miR-4330
3324
CCUCAGAUCAGAGCCUU
3325
CCUCAGAUCAGA
3326
GCUCUGAUCUG


MIMAT0016924

GC

GCCUUGC

AGG





hsa-miR-448
3327
UUGCAUAUGUAGGAUGU
3328
UUGCAUAUGUAG
3329
UCCUACAUAUG


MIMAT0001532

CCCAU

GAUGUCCC

CAA





hsa-miR-449a
3330
UGGCAGUGUAUUGUUAG
3331
UGGCAGUGUAUU
3332
ACAAUACACUG


MIMAT0001541

CUGGU

GUUAGCUG

CCA





hsa-miR-449b
3333
AGGCAGUGUAUUGUUAG
3334
AGGCAGUGUAUU
3335
ACAAUACACUG


MIMAT0003327

CUGGC

GUUAGCUG

CCU





hsa-miR-449b*
3336
CAGCCACAACUACCCUG
3337
CAGCCACAACUA
3338
GGUAGUUGUGG


MIMAT0009203

CCACU

CCCUGCCA

CUG





hsa-miR-449c
3339
UAGGCAGUGUAUUGCUA
3340
UAGGCAGUGUAU
3341
CAAUACACUGC


MIMAT0010251

GCGGCUGU

UGCUAGCG

CUA





hsa-miR-449c*
3342
UUGCUAGUUGCACUCCU
3343
UUGCUAGUUGCA
3344
AGUGCAACUAG


MIMAT0013771

CUCUGU

CUCCUCUC

CAA





hsa-miR-450a
3345
UUUUGCGAUGUGUUCCU
3346
UUUUGCGAUGUG
3347
AACACAUCGCA


MIMAT0001545

AAUAU

UUCCUAAU

AAA





hsa-miR-450b-
3348
UUGGGAUCAUUUUGCAU
3349
UUGGGAUCAUUU
3350
CAAAAUGAUCC


3p

CCAUA

UGCAUCCA

CAA


MIMAT0004910





hsa-miR-450b-
3351
UUUUGCAAUAUGUUCCU
3352
UUUUGCAAUAUG
3353
AACAUAUUGCA


5p

GAAUA

UUCCUGAA

AAA


MIMAT0004909





hsa-miR-451
3354
AAACCGUUACCAUUACU
3355
AAACCGUUACCA
3356
AAUGGUAACGG


MIMAT0001631

GAGUU

UUACUGAG

UUU





hsa-miR-452
3357
AACUGUUUGCAGAGGAA
3358
AACUGUUUGCAG
3359
CUCUGCAAACA


MIMAT0001635

ACUGA

AGGAAACU

GUU





hsa-miR-452*
3360
CUCAUCUGCAAAGAAGU
3361
CUCAUCUGCAAA
3362
UCUUUGCAGAU


MIMAT0001636

AAGUG

GAAGUAAG

GAG





hsa-miR-454
3363
UAGUGCAAUAUUGCUUA
3364
UAGUGCAAUAUU
3365
GCAAUAUUGCA


MIMAT0003885

UAGGGU

GCUUAUAG

CUA





hsa-miR-454*
3366
ACCCUAUCAAUAUUGUC
3367
ACCCUAUCAAUA
3368
AAUAUUGAUAG


MIMAT0003884

UCUGC

UUGUCUCU

GGU





hsa-miR-455-3p
3369
GCAGUCCAUGGGCAUAU
3370
GCAGUCCAUGGG
3371
UGCCCAUGGAC


MIMAT0004784

ACAC

CAUAUACA

UGC





hsa-miR-455-5p
3372
UAUGUGCCUUUGGACUA
3373
UAUGUGCCUUUG
3374
UCCAAAGGCAC


MIMAT0003150

CAUCG

GACUACAU

AUA





hsa-miR-466
3375
AUACACAUACACGCAAC
3376
AUACACAUACAC
3377
GCGUGUAUGUG


MIMAT0015002

ACACAU

GCAACACA

UAU





hsa-miR-483-3p
3378
UCACUCCUCUCCUCCCG
3379
UCACUCCUCUCC
3380
GAGGAGAGGAG


MIMAT0002173

UCUU

UCCCGUCU

UGA





hsa-miR-483-5p
3381
AAGACGGGAGGAAAGAA
3382
AAGACGGGAGGA
3383
UUUCCUCCCGU


MIMAT0004761

GGGAG

AAGAAGGG

CUU





hsa-miR-484
3384
UCAGGCUCAGUCCCCUC
3385
UCAGGCUCAGUC
3386
GGGACUGAGCC


MIMAT0002174

CCGAU

CCCUCCCG

UGA





hsa-miR-485-3p
3387
GUCAUACACGGCUCUCC
3388
GUCAUACACGGC
3389
GAGCCGUGUAU


MIMAT0002176

UCUCU

UCUCCUCU

GAC





hsa-miR-485-5p
3390
AGAGGCUGGCCGUGAUG
3391
AGAGGCUGGCCG
3392
CACGGCCAGCC


MIMAT0002175

AAUUC

UGAUGAAU

UCU





hsa-miR-486-3p
3393
CGGGGCAGCUCAGUACA
3394
CGGGGCAGCUCA
3395
ACUGAGCUGCC


MIMAT0004762

GGAU

GUACAGGA

CCG





hsa-miR-486-5p
3396
UCCUGUACUGAGCUGCC
3397
UCCUGUACUGAG
3398
AGCUCAGUACA


MIMAT0002177

CCGAG

CUGCCCCG

GGA





hsa-miR-487a
3399
AAUCAUACAGGGACAUC
3400
AAUCAUACAGGG
3401
GUCCCUGUAUG


MIMAT0002178

CAGUU

ACAUCCAG

AUU





hsa-miR-487b
3402
AAUCGUACAGGGUCAUC
3403
AAUCGUACAGGG
3404
GACCCUGUACG


MIMAT0003180

CACUU

UCAUCCAC

AUU





hsa-miR-488
3405
UUGAAAGGCUAUUUCUU
3406
UUGAAAGGCUAU
3407
AAAUAGCCUUU


MIMAT0004763

GGUC

UUCUUGGU

CAA





hsa-miR-488*
3408
CCCAGAUAAUGGCACUC
3409
CCCAGAUAAUGG
3410
UGCCAUUAUCU


MIMAT0002804

UCAA

CACUCUCA

GGG





hsa-miR-489
3411
GUGACAUCACAUAUACG
3412
GUGACAUCACAU
3413
AUAUGUGAUGU


MIMAT0002805

GCAGC

AUACGGCA

CAC





hsa-miR-490-3p
3414
CAACCUGGAGGACUCCA
3415
CAACCUGGAGGA
3416
AGUCCUCCAGG


MIMAT0002806

UGCUG

CUCCAUGC

UUG





hsa-miR-490-5p
3417
CCAUGGAUCUCCAGGUG
3418
CCAUGGAUCUCC
3419
CUGGAGAUCCA


MIMAT0004764

GGU

AGGUGGGU

UGG





hsa-miR-491-3p
3420
CUUAUGCAAGAUUCCCU
3421
CUUAUGCAAGAU
3422
GAAUCUUGCAU


MIMAT0004765

UCUAC

UCCCUUCU

AAG





hsa-miR-491-5p
3423
AGUGGGGAACCCUUCCA
3424
AGUGGGGAACCC
3425
AAGGGUUCCCC


MIMAT0002807

UGAGG

UUCCAUGA

ACU





hsa-miR-492
3426
AGGACCUGCGGGACAAG
3427
AGGACCUGCGGG
3428
GUCCCGCAGGU


MIMAT0002812

AUUCUU

ACAAGAUU

CCU





hsa-miR-493
3429
UGAAGGUCUACUGUGUG
3430
UGAAGGUCUACU
3431
ACAGUAGACCU


MIMAT0003161

CCAGG

GUGUGCCA

UCA





hsa-miR-493*
3432
UUGUACAUGGUAGGCUU
3433
UUGUACAUGGUA
3434
CCUACCAUGUA


MIMAT0002813

UCAUU

GGCUUUCA

CAA





hsa-miR-494
3435
UGAAACAUACACGGGAA
3436
UGAAACAUACAC
3437
CCGUGUAUGUU


MIMAT0002816

ACCUC

GGGAAACC

UCA





hsa-miR-495
3438
AAACAAACAUGGUGCAC
3439
AAACAAACAUGG
3440
CACCAUGUUUG


MIMAT0002817

UUCUU

UGCACUUC

UUU





hsa-miR-496
3441
UGAGUAUUACAUGGCCA
3442
UGAGUAUUACAU
3443
CCAUGUAAUAC


MIMAT0002818

AUCUC

GGCCAAUC

UCA





hsa-miR-497
3444
CAGCAGCACACUGUGGU
3445
CAGCAGCACACU
3446
ACAGUGUGCUG


MIMAT0002820

UUGU

GUGGUUUG

CUG





hsa-miR-497*
3447
CAAACCACACUGUGGUG
3448
CAAACCACACUG
3449
CACAGUGUGGU


MIMAT0004768

UUAGA

UGGUGUUA

UUG





hsa-miR-498
3450
UUUCAAGCCAGGGGGCG
3451
UUUCAAGCCAGG
3452
CCCCUGGCUUG


MIMAT0002824

UUUUUC

GGGCGUUU

AAA





hsa-miR-499-3p
3453
AACAUCACAGCAAGUCU
3454
AACAUCACAGCA
3455
CUUGCUGUGAU


MIMAT0004772

GUGCU

AGUCUGUG

GUU





hsa-miR-499-5p
3456
UUAAGACUUGCAGUGAU
3457
UUAAGACUUGCA
3458
ACUGCAAGUCU


MIMAT0002870

GUUU

GUGAUGUU

UAA





hsa-miR-500a
3459
UAAUCCUUGCUACCUGG
3460
UAAUCCUUGCUA
3461
GGUAGCAAGGA


MIMAT0004773

GUGAGA

CCUGGGUG

UUA





hsa-miR-500a*
3462
AUGCACCUGGGCAAGGA
3463
AUGCACCUGGGC
3464
UUGCCCAGGUG


MIMAT0002871

UUCUG

AAGGAUUC

CAU





hsa-miR-500b
3465
AAUCCUUGCUACCUGGGU
3466
AAUCCUUGCUAC
3467
AGGUAGCAAGG


MIMAT0016925



CUGGGU

AUU





hsa-miR-501-3p
3468
AAUGCACCCGGGCAAGG
3469
AAUGCACCCGGG
3470
UGCCCGGGUGC


MIMAT0004774

AUUCU

CAAGGAUU

AUU





hsa-miR-501-5p
3471
AAUCCUUUGUCCCUGGG
3472
AAUCCUUUGUCC
3473
AGGGACAAAGG


MIMAT0002872

UGAGA

CUGGGUGA

AUU





hsa-miR-502-3p
3474
AAUGCACCUGGGCAAGG
3475
AAUGCACCUGGG
3476
UGCCCAGGUGC


MIMAT0004775

AUUCA

CAAGGAUU

AUU





hsa-miR-502-5p
3477
AUCCUUGCUAUCUGGGU
3478
AUCCUUGCUAUC
3479
CAGAUAGCAAG


MIMAT0002873

GCUA

UGGGUGCU

GAU





hsa-miR-503
3480
UAGCAGCGGGAACAGUU
3481
UAGCAGCGGGAA
3482
UGUUCCCGCUG


MIMAT0002874

CUGCAG

CAGUUCUG

CUA





hsa-miR-504
3483
AGACCCUGGUCUGCACU
3484
AGACCCUGGUCU
3485
GCAGACCAGGG


MIMAT0002875

CUAUC

GCACUCUA

UCU





hsa-miR-505
3486
CGUCAACACUUGCUGGU
3487
CGUCAACACUUG
3488
AGCAAGUGUUG


MIMAT0002876

UUCCU

CUGGUUUC

ACG





hsa-miR-505*
3489
GGGAGCCAGGAAGUAUU
3490
GGGAGCCAGGAA
3491
ACUUCCUGGCU


MIMAT0004776

GAUGU

GUAUUGAU

CCC





hsa-miR-506
3492
UAAGGCACCCUUCUGAG
3493
UAAGGCACCCUU
3494
AGAAGGGUGCC


MIMAT0002878

UAGA

CUGAGUAG

UUA





hsa-miR-507
3495
UUUUGCACCUUUUGGAG
3496
UUUUGCACCUUU
3497
CAAAAGGUGCA


MIMAT0002879

UGAA

UGGAGUGA

AAA





hsa-miR-508-3p
3498
UGAUUGUAGCCUUUUGG
3499
UGAUUGUAGCCU
3500
AAAGGCUACAA


MIMAT0002880

AGUAGA

UUUGGAGU

UCA





hsa-miR-508-5p
3501
UACUCCAGAGGGCGUCA
3502
UACUCCAGAGGG
3503
CGCCCUCUGGA


MIMAT0004778

CUCAUG

CGUCACUC

GUA





hsa-miR-509-3-
3504
UACUGCAGACGUGGCAA
3505
UACUGCAGACGU
3506
CCACGUCUGCA


5p

UCAUG

GGCAAUCA

GUA


MIMAT0004975





hsa-miR-509-3p
3507
UGAUUGGUACGUCUGUG
3508
UGAUUGGUACGU
3509
AGACGUACCAA


MIMAT0002881

GGUAG

CUGUGGGU

UCA





hsa-miR-509-5p
3510
UACUGCAGACAGUGGCA
3511
UACUGCAGACAG
3512
CACUGUCUGCA


MIMAT0004779

AUCA

UGGCAAUC

GUA





hsa-miR-510
3513
UACUCAGGAGAGUGGCA
3514
UACUCAGGAGAG
3515
CACUCUCCUGA


MIMAT0002882

AUCAC

UGGCAAUC

GUA





hsa-miR-511
3516
GUGUCUUUUGCUCUGCA
3517
GUGUCUUUUGCU
3518
AGAGCAAAAGA


MIMAT0002808

GUCA

CUGCAGUC

CAC





hsa-miR-512-3p
3519
AAGUGCUGUCAUAGCUG
3520
AAGUGCUGUCAU
3521
CUAUGACAGCA


MIMAT0002823

AGGUC

AGCUGAGG

CUU





hsa-miR-512-5p
3522
CACUCAGCCUUGAGGGC
3523
CACUCAGCCUUG
3524
CUCAAGGCUGA


MIMAT0002822

ACUUUC

AGGGCACU

GUG





hsa-miR-513a-
3525
UAAAUUUCACCUUUCUG
3526
UAAAUUUCACCU
3527
AAAGGUGAAAU


3p

AGAAGG

UUCUGAGA

UUA


MIMAT0004777





hsa-miR-513a-
3528
UUCACAGGGAGGUGUCAU
3529
UUCACAGGGAGG
3530
CACCUCCCUGU


5p



UGUCAU

GAA


MIMAT0002877





hsa-miR-513b
3531
UUCACAAGGAGGUGUCA
3532
UUCACAAGGAGG
3533
CACCUCCUUGU


MIMAT0005788

UUUAU

UGUCAUUU

GAA





hsa-miR-513c
3534
UUCUCAAGGAGGUGUCG
3535
UUCUCAAGGAGG
3536
CACCUCCUUGA


MIMAT0005789

UUUAU

UGUCGUUU

GAA





hsa-miR-514
3537
AUUGACACUUCUGUGAG
3538
AUUGACACUUCU
3539
ACAGAAGUGUC


MIMAT0002883

UAGA

GUGAGUAG

AAU





hsa-miR-514b-
3540
AUUGACACUUCUGUGAG
3541
AUUGACACCUCU
3542
ACAGAGGUGUC


3p

UGGA

GUGAGUGG

AAU


MIMAT0015088





hsa-miR-514b-
3543
UUCUCAAGAGGGAGGCA
3544
UUCUCAAGAGGG
3545
CUCCCUCUUGA


5p

AUCAU

AGGCAAUC

GAA


MIMAT0015087





hsa-miR-515-3p
3546
GAGUGCCUUCUUUUGGA
3547
GAGUGCCUUCUU
3548
AAAAGAAGGCA


MIMAT0002827

GCGUU

UUGGAGCG

CUC





hsa-miR-515-5p
3549
UUCUCCAAAAGAAAGCA
3550
UUCUCCAAAAGA
3551
UUUCUUUUGGA


MIMAT0002826

CUUUCUG

AAGCACUU

GAA





hsa-miR-516a-
3552
UGCUUCCUUUCAGAGGGU
3553
UGCUUCCUUUCA
3554
UCUGAAAGGAA


3p



GAGGGU

GCA


MIMAT0006778





hsa-miR-516a-
3555
UUCUCGAGGAAAGAAGC
3556
UUCUCGAGGAAA
3557
UCUUUCCUCGA


5p

ACUUUC

GAAGCACU

GAA


MIMAT0004770





hsa-miR-516b
3558
AUCUGGAGGUAAGAAGC
3559
AUCUGGAGGUAA
3560
UCUUACCUCCA


MIMAT0002859

ACUUU

GAAGCACU

GAU





hsa-miR-516b*
3561
UGCUUCCUUUCAGAGGGU
3562
UGCUUCCUUUCA
3563
UCUGAAAGGAA


MIMAT0002860



GAGGGU

GCA





hsa-miR-517*
3564
CCUCUAGAUGGAAGCAC
3565
CCUCUAGAUGGA
3566
CUUCCAUCUAG


MIMAT0002851

UGUCU

AGCACUGU

AGG





hsa-miR-517a
3567
AUCGUGCAUCCCUUUAG
3568
AUCGUGCAUCCC
3569
AAGGGAUGCAC


MIMAT0002852

AGUGU

UUUAGAGU

GAU





hsa-miR-517b
3570
UCGUGCAUCCCUUUAGA
3571
UCGUGCAUCCCU
3572
AAAGGGAUGCA


MIMAT0002857

GUGUU

UUAGAGUG

CGA





hsa-miR-517c
3573
AUCGUGCAUCCUUUUAG
3574
AUCGUGCAUCCU
3575
AAAGGAUGCAC


MIMAT0002866

AGUGU

UUUAGAGU

GAU





hsa-miR-518a-
3576
GAAAGCGCUUCCCUUUG
3577
GAAAGCGCUUCC
3578
AGGGAAGCGCU


3p

CUGGA

CUUUGCUG

UUC


MIMAT0002863





hsa-miR-518a-
3579
CUGCAAAGGGAAGCCCU
3580
CUGCAAAGGGAA
3581
GCUUCCCUUUG


5p

UUC

GCCCUUUC

CAG


MIMAT0005457





hsa-miR-518b
3582
CAAAGCGCUCCCCUUUA
3583
CAAAGCGCUCCC
3584
AGGGGAGCGCU


MIMAT0002844

GAGGU

CUUUAGAG

UUG





hsa-miR-518c
3585
CAAAGCGCUUCUCUUUA
3586
CAAAGCGCUUCU
3587
AGAGAAGCGCU


MIMAT0002848

GAGUGU

CUUUAGAG

UUG





hsa-miR-518c*
3588
UCUCUGGAGGGAAGCAC
3589
UCUCUGGAGGGA
3590
CUUCCCUCCAG


MIMAT0002847

UUUCUG

AGCACUUU

AGA





hsa-miR-518d-
3591
CAAAGCGCUUCCCUUUG
3592
CAAAGCGCUUCC
3593
AGGGAAGCGCU


3p

GAGC

CUUUGGAG

UUG


MIMAT0002864





hsa-miR-518d-
3594
CUCUAGAGGGAAGCACU
3595
CUCUAGAGGGAA
3596
GCUUCCCUCUA


5p

UUCUG

GCACUUUC

GAG


MIMAT0005456





hsa-miR-518e
3597
AAAGCGCUUCCCUUCAG
3598
AAAGCGCUUCCC
3599
AAGGGAAGCGC


MIMAT0002861

AGUG

UUCAGAGU

UUU





hsa-miR-518e*
3600
CUCUAGAGGGAAGCGCU
3601
CUCUAGAGGGAA
3602
GCUUCCCUCUA


MIMAT0005450

UUCUG

GCGCUUUC

GAG





hsa-miR-518f
3603
GAAAGCGCUUCUCUUUA
3604
GAAAGCGCUUCU
3605
AGAGAAGCGCU


MIMAT0002842

GAGG

CUUUAGAG

UUC





hsa-miR-518f*
3606
CUCUAGAGGGAAGCACU
3607
CUCUAGAGGGAA
3608
GCUUCCCUCUA


MIMAT0002841

UUCUC

GCACUUUC

GAG





hsa-miR-519a
3609
AAAGUGCAUCCUUUUAG
3610
AAAGUGCAUCCU
3611
AAAGGAUGCAC


MIMAT0002869

AGUGU

UUUAGAGU

UUU





hsa-miR-519a*
3612
CUCUAGAGGGAAGCGCU
3613
CUCUAGAGGGAA
3614
GCUUCCCUCUA


MIMAT0005452

UUCUG

GCGCUUUC

GAG





hsa-miR-519b-
3615
AAAGUGCAUCCUUUUAG
3616
AAAGUGCAUCCU
3617
AAAGGAUGCAC


3p

AGGUU

UUUAGAGG

UUU


MIMAT0002837





hsa-miR-519b-
3618
CUCUAGAGGGAAGCGCU
3619
CUCUAGAGGGAA
3620
GCUUCCCUCUA


5p

UUCUG

GCGCUUUC

GAG


MIMAT0005454





hsa-miR-519c-
3621
AAAGUGCAUCUUUUUAG
3622
AAAGUGCAUCUU
3623
AAAAGAUGCAC


3p

AGGAU

UUUAGAGG

UUU


MIMAT0002832





hsa-miR-519c-
3624
CUCUAGAGGGAAGCGCU
3625
CUCUAGAGGGAA
3626
GCUUCCCUCUA


5p

UUCUG

GCGCUUUC

GAG


MIMAT0002831





hsa-miR-519d
3627
CAAAGUGCCUCCCUUUA
3628
CAAAGUGCCUCC
3629
AGGGAGGCACU


MIMAT0002853

GAGUG

CUUUAGAG

UUG





hsa-miR-519e
3630
AAGUGCCUCCUUUUAGA
3631
AAGUGCCUCCUU
3632
AAAAGGAGGCA


MIMAT0002829

GUGUU

UUAGAGUG

CUU





hsa-miR-519e*
3633
UUCUCCAAAAGGGAGCA
3634
UUCUCCAAAAGG
3635
UCCCUUUUGGA


MIMAT0002828

CUUUC

GAGCACUU

GAA





hsa-miR-520a-
3636
AAAGUGCUUCCCUUUGG
3637
AAAGUGCUUCCC
3638
AAGGGAAGCAC


3p

ACUGU

UUUGGACU

UUU


MIMAT0002834





hsa-miR-520a-
3639
CUCCAGAGGGAAGUACU
3640
CUCCAGAGGGAA
3641
ACUUCCCUCUG


5p

UUCU

GUACUUUC

GAG


MIMAT0002833





hsa-miR-520b
3642
AAAGUGCUUCCUUUUAG
3643
AAAGUGCUUCCU
3644
AAAGGAAGCAC


MIMAT0002843

AGGG

UUUAGAGG

UUU





hsa-miR-520c-
3645
AAAGUGCUUCCUUUUAG
3646
AAAGUGCUUCCU
3647
AAAGGAAGCAC


3p

AGGGU

UUUAGAGG

UUU


MIMAT0002846





hsa-miR-520c-
3648
CUCUAGAGGGAAGCACU
3649
CUCUAGAGGGAA
3650
GCUUCCCUCUA


5p

UUCUG

GCACUUUC

GAG


MIMAT0005455





hsa-miR-520d-
3651
AAAGUGCUUCUCUUUGG
3652
AAAGUGCUUCUC
3653
AAGAGAAGCAC


3p

UGGGU

UUUGGUGG

UUU


MIMAT0002856





hsa-miR-520d-
3654
CUACAAAGGGAAGCCCU
3655
CUACAAAGGGAA
3656
GCUUCCCUUUG


5p

UUC

GCCCUUUC

UAG


MIMAT0002855





hsa-miR-520e
3657
AAAGUGCUUCCUUUUUG
3658
AAAGUGCUUCCU
3659
AAAGGAAGCAC


MIMAT0002825

AGGG

UUUUGAGG

UUU





hsa-miR-520f
3660
AAGUGCUUCCUUUUAGA
3661
AAGUGCUUCCUU
3662
AAAAGGAAGCA


MIMAT0002830

GGGUU

UUAGAGGG

CUU





hsa-miR-520g
3663
ACAAAGUGCUUCCCUUU
3664
ACAAAGUGCUUC
3665
GGGAAGCACUU


MIMAT0002858

AGAGUGU

CCUUUAGA

UGU





hsa-miR-520h
3666
ACAAAGUGCUUCCCUUU
3667
ACAAAGUGCUUC
3668
GGGAAGCACUU


MIMAT0002867

AGAGU

CCUUUAGA

UGU





hsa-miR-521
3669
AACGCACUUCCCUUUAG
3670
AACGCACUUCCC
3671
AAGGGAAGUGC


MIMAT0002854

AGUGU

UUUAGAGU

GUU





hsa-miR-522
3672
AAAAUGGUUCCCUUUAG
3673
AAAAUGGUUCCC
3674
AAGGGAACCAU


MIMAT0002868

AGUGU

UUUAGAGU

UUU





hsa-miR-522*
3675
CUCUAGAGGGAAGCGCU
3676
CUCUAGAGGGAA
3677
GCUUCCCUCUA


MIMAT0005451

UUCUG

GCGCUUUC

GAG





hsa-miR-523
3678
GAACGCGCUUCCCUAUA
3679
GAACGCGCUUCC
3680
AGGGAAGCGCG


MIMAT0002840

GAGGGU

CUAUAGAG

UUC





hsa-miR-523*
3681
CUCUAGAGGGAAGCGCU
3682
CUCUAGAGGGAA
3683
GCUUCCCUCUA


MIMAT0005449

UUCUG

GCGCUUUC

GAG





hsa-miR-524-3p
3684
GAAGGCGCUUCCCUUUG
3685
GAAGGCGCUUCC
3686
AGGGAAGCGCC


MIMAT0002850

GAGU

CUUUGGAG

UUC





hsa-miR-524-5p
3687
CUACAAAGGGAAGCACU
3688
CUACAAAGGGAA
3689
GCUUCCCUUUG


MIMAT0002849

UUCUC

GCACUUUC

UAG





hsa-miR-525-3p
3690
GAAGGCGCUUCCCUUUA
3691
GAAGGCGCUUCC
3692
AGGGAAGCGCC


MIMAT0002839

GAGCG

CUUUAGAG

UUC





hsa-miR-525-5p
3693
CUCCAGAGGGAUGCACU
3694
CUCCAGAGGGAU
3695
GCAUCCCUCUG


MIMAT0002838

UUCU

GCACUUUC

GAG





hsa-miR-526a
3696
CUCUAGAGGGAAGCACU
3697
CUCUAGAGGGAA
3698
GCUUCCCUCUA


MIMAT0002845

UUCUG

GCACUUUC

GAG





hsa-miR-526b
3699
CUCUUGAGGGAAGCACU
3700
CUCUUGAGGGAA
3701
GCUUCCCUCAA


MIMAT0002835

UUCUGU

GCACUUUC

GAG





hsa-miR-526b*
3702
GAAAGUGCUUCCUUUUA
3703
GAAAGUGCUUCC
3704
AAGGAAGCACU


MIMAT0002836

GAGGC

UUUUAGAG

UUC





hsa-miR-527
3705
CUGCAAAGGGAAGCCCU
3706
CUGCAAAGGGAA
3707
GCUUCCCUUUG


MIMAT0002862

UUC

GCCCUUUC

CAG





hsa-miR-532-3p
3708
CCUCCCACACCCAAGGC
3709
CCUCCCACACCC
3710
UUGGGUGUGGG


MIMAT0004780

UUGCA

AAGGCUUG

AGG





hsa-miR-532-5p
3711
CAUGCCUUGAGUGUAGG
3712
CAUGCCUUGAGU
3713
ACACUCAAGGC


MIMAT0002888

ACCGU

GUAGGACC

AUG





hsa-miR-539
3714
GGAGAAAUUAUCCUUGG
3715
GGAGAAAUUAUC
3716
AGGAUAAUUUC


MIMAT0003163

UGUGU

CUUGGUGU

UCC





hsa-miR-541
3717
UGGUGGGCACAGAAUCU
3718
UGGUGGGCACAG
3719
UUCUGUGCCCA


MIMAT0004920

GGACU

AAUCUGGA

CCA





hsa-miR-541*
3720
AAAGGAUUCUGCUGUCG
3721
AAAGGAUUCUGC
3722
CAGCAGAAUCC


MIMAT0004919

GUCCCACU

UGUCGGUC

UUU





hsa-miR-542-3p
3723
UGUGACAGAUUGAUAAC
3724
UGUGACAGAUUG
3725
AUCAAUCUGUC


MIMAT0003389

UGAAA

AUAACUGA

ACA





hsa-miR-542-5p
3726
UCGGGGAUCAUCAUGUC
3727
UCGGGGAUCAUC
3728
AUGAUGAUCCC


MIMAT0003340

ACGAGA

AUGUCACG

CGA





hsa-miR-543
3729
AAACAUUCGCGGUGCAC
3730
AAACAUUCGCGG
3731
CACCGCGAAUG


MIMAT0004954

UUCUU

UGCACUUC

UUU





hsa-miR-544
3732
AUUCUGCAUUUUUAGCA
3733
AUUCUGCAUUUU
3734
UAAAAAUGCAG


MIMAT0003164

AGUUC

UAGCAAGU

AAU





hsa-miR-544b
3735
ACCUGAGGUUGUGCAUU
3736
ACCUGAGGUUGU
3737
GCACAACCUCA


MIMAT0015004

UCUAA

GCAUUUCU

GGU





hsa-miR-545
3738
UCAGCAAACAUUUAUUG
3739
UCAGCAAACAUU
3740
UAAAUGUUUGC


MIMAT0003165

UGUGC

UAUUGUGU

UGA





hsa-miR-545*
3741
UCAGUAAAUGUUUAUUA
3742
UCAGUAAAUGUU
3743
UAAACAUUUAC


MIMAT0004785

GAUGA

UAUUAGAU

UGA





hsa-miR-548a-
3744
CAAAACUGGCAAUUACU
3745
CAAAACUGGCAA
3746
AAUUGCCAGUU


3p

UUUGC

UUACUUUU

UUG


MIMAT0003251





hsa-miR-548a-
3747
AAAAGUAAUUGCGAGUU
3748
AAAAGUAAUUGC
3749
UCGCAAUUACU


5p

UUACC

GAGUUUUA

UUU


MIMAT0004803





hsa-miR-548aa
3750
AAAAACCACAAUUACUU
3751
AAAAACCACAAU
3752
UAAUUGUGGUU


MIMAT0018447

UUGCACCA

UACUUUUG

UUU





hsa-miR-548b-
3753
CAAGAACCUCAGUUGCU
3754
CAAGAACCUCAG
3755
AACUGAGGUUC


3p

UUUGU

UUGCUUUU

UUG


MIMAT0003254





hsa-miR-548b-
3756
AAAAGUAAUUGUGGUUU
3757
AAAAGUAAUUGU
3758
CCACAAUUACU


5p

UGGCC

GGUUUUGG

UUU


MIMAT0004798





hsa-miR-548c-
3759
CAAAAAUCUCAAUUACU
3760
CAAAAAUCUCAA
3761
AAUUGAGAUUU


3p

UUUGC

UUACUUUU

UUG


MIMAT0003285





hsa-miR-548c-
3762
AAAAGUAAUUGCGGUUU
3763
AAAAGUAAUUGC
3764
CCGCAAUUACU


5p

UUGCC

GGUUUUUG

UUU


MIMAT0004806





hsa-miR-548d-
3765
CAAAAACCACAGUUUCU
3766
CAAAAACCACAG
3767
AACUGUGGUUU


3p

UUUGC

UUUCUUUU

UUG


MIMAT0003323





hsa-miR-548d-
3768
AAAAGUAAUUGUGGUUU
3769
AAAAGUAAUUGU
3770
CCACAAUUACU


5p

UUGCC

GGUUUUUG

UUU


MIMAT0004812





hsa-miR-548e
3771
AAAAACUGAGACUACUU
3772
AAAAACUGAGAC
3773
UAGUCUCAGUU


MIMAT0005874

UUGCA

UACUUUUG

UUU





hsa-miR-548f
3774
AAAAACUGUAAUUACUU
3775
AAAAACUGUAAU
3776
UAAUUACAGUU


MIMAT0005895

UU

UACUUUU

UUU





hsa-miR-548g
3777
AAAACUGUAAUUACUUU
3778
AAAACUGUAAUU
3779
GUAAUUACAGU


MIMAT0005912

UGUAC

ACUUUUGU

UUU





hsa-miR-548h
3780
AAAAGUAAUCGCGGUUU
3781
AAAAGUAAUCGC
3782
CCGCGAUUACU


MIMAT0005928

UUGUC

GGUUUUUG

UUU





hsa-miR-548i
3783
AAAAGUAAUUGCGGAUU
3784
AAAAGUAAUUGC
3785
CCGCAAUUACU


MIMAT0005935

UUGCC

GGAUUUUG

UUU





hsa-miR-548j
3786
AAAAGUAAUUGCGGUCU
3787
AAAAGUAAUUGC
3788
CCGCAAUUACU


MIMAT0005875

UUGGU

GGUCUUUG

UUU





hsa-miR-548k
3789
AAAAGUACUUGCGGAUU
3790
AAAAGUACUUGC
3791
CCGCAAGUACU


MIMAT0005882

UUGCU

GGAUUUUG

UUU





hsa-miR-548l
3792
AAAAGUAUUUGCGGGUU
3793
AAAAGUAUUUGC
3794
CCGCAAAUACU


MIMAT0005889

UUGUC

GGGUUUUG

UUU





hsa-miR-548m
3795
CAAAGGUAUUUGUGGUU
3796
CAAAGGUAUUUG
3797
CACAAAUACCU


MIMAT0005917

UUUG

UGGUUUUU

UUG





hsa-miR-548n
3798
CAAAAGUAAUUGUGGAU
3799
CAAAAGUAAUUG
3800
CACAAUUACUU


MIMAT0005916

UUUGU

UGGAUUUU

UUG





hsa-miR-548o
3801
CCAAAACUGCAGUUACU
3802
CCAAAACUGCAG
3803
AACUGCAGUUU


MIMAT0005919

UUUGC

UUACUUUU

UGG





hsa-miR-548p
3804
UAGCAAAAACUGCAGUU
3805
UAGCAAAAACUG
3806
UGCAGUUUUUG


MIMAT0005934

ACUUU

CAGUUACU

CUA





hsa-miR-548q
3807
GCUGGUGCAAAAGUAAU
3808
GCUGGUGCAAAA
3809
ACUUUUGCACC


MIMAT0011163

GGCGG

GUAAUGGC

AGC





hsa-miR-548s
3810
AUGGCCAAAACUGCAGU
3811
AUGGCCAAAACU
3812
GCAGUUUUGGC


MIMAT0014987

UAUUUU

GCAGUUAU

CAU





hsa-miR-548t
3813
CAAAAGUGAUCGUGGUU
3814
CAAAAGUGAUCG
3815
CACGAUCACUU


MIMAT0015009

UUUG

UGGUUUUU

UUG





hsa-miR-548u
3816
CAAAGACUGCAAUUACU
3817
CAAAGACUGCAA
3818
AAUUGCAGUCU


MIMAT0015013

UUUGCG

UUACUUUU

UUG





hsa-miR-548v
3819
AGCUACAGUUACUUUUG
3820
AGCUACAGUUAC
3821
AAGUAACUGUA


MIMAT0015020

CACCA

UUUUGCAC

GCU





hsa-miR-548w
3822
AAAAGUAACUGCGGUUU
3823
AAAAGUAACUGC
3824
CCGCAGUUACU


MIMAT0015060

UUGCCU

GGUUUUUG

UUU





hsa-miR-548x
3825
UAAAAACUGCAAUUACU
3826
UAAAAACUGCAA
3827
AAUUGCAGUUU


MIMAT0015081

UUCA

UUACUUUC

UUA





hsa-miR-548y
3828
AAAAGUAAUCACUGUUU
3829
AAAAGUAAUCAC
3830
CAGUGAUUACU


MIMAT0018354

UUGCC

UGUUUUUG

UUU





hsa-miR-548z
3831
CAAAAACCGCAAUUACU
3832
CAAAAACCGCAA
3833
AAUUGCGGUUU


MIMAT0018446

UUUGCA

UUACUUUU

UUG





hsa-miR-549
3834
UGACAACUAUGGAUGAG
3835
UGACAACUAUGG
3836
AUCCAUAGUUG


MIMAT0003333

CUCU

AUGAGCUC

UCA





hsa-miR-550a
3837
AGUGCCUGAGGGAGUAA
3838
AGUGCCUGAGGG
3839
CUCCCUCAGGC


MIMAT0004800

GAGCCC

AGUAAGAG

ACU





hsa-miR-550a*
3840
UGUCUUACUCCCUCAGG
3841
UGUCUUACUCCC
3842
GAGGGAGUAAG


MIMAT0003257

CACAU

UCAGGCAC

ACA





hsa-miR-550b
3843
UCUUACUCCCUCAGGCA
3844
UCUUACUCCCUC
3845
CUGAGGGAGUA


MIMAT0018445

CUG

AGGCACUG

AGA





hsa-miR-551a
3846
GCGACCCACUCUUGGUU
3847
GCGACCCACUCU
3848
CAAGAGUGGGU


MIMAT0003214

UCCA

UGGUUUCC

CGC





hsa-miR-551b
3849
GCGACCCAUACUUGGUU
3850
GCGACCCAUACU
3851
CAAGUAUGGGU


MIMAT0003233

UCAG

UGGUUUCA

CGC





hsa-miR-551b*
3852
GAAAUCAAGCGUGGGUG
3853
GAAAUCAAGCGU
3854
CCACGCUUGAU


MIMAT0004794

AGACC

GGGUGAGA

UUC





hsa-miR-552
3855
AACAGGUGACUGGUUAG
3856
AACAGGUGACUG
3857
ACCAGUCACCU


MIMAT0003215

ACAA

GUUAGACA

GUU





hsa-miR-553
3858
AAAACGGUGAGAUUUUG
3859
AAAACGGUGAGA
3860
AAUCUCACCGU


MIMAT0003216

UUUU

UUUUGUUU

UUU





hsa-miR-554
3861
GCUAGUCCUGACUCAGC
3862
GCUAGUCCUGAC
3863
GAGUCAGGACU


MIMAT0003217

CAGU

UCAGCCAG

AGC





hsa-miR-555
3864
AGGGUAAGCUGAACCUC
3865
AGGGUAAGCUGA
3866
GUUCAGCUUAC


MIMAT0003219

UGAU

ACCUCUGA

CCU





hsa-miR-556-3p
3867
AUAUUACCAUUAGCUCA
3868
AUAUUACCAUUA
3869
GCUAAUGGUAA


MIMAT0004793

UCUUU

GCUCAUCU

UAU





hsa-miR-556-5p
3870
GAUGAGCUCAUUGUAAU
3871
GAUGAGCUCAUU
3872
ACAAUGAGCUC


MIMAT0003220

AUGAG

GUAAUAUG

AUC





hsa-miR-557
3873
GUUUGCACGGGUGGGCC
3874
GUUUGCACGGGU
3875
CCACCCGUGCA


MIMAT0003221

UUGUCU

GGGCCUUG

AAC





hsa-miR-558
3876
UGAGCUGCUGUACCAAA
3877
UGAGCUGCUGUA
3878
GGUACAGCAGC


MIMAT0003222

AU

CCAAAAU

UCA





hsa-miR-559
3879
UAAAGUAAAUAUGCACC
3880
UAAAGUAAAUAU
3881
GCAUAUUUACU


MIMAT0003223

AAAA

GCACCAAA

UUA





hsa-miR-561
3882
CAAAGUUUAAGAUCCUU
3883
CAAAGUUUAAGA
3884
GAUCUUAAACU


MIMAT0003225

GAAGU

UCCUUGAA

UUG





hsa-miR-562
3885
AAAGUAGCUGUACCAUU
3886
AAAGUAGCUGUA
3887
GGUACAGCUAC


MIMAT0003226

UGC

CCAUUUGC

UUU





hsa-miR-563
3888
AGGUUGACAUACGUUUC
3889
AGGUUGACAUAC
3890
ACGUAUGUCAA


MIMAT0003227

CC

GUUUCCC

CCU





hsa-miR-564
3891
AGGCACGGUGUCAGCAG
3892
AGGCACGGUGUC
3893
CUGACACCGUG


MIMAT0003228

GC

AGCAGGC

CCU





hsa-miR-566
3894
GGGCGCCUGUGAUCCCA
3895
GGGCGCCUGUGA
3896
GAUCACAGGCG


MIMAT0003230

AC

UCCCAAC

CCC





hsa-miR-567
3897
AGUAUGUUCUUCCAGGA
3898
AGUAUGUUCUUC
3899
UGGAAGAACAU


MIMAT0003231

CAGAAC

CAGGACAG

ACU





hsa-miR-568
3900
AUGUAUAAAUGUAUACA
3901
AUGUAUAAAUGU
3902
AUACAUUUAUA


MIMAT0003232

CAC

AUACACAC

CAU





hsa-miR-569
3903
AGUUAAUGAAUCCUGGA
3904
AGUUAAUGAAUC
3905
AGGAUUCAUUA


MIMAT0003234

AAGU

CUGGAAAG

ACU





hsa-miR-570
3906
CGAAAACAGCAAUUACC
3907
CGAAAACAGCAA
3908
AAUUGCUGUUU


MIMAT0003235

UUUGC

UUACCUUU

UCG





hsa-miR-571
3909
UGAGUUGGCCAUCUGAG
3910
UGAGUUGGCCAU
3911
AGAUGGCCAAC


MIMAT0003236

UGAG

CUGAGUGA

UCA





hsa-miR-572
3912
GUCCGCUCGGCGGUGGC
3913
GUCCGCUCGGCG
3914
ACCGCCGAGCG


MIMAT0003237

CCA

GUGGCCCA

GAC





hsa-miR-573
3915
CUGAAGUGAUGUGUAAC
3916
CUGAAGUGAUGU
3917
ACACAUCACUU


MIMAT0003238

UGAUCAG

GUAACUGA

CAG





hsa-miR-574-3p
3918
CACGCUCAUGCACACAC
3919
CACGCUCAUGCA
3920
UGUGCAUGAGC


MIMAT0003239

CCACA

CACACCCA

GUG





hsa-miR-574-5p
3921
UGAGUGUGUGUGUGUGA
3922
UGAGUGUGUGUG
3923
CACACACACAC


MIMAT0004795

GUGUGU

UGUGAGUG

UCA





hsa-miR-575
3924
GAGCCAGUUGGACAGGA
3925
GAGCCAGUUGGA
3926
UGUCCAACUGG


MIMAT0003240

GC

CAGGAGC

CUC





hsa-miR-576-3p
3927
AAGAUGUGGAAAAAUUG
3928
AAGAUGUGGAAA
3929
UUUUUCCACAU


MIMAT0004796

GAAUC

AAUUGGAA

CUU





hsa-miR-576-5p
3930
AUUCUAAUUUCUCCACG
3931
AUUCUAAUUUCU
3932
GGAGAAAUUAG


MIMAT0003241

UCUUU

CCACGUCU

AAU





hsa-miR-577
3933
UAGAUAAAAUAUUGGUA
3934
UAGAUAAAAUAU
3935
CAAUAUUUUAU


MIMAT0003242

CCUG

UGGUACCU

CUA





hsa-miR-578
3936
CUUCUUGUGCUCUAGGA
3937
CUUCUUGUGCUC
3938
UAGAGCACAAG


MIMAT0003243

UUGU

UAGGAUUG

AAG





hsa-miR-579
3939
UUCAUUUGGUAUAAACC
3940
UUCAUUUGGUAU
3941
UUAUACCAAAU


MIMAT0003244

GCGAUU

AAACCGCG

GAA





hsa-miR-580
3942
UUGAGAAUGAUGAAUCA
3943
UUGAGAAUGAUG
3944
UUCAUCAUUCU


MIMAT0003245

UUAGG

AAUCAUUA

CAA





hsa-miR-581
3945
UCUUGUGUUCUCUAGAU
3946
UCUUGUGUUCUC
3947
UAGAGAACACA


MIMAT0003246

CAGU

UAGAUCAG

AGA





hsa-miR-582-3p
3948
UAACUGGUUGAACAACU
3949
UAACUGGUUGAA
3950
UGUUCAACCAG


MIMAT0004797

GAACC

CAACUGAA

UUA





hsa-miR-582-5p
3951
UUACAGUUGUUCAACCA
3952
UUACAGUUGUUC
3953
UUGAACAACUG


MIMAT0003247

GUUACU

AACCAGUU

UAA





hsa-miR-583
3954
CAAAGAGGAAGGUCCCA
3955
CAAAGAGGAAGG
3956
GACCUUCCUCU


MIMAT0003248

UUAC

UCCCAUUA

UUG





hsa-miR-584
3957
UUAUGGUUUGCCUGGGA
3958
UUAUGGUUUGCC
3959
CAGGCAAACCA


MIMAT0003249

CUGAG

UGGGACUG

UAA





hsa-miR-585
3960
UGGGCGUAUCUGUAUGC
3961
UGGGCGUAUCUG
3962
UACAGAUACGC


MIMAT0003250

UA

UAUGCUA

CCA





hsa-miR-586
3963
UAUGCAUUGUAUUUUUA
3964
UAUGCAUUGUAU
3965
AAAUACAAUGC


MIMAT0003252

GGUCC

UUUUAGGU

AUA





hsa-miR-587
3966
UUUCCAUAGGUGAUGAG
3967
UUUCCAUAGGUG
3968
AUCACCUAUGG


MIMAT0003253

UCAC

AUGAGUCA

AAA





hsa-miR-588
3969
UUGGCCACAAUGGGUUA
3970
UUGGCCACAAUG
3971
CCCAUUGUGGC


MIMAT0003255

GAAC

GGUUAGAA

CAA





hsa-miR-589
3972
UGAGAACCACGUCUGCU
3973
UGAGAACCACGU
3974
AGACGUGGUUC


MIMAT0004799

CUGAG

CUGCUCUG

UCA





hsa-miR-589*
3975
UCAGAACAAAUGCCGGU
3976
UCAGAACAAAUG
3977
GGCAUUUGUUC


MIMAT0003256

UCCCAGA

CCGGUUCC

UGA





hsa-miR-590-3p
3978
UAAUUUUAUGUAUAAGC
3979
UAAUUUUAUGUA
3980
UAUACAUAAAA


MIMAT0004801

UAGU

UAAGCUAG

UUA





hsa-miR-590-5p
3981
GAGCUUAUUCAUAAAAG
3982
GAGCUUAUUCAU
3983
UUAUGAAUAAG


MIMAT0003258

UGCAG

AAAAGUGC

CUC





hsa-miR-591
3984
AGACCAUGGGUUCUCAU
3985
AGACCAUGGGUU
3986
AGAACCCAUGG


MIMAT0003259

UGU

CUCAUUGU

UCU





hsa-miR-592
3987
UUGUGUCAAUAUGCGAU
3988
UUGUGUCAAUAU
3989
GCAUAUUGACA


MIMAT0003260

GAUGU

GCGAUGAU

CAA





hsa-miR-593
3990
UGUCUCUGCUGGGGUUU
3991
UGUCUCUGCUGG
3992
CCCCAGCAGAG


MIMAT0004802

CU

GGUUUCU

ACA





hsa-miR-593*
3993
AGGCACCAGCCAGGCAU
3994
AGGCACCAGCCA
3995
CCUGGCUGGUG


MIMAT0003261

UGCUCAGC

GGCAUUGC

CCU





hsa-miR-595
3996
GAAGUGUGCCGUGGUGU
3997
GAAGUGUGCCGU
3998
CCACGGCACAC


MIMAT0003263

GUCU

GGUGUGUC

UUC





hsa-miR-596
3999
AAGCCUGCCCGGCUCCU
4000
AAGCCUGCCCGG
4001
AGCCGGGCAGG


MIMAT0003264

CGGG

CUCCUCGG

CUU





hsa-miR-597
4002
UGUGUCACUCGAUGACC
4003
UGUGUCACUCGA
4004
CAUCGAGUGAC


MIMAT0003265

ACUGU

UGACCACU

ACA





hsa-miR-598
4005
UACGUCAUCGUUGUCAU
4006
UACGUCAUCGUU
4007
ACAACGAUGAC


MIMAT0003266

CGUCA

GUCAUCGU

GUA





hsa-miR-599
4008
GUUGUGUCAGUUUAUCA
4009
GUUGUGUCAGUU
4010
UAAACUGACAC


MIMAT0003267

AAC

UAUCAAAC

AAC





hsa-miR-600
4011
ACUUACAGACAAGAGCC
4012
ACUUACAGACAA
4013
UCUUGUCUGUA


MIMAT0003268

UUGCUC

GAGCCUUG

AGU





hsa-miR-601
4014
UGGUCUAGGAUUGUUGG
4015
UGGUCUAGGAUU
4016
ACAAUCCUAGA


MIMAT0003269

AGGAG

GUUGGAGG

CCA





hsa-miR-602
4017
GACACGGGCGACAGCUG
4018
GACACGGGCGAC
4019
CUGUCGCCCGU


MIMAT0003270

CGGCCC

AGCUGCGG

GUC





hsa-miR-603
4020
CACACACUGCAAUUACU
4021
CACACACUGCAA
4022
AAUUGCAGUGU


MIMAT0003271

UUUGC

UUACUUUU

GUG





hsa-miR-604
4023
AGGCUGCGGAAUUCAGG
4024
AGGCUGCGGAAU
4025
GAAUUCCGCAG


MIMAT0003272

AC

UCAGGAC

CCU





hsa-miR-605
4026
UAAAUCCCAUGGUGCCU
4027
UAAAUCCCAUGG
4028
CACCAUGGGAU


MIMAT0003273

UCUCCU

UGCCUUCU

UUA





hsa-miR-606
4029
AAACUACUGAAAAUCAA
4030
AAACUACUGAAA
4031
AUUUUCAGUAG


MIMAT0003274

AGAU

AUCAAAGA

UUU





hsa-miR-607
4032
GUUCAAAUCCAGAUCUA
4033
GUUCAAAUCCAG
4034
AUCUGGAUUUG


MIMAT0003275

UAAC

AUCUAUAA

AAC





hsa-miR-608
4035
AGGGGUGGUGUUGGGAC
4036
AGGGGUGGUGUU
4037
CCAACACCACC


MIMAT0003276

AGCUCCGU

GGGACAGC

CCU





hsa-miR-609
4038
AGGGUGUUUCUCUCAUC
4039
AGGGUGUUUCUC
4040
GAGAGAAACAC


MIMAT0003277

UCU

UCAUCUCU

CCU





hsa-miR-610
4041
UGAGCUAAAUGUGUGCU
4042
UGAGCUAAAUGU
4043
ACACAUUUAGC


MIMAT0003278

GGGA

GUGCUGGG

UCA





hsa-miR-611
4044
GCGAGGACCCCUCGGGG
4045
GCGAGGACCCCU
4046
CGAGGGGUCCU


MIMAT0003279

UCUGAC

CGGGGUCU

CGC





hsa-miR-612
4047
GCUGGGCAGGGCUUCUG
4048
GCUGGGCAGGGC
4049
AAGCCCUGCCC


MIMAT0003280

AGCUCCUU

UUCUGAGC

AGC





hsa-miR-613
4050
AGGAAUGUUCCUUCUUU
4051
AGGAAUGUUCCU
4052
GAAGGAACAUU


MIMAT0003281

GCC

UCUUUGCC

CCU





hsa-miR-614
4053
GAACGCCUGUUCUUGCC
4054
GAACGCCUGUUC
4055
AAGAACAGGCG


MIMAT0003282

AGGUGG

UUGCCAGG

UUC





hsa-miR-615-3p
4056
UCCGAGCCUGGGUCUCC
4057
UCCGAGCCUGGG
4058
GACCCAGGCUC


MIMAT0003283

CUCUU

UCUCCCUC

GGA





hsa-miR-615-5p
4059
GGGGGUCCCCGGUGCUC
4060
GGGGGUCCCCGG
4061
CACCGGGGACC


MIMAT0004804

GGAUC

UGCUCGGA

CCC





hsa-miR-616
4062
AGUCAUUGGAGGGUUUG
4063
AGUCAUUGGAGG
4064
ACCCUCCAAUG


MIMAT0004805

AGCAG

GUUUGAGC

ACU





hsa-miR-616*
4065
ACUCAAAACCCUUCAGU
4066
ACUCAAAACCCU
4067
GAAGGGUUUUG


MIMAT0003284

GACUU

UCAGUGAC

AGU





hsa-miR-617
4068
AGACUUCCCAUUUGAAG
4069
AGACUUCCCAUU
4070
CAAAUGGGAAG


MIMAT0003286

GUGGC

UGAAGGUG

UCU





hsa-miR-618
4071
AAACUCUACUUGUCCUU
4072
AAACUCUACUUG
4073
GACAAGUAGAG


MIMAT0003287

CUGAGU

UCCUUCUG

UUU





hsa-miR-619
4074
GACCUGGACAUGUUUGU
4075
GACCUGGACAUG
4076
AACAUGUCCAG


MIMAT0003288

GCCCAGU

UUUGUGCC

GUC





hsa-miR-620
4077
AUGGAGAUAGAUAUAGA
4078
AUGGAGAUAGAU
4079
AUAUCUAUCUC


MIMAT0003289

AAU

AUAGAAAU

CAU





hsa-miR-621
4080
GGCUAGCAACAGCGCUU
4081
GGCUAGCAACAG
4082
CGCUGUUGCUA


MIMAT0003290

ACCU

CGCUUACC

GCC





hsa-miR-622
4083
ACAGUCUGCUGAGGUUG
4084
ACAGUCUGCUGA
4085
CCUCAGCAGAC


MIMAT0003291

GAGC

GGUUGGAG

UGU





hsa-miR-623
4086
AUCCCUUGCAGGGGCUG
4087
AUCCCUUGCAGG
4088
CCCCUGCAAGG


MIMAT0003292

UUGGGU

GGCUGUUG

GAU





hsa-miR-624
4089
CACAAGGUAUUGGUAUU
4090
CACAAGGUAUUG
4091
ACCAAUACCUU


MIMAT0004807

ACCU

GUAUUACC

GUG





hsa-miR-624*
4092
UAGUACCAGUACCUUGU
4093
UAGUACCAGUAC
4094
AGGUACUGGUA


MIMAT0003293

GUUCA

CUUGUGUU

CUA





hsa-miR-625
4095
AGGGGGAAAGUUCUAUA
4096
AGGGGGAAAGUU
4097
AGAACUUUCCC


MIMAT0003294

GUCC

CUAUAGUC

CCU





hsa-miR-625*
4098
GACUAUAGAACUUUCCC
4099
GACUAUAGAACU
4100
AAAGUUCUAUA


MIMAT0004808

CCUCA

UUCCCCCU

GUC





hsa-miR-626
4101
AGCUGUCUGAAAAUGUC
4102
AGCUGUCUGAAA
4103
AUUUUCAGACA


MIMAT0003295

UU

AUGUCUU

GCU





hsa-miR-627
4104
GUGAGUCUCUAAGAAAA
4105
GUGAGUCUCUAA
4106
UCUUAGAGACU


MIMAT0003296

GAGGA

GAAAAGAG

CAC





hsa-miR-628-3p
4107
UCUAGUAAGAGUGGCAG
4108
UCUAGUAAGAGU
4109
CCACUCUUACU


MIMAT0003297

UCGA

GGCAGUCG

AGA





hsa-miR-628-5p
4110
AUGCUGACAUAUUUACU
4111
AUGCUGACAUAU
4112
AAAUAUGUCAG


MIMAT0004809

AGAGG

UUACUAGA

CAU





hsa-miR-629
4113
UGGGUUUACGUUGGGAG
4114
UGGGUUUACGUU
4115
CCAACGUAAAC


MIMAT0004810

AACU

GGGAGAAC

CCA





hsa-miR-629*
4116
GUUCUCCCAACGUAAGC
4117
GUUCUCCCAACG
4118
UACGUUGGGAG


MIMAT0003298

CCAGC

UAAGCCCA

AAC





hsa-miR-630
4119
AGUAUUCUGUACCAGGG
4120
AGUAUUCUGUAC
4121
UGGUACAGAAU


MIMAT0003299

AAGGU

CAGGGAAG

ACU





hsa-miR-631
4122
AGACCUGGCCCAGACCU
4123
AGACCUGGCCCA
4124
UCUGGGCCAGG


MIMAT0003300

CAGC

GACCUCAG

UCU





hsa-miR-632
4125
GUGUCUGCUUCCUGUGG
4126
GUGUCUGCUUCC
4127
CAGGAAGCAGA


MIMAT0003302

GA

UGUGGGA

CAC





hsa-miR-633
4128
CUAAUAGUAUCUACCAC
4129
CUAAUAGUAUCU
4130
GUAGAUACUAU


MIMAT0003303

AAUAAA

ACCACAAU

UAG





hsa-miR-634
4131
AACCAGCACCCCAACUU
4132
AACCAGCACCCC
4133
UUGGGGUGCUG


MIMAT0003304

UGGAC

AACUUUGG

GUU





hsa-miR-635
4134
ACUUGGGCACUGAAACA
4135
ACUUGGGCACUG
4136
UUCAGUGCCCA


MIMAT0003305

AUGUCC

AAACAAUG

AGU





hsa-miR-636
4137
UGUGCUUGCUCGUCCCG
4138
UGUGCUUGCUCG
4139
GACGAGCAAGC


MIMAT0003306

CCCGCA

UCCCGCCC

ACA





hsa-miR-637
4140
ACUGGGGGCUUUCGGGC
4141
ACUGGGGGCUUU
4142
CGAAAGCCCCC


MIMAT0003307

UCUGCGU

CGGGCUCU

AGU





hsa-miR-638
4143
AGGGAUCGCGGGCGGGU
4144
AGGGAUCGCGGG
4145
CGCCCGCGAUC


MIMAT0003308

GGCGGCCU

CGGGUGGC

CCU





hsa-miR-639
4146
AUCGCUGCGGUUGCGAG
4147
AUCGCUGCGGUU
4148
GCAACCGCAGC


MIMAT0003309

CGCUGU

GCGAGCGC

GAU





hsa-miR-640
4149
AUGAUCCAGGAACCUGC
4150
AUGAUCCAGGAA
4151
GGUUCCUGGAU


MIMAT0003310

CUCU

CCUGCCUC

CAU





hsa-miR-641
4152
AAAGACAUAGGAUAGAG
4153
AAAGACAUAGGA
4154
UAUCCUAUGUC


MIMAT0003311

UCACCUC

UAGAGUCA

UUU





hsa-miR-642a
4155
GUCCCUCUCCAAAUGUG
4156
GUCCCUCUCCAA
4157
AUUUGGAGAGG


MIMAT0003312

UCUUG

AUGUGUCU

GAC





hsa-miR-642b
4158
AGACACAUUUGGAGAGG
4159
AGACACAUUUGG
4160
CUCCAAAUGUG


MIMAT0018444

GACCC

AGAGGGAC

UCU





hsa-miR-643
4161
ACUUGUAUGCUAGCUCA
4162
ACUUGUAUGCUA
4163
GCUAGCAUACA


MIMAT0003313

GGUAG

GCUCAGGU

AGU





hsa-miR-644
4164
AGUGUGGCUUUCUUAGA
4165
AGUGUGGCUUUC
4166
AAGAAAGCCAC


MIMAT0003314

GC

UUAGAGC

ACU





hsa-miR-645
4167
UCUAGGCUGGUACUGCU
4168
UCUAGGCUGGUA
4169
AGUACCAGCCU


MIMAT0003315

GA

CUGCUGA

AGA





hsa-miR-646
4170
AAGCAGCUGCCUCUGAG
4171
AAGCAGCUGCCU
4172
AGAGGCAGCUG


MIMAT0003316

GC

CUGAGGC

CUU





hsa-miR-647
4173
GUGGCUGCACUCACUUC
4174
GUGGCUGCACUC
4175
GUGAGUGCAGC


MIMAT0003317

CUUC

ACUUCCUU

CAC





hsa-miR-648
4176
AAGUGUGCAGGGCACUG
4177
AAGUGUGCAGGG
4178
UGCCCUGCACA


MIMAT0003318

GU

CACUGGU

CUU





hsa-miR-649
4179
AAACCUGUGUUGUUCAA
4180
AAACCUGUGUUG
4181
AACAACACAGG


MIMAT0003319

GAGUC

UUCAAGAG

UUU





hsa-miR-650
4182
AGGAGGCAGCGCUCUCA
4183
AGGAGGCAGCGC
4184
GAGCGCUGCCU


MIMAT0003320

GGAC

UCUCAGGA

CCU





hsa-miR-651
4185
UUUAGGAUAAGCUUGAC
4186
UUUAGGAUAAGC
4187
AAGCUUAUCCU


MIMAT0003321

UUUUG

UUGACUUU

AAA





hsa-miR-652
4188
AAUGGCGCCACUAGGGU
4189
AAUGGCGCCACU
4190
CUAGUGGCGCC


MIMAT0003322

UGUG

AGGGUUGU

AUU





hsa-miR-653
4191
GUGUUGAAACAAUCUCU
4192
GUGUUGAAACAA
4193
GAUUGUUUCAA


MIMAT0003328

ACUG

UCUCUACU

CAC





hsa-miR-654-3p
4194
UAUGUCUGCUGACCAUC
4195
UAUGUCUGCUGA
4196
GGUCAGCAGAC


MIMAT0004814

ACCUU

CCAUCACC

AUA





hsa-miR-654-5p
4197
UGGUGGGCCGCAGAACA
4198
UGGUGGGCCGCA
4199
UCUGCGGCCCA


MIMAT0003330

UGUGC

GAACAUGU

CCA





hsa-miR-655
4200
AUAAUACAUGGUUAACC
4201
AUAAUACAUGGU
4202
UAACCAUGUAU


MIMAT0003331

UCUUU

UAACCUCU

UAU





hsa-miR-656
4203
AAUAUUAUACAGUCAAC
4204
AAUAUUAUACAG
4205
GACUGUAUAAU


MIMAT0003332

CUCU

UCAACCUC

AUU





hsa-miR-657
4206
GGCAGGUUCUCACCCUC
4207
GGCAGGUUCUCA
4208
GGUGAGAACCU


MIMAT0003335

UCUAGG

CCCUCUCU

GCC





hsa-miR-658
4209
GGCGGAGGGAAGUAGGU
4210
GGCGGAGGGAAG
4211
UACUUCCCUCC


MIMAT0003336

CCGUUGGU

UAGGUCCG

GCC





hsa-miR-659
4212
CUUGGUUCAGGGAGGGU
4213
CUUGGUUCAGGG
4214
CUCCCUGAACC


MIMAT0003337

CCCCA

AGGGUCCC

AAG





hsa-miR-660
4215
UACCCAUUGCAUAUCGG
4216
UACCCAUUGCAU
4217
AUAUGCAAUGG


MIMAT0003338

AGUUG

AUCGGAGU

GUA





hsa-miR-661
4218
UGCCUGGGUCUCUGGCC
4219
UGCCUGGGUCUC
4220
CAGAGACCCAG


MIMAT0003324

UGCGCGU

UGGCCUGC

GCA





hsa-miR-662
4221
UCCCACGUUGUGGCCCA
4222
UCCCACGUUGUG
4223
GCCACAACGUG


MIMAT0003325

GCAG

GCCCAGCA

GGA





hsa-miR-663
4224
AGGCGGGGCGCCGCGGG
4225
AGGCGGGGCGCC
4226
GCGGCGCCCCG


MIMAT0003326

ACCGC

GCGGGACC

CCU





hsa-miR-663b
4227
GGUGGCCCGGCCGUGCC
4228
GGUGGCCCGGCC
4229
ACGGCCGGGCC


MIMAT0005867

UGAGG

GUGCCUGA

ACC





hsa-miR-664
4230
UAUUCAUUUAUCCCCAG
4231
UAUUCAUUUAUC
4232
GGGAUAAAUGA


MIMAT0005949

CCUACA

CCCAGCCU

AUA





hsa-miR-664*
4233
ACUGGCUAGGGAAAAUG
4234
ACUGGCUAGGGA
4235
UUUCCCUAGCC


MIMAT0005948

AUUGGAU

AAAUGAUU

AGU





hsa-miR-665
4236
ACCAGGAGGCUGAGGCC
4237
ACCAGGAGGCUG
4238
CUCAGCCUCCU


MIMAT0004952

CCU

AGGCCCCU

GGU





hsa-miR-668
4239
UGUCACUCGGCUCGGCC
4240
UGUCACUCGGCU
4241
CGAGCCGAGUG


MIMAT0003881

CACUAC

CGGCCCAC

ACA





hsa-miR-670
4242
GUCCCUGAGUGUAUGUG
4243
GUCCCUGAGUGU
4244
AUACACUCAGG


MIMAT0010357

GUG

AUGUGGUG

GAC





hsa-miR-671-3p
4245
UCCGGUUCUCAGGGCUC
4246
UCCGGUUCUCAG
4247
CCCUGAGAACC


MIMAT0004819

CACC

GGCUCCAC

GGA





hsa-miR-671-5p
4248
AGGAAGCCCUGGAGGGG
4249
AGGAAGCCCUGG
4250
CUCCAGGGCUU


MIMAT0003880

CUGGAG

AGGGGCUG

CCU





hsa-miR-675
4251
UGGUGCGGAGAGGGCCC
4252
UGGUGCGGAGAG
4253
CCCUCUCCGCA


MIMAT0004284

ACAGUG

GGCCCACA

CCA





hsa-miR-675*
4254
CUGUAUGCCCUCACCGC
4255
CUGUAUGCCCUC
4256
GUGAGGGCAUA


MIMAT0006790

UCA

ACCGCUCA

CAG





hsa-miR-676
4257
CUGUCCUAAGGUUGUUG
4258
CUGUCCUAAGGU
4259
CAACCUUAGGA


MIMAT0018204

AGUU

UGUUGAGU

CAG





hsa-miR-676*
4260
UCUUCAACCUCAGGACU
4261
UCUUCAACCUCA
4262
CCUGAGGUUGA


MIMAT0018203

UGCA

GGACUUGC

AGA





hsa-miR-7
4263
UGGAAGACUAGUGAUUU
4264
UGGAAGACUAGU
4265
UCACUAGUCUU


MIMAT0000252

UGUUGU

GAUUUUGU

CCA





hsa-miR-708
4266
AAGGAGCUUACAAUCUA
4267
AAGGAGCUUACA
4268
AUUGUAAGCUC


MIMAT0004926

GCUGGG

AUCUAGCU

CUU





hsa-miR-708*
4269
CAACUAGACUGUGAGCU
4270
CAACUAGACUGU
4271
UCACAGUCUAG


MIMAT0004927

UCUAG

GAGCUUCU

UUG





hsa-miR-7-1*
4272
CAACAAAUCACAGUCUG
4273
CAACAAAUCACA
4274
ACUGUGAUUUG


MIMAT0004553

CCAUA

GUCUGCCA

UUG





hsa-miR-711
4275
GGGACCCAGGGAGAGAC
4276
GGGACCCAGGGA
4277
UCUCCCUGGGU


MIMAT0012734

GUAAG

GAGACGUA

CCC





hsa-miR-718
4278
CUUCCGCCCCGCCGGGC
4279
CUUCCGCCCCGC
4280
CGGCGGGGCGG


MIMAT0012735

GUCG

CGGGCGUC

AAG





hsa-miR-7-2*
4281
CAACAAAUCCCAGUCUA
4282
CAACAAAUCCCA
4283
ACUGGGAUUUG


MIMAT0004554

CCUAA

GUCUACCU

UUG





hsa-miR-720
4284
UCUCGCUGGGGCCUCCA
4285
UCUCGCUGGGGC
4286
AGGCCCCAGCG


MIMAT0005954



CUCCA

AGA





hsa-miR-744
4287
UGCGGGGCUAGGGCUAA
4288
UGCGGGGCUAGG
4289
GCCCUAGCCCC


MIMAT0004945

CAGCA

GCUAACAG

GCA





hsa-miR-744*
4290
CUGUUGCCACUAACCUC
4291
CUGUUGCCACUA
4292
GUUAGUGGCAA


MIMAT0004946

AACCU

ACCUCAAC

CAG





hsa-miR-758
4293
UUUGUGACCUGGUCCAC
4294
UUUGUGACCUGG
4295
GACCAGGUCAC


MIMAT0003879

UAACC

UCCACUAA

AAA





hsa-miR-759
4296
GCAGAGUGCAAACAAUU
4297
GCAGAGUGCAAA
4298
UGUUUGCACUC


MIMAT0010497

UUGAC

CAAUUUUG

UGC





hsa-miR-760
4299
CGGCUCUGGGUCUGUGG
4300
CGGCUCUGGGUC
4301
CAGACCCAGAG


MIMAT0004957

GGA

UGUGGGGA

CCG





hsa-miR-761
4302
GCAGCAGGGUGAAACUG
4303
GCAGCAGGGUGA
4304
UUUCACCCUGC


MIMAT0010364

ACACA

AACUGACA

UGC





hsa-miR-762
4305
GGGGCUGGGGCCGGGGC
4306
GGGGCUGGGGCC
4307
CCGGCCCCAGC


MIMAT0010313

CGAGC

GGGGCCGA

CCC





hsa-miR-764
4308
GCAGGUGCUCACUUGUC
4309
GCAGGUGCUCAC
4310
AAGUGAGCACC


MIMAT0010367

CUCCU

UUGUCCUC

UGC





hsa-miR-765
4311
UGGAGGAGAAGGAAGGU
4312
UGGAGGAGAAGG
4313
UUCCUUCUCCU


MIMAT0003945

GAUG

AAGGUGAU

CCA





hsa-miR-766
4314
ACUCCAGCCCCACAGCC
4315
ACUCCAGCCCCA
4316
UGUGGGGCUGG


MIMAT0003888

UCAGC

CAGCCUCA

AGU





hsa-miR-767-3p
4317
UCUGCUCAUACCCCAUG
4318
UCUGCUCAUACC
4319
GGGGUAUGAGC


MIMAT0003883

GUUUCU

CCAUGGUU

AGA





hsa-miR-767-5p
4320
UGCACCAUGGUUGUCUG
4321
UGCACCAUGGUU
4322
ACAACCAUGGU


MIMAT0003882

AGCAUG

GUCUGAGC

GCA





hsa-miR-769-3p
4323
CUGGGAUCUCCGGGGUC
4324
CUGGGAUCUCCG
4325
CCCGGAGAUCC


MIMAT0003887

UUGGUU

GGGUCUUG

CAG





hsa-miR-769-5p
4326
UGAGACCUCUGGGUUCU
4327
UGAGACCUCUGG
4328
ACCCAGAGGUC


MIMAT0003886

GAGCU

GUUCUGAG

UCA





hsa-miR-770-5p
4329
UCCAGUACCACGUGUCA
4330
UCCAGUACCACG
4331
CACGUGGUACU


MIMAT0003948

GGGCCA

UGUCAGGG

GGA





hsa-miR-802
4332
CAGUAACAAAGAUUCAU
4333
CAGUAACAAAGA
4334
AAUCUUUGUUA


MIMAT0004185

CCUUGU

UUCAUCCU

CUG





hsa-miR-873
4335
GCAGGAACUUGUGAGUC
4336
GCAGGAACUUGU
4337
UCACAAGUUCC


MIMAT0004953

UCCU

GAGUCUCC

UGC





hsa-miR-874
4338
CUGCCCUGGCCCGAGGG
4339
CUGCCCUGGCCC
4340
UCGGGCCAGGG


MIMAT0004911

ACCGA

GAGGGACC

CAG





hsa-miR-875-3p
4341
CCUGGAAACACUGAGGU
4342
CCUGGAAACACU
4343
UCAGUGUUUCC


MIMAT0004923

UGUG

GAGGUUGU

AGG





hsa-miR-875-5p
4344
UAUACCUCAGUUUUAUC
4345
UAUACCUCAGUU
4346
AAAACUGAGGU


MIMAT0004922

AGGUG

UUAUCAGG

AUA





hsa-miR-876-3p
4347
UGGUGGUUUACAAAGUA
4348
UGGUGGUUUACA
4349
UUUGUAAACCA


MIMAT0004925

AUUCA

AAGUAAUU

CCA





hsa-miR-876-5p
4350
UGGAUUUCUUUGUGAAU
4351
UGGAUUUCUUUG
4352
CACAAAGAAAU


MIMAT0004924

CACCA

UGAAUCAC

CCA





hsa-miR-877
4353
GUAGAGGAGAUGGCGCA
4354
GUAGAGGAGAUG
4355
GCCAUCUCCUC


MIMAT0004949

GGG

GCGCAGGG

UAC





hsa-miR-877*
4356
UCCUCUUCUCCCUCCUC
4357
UCCUCUUCUCCC
4358
GAGGGAGAAGA


MIMAT0004950

CCAG

UCCUCCCA

GGA





hsa-miR-885-3p
4359
AGGCAGCGGGGUGUAGU
4360
AGGCAGCGGGGU
4361
ACACCCCGCUG


MIMAT0004948

GGAUA

GUAGUGGA

CCU





hsa-miR-885-5p
4362
UCCAUUACACUACCCUG
4363
UCCAUUACACUA
4364
GGUAGUGUAAU


MIMAT0004947

CCUCU

CCCUGCCU

GGA





hsa-miR-887
4365
GUGAACGGGCGCCAUCC
4366
GUGAACGGGCGC
4367
UGGCGCCCGUU


MIMAT0004951

CGAGG

CAUCCCGA

CAC





hsa-miR-888
4368
UACUCAAAAAGCUGUCA
4369
UACUCAAAAAGC
4370
CAGCUUUUUGA


MIMAT0004916

GUCA

UGUCAGUC

GUA





hsa-miR-888*
4371
GACUGACACCUCUUUGG
4372
GACUGACACCUC
4373
AAGAGGUGUCA


MIMAT0004917

GUGAA

UUUGGGUG

GUC





hsa-miR-889
4374
UUAAUAUCGGACAACCA
4375
UUAAUAUCGGAC
4376
UUGUCCGAUAU


MIMAT0004921

UUGU

AACCAUUG

UAA





hsa-miR-890
4377
UACUUGGAAAGGCAUCA
4378
UACUUGGAAAGG
4379
UGCCUUUCCAA


MIMAT0004912

GUUG

CAUCAGUU

GUA





hsa-miR-891a
4380
UGCAACGAACCUGAGCC
4381
UGCAACGAACCU
4382
UCAGGUUCGUU


MIMAT0004902

ACUGA

GAGCCACU

GCA





hsa-miR-891b
4383
UGCAACUUACCUGAGUC
4384
UGCAACUUACCU
4385
UCAGGUAAGUU


MIMAT0004913

AUUGA

GAGUCAUU

GCA





hsa-miR-892a
4386
CACUGUGUCCUUUCUGC
4387
CACUGUGUCCUU
4388
GAAAGGACACA


MIMAT0004907

GUAG

UCUGCGUA

GUG





hsa-miR-892b
4389
CACUGGCUCCUUUCUGG
4390
CACUGGCUCCUU
4391
GAAAGGAGCCA


MIMAT0004918

GUAGA

UCUGGGUA

GUG





hsa-miR-9
4392
UCUUUGGUUAUCUAGCU
4393
UCUUUGGUUAUC
4394
UAGAUAACCAA


MIMAT0000441

GUAUGA

UAGCUGUA

AGA





hsa-miR-9*
4395
AUAAAGCUAGAUAACCG
4396
AUAAAGCUAGAU
4397
UUAUCUAGCUU


MIMAT0000442

AAAGU

AACCGAAA

UAU





hsa-miR-920
4398
GGGGAGCUGUGGAAGCA
4399
GGGGAGCUGUGG
4400
UUCCACAGCUC


MIMAT0004970

GUA

AAGCAGUA

CCC





hsa-miR-921
4401
CUAGUGAGGGACAGAAC
4402
CUAGUGAGGGAC
4403
CUGUCCCUCAC


MIMAT0004971

CAGGAUUC

AGAACCAG

UAG





hsa-miR-922
4404
GCAGCAGAGAAUAGGAC
4405
GCAGCAGAGAAU
4406
CUAUUCUCUGC


MIMAT0004972

UACGUC

AGGACUAC

UGC





hsa-miR-924
4407
AGAGUCUUGUGAUGUCU
4408
AGAGUCUUGUGA
4409
CAUCACAAGAC


MIMAT0004974

UGC

UGUCUUGC

UCU





hsa-miR-92a
4410
UAUUGCACUUGUCCCGG
4411
UAUUGCACUUGU
4412
GGACAAGUGCA


MIMAT0000092

CCUGU

CCCGGCCU

AUA





hsa-miR-92a-1*
4413
AGGUUGGGAUCGGUUGC
4414
AGGUUGGGAUCG
4415
ACCGAUCCCAA


MIMAT0004507

AAUGCU

GUUGCAAU

CCU





hsa-miR-92a-2*
4416
GGGUGGGGAUUUGUUGC
4417
GGGUGGGGAUUU
4418
ACAAAUCCCCA


MIMAT0004508

AUUAC

GUUGCAUU

CCC





hsa-miR-92b
4419
UAUUGCACUCGUCCCGG
4420
UAUUGCACUCGU
4421
GGACGAGUGCA


MIMAT0003218

CCUCC

CCCGGCCU

AUA





hsa-miR-92b*
4422
AGGGACGGGACGCGGUG
4423
AGGGACGGGACG
4424
CGCGUCCCGUC


MIMAT0004792

CAGUG

CGGUGCAG

CCU





hsa-miR-93
4425
CAAAGUGCUGUUCGUGC
4426
CAAAGUGCUGUU
4427
CGAACAGCACU


MIMAT0000093

AGGUAG

CGUGCAGG

UUG





hsa-miR-93*
4428
ACUGCUGAGCUAGCACU
4429
ACUGCUGAGCUA
4430
GCUAGCUCAGC


MIMAT0004509

UCCCG

GCACUUCC

AGU





hsa-miR-933
4431
UGUGCGCAGGGAGACCU
4432
UGUGCGCAGGGA
4433
UCUCCCUGCGC


MIMAT0004976

CUCCC

GACCUCUC

ACA





hsa-miR-934
4434
UGUCUACUACUGGAGAC
4435
UGUCUACUACUG
4436
UCCAGUAGUAG


MIMAT0004977

ACUGG

GAGACACU

ACA





hsa-miR-935
4437
CCAGUUACCGCUUCCGC
4438
CCAGUUACCGCU
4439
GAAGCGGUAAC


MIMAT0004978

UACCGC

UCCGCUAC

UGG





hsa-miR-936
4440
ACAGUAGAGGGAGGAAU
4441
ACAGUAGAGGGA
4442
CCUCCCUCUAC


MIMAT0004979

CGCAG

GGAAUCGC

UGU





hsa-miR-937
4443
AUCCGCGCUCUGACUCU
4444
AUCCGCGCUCUG
4445
GUCAGAGCGCG


MIMAT0004980

CUGCC

ACUCUCUG

GAU





hsa-miR-938
4446
UGCCCUUAAAGGUGAAC
4447
UGCCCUUAAAGG
4448
CACCUUUAAGG


MIMAT0004981

CCAGU

UGAACCCA

GCA





hsa-miR-939
4449
UGGGGAGCUGAGGCUCU
4450
UGGGGAGCUGAG
4451
GCCUCAGCUCC


MIMAT0004982

GGGGGUG

GCUCUGGG

CCA





hsa-miR-940
4452
AAGGCAGGGCCCCCGCU
4453
AAGGCAGGGCCC
4454
GGGGGCCCUGC


MIMAT0004983

CCCC

CCGCUCCC

CUU





hsa-miR-941
4455
CACCCGGCUGUGUGCAC
4456
CACCCGGCUGUG
4457
CACACAGCCGG


MIMAT0004984

AUGUGC

UGCACAUG

GUG





hsa-miR-942
4458
UCUUCUCUGUUUUGGCC
4459
UCUUCUCUGUUU
4460
CAAAACAGAGA


MIMAT0004985

AUGUG

UGGCCAUG

AGA





hsa-miR-943
4461
CUGACUGUUGCCGUCCU
4462
CUGACUGUUGCC
4463
ACGGCAACAGU


MIMAT0004986

CCAG

GUCCUCCA

CAG





hsa-miR-944
4464
AAAUUAUUGUACAUCGG
4465
AAAUUAUUGUAC
4466
AUGUACAAUAA


MIMAT0004987

AUGAG

AUCGGAUG

UUU





hsa-miR-95
4467
UUCAACGGGUAUUUAUU
4468
UUCAACGGGUAU
4469
AAAUACCCGUU


MIMAT0000094

GAGCA

UUAUUGAG

GAA





hsa-miR-96
4470
UUUGGCACUAGCACAUU
4471
UUUGGCACUAGC
4472
GUGCUAGUGCC


MIMAT0000095

UUUGCU

ACAUUUUU

AAA





hsa-miR-96*
4473
AAUCAUGUGCAGUGCCA
4474
AAUCAUGUGCAG
4475
CACUGCACAUG


MIMAT0004510

AUAUG

UGCCAAUA

AUU





hsa-miR-98
4476
UGAGGUAGUAAGUUGUA
4477
UGAGGUAGUAAG
4478
AACUUACUACC


MIMAT0000096

UUGUU

UUGUAUUG

UCA





hsa-miR-99a
4479
AACCCGUAGAUCCGAUC
4480
AACCCGUAGAUC
4481
CGGAUCUACGG


MIMAT0000097

UUGUG

CGAUCUUG

GUU





hsa-miR-99a*
4482
CAAGCUCGCUUCUAUGG
4483
CAAGCUCGCUUC
4484
UAGAAGCGAGC


MIMAT0004511

GUCUG

UAUGGGUC

UUG





hsa-miR-99b
4485
CACCCGUAGAACCGACC
4486
CACCCGUAGAAC
4487
CGGUUCUACGG


MIMAT0000689

UUGCG

CGACCUUG

GUG





hsa-miR-99b*
4488
CAAGCUCGUGUCUGUGG
4489
CAAGCUCGUGUC
4490
CAGACACGAGC


MIMAT0004678

GUCCG

UGUGGGUC

UUG
















TABLE 5







Examples of chemical modification patterns









miRNA Name
Example of modified AS strand
Example of modified sense strand





hsa-let-7a
5′Pm0005f0f05f05f00f05f005f05f05m0*5m0*
m0m00m00m0m000m00m0*m0*m0TEGChol


MIMAT0000062
0*5m0*f0*5m0*0


hsa-let-7a*
5′Pm0005f0f05f005f05f05f0005f00*5m0*0*5
m0m0m0m00m00m00m00m0*m0*m0TEGChol


MIMAT0004481
m0*5m0*0*0


hsa-let-7a-2*
5′Pm05f05f05f05f005f05f05f00005f00*5m0*
m0m0m0m0m0m000m0m000*0*m0TEGChol


MIMAT0010195
5m0*0***


hsa-let-7b
5′Pm0000f0000f005f05f05f05m0*0*5m0*0*f
m0m000m0m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0000063
0*5m0*0


hsa-let-7b*
5′Pm0005f0f0000f05f0005f00*0*5m0*5m0*f
m0m0m0m00m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0004482
0*0*0


hsa-let-7c
5′Pm005f05f0f05f000f005f05f05f05m0*5m0*
m0m000m0m0m0m00m000*m0*m0TEGChol


MIMAT0000064
5m0*5m0*5m0*5m0*0


hsa-let-7c*
5′Pm0005f05f05f05f005f0005f05f00*0*0*5m
m0m00m0m0m0m000m00m0*m0*m0TEGChol


MIMAT0004483
0***


hsa-let-7d
5′Pm005f05f0f05f05f05f0f0000f05m0*0*5m0
m0m0m0m0m0m0000m000*m0*m0TEGChol


MIMAT0000065
*5m0*5m0*5m0*


hsa-let-7d*
5′Pm005f00f00005f05f000f05m0*0*5m0*5m
m0m0m0m00m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0004484
0*5m0*0*0


hsa-let-7e
5′Pm0005f0f005f05f05f005f00f00*0*5m0*0*
m0m0m00m0m000m0m00m0*m0*m0TEGChol


MIMAT0000066
f0*5m0*0


hsa-let-7e*
5′Pm05f000f0000f00005f05m0*0*5m0*5m0
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0004485
***


hsa-let-7f
5′Pm05f000f05f05f05f05f05f000f00*0*0*0*f
m0m0m0m00m0000m0m0m0*0*m0TEGChol


MIMAT0000067
0*0*0


hsa-let-7f-1*
5′Pm00005f005f05f0f005f005f05m0*5m0*0*
m0m0m00m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0004486
5m0*5m0*5m0*0


hsa-let-7f-2*
5′Pm0005f0f05f005f05f05f0005f00*5m0*5m
m0m0m0m00m00m00m00m0*m0*m0TEGChol


MIMAT0004487
0*0*f0*0*0


hsa-let-7g
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol


MIMAT0000414
0*0*0*f0*0*0


hsa-let-7g*
5′Pm0000f05f05f005f005f05f05f00*0*5m0*0
m0m000m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0004584
*5m0*0*0


hsa-let-7i
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0000415
m0*5m0*5m0*0


hsa-let-7i*
5′Pm05f000f005f05f05f05f000f00*5m0*0*0*
m0m0m0m00m000m0m0m0m0*0*m0TEGChol


MIMAT0004585
f0*5m0*0


hsa-miR-1
5′Pm00005f05f05f05f05f05f05f005f00*0*0*5
m0m0m000m0000m0m0m0*m0*m0TEGChol


MIMAT0000416
m0*5m0*0*0


hsa-miR-100
5′Pm005f05f05f005f05f0f0005f05f00*0*0*0*
m0m00m0m0m000m0m000*m0*m0TEGChol


MIMAT0000098
5m0*0*0


hsa-miR-100*
5′Pm005f05f0f05f005f05f05f005f05f05m0*5
m0m00m00m00m00m000*m0*m0TEGChol


MIMAT0004512
m0*0*0*5m0*5m0*0


hsa-miR-101
5′Pm0000f005f05f05f05f05f005f00*5m0*0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol


MIMAT0000099
m0*5m0*5m0*0


hsa-miR-101*
5′Pm05f000f005f00f05f0005f05m0*5m0*0*5
m0m0m0m00m0m00m0m0m0m0*0*m0TEGChol


MIMAT0004513
m0*f0*5m0*0


hsa-miR-103
5′Pm005f05f0f05f000f0005f05f00*5m0*5m0
m0m00m0m0m0m0m00m000*m0*m0TEGChol


MIMAT0000101
*0*f0*0*0


hsa-miR-103-2*
5′Pm05f05f05f0f005f05f05f05f05f05f05f00*0
m0m0000m000m0m000*0*m0TEGChol


MIMAT0009196
*0*0*f0*5m0*0


hsa-miR-103-as
5′Pm0005f05f05f05f05f0f0000f05m0*0*5m0
m0m0m0m0m0m0000m00m0*m0*m0TEGChol


MIMAT0007402
*5m0*f0*5m0*0


hsa-miR-105
5′Pm0000f05f05f05f0f0005f0f05m0*5m0*5m
m0m00m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0000102
0*0*f0*0*


hsa-miR-105*
5′Pm0005f0f05f05f05f05f05f000f00*0*5m0*
m0m0m0m00m0000m00m0*m0*m0TEGChol


MIMAT0004516
5m0*5m0*5m0*0


hsa-miR-106a
5′Pm05f000f05f0005f05f005f0f00*5m0*0*0*
m0m00m00m0m0m00m0m0m0*0*m0TEGChol


MIMAT0000103
5m0*0*0


hsa-miR-106a*
5′Pm0005f0f005f005f005f05f0f05m0*5m0*0
m0m000m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0004517
*0*5m0*5m0*0


hsa-miR-106b
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0000680
*5m0*0*f0*0*0


hsa-miR-106b*
5′Pm0000f05f05f05f05f05f000f00*0*5m0*0*
m0m0m0m00m0000m0m0m0*m0*m0TEGChol


MIMAT0004672
f0*5m0*0


hsa-miR-107
5′Pm0005f0f05f005f05f05f005f0f00*0*0*5m
m0m00m00m00m00m00m0*m0*m0TEGChol


MIMAT0000104
0*5m0*5m0*


hsa-miR-10a
5′Pm0005f0f00005f05f05f05f0f00*0*0*0*5m
m0m0000m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0000253
0*0*0


hsa-miR-10a*
5′Pm0005f0f0000f05f05f05f0f00*0*5m0*0*f
m0m0000m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0004555
0*5m0*0


hsa-miR-10b
5′Pm0005f0f05f005f0f00005f05m0*5m0*0*5
m0m0m0m0m0m00m00m00m0*m0*m0TEGChol


MIMAT0000254
m0*f0*5m0*0


hsa-miR-10b*
5′Pm05f05f005f005f05f05f00005f05m0*5m0
m0m0m0m0m0m000m0m0m00*0*m0TEGChol


MIMAT0004556
*5m0*0*5m0*5m0*0


hsa-miR-1178
5′Pm00005f05f05f05f05f005f005f05m0*0*5
m0m0m00m0m0000m0m0m0*m0*m0TEGChol


MIMAT0005823
m0*5m0*5m0*5m0*0


hsa-miR-1179
5′Pm005f05f0f00005f05f000f05m0*5m0*0*5
m0m0m0m00m0m0m0m0m000*m0*m0TEGChol


MIMAT0005824
m0*f0*0*0


hsa-miR-1180
5′Pm05f000f05f000f005f05f05f05m0*5m0*0
m0m000m0m0m0m00m0m0m0*0*m0TEGChol


MIMAT0005825
*0*f0*0*0


hsa-miR-1181
5′Pm05f000f005f05f05f0000f00*0*5m0*5m0
m0m0m0m0m0m000m0m0m0m0*0*m0TEGChol


MIMAT0005826
*5m0*5m0*0


hsa-miR-1182
5′Pm0000f005f00f05f0005f05m0*0*5m0*5m
m0m0m0m00m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0005827
0*5m0*5m0*0


hsa-miR-1183
5′Pm0005f05f005f00f05f05f005f05m0*5m0*
m0m0m000m0m00m0m00m0*m0*m0TEGChol


MIMAT0005828
5m0*0*5m0*5m0*0


hsa-miR-1184
5′Pm05f05f00f005f00f05f05f05f0f00*0*0*5m
m0m0000m0m00m0m0m00*0*m0TEGChol


MIMAT0005829
0*f0*0*0


hsa-miR-1185
5′Pm005f00f05f05f05f0f005f05f0f05m0*5m0
m0m000m0m0000m0m00*m0*m0TEGChol


MIMAT0005798
*0*0*5m0*0*0


hsa-miR-1193
5′Pm00005f05f0005f05f005f05f05m0*0*0*0
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0015049
*5m0*0*0


hsa-miR-1197
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0005955
m0*5m0*5m0*0


hsa-miR-1200
5′Pm0000f0005f05f05f05f005f00*0*0*0*f0*
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0005863
5m0*0


hsa-miR-1202
5′Pm05f05f005f05f05f05f05f0005f05f00*5m0
m0m00m0m0m0000m0m00*0*m0TEGChol


MIMAT0005865
*5m0*5m0*f0*5m0*0


hsa-miR-1203
5′Pm00005f0005f0f05f005f05f00*5m0*5m0*
m0m00m00m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0005866
0*f0*5m0*0


hsa-miR-1204
5′Pm05f0005f05f05f05f0f05f005f05f05m0*0*
m0m00m00m0000m0m0m0*0*m0TEGChol


MIMAT0005868
5m0*5m0*f0*5m0*0


hsa-miR-1205
5′Pm05f05f005f05f05f05f05f0005f05f00*5m0
m0m00m0m0m0000m0m00*0*m0TEGChol


MIMAT0005869
*5m0*5m0*f0*5m0*0


hsa-miR-1206
5′Pm0005f05f0000f005f005f00*0*0*0*f0**
m0m0m00m0m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0005870


hsa-miR-1207-3p
5′Pm00005f005f05f0f05f05f005f00*5m0*5m
m0m0m000m000m0m0m0m0*m0*m0TEGChol


MIMAT0005872
0*5m0*f0*5m0*0


hsa-miR-1207-5p
5′Pm0005f0f05f000f0000f00*5m0*5m0*5m0
m0m0m0m0m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0005871
*f0*5m0*0


hsa-miR-1208
5′Pm05f05f00f005f00f05f05f05f0f00*0*0*5m
m0m0000m0m00m0m0m00*0*m0TEGChol


MIMAT0005873
0*f0*0*0


hsa-miR-122
5′Pm05f05f05f0f05f05f05f0f005f00f05m0*0*
m0m0m00m0m0000m000*0*m0TEGChol


MIMAT0000421
0*5m0*5m0*5m0*0


hsa-miR-122*
5′Pm05f05f05f0f05f05f05f0f05f05f05f0f05m0
m0m0000m0000m000*0*m0TEGChol


MIMAT0004590
*5m0*5m0*5m0*f0*5m0*0


hsa-miR-1224-3p
5′Pm0000f05f000f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0005459
m0*0*0


hsa-miR-1224-5p
5′Pm00005f005f005f05f05f05f05f05m0*5m0
m0m0000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0005458
*0*0*f0*0*0


hsa-miR-1225-3p
5′Pm05f05f005f05f05f05f05f05f005f05f00*5
m0m00m00m0000m0m00*0*m0TEGChol


MIMAT0005573
m0*5m0*5m0*f0*0*0


hsa-miR-1225-5p
5′Pm05f000f00005f05f0005f05m0*0*0*0*f0
m0m0m0m00m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0005572
**


hsa-miR-1226
5′Pm05f05f00f05f005f0f00005f00*5m0*0*0*
m0m0m0m0m0m00m00m0m00*0*m0TEGChol


MIMAT0005577
f0*5m0*0


hsa-miR-1226*
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0005576
m0*5m0*5m0*0


hsa-miR-1227
5′Pm005f005f00005f005f005f00*5m0*0*5m
m0m0m00m0m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0005580
0*f0*5m0*0


hsa-miR-1228
5′Pm0005f0f05f05f005f005f005f00*5m0*5m
m0m0m00m0m0m000m00m0*m0*m0TEGChol


MIMAT0005583
0*0*5m0*5m0*0


hsa-miR-1228*
5′Pm05f05f00f05f000f0005f0f00*5m0*0*0*5
m0m00m0m0m0m0m00m0m00*0*m0TEGChol


MIMAT0005582
m0*5m0*0


hsa-miR-1229
5′Pm05f000f05f005f0f005f05f05f00*0*5m0*
m0m000m0m00m00m0m0m0*0*m0TEGChol


MIMAT0005584
0*f0*0*0


hsa-miR-1231
5′Pm005f05f0f0005f0f0005f05f00*0*0*0*f0*
m0m00m0m0m00m0m0m000*m0*m0TEGChol


MIMAT0005586
0*


hsa-miR-1233
5′Pm005f05f0f0005f0f05f05f005f00*0*5m0*
m0m0m000m00m0m0m000*m0*m0TEGChol


MIMAT0005588
5m0*5m0*5m0*0


hsa-miR-1234
5′Pm005f05f05f0000f05f005f0f05m0*0*0*5
m0m00m00m0m0m0m0m000*m0*m0TEGChol


MIMAT0005589
m0*f0*5m0*0


hsa-miR-1236
5′Pm05f005f0f05f0005f05f05f05f05f05m0*0*
m0m0000m0m0m00m00m0*0*m0TEGChol


MIMAT0005591
0*5m0*5m0*5m0*0


hsa-miR-1237
5′Pm0000f05f005f05f05f005f0f00*5m0*0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0005592
m0*f0*0*0


hsa-miR-1238
5′Pm05f005f0f005f005f00005f00*5m0*5m0*
m0m0m0m0m0m0m00m0m00m0*0*m0TEGChol


MIMAT0005593
5m0*5m0*5m0*0


hsa-miR-124
5′Pm05f000f005f00f05f005f0f05m0*0*0*5m
m0m00m00m0m00m0m0m0m0*0*m0TEGChol


MIMAT0000422
0*5m0*0*0


hsa-miR-124*
5′Pm0000f0000f0005f0f00*0*5m0*0*f0*0*0
m0m00m0m0m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0004591


hsa-miR-1243
5′Pm005f05f05f05f05f05f05f005f00f00*5m0*
m0m0m00m0m0000m000*m0*m0TEGChol


MIMAT0005894
0*0*5m0*5m0*0


hsa-miR-1244
5′Pm005f005f005f00f005f05f0f05m0*0*0*0*
m0m000m0m0m00m0m0m00*m0*m0TEGChol


MIMAT0005896
f0*5m0*0


hsa-miR-1245
5′Pm00005f005f005f05f05f05f05f05m0*5m0
m0m0000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0005897
*0*0*f0*0*0


hsa-miR-1246
5′Pm05f05f05f0f05f05f005f05f005f0f00*5m0
m0m00m00m0m000m000*0*m0TEGChol


MIMAT0005898
*0*5m0*5m0*0*0


hsa-miR-1247
5′Pm05f005f05f0005f05f05f05f005f00*5m0*
m0m0m000m00m0m0m00m0*0*m0TEGChol


MIMAT0005899
5m0*5m0*5m0*5m0*0


hsa-miR-1248
5′Pm05f000f0005f0f05f005f0f00*0*5m0*5m
m0m00m00m00m0m0m0m0m0*0*m0TEGChol


MIMAT0005900
0*5m0*0*0


hsa-miR-1249
5′Pm0000f05f005f05f0005f0f00*5m0*0*5m0
m0m00m0m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0005901
*f0*0*0


hsa-miR-1250
5′Pm005f00f005f005f0000f00*5m0*0*0***
m0m0m0m0m0m0m00m0m0m00*m0*m0TEGChol


MIMAT0005902


hsa-miR-1251
5′Pm05f005f0f05f05f005f05f05f05f05f05m0*
m0m0000m0m000m00m0*0*m0TEGChol


MIMAT0005903
5m0*5m0*5m0***


hsa-miR-1252
5′Pm05f000f0000f005f00f05m0*0*5m0*0*f0
m0m0m00m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0005944
*0*0


hsa-miR-1253
5′Pm05f05f005f05f000f05f05f00f05m0*0*5m
m0m0m000m0m0m00m0m00*0*m0TEGChol


MIMAT0005904
0*5m0*5m0*5m0*0


hsa-miR-1254
5′Pm0005f05f05f000f05f05f05f05f00*0*5m0
m0m0000m0m0m00m00m0*m0*m0TEGChol


MIMAT0005905
*5m0*5m0*0*0


hsa-miR-1255a
5′Pm05f05f05f05f05f05f05f05f05f05f05f05f0
m0m0000m0000m000*0*m0TEGChol


MIMAT0005906
5m0*5m0*5m0*5m0*5m0*5m0*0


hsa-miR-1255b
5′Pm0005f0f005f00f0005f0f05m0*0*0*5m0*
m0m00m0m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0005945
f0*0*0


hsa-miR-1256
5′Pm05f05f005f05f05f05f05f05f05f05f0f05m
m0m0000m0000m0m00*0*m0TEGChol


MIMAT0005907
0*5m0*0*5m0*5m0*0*0


hsa-miR-1257
5′Pm005f005f05f05f005f005f005f00*5m0*0*
m0m0m00m0m0m000m0m00*m0*m0TEGChol


MIMAT0005908
5m0*5m0*5m0*0


hsa-miR-1258
5′Pm05f005f05f0005f05f005f005f05m0*5m0
m0m0m00m0m00m0m0m00m0*0*m0TEGChol


MIMAT0005909
*5m0*5m0*5m0*5m0*0


hsa-miR-125a-3p
5′Pm05f005f0f05f005f0f005f05f0f00*0*0*0*
m0m000m0m00m00m00m0*0*m0TEGChol


MIMAT0004602
5m0*5m0*0


hsa-miR-125a-5p
5′Pm05f005f0f005f00f005f05f0f00*5m0*5m0
m0m000m0m0m00m0m00m0*0*m0TEGChol


MIMAT0000443
*5m0*5m0*5m0*0


hsa-miR-125b
5′Pm0000f005f05f0f0005f05f05m0*5m0*0*5
m0m00m0m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0000423
m0*f0*0*0


hsa-miR-125b-1*
5′Pm0005f0f0005f05f0000f00*5m0*0*5m0*f
m0m0m0m0m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0004592
0*0*0


hsa-miR-125b-2*
5′Pm0005f0f005f005f05f005f05f00*5m0*5m
m0m00m00m0m00m0m00m0*m0*m0TEGChol


MIMAT0004603
0*5m0*f0*0*0


hsa-miR-126
5′Pm005f005f05f05f05f0f05f05f005f05m0*0*
m0m0m000m0000m0m00*m0*m0TEGChol


MIMAT0000445
0*5m0*f0*0*0


hsa-miR-126*
5′Pm05f05f05f05f0000f05f05f05f05f05m0*5
m0m0000m0m0m0m0m000*0*m0TEGChol


MIMAT0000444
m0*0*0*5m0*5m0*0


hsa-miR-1260
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0005911
m0*0*0


hsa-miR-1260b
5′Pm005f005f05f005f05f05f05f05f05f05m0*5
m0m0000m00m00m0m00*m0*m0TEGChol


MIMAT0015041
m0*5m0*5m0*5m0*0*0


hsa-miR-1261
5′Pm0005f05f05f05f05f0f0005f05f05m0*5m0
m0m00m0m0m0000m00m0*m0*m0TEGChol


MIMAT0005913
*0*5m0*5m0*5m0*0


hsa-miR-1262
5′Pm05f05f00f0000f005f005f05m0*0*5m0*0
m0m0m00m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0005914
*f0*0*0


hsa-miR-1263
5′Pm05f05f005f0005f0f005f05f0f00*0*5m0*
m0m000m0m00m0m0m0m00*0*m0TEGChol


MIMAT0005915
5m0*5m0*5m0*0


hsa-miR-1264
5′Pm05f05f05f0f05f005f05f05f0005f05m0*5
m0m0m0m00m00m00m000*0*m0TEGChol


MIMAT0005791
m0*0*5m0*5m0*5m0*0


hsa-miR-1265
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0005918
m0*5m0*5m0*0


hsa-miR-1266
5′Pm0000f0000f0005f0f05m0*0*0*5m0*f0*
m0m00m0m0m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0005920
0*0


hsa-miR-1267
5′Pm00005f005f05f0f05f05f05f0f05m0*0*0*
m0m0000m000m0m0m0m0*m0*m0TEGChol


MIMAT0005921
0*f0*0*0


hsa-miR-1268
5′Pm00005f005f005f005f005f00*5m0*0*0*f
m0m0m00m0m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0005922
0*5m0*0


hsa-miR-1269
5′Pm05f05f00f05f000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m00m0m00*0*m0TEGChol


MIMAT0005923
m0*5m0*5m0*0


hsa-miR-1270
5′Pm05f005f05f0005f0f05f005f05f05m0*0*5
m0m00m00m00m0m0m00m0*0*m0TEGChol


MIMAT0005924
m0*5m0*f0*0*0


hsa-miR-1271
5′Pm00005f05f05f00f05f05f005f05m0*5m0*
m0m0m000m0m000m0m0m0*m0*m0TEGChol


MIMAT0005796
0*5m0*f0*0*0


hsa-miR-1272
5′Pm00005f005f005f05f05f05f05f05m0*5m0
m0m0000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0005925
*0*0*f0*0*0


hsa-miR-1273
5′Pm00005f05f05f005f005f05f0f00*0*0*0*f0
m0m000m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0005926
*0*0


hsa-miR-1273c
5′Pm05f05f05f05f05f05f05f0f005f005f00*0*
m0m0m00m0m0000m000*0*m0TEGChol


MIMAT0015017
0*5m0*5m0*5m0*0


hsa-miR-1273d
5′Pm05f05f00f005f05f0f005f05f05f00*5m0*5
m0m000m0m000m0m0m00*0*m0TEGChol


MIMAT0015090
m0*0*5m0*5m0*0


hsa-miR-1273e
5′Pm0000f0005f05f05f05f005f00*5m0*5m0*
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0018079
0*f0*0*0


hsa-miR-127-3p
5′Pm05f05f05f0f00005f0005f0f05m0*0*0*5
m0m00m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0000446
m0*f0*0*0


hsa-miR-1274a
5′Pm05f05f05f05f0000f05f05f05f05f00*0*5m
m0m0000m0m0m0m0m000*0*m0TEGChol


MIMAT0005927
0*5m0*5m0*0*0


hsa-miR-1274b
5′Pm05f05f05f05f0000f05f05f05f0f00*5m0*5
m0m0000m0m0m0m0m000*0*m0TEGChol


MIMAT0005938
m0*5m0*5m0*5m0*0


hsa-miR-1275
5′Pm05f05f005f05f005f0f05f05f005f05m0*5
m0m0m000m00m00m0m00*0*m0TEGChol


MIMAT0005929
m0*5m0*0*5m0*5m0*0


hsa-miR-127-5p
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0004604
m0*5m0*5m0*0


hsa-miR-1276
5′Pm05f05f05f0f05f0005f005f005f05m0*5m0
m0m0m00m0m0m0m00m000*0*m0TEGChol


MIMAT0005930
*5m0*5m0*f0*0*0


hsa-miR-1277
5′Pm05f000f005f05f0f05f05f05f05f00*5m0*0
m0m0000m000m0m0m0m0*0*m0TEGChol


MIMAT0005933
*5m0*5m0*5m0*0


hsa-miR-1278
5′Pm0005f05f05f000f005f05f05f00*0*0*5m0
m0m000m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0005936
*f0*0*0


hsa-miR-1279
5′Pm05f005f0f05f05f05f0f05f05f05f05f00*5
m0m0000m0000m00m0*0*m0TEGChol


MIMAT0005937
m0*5m0*5m0*5m0*5m0*0


hsa-miR-128
5′Pm00005f005f00f0000f00*0*0*5m0*5m0*
m0m0m0m0m0m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0000424
0*0


hsa-miR-1280
5′Pm05f000f05f05f00f005f05f05f05m0*5m0*
m0m000m0m0m000m0m0m0*0*m0TEGChol


MIMAT0005946
0*0*f0*0*0


hsa-miR-1281
5′Pm05f005f0f05f0005f05f05f005f05m0*0*5
m0m0m000m0m0m00m00m0*0*m0TEGChol


MIMAT0005939
m0*5m0*5m0*5m0*0


hsa-miR-1282
5′Pm05f005f0f05f0005f05f05f005f05m0*0*5
m0m0m000m0m0m00m00m0*0*m0TEGChol


MIMAT0005940
m0*5m0*5m0*5m0*0


hsa-miR-1283
5′Pm005f005f05f05f05f0f05f005f05f00*0*0*
m0m00m00m0000m0m00*m0*m0TEGChol


MIMAT0005799
0*f0*0*0


hsa-miR-1284
5′Pm05f05f05f05f005f05f05f05f005f05f00*5
m0m00m00m000m0m000*0*m0TEGChol


MIMAT0005941
m0*5m0*5m0*f0*0*0


hsa-miR-1285
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0005876
*5m0*0*f0*0*0


hsa-miR-1286
5′Pm0005f05f0005f05f00005f00*0*0*0*f0*5
m0m0m0m0m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0005877
m0*


hsa-miR-1287
5′Pm0005f0f05f05f005f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0005878
0*5m0*5m0*0


hsa-miR-1288
5′Pm05f05f005f0005f0f005f05f0f00*0*5m0*
m0m000m0m00m0m0m0m00*0*m0TEGChol


MIMAT0005942
5m0*5m0*5m0*0


hsa-miR-1289
5′Pm05f05f05f05f0005f05f05f05f05f05f05m0
m0m0000m00m0m0m000*0*m0TEGChol


MIMAT0005879
*0*5m0*0*5m0*5m0*0


hsa-miR-129*
5′Pm05f005f0f0005f05f00005f05m0*5m0*5
m0m0m0m0m0m00m0m0m00m0*0*m0TEGChol


MIMAT0004548
m0*5m0*f0*0*0


hsa-miR-1290
5′Pm05f05f00f05f05f05f0f00005f05m0*0*5m
m0m0m0m0m0m0000m0m00*0*m0TEGChol


MIMAT0005880
0*5m0*f0*0*


hsa-miR-1291
5′Pm005f005f0005f0f05f05f00f00*0*0*5m0*
m0m0m000m00m0m0m0m00*m0*m0TEGChol


MIMAT0005881
f0*5m0*0


hsa-miR-1292
5′Pm0005f0f05f05f05f05f05f05f05f05f05m0*
m0m0000m0000m00m0*m0*m0TEGChol


MIMAT0005943
0*0*0*f0*5m0*0


hsa-miR-1293
5′Pm05f05f05f05f05f000f0000f00*0*5m0*0*
m0m0m0m0m0m0m0m00m000*0*m0TEGChol


MIMAT0005883
5m0*5m0*0


hsa-miR-129-3p
5′Pm05f005f0f05f05f005f00005f00*0*5m0*0
m0m0m0m0m0m0m000m00m0*0*m0TEGChol


MIMAT0004605
*f0*5m0*0


hsa-miR-1294
5′Pm05f05f05f0f05f0005f005f005f05m0*5m0
m0m0m00m0m0m0m00m000*0*m0TEGChol


MIMAT0005884
*5m0*5m0*f0*0*0


hsa-miR-1295
5′Pm0005f05f005f05f05f00005f00*0*5m0*5
m0m0m0m0m0m000m0m00m0*m0*m0TEGChol


MIMAT0005885
m0*5m0*5m0*0


hsa-miR-129-5p
5′Pm005f05f0f05f05f005f05f05f05f05f00*0*
m0m0000m0m000m000*m0*m0TEGChol


MIMAT0000242
5m0*0*5m0*0*0


hsa-miR-1296
5′Pm00005f005f00f05f05f00f00*5m0*5m0*0
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0005794
***


hsa-miR-1297
5′Pm0000f00005f0000f05m0*5m0*5m0*0*f
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0005886
0*0*0
Chol


hsa-miR-1298
5′Pm05f05f05f0f05f05f005f05f005f05f00*5m
m0m00m00m0m000m000*0*m0TEGChol


MIMAT0005800
0*5m0*5m0***


hsa-miR-1299
5′Pm005f05f05f05f005f0f0005f05f05m0*0*0
m0m00m0m0m00m00m000*m0*m0TEGChol


MIMAT0005887
*5m0*5m0*5m0*0


hsa-miR-1301
5′Pm05f0005f05f05f005f00005f05m0*0*0*5
m0m0m0m0m0m0m000m0m0m0*0*m0TEGChol


MIMAT0005797
m0*f0*0*0


hsa-miR-1302
5′Pm0000f05f0005f00005f00*0*5m0*0*f0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0005890
m0*0


hsa-miR-1303
5′Pm00005f0000f05f005f05f00*0*5m0*0*5
m0m00m00m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0005891
m0*5m0*0


hsa-miR-1304
5′Pm00005f005f05f0f05f005f0f00*0*5m0*5
m0m00m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0005892
m0*f0*0*0


hsa-miR-1305
5′Pm05f05f05f05f005f05f05f05f05f005f05m0
m0m0m000m000m0m000*0*m0TEGChol


MIMAT0005893
*0*5m0*5m0*f0**


hsa-miR-1306
5′Pm0000f005f05f0f0005f05f05m0*5m0*0*5
m0m00m0m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0005950
m0*f0*0*0


hsa-miR-1307
5′Pm00005f05f05f00f05f05f00f05m0*5m0*0
m0m0m000m0m000m0m0m0*m0*m0TEGChol


MIMAT0005951
*0*5m0*0*0


hsa-miR-130a
5′Pm005f005f0005f0f05f000f05m0*0*0*5m0
m0m0m0m00m00m0m0m0m00*m0*m0TEGChol


MIMAT0000425
*5m0*5m0*0


hsa-miR-130a*
5′Pm05f005f0f05f000f0005f0f05m0*5m0*5m
m0m00m0m0m0m0m00m00m0*0*m0TEGChol


MIMAT0004593
0*5m0*5m0*0*0


hsa-miR-130b
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol


MIMAT0000691
0*0*0*f0*5m0*0


hsa-miR-130b*
5′Pm05f005f0f05f0005f05f05f05f05f05m0*0*
m0m0000m0m0m00m00m0*0*m0TEGChol


MIMAT0004680
0*5m0*5m0*5m0*0


hsa-miR-132
5′Pm05f05f00f05f05f05f0f05f005f0f00*5m0*
m0m00m00m0000m0m00*0*m0TEGChol


MIMAT0000426
0*5m0*5m0*5m0*0


hsa-miR-132*
5′Pm05f005f05f05f05f05f05f05f05f05f05f05
m0m0000m0000m00m0*0*m0TEGChol


MIMAT0004594
m0*5m0*5m0*5m0***


hsa-miR-1321
5′Pm005f005f005f00f0000f00*5m0*5m0*5m
m0m0m0m0m0m0m00m0m0m00*m0*m0TEGChol


MIMAT0005952
0*5m0*5m0*0


hsa-miR-1322
5′Pm0000f05f000f005f05f05f05m0*5m0*0*0
m0m000m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0005953
*f0*0*


hsa-miR-1323
5′Pm0005f05f05f0005f05f05f00f00*5m0*5m
m0m0m000m0m0m00m00m0*m0*m0TEGChol


MIMAT0005795
0*5m0*5m0*0*0


hsa-miR-1324
5′Pm0005f0f0005f05f005f005f00*0*5m0*0*
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0005956
5m0*0*0


hsa-miR-133a
5′Pm05f005f0f05f05f005f00005f00*5m0*5m
m0m0m0m0m0m0m000m00m0*0*m0TEGChol


MIMAT0000427
0*5m0*f0*5m0*0


hsa-miR-133b
5′Pm005f00f05f005f05f005f005f00*0*0*0*5
m0m0m00m0m00m00m0m00*m0*m0TEGChol


MIMAT0000770
m0*5m0*0


hsa-miR-134
5′Pm005f05f05f05f005f05f05f05f05f0f05m0*
m0m0000m00m00m000*m0*m0TEGChol


MIMAT0000447
5m0*5m0*0*5m0*0*0


hsa-miR-135a
5′Pm05f005f05f05f005f05f05f05f05f05f05m0
m0m0000m00m00m00m0*0*m0TEGChol


MIMAT0000428
*5m0*5m0*0*5m0*5m0*0


hsa-miR-135a*
5′Pm05f005f05f05f005f05f05f05f05f05f00*5
m0m0000m00m00m00m0*0*m0TEGChol


MIMAT0004595
m0*0*0*f0*0*


hsa-miR-135b
5′Pm05f05f005f0000f0000f00*5m0*0*5m0*
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0000758
5m0*5m0*0


hsa-miR-135b*
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0004698
m0*5m0*5m0*0


hsa-miR-136
5′Pm05f005f0f05f0005f05f05f005f05m0*0*5
m0m0m000m0m0m00m00m0*0*m0TEGChol


MIMAT0000448
m0*5m0*5m0*5m0*0


hsa-miR-136*
5′Pm05f05f005f005f00f005f05f05f05m0*0*0
m0m000m0m0m00m0m0m00*0*m0TEGChol


MIMAT0004606
*5m0*5m0*5m0*0


hsa-miR-137
5′Pm0000f05f000f005f05f05f05m0*5m0*0*0
m0m000m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0000429
*f0*0*0


hsa-miR-138
5′Pm05f05f05f05f00005f005f05f05f05m0*0*
m0m000m0m0m0m0m0m000*0*m0TEGChol


MIMAT0000430
5m0*5m0*5m0*5m0*0


hsa-miR-138-1*
5′Pm05f05f05f05f05f05f005f05f05f005f00*5
m0m0m000m0m000m000*0*m0TEGChol


MIMAT0004607
m0*0*5m0*5m0*5m0*0


hsa-miR-138-2*
5′Pm05f05f05f0f05f005f0f05f000f00*5m0*5
m0m0m0m00m00m00m000*0*m0TEGChol


MIMAT0004596
m0*0*f0*0*0


hsa-miR-139-3p
5′Pm005f005f0005f0f05f0005f05m0*5m0*0*
m0m0m0m00m00m0m0m0m00*m0*m0TEGChol


MIMAT0004552
5m0*5m0*0*0


hsa-miR-139-5p
5′Pm005f05f0f0005f05f005f00f00*5m0*5m0
m0m0m00m0m00m0m0m000*m0*m0TEGChol


MIMAT0000250
*5m0*5m0*5m0*0


hsa-miR-140-3p
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol


MIMAT0004597
0*0*0*f0*0*0


hsa-miR-140-5p
5′Pm05f005f05f0005f05f05f05f005f00*0*0*5
m0m0m000m00m0m0m00m0*0*m0TEGChol


MIMAT0000431
m0*5m0*0*0


hsa-miR-141
5′Pm0000f005f05f05f005f00f05m0*5m0*5m
m0m0m00m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0000432
0*0*5m0*5m0*0


hsa-miR-141*
5′Pm05f005f0f05f000f0005f0f05m0*5m0*5m
m0m00m0m0m0m0m00m00m0*0*m0TEGChol


MIMAT0004598
0*5m0*5m0*0*0


hsa-miR-142-3p
5′Pm05f0005f005f005f05f005f0f00*0*0*5m0
m0m00m00m0m00m0m0m0m0*0*m0TEGChol


MIMAT0000434
*5m0*5m0*0


hsa-miR-142-5p
5′Pm05f000f05f000f05f005f05f00*5m0*5m0
m0m00m00m0m0m00m0m0m0*0*m0TEGChol


MIMAT0000433
*5m0*5m0*0*0


hsa-miR-143
5′Pm05f0005f0005f0f05f05f05f0f05m0*5m0*
m0m0000m00m0m0m0m0m0*0*m0TEGChol


MIMAT0000435
0*5m0*f0*0*0


hsa-miR-143*
5′Pm005f00f005f005f0000f05m0*0*0*5m0*f
m0m0m0m0m0m0m00m0m0m00*m0*m0TEGChol


MIMAT0004599
0**


hsa-miR-144
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol


MIMAT0000436
0*0*0*f0*0*0


hsa-miR-144*
5′Pm00005f05f05f00f05f0005f00*0*0*5m0*f
m0m0m0m00m0m000m0m0m0*m0*m0TEGChol


MIMAT0004600
0*0*


hsa-miR-145
5′Pm005f05f05f05f005f0f0005f05f05m0*0*0
m0m00m0m0m00m00m000*m0*m0TEGChol


MIMAT0000437
*0*5m0*5m0*0


hsa-miR-145*
5′Pm0005f0f05f000f05f005f0f00*0*5m0*0*5
m0m00m00m0m0m00m00m0*m0*m0TEGChol


MIMAT0004601
m0*5m0*0


hsa-miR-1468
5′Pm00005f05f05f005f005f05f05f00*0*0*0*f
m0m000m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0006789
0*0*0


hsa-miR-1469
5′Pm0005f05f005f05f0f05f05f005f05m0*0*5
m0m0m000m000m0m00m0*m0*m0TEGChol


MIMAT0007347
m0*5m0*f0*0*0


hsa-miR-146a
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0000449
m0*5m0*5m0*0


hsa-miR-146a*
5′Pm005f05f0f005f05f05f005f00f00*0*5m0*
m0m0m00m0m000m0m000*m0*m0TEGChol


MIMAT0004608
5m0*5m0*5m0*0


hsa-miR-146b-3p
5′Pm00005f05f05f05f05f005f00f00*5m0*0*0
m0m0m00m0m0000m0m0m0*m0*m0TEGChol


MIMAT0004766
*f0*0*0


hsa-miR-146b-5p
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol


MIMAT0002809
0*0*0*5m0*0*0


hsa-miR-147
5′Pm005f05f0f05f05f05f0f05f000f00*0*0*0*f
m0m0m0m00m0000m000*m0*m0TEGChol


MIMAT0000251
0*5m0*0


hsa-miR-1470
5′Pm005f05f05f05f005f0f00005f05m0*0*0*0
m0m0m0m0m0m00m00m000*m0*m0TEGChol


MIMAT0007348
*5m0*5m0*0


hsa-miR-1471
5′Pm05f05f00f005f05f05f05f05f00f05m0*0*5
m0m0m000m000m0m0m00*0*m0TEGChol


MIMAT0007349
m0*5m0*f0*0*


hsa-miR-147b
5′Pm05f05f005f05f05f005f0000f00*0*0*5m0
m0m0m0m0m0m0m000m0m00*0*m0TEGChol


MIMAT0004928
*f0*0*0


hsa-miR-148a
5′Pm05f05f05f05f05f005f0f005f005f00*0*5m
m0m0m00m0m00m00m000*0*m0TEGChol


MIMAT0000243
0*5m0***


hsa-miR-148a*
5′Pm0005f0f05f0005f005f05f0f05m0*5m0*5
m0m000m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0004549
m0*0*5m0*0*0


hsa-miR-148b
5′Pm05f05f05f05f05f05f05f05f0000f05m0*5
m0m0m0m0m0m0000m000*0*m0TEGChol


MIMAT0000759
m0*0*5m0*5m0*5m0*0


hsa-miR-148b*
5′Pm00005f05f05f05f0f00005f00*5m0*5m0*
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0004699
5m0*5m0*0*0


hsa-miR-149
5′Pm05f05f00f005f00f05f000f00*5m0*0*0*f
m0m0m0m00m0m00m0m0m00*0*m0TEGChol


MIMAT0000450
0*0*0


hsa-miR-149*
5′Pm005f05f05f0005f05f005f005f00*5m0*0*
m0m0m00m0m00m0m0m000*m0*m0TEGChol


MIMAT0004609
5m0*f0*5m0*0


hsa-miR-150
5′Pm05f000f05f05f05f0f005f05f05f05m0*0*0
m0m000m0m0000m0m0m0*0*m0TEGChol


MIMAT0000451
*0*f0*0*0


hsa-miR-150*
5′Pm05f05f05f05f05f05f05f05f05f05f05f0f05
m0m0000m0000m000*0*m0TEGChol


MIMAT0004610
m0*0*0*0*5m0*5m0*0


hsa-miR-151-3p
5′Pm05f05f05f05f005f05f05f0005f05f05m0*0
m0m00m0m0m000m0m000*0*m0TEGChol


MIMAT0000757
*5m0*5m0*f0*0*0


hsa-miR-151-5p
5′Pm05f05f05f05f005f05f0f005f005f05m0*0*
m0m0m00m0m000m0m000*0*m0TEGChol


MIMAT0004697
5m0*5m0*5m0*5m0*0


hsa-miR-152
5′Pm05f05f00f05f000f05f005f05f00*0*5m0*
m0m00m00m0m0m00m0m00*0*m0TEGChol


MIMAT0000438
5m0*f0*0*0


hsa-miR-153
5′Pm0000f0005f05f05f05f00f00*5m0*5m0*0
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0000439
*f0*0*0


hsa-miR-1537
5′Pm0000f0000f05f0005f05m0*0*0*5m0*5
m0m0m0m00m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0007399
m0*5m0*0


hsa-miR-1538
5′Pm05f005f0f05f000f0000f05m0*0*0*5m0*
m0m0m0m0m0m0m0m00m00m0*0*m0TEGChol


MIMAT0007400
5m0*5m0*0


hsa-miR-1539
5′Pm05f05f05f05f005f05f0f05f05f005f05m0*
m0m0m000m000m0m000*0*m0TEGChol


MIMAT0007401
0*5m0*5m0*f0*5m0*


hsa-miR-154
5′Pm05f05f00f0005f05f0005f0f05m0*5m0*5
m0m00m0m0m00m0m0m0m00*0*m0TEGChol


MIMAT0000452
m0*5m0*5m0*5m0*0


hsa-miR-154*
5′Pm00005f005f05f05f005f05f05f00*5m0*0*
m0m000m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0000453
5m0*f0*0*0


hsa-miR-155
5′Pm0000f05f05f00f005f00f00*0*0*5m0*5m
m0m0m00m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0000646
0*5m0*0


hsa-miR-155*
5′Pm005f00f0005f05f0000f05m0*0*0*0*5m
m0m0m0m0m0m00m0m0m0m00*m0*m0TEGChol


MIMAT0004658
0*5m0*0


hsa-miR-15a
5′Pm05f0005f05f05f005f00005f00*5m0*0*5
m0m0m0m0m0m0m000m0m0m0*0*m0TEGChol


MIMAT0000068
m0*f0*5m0*0


hsa-miR-15a*
5′Pm0000f05f05f05f0f05f05f00f00*0*0*0*f0
m0m0m000m0000m0m0m0*m0*m0TEGChol


MIMAT0004488
*0*0


hsa-miR-15b
5′Pm005f005f0000f005f05f0f00*5m0*5m0*0
m0m000m0m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0000417
*f0*0*0


hsa-miR-15b*
5′Pm00005f05f05f05f05f05f05f05f05f00*0*5
m0m0000m0000m0m0m0*m0*m0TEGChol


MIMAT0004586
m0*5m0*5m0*5m0*0


hsa-miR-16
5′Pm05f005f0f0000f0000f05m0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m00m0*0*m0TEGChol


MIMAT0000069
m0*5m0*5m0*0


hsa-miR-16-1*
5′Pm05f005f0f05f005f0f05f005f0f05m0*0*5
m0m00m00m00m00m00m0*0*m0TEGChol


MIMAT0004489
m0*0*5m0*0*0


hsa-miR-16-2*
5′Pm005f00f00005f0000f00*0*0*5m0*5m0*
m0m0m0m0m0m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0004518
5m0*0


hsa-miR-17
5′Pm05f05f00f005f05f05f0000f05m0*5m0*0
m0m0m0m0m0m000m0m0m00*0*m0TEGChol


MIMAT0000070
*0*f0*0*0


hsa-miR-17*
5′Pm005f005f005f05f05f05f05f00f00*5m0*5
m0m0m000m000m0m0m00*m0*m0TEGChol


MIMAT0000071
m0*0*5m0*0*0


hsa-miR-181a
5′Pm005f005f0000f05f0005f00*0*0*5m0*5
m0m0m0m00m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0000256
m0*0*0


hsa-miR-181a*
5′Pm05f0005f005f005f05f005f0f00*0*0*5m0
m0m00m00m0m00m0m0m0m0*0*m0TEGChol


MIMAT0000270
*5m0*5m0*0


hsa-miR-181a-2*
5′Pm0005f05f05f05f005f05f005f0f05m0*0*5
m0m00m00m0m000m00m0*m0*m0TEGChol


MIMAT0004558
m0*5m0*5m0*0*0


hsa-miR-181b
5′Pm05f05f00f05f05f05f05f005f005f05m0*5
m0m0m00m0m0000m0m00*0*m0TEGChol


MIMAT0000257
m0*5m0*5m0*f0*5m0*0


hsa-miR-181c
5′Pm0000f0000f05f000f00*0*5m0*5m0*f0*
m0m0m0m00m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0000258
5m0*0


hsa-miR-181c*
5′Pm005f05f0f005f05f05f05f05f00f00*0*5m0
m0m0m000m000m0m000*m0*m0TEGChol


MIMAT0004559
*5m0*5m0*5m0*0


hsa-miR-181d
5′Pm05f05f05f05f05f0005f05f05f05f05f00*5
m0m0000m0m0m00m000*0*m0TEGChol


MIMAT0002821
m0*0*5m0*5m0*0*0


hsa-miR-182
5′Pm005f05f05f0005f05f05f000f00*5m0*5m
m0m0m0m00m00m0m0m000*m0*m0TEGChol


MIMAT0000259
0*5m0*5m0*5m0*0


hsa-miR-182*
5′Pm0005f05f05f005f05f005f05f05f05m0*0*
m0m000m0m00m00m00m0*m0*m0TEGChol


MIMAT0000260
5m0*0*5m0*0*0


hsa-miR-1825
5′Pm05f000f05f000f0005f0f00*0*5m0*0*5m
m0m00m0m0m0m0m00m0m0m0*0*m0TEGChol


MIMAT0006765
0*0*0


hsa-miR-1827
5′Pm005f05f0f005f005f05f05f05f0f00*5m0*5
m0m0000m0m00m0m000*m0*m0TEGChol


MIMAT0006767
m0*5m0*5m0*0*0


hsa-miR-183
5′Pm0000f0005f0f0000f00*5m0*0*0*f0*0*0
m0m0m0m0m0m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0000261


hsa-miR-183*
5′Pm0005f0f005f00f05f05f05f0f05m0*0*5m0
m0m0000m0m00m0m00m0*m0*m0TEGChol


MIMAT0004560
*5m0*5m0*5m0*0


hsa-miR-184
5′Pm05f005f0f05f005f05f05f05f05f0f05m0*5
m0m0000m00m00m00m0*0*m0TEGChol


MIMAT0000454
m0*0*5m0*5m0*5m0*0


hsa-miR-185
5′Pm005f05f0f05f005f0f05f0005f00*5m0*5m
m0m0m0m00m00m00m000*m0*m0TEGChol


MIMAT0000455
0*0*f0*5m0*0


hsa-miR-185*
5′Pm05f0005f05f005f0f00005f05m0*0*5m0*
m0m0m0m0m0m00m00m0m0m0*0*m0TEGChol


MIMAT0004611
0*5m0*0*0


hsa-miR-186
5′Pm0000f05f05f05f05f005f005f00*0*0*5m0
m0m0m00m0m0000m0m0m0*m0*m0TEGChol


MIMAT0000456
*f0*5m0*0


hsa-miR-186*
5′Pm05f005f0f05f005f0f05f005f0f05m0*0*0*
m0m00m00m00m00m00m0*0*m0TEGChol


MIMAT0004612
5m0*f0*5m0*0


hsa-miR-187
5′Pm005f05f0f0005f05f0005f0f00*5m0*5m0
m0m00m0m0m00m0m0m000*m0*m0TEGChol


MIMAT0000262
*5m0*f0*0*0


hsa-miR-187*
5′Pm0000f05f005f0f00005f00*5m0*5m0*0*
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0004561
5m0*5m0*0


hsa-miR-188-3p
5′Pm0000f05f05f05f05f0000f00*5m0*0*0*f0
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0004613
*0*0


hsa-miR-188-5p
5′Pm00005f05f005f05f05f05f00f05m0*5m0*
m0m0m000m00m00m0m0m0*m0*m0TEGChol


MIMAT0000457
5m0*0*f0*0*0


hsa-miR-18a
5′Pm005f00f05f005f0f005f05f0f05m0*5m0*5
m0m000m0m00m00m0m00*m0*m0TEGChol


MIMAT0000072
m0*5m0*5m0*0*0


hsa-miR-18a*
5′Pm05f0005f005f00f005f05f05f00*0*0*0*f0
m0m000m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0002891
*0*0


hsa-miR-18b
5′Pm05f05f00f00005f005f05f0f05m0*0*5m0
m0m000m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0001412
*5m0*5m0*0*0


hsa-miR-18b*
5′Pm005f00f05f0005f0005f05f05m0*5m0*0*
m0m00m0m0m0m0m00m0m00*m0*m0TEGChol


MIMAT0004751
5m0*f0*5m0*0


hsa-miR-190
5′Pm05f000f005f005f005f005f00*5m0*0*0*f
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0000458
0*0*0


hsa-miR-1908
5′Pm05f005f05f05f05f00f0005f05f00*5m0*5
m0m00m0m0m0m000m00m0*0*m0TEGChol


MIMAT0007881
m0*0*f0*0*0


hsa-miR-1909
5′Pm05f05f05f05f05f005f0f05f05f05f05f00*0
m0m0000m00m00m000*0*m0TEGChol


MIMAT0007883
*0*0*5m0*5m0*0


hsa-miR-1909*
5′Pm05f05f00f0000f0000f05m0*5m0*0*0***
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0007882


hsa-miR-190b
5′Pm005f05f0f05f005f05f05f05f00f05m0*0*0
m0m0m000m00m00m000*m0*m0TEGChol


MIMAT0004929
*5m0*f0*0*0


hsa-miR-191
5′Pm005f05f0f05f05f00f005f05f0f00*5m0*0*
m0m000m0m0m000m000*m0*m0TEGChol


MIMAT0000440
5m0*5m0*0*


hsa-miR-191*
5′Pm05f0005f0000f05f05f005f05m0*0*5m0*
m0m0m000m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0001618
5m0*f0*5m0*0


hsa-miR-1910
5′Pm0000f05f05f05f0f0000f05m0*5m0*5m0
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0007884
*0*5m0*0*0


hsa-miR-1911
5′Pm05f05f005f05f005f05f0005f0f05m0*0*5
m0m00m0m0m00m00m0m00*0*m0TEGChol


MIMAT0007885
m0*0*f0*5m0*0


hsa-miR-1911*
5′Pm00005f05f05f005f0005f05f00*5m0*5m0
m0m00m0m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0007886
*5m0*5m0*5m0*0


hsa-miR-1912
5′Pm05f05f00f005f00f00005f05m0*0*0*5m0
m0m0m0m0m0m0m00m0m0m00*0*m0TEGChol


MIMAT0007887
*5m0*5m0*0


hsa-miR-1913
5′Pm0000f05f05f005f005f05f05f05m0*0*0*0
m0m000m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0007888
*f0*0*0


hsa-miR-1914
5′Pm0005f05f05f05f05f0f05f05f05f05f00*0*
m0m0000m0000m00m0*m0*m0TEGChol


MIMAT0007889
0*0*f0*0*0


hsa-miR-1914*
5′Pm05f005f05f05f05f05f05f05f05f05f05f05
m0m0000m0000m00m0*0*m0TEGChol


MIMAT0007890
m0*5m0*5m0*0*5m0*5m0*0


hsa-miR-1915
5′Pm05f000f005f05f05f005f005f00*0*0*0*5
m0m0m00m0m000m0m0m0m0*0*m0TEGChol


MIMAT0007892
m0*0*0


hsa-miR-1915*
5′Pm05f005f05f05f005f05f005f05f05f05m0*5
m0m000m0m00m00m00m0*0*m0TEGChol


MIMAT0007891
m0*5m0*5m0*5m0*5m0*0


hsa-miR-192
5′Pm05f05f05f05f00005f05f05f00f05m0*0*0
m0m0m000m0m0m0m0m000*0*m0TEGChol


MIMAT0000222
*0*f0*5m0*0


hsa-miR-192*
5′Pm05f000f05f05f00f0005f05f05m0*5m0*5
m0m00m0m0m0m000m0m0m0*0*m0TEGChol


MIMAT0004543
m0*5m0*f0*0*0


hsa-miR-193a-3p
5′Pm005f00f0000f05f000f05m0*0*0*5m0*5
m0m0m0m00m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0000459
m0*0*0


hsa-miR-193a-5p
5′Pm0000f005f005f0005f05f00*0*5m0*5m0
m0m00m0m0m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0004614
*f0*0*0


hsa-miR-193b
5′Pm0005f0f005f005f0000f00*5m0*0*5m0*
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0002819
5m0*0*0


hsa-miR-193b*
5′Pm00005f005f05f05f05f05f05f05f05m0*5m
m0m0000m000m0m0m0m0*m0*m0TEGChol


MIMAT0004767
0*5m0*0*f0*0*0


hsa-miR-194
5′Pm00005f005f005f05f05f00f00*0*0*0*5m
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0000460
0**


hsa-miR-194*
5′Pm05f05f05f0f00005f05f005f05f05m0*5m0
m0m00m00m0m0m0m0m000*0*m0TEGChol


MIMAT0004671
*0*5m0*5m0*0*0


hsa-miR-195
5′Pm05f05f05f0f0005f0f05f05f00f00*0*5m0*
m0m0m000m00m0m0m000*0*m0TEGChol


MIMAT0000461
0*f0*5m0*0


hsa-miR-195*
5′Pm0005f0f05f05f005f05f05f00f00*0*5m0*
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0004615
5m0*f0*0*0


hsa-miR-196a
5′Pm05f000f005f005f005f005f00*5m0*0*0*f
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0000226
0*0*0


hsa-miR-196a*
5′Pm05f05f05f05f0005f05f05f05f00f00*0*5m
m0m0m000m00m0m0m000*0*m0TEGChol


MIMAT0004562
0*5m0*5m0*0*0


hsa-miR-196b
5′Pm05f05f00f05f05f05f05f05f05f05f05f00*0
m0m0000m0000m0m00*0*m0TEGChol


MIMAT0001080
*5m0*0*5m0*5m0*0


hsa-miR-196b*
5′Pm00005f0000f0000f00*0*0*0*f0*0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0009201

Chol


hsa-miR-197
5′Pm0000f05f0005f0005f05f05m0*0*5m0*0
m0m00m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0000227
*5m0*0*0


hsa-miR-1972
5′Pm05f000f05f05f05f0f005f05f05f05m0*5m
m0m000m0m0000m0m0m0*0*m0TEGChol


MIMAT0009447
0*5m0*5m0*5m0*5m0*0


hsa-miR-1973
5′Pm05f05f005f005f005f0005f05f05m0*5m0
m0m00m0m0m0m00m0m0m00*0*m0TEGChol


MIMAT0009448
*5m0*5m0*5m0*5m0*0


hsa-miR-1976
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0009451
m0*0*0


hsa-miR-198
5′Pm005f005f05f05f005f05f05f005f05m0*5m
m0m0m000m0m000m0m00*m0*m0TEGChol


MIMAT0000228
0*5m0*0*5m0*5m0*0


hsa-miR-199a-3p
5′Pm0005f0f05f05f005f05f05f00f00*0*5m0*
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0000232
5m0*f0*0*0


hsa-miR-199a-5p
5′Pm05f05f00f05f05f05f05f005f005f00*0*5m
m0m0m00m0m0000m0m00*0*m0TEGChol


MIMAT0000231
0*0*f0*5m0*0


hsa-miR-199b-3p
5′Pm05f0005f05f05f05f0f05f005f0f00*5m0*0
m0m00m00m0000m0m0m0*0*m0TEGChol


MIMAT0004563
*0*5m0*5m0*0


hsa-miR-199b-5p
5′Pm0005f0f05f05f005f05f05f00f00*0*5m0*
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0000263
5m0*f0*0*0


hsa-miR-19a
5′Pm05f05f005f0000f05f05f05f0f00*0*0*5m
m0m0000m0m0m0m0m0m00*0*m0TEGChol


MIMAT0000073
0*5m0*0*0


hsa-miR-19a*
5′Pm05f0005f005f05f0f005f05f0f05m0*0*5m
m0m000m0m000m0m0m0m0*0*m0TEGChol


MIMAT0004490
0*5m0*f0*5m0*0


hsa-miR-19b
5′Pm005f05f05f05f05f00f0000f05m0*5m0*5
m0m0m0m0m0m0m000m000*m0*m0TEGChol


MIMAT0000074
m0*5m0*5m0*5m0*0


hsa-miR-19b-1*
5′Pm00005f0005f05f05f05f005f00*5m0*5m0
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0004491
*0*5m0*5m0*0


hsa-miR-19b-2*
5′Pm0005f0f005f00f0000f05m0*5m0*0*5m0
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0004492
*5m0*5m0*0


hsa-miR-200a
5′Pm0005f05f0005f05f05f05f05f05f05m0*5m
m0m0000m00m0m0m00m0*m0*m0TEGChol


MIMAT0000682
0*0*0*5m0*0*0


hsa-miR-200a*
5′Pm005f005f0000f005f00f00*5m0*5m0*5m
m0m0m00m0m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0001620
0*5m0*5m0*0


hsa-miR-200b
5′Pm0005f0f05f0005f0005f0f05m0*5m0*0*5
m0m00m0m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0000318
m0*5m0*0*0


hsa-miR-200b*
5′Pm0005f0f05f0005f0005f0f05m0*5m0*0*5
m0m00m0m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0004571
m0*5m0*0*0


hsa-miR-200c
5′Pm005f00f0005f05f05f05f05f0f05m0*0*0*
m0m0000m00m0m0m0m00*m0*m0TEGChol


MIMAT0000617
0*f0*0*0


hsa-miR-200c*
5′Pm05f000f00005f05f05f005f00*0*5m0*5m
m0m0m000m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0004657
0*5m0*0*0


hsa-miR-202
5′Pm0000f0005f05f0005f0f00*5m0*5m0*5m
m0m00m0m0m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0002811
0*5m0*0*0


hsa-miR-202*
5′Pm05f0005f005f005f0005f0f00*0*0*5m0*
m0m00m0m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0002810
5m0*5m0*0


hsa-miR-203
5′Pm0005f0f05f05f05f0f0000f05m0*0*0*0***
m0m0m0m0m0m0000m00m0*m0*m0TEGChol


MIMAT0000264


hsa-miR-204
5′Pm05f005f0f05f000f05f05f005f05m0*0*5m
m0m0m000m0m0m00m00m0*0*m0TEGChol


MIMAT0000265
0*5m0*5m0*5m0*0


hsa-miR-205
5′Pm0000f05f0005f0005f05f05m0*0*5m0*0
m0m00m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0000266
*5m0*5m0*0


hsa-miR-205*
5′Pm05f005f0f05f05f05f05f05f05f05f05f00*5
m0m0000m0000m00m0*0*m0TEGChol


MIMAT0009197
m0*0*5m0*5m0*5m0*0


hsa-miR-2052
5′Pm05f05f00f0000f05f05f005f00*0*5m0*0*
m0m0m000m0m0m0m0m0m00*0*m0TEGChol


MIMAT0009977
f0*5m0*0


hsa-miR-2053
5′Pm05f05f05f0f05f005f0f00005f05m0*5m0*
m0m0m0m0m0m00m00m000*0*m0TEGChol


MIMAT0009978
0*0*f0*0*0


hsa-miR-2054
5′Pm05f05f05f0f005f05f05f0005f0f00*0*0*0
m0m00m0m0m000m0m000*0*m0TEGChol


MIMAT0009979
*5m0**


hsa-miR-206
5′Pm005f05f05f0000f0005f05f00*5m0*5m0*
m0m00m0m0m0m0m0m0m000*m0*m0TEGChol


MIMAT0000462
0*f0*5m0*0


hsa-miR-208a
5′Pm05f05f00f00005f05f05f05f05f00*0*0*5
m0m0000m0m0m0m0m0m00*0*m0TEGChol


MIMAT0000241
m0*5m0*5m0*0


hsa-miR-208b
5′Pm0000f05f05f005f00005f00*0*0*5m0*f0
m0m0m0m0m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0004960
*0*0


hsa-miR-20a
5′Pm05f000f0005f0f0000f05m0*5m0*0*0*f0
m0m0m0m0m0m00m0m0m0m0m0*0*m0TEGChol


MIMAT0000075
**


hsa-miR-20a*
5′Pm00005f005f05f05f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol


MIMAT0004493
m0*5m0*5m0*0*0


hsa-miR-20b
5′Pm05f05f05f0f05f05f005f05f005f05f05m0*
m0m00m00m0m000m000*0*m0TEGChol


MIMAT0001413
5m0*0*0***


hsa-miR-20b*
5′Pm05f05f005f00005f05f05f05f0f00*5m0*5
m0m0000m0m0m0m0m0m00*0*m0TEGChol


MIMAT0004752
m0*0*5m0*0*0


hsa-miR-21
5′Pm005f05f0f005f05f0f05f05f00f00*0*0*0*f
m0m0m000m000m0m000*m0*m0TEGChol


MIMAT0000076
0*5m0*0


hsa-miR-21*
5′Pm05f005f0f00005f05f05f005f00*5m0*0*0
m0m0m000m0m0m0m0m00m0*0*m0TEGChol


MIMAT0004494
*f0*5m0*0


hsa-miR-210
5′Pm05f05f005f005f00f005f05f05f05m0*0*5
m0m000m0m0m00m0m0m00*0*m0TEGChol


MIMAT0000267
m0*5m0*f0*5m0*0


hsa-miR-211
5′Pm05f005f0f05f000f05f05f005f05m0*0*5m
m0m0m000m0m0m00m00m0*0*m0TEGChol


MIMAT0000268
0*5m0*5m0*5m0*0


hsa-miR-2110
5′Pm05f05f005f05f005f0f005f05f0f05m0*0*0
m0m000m0m00m00m0m00*0*m0TEGChol


MIMAT0010133
*0*5m0*0*0


hsa-miR-2113
5′Pm00005f05f05f05f05f00005f05m0*0*0*0
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0009206
*f0*0*


hsa-miR-2114
5′Pm0005f0f05f05f05f05f05f05f05f0f05m0*5
m0m0000m0000m00m0*m0*m0TEGChol


MIMAT0011156
m0*0*0*5m0*5m0*0


hsa-miR-2114*
5′Pm0005f05f00005f05f05f00f00*0*0*5m0*
m0m0m000m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0011157
5m0*0*0


hsa-miR-2115
5′Pm0005f05f05f05f00f05f05f00f00*0*0*5m
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0011158
0*5m0*0*0


hsa-miR-2115*
5′Pm05f05f05f05f05f05f05f05f0005f0f00*5m
m0m00m0m0m0000m000*0*m0TEGChol


MIMAT0011159
0*5m0*5m0*5m0*5m0*0


hsa-miR-2116
5′Pm00005f0005f05f05f05f05f05f00*5m0*5
m0m0000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0011160
m0*0*5m0*5m0*0


hsa-miR-2116*
5′Pm0000f005f00f005f05f05f05m0*0*0*5m0
m0m000m0m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0011161
*f0*0*0


hsa-miR-2117
5′Pm05f05f05f05f0005f05f05f005f0f05m0*0*
m0m00m00m00m0m0m000*0*m0TEGChol


MIMAT0011162
0*0*5m0*0*0


hsa-miR-212
5′Pm05f05f05f0f0005f0f05f000f05m0*0*5m0
m0m0m0m00m00m0m0m000*0*m0TEGChol


MIMAT0000269
*0*5m0*5m0*0


hsa-miR-214
5′Pm0005f0f05f05f05f05f05f05f05f05f05m0*
m0m0000m0000m00m0*m0*m0TEGChol


MIMAT0000271
0*0*0*f0*0*0


hsa-miR-214*
5′Pm00005f0005f05f05f000f00*0*5m0*5m0
m0m0m0m00m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0004564
*5m0*0*0


hsa-miR-215
5′Pm005f005f05f000f05f05f05f0f00*0*5m0*
m0m0000m0m0m00m0m00*m0*m0TEGChol


MIMAT0000272
5m0***


hsa-miR-216a
5′Pm00005f005f05f05f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol


MIMAT0000273
m0*5m0*5m0*0*0


hsa-miR-216b
5′Pm05f05f05f05f0005f0f05f000f00*0*5m0*
m0m0m0m00m00m0m0m000*0*m0TEGChol


MIMAT0004959
0*5m0*5m0*0


hsa-miR-217
5′Pm05f05f00f0005f0f05f000f00*5m0*5m0*
m0m0m0m00m00m0m0m0m00*0*m0TEGChol


MIMAT0000274
5m0*5m0*0*


hsa-miR-218
5′Pm05f005f0f05f0005f05f005f0f00*0*0*0*5
m0m00m00m0m0m00m00m0*0*m0TEGChol


MIMAT0000275
m0*0*0


hsa-miR-218-1*
5′Pm05f0005f0005f0f05f0005f00*5m0*5m0*
m0m0m0m00m00m0m0m0m0m0*0*m0TEGChol


MIMAT0004565
0*5m0*5m0*0


hsa-miR-218-2*
5′Pm05f05f005f05f005f05f05f05f05f05f05m0
m0m0000m00m00m0m00*0*m0TEGChol


MIMAT0004566
*5m0*0*5m0*5m0*5m0*0


hsa-miR-219-1-3p
5′Pm0000f005f00f00005f05m0*5m0*0****
m0m0m0m0m0m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0004567


hsa-miR-219-2-3p
5′Pm005f005f05f05f00f005f05f0f05m0*5m0*
m0m000m0m0m000m0m00*m0*m0TEGChol


MIMAT0004675
5m0*0***


hsa-miR-219-5p
5′Pm0000f005f005f0005f0f00*0*0*0*f0*0*0
m0m00m0m0m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0000276


hsa-miR-22
5′Pm0000f05f0005f0000f00*5m0*5m0*5m0
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0000077
*5m0**


hsa-miR-22*
5′Pm00005f05f005f05f05f0005f05m0*0*5m0
m0m0m0m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0004495
*0*f0*5m0*0


hsa-miR-221
5′Pm0005f05f05f000f05f05f005f05m0*0*5m
m0m0m000m0m0m00m00m0*m0*m0TEGChol


MIMAT0000278
0*5m0*f0*5m0*0


hsa-miR-221*
5′Pm00005f005f05f05f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol


MIMAT0004568
m0*5m0*5m0*0*0


hsa-miR-222
5′Pm05f000f05f05f00f005f005f00*0*5m0*0*
m0m0m00m0m0m000m0m0m0*0*m0TEGChol


MIMAT0000279
f0*5m0*0


hsa-miR-222*
5′Pm005f05f05f005f05f05f005f00f00*0*5m0
m0m0m00m0m000m0m000*m0*m0TEGChol


MIMAT0004569
*5m0*f0*5m0*0


hsa-miR-223
5′Pm05f05f005f005f00f00005f00*0*5m0*0*
m0m0m0m0m0m0m00m0m0m00*0*m0TEGChol


MIMAT0000280
5m0*0*


hsa-miR-223*
5′Pm0000f05f005f0f0005f05f05m0*0*0*0*f0
m0m00m0m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0004570
*0*0


hsa-miR-224
5′Pm05f05f05f05f00005f005f05f05f05m0*0*
m0m000m0m0m0m0m0m000*0*m0TEGChol


MIMAT0000281
0*5m0*5m0**


hsa-miR-224*
5′Pm05f05f05f0f05f005f0f005f05f05f05m0*0
m0m000m0m00m00m000*0*m0TEGChol


MIMAT0009198
*0*0*f0*0*0


hsa-miR-2276
5′Pm05f000f005f05f05f05f000f00*0*0*5m0*
m0m0m0m00m000m0m0m0m0*0*m0TEGChol


MIMAT0011775
f0*0*0


hsa-miR-2277-3p
5′Pm05f05f00f05f005f0f0000f05m0*0*5m0*
m0m0m0m0m0m00m00m0m00*0*m0TEGChol


MIMAT0011777
5m0*5m0*0*0


hsa-miR-2277-5p
5′Pm0000f05f05f00f05f05f005f00*0*5m0*0*
m0m0m000m0m000m0m0m0*m0*m0TEGChol


MIMAT0017352
f0*0*0


hsa-miR-2278
5′Pm05f05f005f05f05f00f05f005f0f00*0*5m0
m0m00m00m0m000m0m00*0*m0TEGChol


MIMAT0011778
*5m0*f0*5m0*0


hsa-miR-2355-3p
5′Pm05f005f05f005f05f0f05f05f005f05m0*5
m0m0m000m000m0m00m0*0*m0TEGChol


MIMAT0017950
m0*0*0*f0*5m0*0


hsa-miR-2355-5p
5′Pm05f05f05f05f05f005f05f05f05f05f05f05
m0m0000m00m00m000*0*m0TEGChol


MIMAT0016895
m0*5m0*0*5m0*5m0*0*0


hsa-miR-23a
5′Pm005f05f05f0000f0000f00*0*5m0*0*f0*
m0m0m0m0m0m0m0m0m0m000*m0*m0TEGChol


MIMAT0000078
0*0


hsa-miR-23a*
5′Pm05f05f05f0f005f05f0f05f0005f05m0*0*5
m0m0m0m00m000m0m000*0*m0TEGChol


MIMAT0004496
m0*5m0***


hsa-miR-23b
5′Pm05f0005f0005f05f05f005f0f05m0*0*5m
m0m00m00m00m0m0m0m0m0*0*m0TEGChol


MIMAT0000418
0*5m0*f0*0*0


hsa-miR-23b*
5′Pm00005f005f05f05f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol


MIMAT0004587
m0*5m0*f0*0*0


hsa-miR-23c
5′Pm05f05f05f0f05f005f0f05f05f05f05f00*0*
m0m0000m00m00m000*0*m0TEGChol


MIMAT0018000
0*5m0*f0*5m0*0


hsa-miR-24
5′Pm05f05f05f05f0005f0f05f000f00*0*5m0*
m0m0m0m00m00m0m0m000*0*m0TEGChol


MIMAT0000080
0*5m0*5m0*0


hsa-miR-24-1*
5′Pm00005f005f05f05f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*m0*m0TEGChol


MIMAT0000079
m0*5m0***


hsa-miR-24-2*
5′Pm0005f05f005f05f05f05f05f005f00*5m0*
m0m0m000m000m0m00m0*m0*m0TEGChol


MIMAT0004497
5m0*5m0***


hsa-miR-25
5′Pm0005f05f05f05f05f0f05f05f05f05f00*0*
m0m0000m0000m00m0*m0*m0TEGChol


MIMAT0000081
0*0*f0*0*0


hsa-miR-25*
5′Pm05f000f005f005f05f05f05f05f05m0*5m0
m0m0000m0m00m0m0m0m0*0*m0TEGChol


MIMAT0004498
*5m0*5m0*f0*0*0


hsa-miR-26a
5′Pm0000f05f05f005f05f05f05f0f00*0*0*0*f
m0m0000m0m000m0m0m0*m0*m0TEGChol


MIMAT0000082
0*0*0


hsa-miR-26a-1*
5′Pm05f000f05f000f005f05f05f05m0*0*0*5
m0m000m0m0m0m00m0m0m0*0*m0TEGChol


MIMAT0004499
m0*5m0*5m0*


hsa-miR-26a-2*
5′Pm05f000f05f000f05f05f05f0f05m0*0*0*0
m0m0000m0m0m00m0m0m0*0*m0TEGChol


MIMAT0004681
*f0*0*0


hsa-miR-26b
5′Pm005f05f0f05f005f0f05f05f005f05m0*0*0
m0m0m000m00m00m000*m0*m0TEGChol


MIMAT0000083
*0*5m0*5m0*0


hsa-miR-26b*
5′Pm0000f05f05f05f05f0000f00*0*0*0*5m0
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0004500
*0*0


hsa-miR-27a
5′Pm0005f05f05f0005f005f005f00*5m0*0*0
m0m0m00m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0000084
*5m0*0*0


hsa-miR-27a*
5′Pm005f05f05f05f005f0f05f05f005f05m0*5
m0m0m000m00m00m000*m0*m0TEGChol


MIMAT0004501
m0*0*0*f0*5m0*0


hsa-miR-27b
5′Pm005f05f05f0000f00005f00*5m0*0*5m0
m0m0m0m0m0m0m0m0m0m000*m0*m0TEGChol


MIMAT0000419
*f0*0*0


hsa-miR-27b*
5′Pm0005f0f0005f0f005f005f00*5m0*5m0*5
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0004588
m0*5m0*0*0


hsa-miR-28-3p
5′Pm05f005f0f0005f05f05f0005f05m0*5m0*
m0m0m0m00m00m0m0m00m0*0*m0TEGChol


MIMAT0004502
5m0*0*f0*0*


hsa-miR-28-5p
5′Pm0000f05f0005f05f05f00f05m0*0*5m0*0
m0m0m000m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0000085
*f0*0*0


hsa-miR-2861
5′Pm05f05f05f0f05f005f05f00005f05m0*0*5
m0m0m0m0m0m00m00m000*0*m0TEGChol


MIMAT0013802
m0*5m0*5m0*5m0*0


hsa-miR-2909
5′Pm05f005f0f005f005f05f05f05f0f05m0*5m
m0m0000m0m00m0m00m0*0*m0TEGChol


MIMAT0013863
0*5m0*0*5m0*5m0*0


hsa-miR-296-3p
5′Pm05f0005f05f05f00f00005f05m0*5m0*0*
m0m0m0m0m0m0m000m0m0m0*0*m0TEGChol


MIMAT0004679
5m0*5m0*5m0*0


hsa-miR-296-5p
5′Pm05f0005f005f05f05f05f0005f00*5m0*0*
m0m0m0m00m000m0m0m0m0*0*m0TEGChol


MIMAT0000690
5m0*5m0*0*0


hsa-miR-297
5′Pm05f0005f005f05f0f00005f00*5m0*5m0*
m0m0m0m0m0m000m0m0m0m0*0*m0TEGChol


MIMAT0004450
0*5m0*5m0*0


hsa-miR-298
5′Pm005f05f0f005f005f05f05f05f05f05m0*5
m0m0000m0m00m0m000*m0*m0TEGChol


MIMAT0004901
m0*0*0*f0*5m0*0


hsa-miR-299-3p
5′Pm05f000f0005f0f005f00f00*5m0*5m0*0*
m0m0m00m0m00m0m0m0m0m0*0*m0TEGChol


MIMAT0000687
5m0*5m0*0


hsa-miR-299-5p
5′Pm005f00f0005f05f0005f0f05m0*5m0*0*5
m0m00m0m0m00m0m0m0m00*m0*m0TEGChol


MIMAT0002890
m0*5m0*0*0


hsa-miR-29a
5′Pm00005f005f00f0000f00*0*0*5m0***
m0m0m0m0m0m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0000086


hsa-miR-29a*
5′Pm005f05f0f05f000f05f0005f00*0*5m0*0*
m0m0m0m00m0m0m00m000*m0*m0TEGChol


MIMAT0004503
f0*0*0


hsa-miR-29b
5′Pm0000f0000f0000f00*0*5m0*5m0*5m0*
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0000100
5m0*0
Chol


hsa-miR-29b-1*
5′Pm00005f05f005f05f05f005f0f05m0*5m0*
m0m00m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0004514
0*5m0*5m0*5m0*0


hsa-miR-29b-2*
5′Pm05f05f00f05f005f05f05f000f05m0*5m0*
m0m0m0m00m00m00m0m00*0*m0TEGChol


MIMAT0004515
0*5m0*5m0*5m0*0


hsa-miR-29c
5′Pm0000f05f05f00f005f05f0f00*0*0*0*f0*0
m0m000m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0000681
*0


hsa-miR-29c*
5′Pm05f000f05f05f005f00005f05m0*5m0*0*
m0m0m0m0m0m0m000m0m0m0*0*m0TEGChol


MIMAT0004673
0*f0*5m0*0


hsa-miR-300
5′Pm0000f05f005f0f00005f00*0*0*0*5m0*5
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0004903
m0*0


hsa-miR-301a
5′Pm005f05f0f05f005f0f0000f05m0*0*5m0*
m0m0m0m0m0m00m00m000*m0*m0TEGChol


MIMAT0000688
5m0*5m0*0*0


hsa-miR-301b
5′Pm005f05f0f05f005f0f00005f05m0*0*5m0
m0m0m0m0m0m00m00m000*m0*m0TEGChol


MIMAT0004958
*5m0*5m0*0*0


hsa-miR-302a
5′Pm05f0005f0000f05f05f005f05m0*0*0*5m
m0m0m000m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0000684
0*f0*5m0*0


hsa-miR-302a*
5′Pm0005f0f005f005f00005f00*0*0*0*f0*5
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0000683
m0*0


hsa-miR-302b
5′Pm005f005f05f0005f05f05f00f05m0*0*0*0
m0m0m000m0m0m00m0m00*m0*m0TEGChol


MIMAT0000715
*5m0*0*0


hsa-miR-302b*
5′Pm0000f05f05f00f005f05f0f00*0*0*0*f0*0
m0m000m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0000714
*0


hsa-miR-302c
5′Pm005f00f005f005f05f05f05f05f00*0*5m0
m0m0000m0m00m0m0m00*m0*m0TEGChol


MIMAT0000717
*5m0*f0*0*0


hsa-miR-302c*
5′Pm05f000f00005f05f005f05f05m0*5m0*5
m0m00m00m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0000716
m0*5m0*f0*0*0


hsa-miR-302d
5′Pm05f05f05f05f0005f05f00005f00*5m0*5
m0m0m0m0m0m00m0m0m000*0*m0TEGChol


MIMAT0000718
m0*5m0*f0*5m0*0


hsa-miR-302d*
5′Pm0000f05f05f00f005f05f0f00*0*0*0*f0*0
m0m000m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0004685
*0


hsa-miR-302e
5′Pm005f00f005f005f05f05f05f0f05m0*0*5m
m0m0000m0m00m0m0m00*m0*m0TEGChol


MIMAT0005931
0*5m0*5m0*0*0


hsa-miR-302f
5′Pm005f05f0f05f005f0f05f0005f05m0*0*0*
m0m0m0m00m00m00m000*m0*m0TEGChol


MIMAT0005932
5m0*5m0*5m0*0


hsa-miR-3065-3p
5′Pm05f05f00f005f00f05f0005f00*5m0*5m0
m0m0m0m00m0m00m0m0m00*0*m0TEGChol


MIMAT0015378
*5m0*5m0*5m0*0


hsa-miR-3065-5p
5′Pm05f000f00005f05f05f05f0f00*5m0*5m0
m0m0000m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0015066
****


hsa-miR-3074
5′Pm05f000f00005f00005f00*5m0*5m0*5m
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0015027
0*f0*5m0*0


hsa-miR-30a
5′Pm005f00f005f005f05f05f05f0f05m0*0*5m
m0m0000m0m00m0m0m00*m0*m0TEGChol


MIMAT0000087
0*5m0*5m0*5m0*0


hsa-miR-30a*
5′Pm05f000f0000f0005f05f00*5m0*5m0*5m
m0m00m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0000088
0*f0*5m0*0


hsa-miR-30b
5′Pm05f000f0000f0005f05f00*5m0*5m0*5m
m0m00m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0000420
0*f0*5m0*0


hsa-miR-30b*
5′Pm0000f005f05f05f005f00f05m0*5m0*5m
m0m0m00m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0004589
0*0*f0*5m0*0


hsa-miR-30c
5′Pm005f00f005f005f05f05f05f05f00*0*5m0
m0m0000m0m00m0m0m00*m0*m0TEGChol


MIMAT0000244
*5m0*f0*0*0


hsa-miR-30c-1*
5′Pm0005f05f00005f05f005f0f00*0*5m0*5m
m0m00m00m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0004674
0*5m0*5m0*0


hsa-miR-30c-2*
5′Pm0005f0f0005f05f005f00f05m0*5m0*5m
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0004550
0*0*5m0*5m0*0


hsa-miR-30d
5′Pm05f05f05f05f0005f05f00005f00*5m0*5
m0m0m0m0m0m00m0m0m000*0*m0TEGChol


MIMAT0000245
m0*5m0*f0*5m0*0


hsa-miR-30d*
5′Pm005f00f005f005f05f05f05f05f00*0*5m0
m0m0000m0m00m0m0m00*m0*m0TEGChol


MIMAT0004551
*5m0*f0*0*0


hsa-miR-30e
5′Pm05f05f05f05f0005f05f00005f00*5m0*5
m0m0m0m0m0m00m0m0m000*0*m0TEGChol


MIMAT0000692
m0*5m0*f0*5m0*0


hsa-miR-30e*
5′Pm0005f0f00005f005f05f0f00*5m0*0*5m0
m0m000m0m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0000693
*f0*0*0


hsa-miR-31
5′Pm05f000f005f005f05f05f05f05f05m0*5m0
m0m0000m0m00m0m0m0m0*0*m0TEGChol


MIMAT0000089
*5m0*5m0*f0*0*0


hsa-miR-31*
5′Pm005f05f0f05f005f05f0005f0f05m0*0*5m
m0m00m0m0m00m00m000*m0*m0TEGChol


MIMAT0004504
0*5m0*f0*5m0*0


hsa-miR-3115
5′Pm05f005f0f0005f05f05f005f05f00*0*5m0
m0m00m00m00m0m0m00m0*0*m0TEGChol


MIMAT0014977
*5m0*f0*0*0


hsa-miR-3116
5′Pm05f05f00f05f05f05f0f005f00f05m0*0*5
m0m0m00m0m0000m0m00*0*m0TEGChol


MIMAT0014978
m0****


hsa-miR-3117
5′Pm005f00f05f005f05f0000f00*5m0*0*0*5
m0m0m0m0m0m00m00m0m00*m0*m0TEGChol


MIMAT0014979
m0*0*0


hsa-miR-3118
5′Pm005f05f05f0000f05f005f0f00*5m0*0*0*
m0m00m00m0m0m0m0m000*m0*m0TEGChol


MIMAT0014980
f0*0*0


hsa-miR-3119
5′Pm05f05f05f05f05f005f0f005f05f05f00*0*
m0m000m0m00m00m000*0*m0TEGChol


MIMAT0014981
0*5m0*5m0*5m0*0


hsa-miR-3120
5′Pm005f005f005f05f05f05f05f05f05f05m0*5
m0m0000m000m0m0m00*m0*m0TEGChol


MIMAT0014982
m0*0*0*f0*0*0


hsa-miR-3121
5′Pm00005f05f05f00f0000f00*0*0*5m0*f0*
m0m0m0m0m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0014983
5m0*0


hsa-miR-3122
5′Pm05f05f05f05f05f05f05f05f05f000f05m0*
m0m0m0m00m0000m000*0*m0TEGChol


MIMAT0014984
0*5m0*0*5m0*5m0*0


hsa-miR-3123
5′Pm05f0005f005f05f0f05f005f0f05m0*0*5m
m0m00m00m000m0m0m0m0*0*m0TEGChol


MIMAT0014985
0*0*f0*5m0*0


hsa-miR-3124
5′Pm00005f0005f05f05f05f05f05f05m0*5m0
m0m0000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0014986
*0*0*f0*0*0


hsa-miR-3125
5′Pm05f05f05f05f005f05f05f05f005f05f00*0
m0m00m00m000m0m000*0*m0TEGChol


MIMAT0014988
*0*5m0*f0*5m0*0


hsa-miR-3126-3p
5′Pm05f0005f005f05f0f005f05f0f05m0*0*0*
m0m000m0m000m0m0m0m0*0*m0TEGChol


MIMAT0015377
5m0*f0*0*0


hsa-miR-3126-5p
5′Pm0005f0f0005f05f05f05f00f05m0*5m0*5
m0m0m000m00m0m0m00m0*m0*m0TEGChol


MIMAT0014989
m0*0*5m0*5m0*0


hsa-miR-3127
5′Pm0000f05f05f00f005f05f0f00*0*0*0*f0*0*
m0m000m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0014990


hsa-miR-3128
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0014991
m0*5m0*5m0*0


hsa-miR-3129
5′Pm0005f0f05f005f05f05f05f05f05f05m0*0*
m0m0000m00m00m00m0*m0*m0TEGChol


MIMAT0014992
5m0*0*f0*0*0


hsa-miR-3130-3p
5′Pm05f000f05f05f05f0f005f005f00*5m0*0*
m0m0m00m0m0000m0m0m0*0*m0TEGChol


MIMAT0014994
5m0*5m0*5m0*0


hsa-miR-3130-5p
5′Pm05f000f005f05f05f05f0005f05m0*5m0*
m0m0m0m00m000m0m0m0m0*0*m0TEGChol


MIMAT0014995
5m0*0*5m0*5m0*0


hsa-miR-3131
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0014996
m0*5m0*5m0*0


hsa-miR-3132
5′Pm05f05f05f05f05f05f05f0f05f05f05f05f00
m0m0000m0000m000*0*m0TEGChol


MIMAT0014997
*0*5m0*5m0*f0*5m0*0


hsa-miR-3133
5′Pm005f05f05f05f05f05f05f05f05f05f05f00*
m0m0000m0000m000*m0*m0TEGChol


MIMAT0014998
0*0*0*5m0*0*0


hsa-miR-3134
5′Pm05f0005f005f05f0f0005f0f00*5m0*5m0
m0m00m0m0m000m0m0m0m0*0*m0TEGChol


MIMAT0015000
*0*5m0*5m0*0


hsa-miR-3135
5′Pm05f000f05f005f0f0005f0f00*5m0*5m0*
m0m00m0m0m00m00m0m0m0*0*m0TEGChol


MIMAT0015001
5m0*5m0*0*0


hsa-miR-3136
5′Pm0005f05f05f000f00005f05m0*5m0*5m0
m0m0m0m0m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0015003
*0*5m0*0*0


hsa-miR-3137
5′Pm00005f05f000f05f05f00f00*0*0*0*f0**
m0m0m000m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0015005


hsa-miR-3138
5′Pm0005f0f05f005f05f05f000f00*0*0*0*f0*
m0m0m0m00m00m00m00m0*m0*m0TEGChol


MIMAT0015006
0*0


hsa-miR-3139
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0015007
*5m0*0*f0*0*0


hsa-miR-3140
5′Pm005f005f05f005f0f05f0005f05m0*0*0*5
m0m0m0m00m00m00m0m00*m0*m0TEGChol


MIMAT0015008
m0*5m0*5m0*0


hsa-miR-3141
5′Pm005f05f05f0000f00005f00*5m0*5m0*0
m0m0m0m0m0m0m0m0m0m000*m0*m0TEGChol


MIMAT0015010
*f0*5m0*0


hsa-miR-3142
5′Pm05f0005f0005f05f05f005f0f05m0*0*5m
m0m00m00m00m0m0m0m0m0*0*m0TEGChol


MIMAT0015011
0*5m0*f0*0*0


hsa-miR-3143
5′Pm05f000f00005f05f000f00*0*0*0*f0*0*0
m0m0m0m00m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0015012


hsa-miR-3144-3p
5′Pm05f05f00f005f00f05f05f05f0f00*0*5m0*
m0m0000m0m00m0m0m00*0*m0TEGChol


MIMAT0015015
0***


hsa-miR-3144-5p
5′Pm005f00f05f000f05f05f05f0f00*0*5m0*5
m0m0000m0m0m00m0m00*m0*m0TEGChol


MIMAT0015014
m0*f0*5m0*0


hsa-miR-3145
5′Pm05f05f05f05f05f005f05f05f05f005f05m0
m0m0m000m00m00m000*0*m0TEGChol


MIMAT0015016
*5m0*0*0*f0*0*0


hsa-miR-3146
5′Pm05f005f0f0000f0000f05m0*0*5m0*5m0
m0m0m0m0m0m0m0m0m0m00m0*0*m0TEGChol


MIMAT0015018
*5m0*5m0*0


hsa-miR-3147
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0015019
*5m0*0*f0*0*0


hsa-miR-3148
5′Pm05f05f05f0f05f05f00f0005f05f05m0*5m
m0m00m0m0m0m000m000*0*m0TEGChol


MIMAT0015021
0*5m0*0***


hsa-miR-3149
5′Pm05f05f05f0f05f000f0000f00*0*5m0*0*f
m0m0m0m0m0m0m0m00m000*0*m0TEGChol


MIMAT0015022
0*0*0


hsa-miR-3150
5′Pm0000f0000f0000f00*5m0*0*0*f0*0*
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0015023

Chol


hsa-miR-3150b
5′Pm05f05f05f0f05f005f05f05f05f05f05f00*0
m0m0000m00m00m000*0*m0TEGChol


MIMAT0018194
*0*5m0*5m0*0*0


hsa-miR-3151
5′Pm05f05f05f0f05f005f0f05f05f00f05m0*5
m0m0m000m00m00m000*0*m0TEGChol


MIMAT0015024
m0*5m0*0*f0*0*0


hsa-miR-3152
5′Pm05f05f05f0f0000f0005f0f05m0*0*5m0*
m0m00m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0015025
5m0*5m0*5m0*0


hsa-miR-3153
5′Pm005f05f05f005f05f0f05f05f00f00*0*0*5
m0m0m000m000m0m000*m0*m0TEGChol


MIMAT0015026
m0*f0*5m0*0


hsa-miR-3154
5′Pm05f0005f05f005f05f005f05f05f05m0*5m
m0m000m0m00m00m0m0m0*0*m0TEGChol


MIMAT0015028
0*0*5m0*5m0*0*0


hsa-miR-3155
5′Pm05f000f005f05f05f005f005f00*0*5m0*0
m0m0m00m0m000m0m0m0m0*0*m0TEGChol


MIMAT0015029
*5m0*5m0*0


hsa-miR-3156
5′Pm0005f05f0005f05f00005f00*0*5m0*5m
m0m0m0m0m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0015030
0*f0*0*0


hsa-miR-3157
5′Pm0005f0f005f05f05f005f00f05m0*0*5m0
m0m0m00m0m000m0m00m0*m0*m0TEGChol


MIMAT0015031
*0*5m0*5m0*0


hsa-miR-3158
5′Pm05f05f005f05f05f00f05f05f005f05m0*5
m0m0m000m0m000m0m00*0*m0TEGChol


MIMAT0015032
m0*0*0*f0*5m0*0


hsa-miR-3159
5′Pm05f005f0f005f05f0f05f05f05f0f00*5m0*
m0m0000m000m0m00m0*0*m0TEGChol


MIMAT0015033
5m0*0*f0*5m0*0


hsa-miR-3160
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0015034
m0*5m0*5m0*0


hsa-miR-3161
5′Pm005f005f0005f05f05f05f05f05f05m0*0*
m0m0000m00m0m0m0m00*m0*m0TEGChol


MIMAT0015035
0*0*f0*5m0*


hsa-miR-3162
5′Pm005f00f05f05f05f0f05f05f05f0f00*0*5m
m0m0000m0000m0m00*m0*m0TEGChol


MIMAT0015036
0*5m0*f0*5m0*0


hsa-miR-3163
5′Pm005f00f0005f05f0000f05m0*5m0*0*0*
m0m0m0m0m0m00m0m0m0m00*m0*m0TEGChol


MIMAT0015037
5m0*0*0


hsa-miR-3164
5′Pm005f05f05f0005f05f0005f0f00*5m0*5m
m0m00m0m0m00m0m0m000*m0*m0TEGChol


MIMAT0015038
0*0*5m0**


hsa-miR-3165
5′Pm0000f0000f00005f05m0*5m0*5m0*0*5
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0015039
m0*5m0*0
Chol


hsa-miR-3166
5′Pm05f005f05f05f05f05f05f0005f0f00*0*5m
m0m00m0m0m0000m00m0*0*m0TEGChol


MIMAT0015040
0*0*f0**


hsa-miR-3167
5′Pm05f005f0f0005f05f05f05f05f0f00*0*5m0
m0m0000m00m0m0m00m0*0*m0TEGChol


MIMAT0015042
*0*f0*0*0


hsa-miR-3168
5′Pm005f00f05f05f005f005f05f0f05m0*0*0*
m0m000m0m0m000m0m00*m0*m0TEGChol


MIMAT0015043
0*f0*0*0


hsa-miR-3169
5′Pm05f05f00f005f00f005f005f05m0*5m0*0
m0m0m00m0m0m00m0m0m00*0*m0TEGChol


MIMAT0015044
*5m0*f0*5m0*0


hsa-miR-3170
5′Pm0005f0f005f05f05f05f05f05f05f05m0*5
m0m0000m000m0m00m0*m0*m0TEGChol


MIMAT0015045
m0*5m0*5m0*f0**


hsa-miR-3171
5′Pm05f05f05f05f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0015046
m0*5m0*5m0*0


hsa-miR-3173
5′Pm05f0005f05f005f05f005f05f0f05m0*5m0
m0m000m0m00m00m0m0m0*0*m0TEGChol


MIMAT0015048
*5m0*5m0*5m0*5m0*0


hsa-miR-3174
5′Pm05f05f00f005f05f0f005f005f05m0*0*5m
m0m0m00m0m000m0m0m00*0*m0TEGChol


MIMAT0015051
0*5m0*f0*0*


hsa-miR-3175
5′Pm05f0005f0000f0000f00*0*0*5m0*5m0*
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0015052
0*0


hsa-miR-3176
5′Pm05f05f00f05f005f0f05f0005f05m0*0*0*
m0m0m0m00m00m00m0m00*0*m0TEGChol


MIMAT0015053
5m0*5m0*5m0*0


hsa-miR-3177
5′Pm05f0005f05f005f05f005f05f05f05m0*5m
m0m000m0m00m00m0m0m0*0*m0TEGChol


MIMAT0015054
0*5m0*5m0***


hsa-miR-3178
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0015055
*5m0*0*f0*0*0


hsa-miR-3179
5′Pm05f05f05f0f05f005f05f05f05f00f05m0*5
m0m0m000m00m00m000*0*m0TEGChol


MIMAT0015056
m0*5m0*5m0*5m0*5m0*0


hsa-miR-3180
5′Pm05f005f0f0000f0000f05m0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m00m0*0*m0TEGChol


MIMAT0018178
m0*5m0*5m0*0


hsa-miR-3180-3p
5′Pm05f05f05f05f05f005f0f05f05f05f0f00*0*
m0m0000m00m00m000*0*m0TEGChol


MIMAT0015058
0*5m0*5m0*5m0*0


hsa-miR-3180-5p
5′Pm05f05f05f0f00005f05f05f05f0f05m0*0*5
m0m0000m0m0m0m0m000*0*m0TEGChol


MIMAT0015057
m0*0*f0*0*0


hsa-miR-3181
5′Pm05f05f05f05f005f005f005f05f0f00*5m0*
m0m000m0m0m00m0m000*0*m0TEGChol


MIMAT0015061
0*5m0*5m0*0*0


hsa-miR-3182
5′Pm0005f0f005f005f005f00f05m0*0*0*5m0
m0m0m00m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0015062
*5m0*5m0*0


hsa-miR-3183
5′Pm00005f05f05f05f0f05f05f05f0f00*0*5m0
m0m0000m0000m0m0m0*m0*m0TEGChol


MIMAT0015063
*0*5m0*5m0*0


hsa-miR-3184
5′Pm005f005f05f05f05f0f0005f0f05m0*0*0*
m0m00m0m0m0000m0m00*m0*m0TEGChol


MIMAT0015064
0*f0*5m0*0


hsa-miR-3185
5′Pm005f05f0f05f005f05f05f05f05f05f05m0*
m0m0000m00m00m000*m0*m0TEGChol


MIMAT0015065
5m0*0*5m0*f0*5m0*0


hsa-miR-3186-3p
5′Pm05f005f0f005f05f05f005f05f05f00*0*0*
m0m000m0m000m0m00m0*0*m0TEGChol


MIMAT0015068
0*5m0*5m0*0


hsa-miR-3186-5p
5′Pm0005f05f05f05f05f0f005f05f05f05m0*0*
m0m000m0m0000m00m0*m0*m0TEGChol


MIMAT0015067
0*5m0*f0*0*0


hsa-miR-3187
5′Pm05f05f00f05f0005f05f05f005f00*5m0*0
m0m0m000m0m0m00m0m00*0*m0TEGChol


MIMAT0015069
*5m0***


hsa-miR-3188
5′Pm005f00f0000f005f05f05f05m0*0*5m0*5
m0m000m0m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0015070
m0*f0*5m0*0


hsa-miR-3189
5′Pm00005f05f005f0f05f05f005f00*5m0*5m
m0m0m000m00m00m0m0m0*m0*m0TEGChol


MIMAT0015071
0*0*5m0*5m0*0


hsa-miR-3190
5′Pm05f005f05f005f05f0f05f05f00f05m0*5m
m0m0m000m000m0m00m0*0*m0TEGChol


MIMAT0015073
0*5m0*5m0*f0*0*0


hsa-miR-3191
5′Pm00005f005f005f05f05f005f00*5m0*0*5
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0015075
m0*5m0*0*


hsa-miR-3192
5′Pm05f05f005f005f00f0005f05f05m0*5m0*
m0m00m0m0m0m00m0m0m00*0*m0TEGChol


MIMAT0015076
5m0*5m0*5m0*5m0*0


hsa-miR-3193
5′Pm0005f05f005f05f05f005f00f05m0*0*0*0
m0m0m00m0m000m0m00m0*m0*m0TEGChol


MIMAT0015077
*5m0*5m0*0


hsa-miR-3194
5′Pm05f05f005f05f05f05f0f0005f0f05m0*5m
m0m00m0m0m0000m0m00*0*m0TEGChol


MIMAT0015078
0*0*5m0*5m0*0*0


hsa-miR-3195
5′Pm005f005f05f05f05f05f05f000f00*5m0*0
m0m0m0m00m0000m0m00*m0*m0TEGChol


MIMAT0015079
*5m0*5m0*0*0


hsa-miR-3196
5′Pm005f05f0f005f05f05f05f05f05f05f05m0*
m0m0000m000m0m000*m0*m0TEGChol


MIMAT0015080
5m0*0*0*f0*5m0*0


hsa-miR-3197
5′Pm0000f0005f05f005f05f05f05m0*5m0*0*
m0m000m0m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0015082
0*5m0*0*0


hsa-miR-3198
5′Pm05f0005f05f05f05f0f0005f0f05m0*0*0*
m0m00m0m0m0000m0m0m0*0*m0TEGChol


MIMAT0015083
5m0*f0*5m0*0


hsa-miR-3199
5′Pm05f05f00f05f000f05f005f05f05m0*0*0*
m0m00m00m0m0m00m0m00*0*m0TEGChol


MIMAT0015084
5m0*f0*0*0


hsa-miR-32
5′Pm05f05f00f05f005f05f05f000f05m0*5m0*
m0m0m0m00m00m00m0m00*0*m0TEGChol


MIMAT0000090
0*5m0*5m0*5m0*0


hsa-miR-32*
5′Pm05f000f00005f005f00f05m0*0*5m0*5m
m0m0m00m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0004505
0*f0*5m0*0


hsa-miR-3200-3p
5′Pm05f005f0f005f05f0f05f05f05f0f00*0*0*0
m0m0000m000m0m00m0*0*m0TEGChol


MIMAT0015085
*5m0*0*0


hsa-miR-3200-5p
5′Pm005f005f005f05f0f05f005f05f05m0*5m0
m0m00m00m000m0m0m00*m0*m0TEGChol


MIMAT0017392
*5m0*0*f0*0*0


hsa-miR-3201
5′Pm05f05f05f05f0005f05f005f05f05f00*0*5
m0m000m0m00m0m0m000*0*m0TEGChol


MIMAT0015086
m0*5m0*f0*5m0*0


hsa-miR-3202
5′Pm00005f05f05f005f05f05f05f05f00*5m0*
m0m0000m0m000m0m0m0*m0*m0TEGChol


MIMAT0015089
0*0*f0*5m0*0


hsa-miR-320a
5′Pm0005f0f0005f0f05f000f00*5m0*5m0*5
m0m0m0m00m00m0m0m00m0*m0*m0TEGChol


MIMAT0000510
m0*f0*0*0


hsa-miR-320b
5′Pm0000f005f05f05f05f005f05f00*5m0*5m
m0m00m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0005792
0*0*f0*5m0*0


hsa-miR-320c
5′Pm005f00f05f000f05f05f00f05m0*0*0*5m
m0m0m000m0m0m00m0m00*m0*m0TEGChol


MIMAT0005793
0*5m0*0*0


hsa-miR-320d
5′Pm05f000f0005f05f005f05f0f05m0*0*5m0
m0m000m0m00m0m0m0m0m0*0*m0TEGChol


MIMAT0006764
*5m0*f0*5m0*0


hsa-miR-320e
5′Pm0005f0f05f05f05f0f05f0005f00*5m0*0*
m0m0m0m00m0000m00m0*m0*m0TEGChol


MIMAT0015072
5m0*5m0*5m0*0


hsa-miR-323-3p
5′Pm05f05f05f05f00005f05f05f05f05f05m0*5
m0m0000m0m0m0m0m000*0*m0TEGChol


MIMAT0000755
m0*5m0*5m0*5m0*0*0


hsa-miR-323-5p
5′Pm005f00f05f005f05f005f00f05m0*5m0*5
m0m0m00m0m00m00m0m00*m0*m0TEGChol


MIMAT0004696
m0*5m0*5m0*0*0


hsa-miR-323b-3p
5′Pm05f0005f05f05f05f05f05f05f05f0f05m0*
m0m0000m0000m0m0m0*0*m0TEGChol


MIMAT0015050
5m0*5m0*5m0*5m0*5m0*0


hsa-miR-323b-5p
5′Pm005f00f05f000f05f005f0f00*0*5m0*0*f
m0m00m00m0m0m00m0m00*m0*m0TEGChol


MIMAT0001630
0*0*0


hsa-miR-324-3p
5′Pm0005f0f005f005f005f05f0f05m0*0*0*5
m0m000m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0000762
m0*5m0*5m0*0


hsa-miR-324-5p
5′Pm005f005f00005f05f05f005f00*5m0*0*0
m0m0m000m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0000761
*f0*0*0


hsa-miR-325
5′Pm005f005f005f05f05f0005f05f00*0*5m0*
m0m00m0m0m000m0m0m00*m0*m0TEGChol


MIMAT0000771
5m0*5m0*5m0*0


hsa-miR-326
5′Pm05f05f05f05f005f05f0f05f05f005f05m0*
m0m0m000m000m0m000*0*m0TEGChol


MIMAT0000756
5m0*5m0*5m0*5m0*5m0*0


hsa-miR-328
5′Pm05f05f005f0005f0f005f05f05f00*0*5m0
m0m000m0m00m0m0m0m00*0*m0TEGChol


MIMAT0000752
*0*f0*5m0*0


hsa-miR-329
5′Pm00005f0000f05f000f05m0*0*0*0*f0*0*0
m0m0m0m00m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0001629


hsa-miR-330-3p
5′Pm005f00f0000f05f05f05f05f05m0*5m0*5
m0m0000m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0000751
m0*0*5m0*0*0


hsa-miR-330-5p
5′Pm00005f05f005f05f005f05f05f00*5m0*5
m0m000m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0004693
m0*0*5m0*5m0*0


hsa-miR-331-3p
5′Pm0000f05f005f0f005f05f0f00*0*5m0*0*5
m0m000m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0000760
m0*5m0*0


hsa-miR-331-5p
5′Pm05f000f005f005f005f00f05m0*5m0*5m
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0004700
0*0*5m0*0*0


hsa-miR-335
5′Pm05f05f05f05f005f00f005f00f05m0*0*0*
m0m0m00m0m0m00m0m000*0*m0TEGChol


MIMAT0000765
0*5m0*5m0*0


hsa-miR-335*
5′Pm0000f005f005f05f05f05f05f05m0*0*5m
m0m0000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0004703
0*0*5m0*0*0


hsa-miR-337-3p
5′Pm0005f0f005f005f005f00f00*5m0*0*5m0
m0m0m00m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0000754
*5m0*0*0


hsa-miR-337-5p
5′Pm05f05f00f0005f0f0000f00*0*5m0*0*f0*
m0m0m0m0m0m00m0m0m0m00*0*m0TEGChol


MIMAT0004695
5m0*0


hsa-miR-338-3p
5′Pm05f05f05f05f00005f05f05f005f00*5m0*
m0m0m000m0m0m0m0m000*0*m0TEGChol


MIMAT0000763
5m0*5m0*5m0*0*0


hsa-miR-338-5p
5′Pm0000f0005f05f005f05f05f00*0*5m0*5m
m0m000m0m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0004701
0***


hsa-miR-339-3p
5′Pm005f00f05f005f05f005f00f05m0*5m0*5
m0m0m00m0m00m00m0m00*m0*m0TEGChol


MIMAT0004702
m0*5m0*5m0*0*0


hsa-miR-339-5p
5′Pm0000f05f005f0f0000f00*0*5m0*0*5m0
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0000764
*0*0


hsa-miR-33a
5′Pm05f05f005f00005f0000f00*5m0*0*0*f0
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0000091
*0*0


hsa-miR-33a*
5′Pm005f05f05f05f005f0f05f0005f05m0*0*5
m0m0m0m00m00m00m000*m0*m0TEGChol


MIMAT0004506
m0*0*5m0*5m0*0


hsa-miR-33b
5′Pm05f0005f005f05f0f005f05f0f05m0*0*5m
m0m000m0m000m0m0m0m0*0*m0TEGChol


MIMAT0003301
0*5m0*f0*5m0*0


hsa-miR-33b*
5′Pm05f05f05f05f05f000f05f05f05f0f05m0*5
m0m0000m0m0m00m000*0*m0TEGChol


MIMAT0004811
m0*5m0*5m0*f0*0*0


hsa-miR-340
5′Pm05f05f05f05f005f005f05f05f05f05f00*0
m0m0000m0m00m0m000*0*m0TEGChol


MIMAT0004692
*5m0*0*f0*0*0


hsa-miR-340*
5′Pm05f05f05f0f00005f05f005f0f00*0*0*5m
m0m00m00m0m0m0m0m000*0*m0TEGChol


MIMAT0000750
0*f0*0*0


hsa-miR-342-3p
5′Pm05f000f00005f005f00f05m0*0*5m0*5m
m0m0m00m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0000753
0*f0*5m0*0


hsa-miR-342-5p
5′Pm05f05f05f0f0005f05f05f0005f00*5m0*0
m0m0m0m00m00m0m0m000*0*m0TEGChol


MIMAT0004694
*0*f0*5m0*0


hsa-miR-345
5′Pm05f000f005f005f005f05f05f00*5m0*0*5
m0m000m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0000772
m0*5m0*0*0


hsa-miR-346
5′Pm05f0005f005f05f0f05f05f005f00*5m0*5
m0m0m000m000m0m0m0m0*0*m0TEGChol


MIMAT0000773
m0*0*5m0*5m0*0


hsa-miR-34a
5′Pm05f000f05f005f0f005f05f05f05m0*0*0*
m0m000m0m00m00m0m0m0*0*m0TEGChol


MIMAT0000255
0*f0*0*0


hsa-miR-34a*
5′Pm00005f05f05f005f0000f05m0*0*0*0*f0
m0m0m0m0m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0004557
*5m0*0


hsa-miR-34b
5′Pm005f005f00005f05f05f005f00*5m0*0*0
m0m0m000m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0004676
*f0*0*0


hsa-miR-34b*
5′Pm05f000f00005f05f05f005f05m0*5m0*5
m0m0m000m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0000685
m0*5m0*f0**


hsa-miR-34c-3p
5′Pm0000f0000f05f05f005f00*0*0*0*f0*0*0
m0m0m000m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0004677


hsa-miR-34c-5p
5′Pm0000f005f05f05f005f05f0f05m0*0*5m0
m0m000m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0000686
*0*5m0*5m0*0


hsa-miR-3605-3p
5′Pm05f005f05f05f000f05f000f05m0*0*0*5
m0m0m0m00m0m0m00m00m0*0*m0TEGChol


MIMAT0017982
m0*5m0*0*0


hsa-miR-3605-5p
5′Pm05f05f005f0005f05f05f0005f05m0*5m0
m0m0m0m00m00m0m0m0m00*0*m0TEGChol


MIMAT0017981
*0*5m0*5m0*0*0


hsa-miR-3606
5′Pm05f005f0f05f005f0f005f00f00*5m0*5m0
m0m0m00m0m00m00m00m0*0*m0TEGChol


MIMAT0017983
*5m0*5m0*5m0*0


hsa-miR-3607-3p
5′Pm005f05f05f05f005f0f0005f05f05m0*0*5
m0m00m0m0m00m00m000*m0*m0TEGChol


MIMAT0017985
m0*0*5m0*5m0*0


hsa-miR-3607-5p
5′Pm0000f05f005f0f05f005f0f00*0*0*0*f0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0017984
m0*0


hsa-miR-3609
5′Pm05f000f005f005f00005f00*0*5m0*5m0
m0m0m0m0m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0017986
*5m0*5m0*0


hsa-miR-3610
5′Pm05f000f005f05f0f0005f0f00*5m0*5m0*
m0m00m0m0m000m0m0m0m0*0*m0TEGChol


MIMAT0017987
0*f0*0*0


hsa-miR-3611
5′Pm0000f005f05f0f05f000f00*0*5m0*0*f0*
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0017988
5m0*0


hsa-miR-3612
5′Pm05f05f05f05f05f05f05f05f05f0005f05m0
m0m0m0m00m0000m000*0*m0TEGChol


MIMAT0017989
*5m0*5m0****


hsa-miR-3613-3p
5′Pm005f05f05f05f05f00f00005f00*0*0*5m0
m0m0m0m0m0m0m000m000*m0*m0TEGChol


MIMAT0017991
*5m0*5m0*0


hsa-miR-3613-5p
5′Pm00005f05f05f05f0f05f05f05f05f05m0*5
m0m0000m0000m0m0m0*m0*m0TEGChol


MIMAT0017990
m0*5m0*0*5m0*0*0


hsa-miR-361-3p
5′Pm005f05f05f05f005f0f0005f05f05m0*0*5
m0m00m0m0m00m00m000*m0*m0TEGChol


MIMAT0004682
m0*0*5m0*5m0*0


hsa-miR-3614-3p
5′Pm0005f0f05f05f005f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0017993
5m0*f0*0*0


hsa-miR-3614-5p
5′Pm005f05f05f05f005f05f00005f00*0*5m0*
m0m0m0m0m0m00m00m000*m0*m0TEGChol


MIMAT0017992
0*5m0*5m0*0


hsa-miR-3615
5′Pm005f05f05f005f00f005f05f05f00*0*0*5
m0m000m0m0m00m0m000*m0*m0TEGChol


MIMAT0017994
m0*5m0*5m0*0


hsa-miR-361-5p
5′Pm0005f0f05f05f005f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0000703
5m0*f0*0*0


hsa-miR-3616-3p
5′Pm005f00f005f00f05f000f00*0*5m0*5m0*
m0m0m0m00m0m00m0m0m00*m0*m0TEGChol


MIMAT0017996
5m0*0*0


hsa-miR-3616-5p
5′Pm05f05f05f05f005f005f05f0005f00*5m0*
m0m0m0m00m0m00m0m000*0*m0TEGChol


MIMAT0017995
5m0*0*5m0*0*0


hsa-miR-3617
5′Pm0005f0f0005f0f05f0005f00*5m0*0*5m0
m0m0m0m00m00m0m0m00m0*m0*m0TEGChol


MIMAT0017997
*5m0*5m0*0


hsa-miR-3618
5′Pm005f05f05f0005f0f05f05f05f0f05m0*5m
m0m0000m00m0m0m000*m0*m0TEGChol


MIMAT0017998
0*0*5m0*f0*5m0*0


hsa-miR-3619
5′Pm05f05f05f0f00005f05f005f0f05m0*0*5m
m0m00m00m0m0m0m0m000*0*m0TEGChol


MIMAT0017999
0*5m0*5m0*5m0*0


hsa-miR-3620
5′Pm05f0005f05f05f00f05f05f005f05m0*5m0
m0m0m000m0m000m0m0m0*0*m0TEGChol


MIMAT0018001
*0*5m0*5m0*5m0*0


hsa-miR-3621
5′Pm05f0005f00005f005f05f05f00*5m0*5m0
m0m000m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0018002
*0*5m0*0*0


hsa-miR-3622a-
5′Pm05f05f05f05f05f05f05f05f05f05f05f0f05
m0m0000m0000m000*0*m0TEGChol


3p
m0*5m0*5m0*5m0*5m0*5m0*0


MIMAT0018004


hsa-miR-3622a-
5′Pm0005f0f005f05f0f05f05f05f05f05m0*0*0
m0m0000m000m0m00m0*m0*m0TEGChol


5p
*0*f0*5m0*


MIMAT0018003


hsa-miR-3622b-
5′Pm05f05f00f00005f0000f05m0*5m0*5m0*
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol


3p
5m0*f0*5m0*0


MIMAT0018006


hsa-miR-3622b-
5′Pm05f0005f05f005f0f05f05f05f0f05m0*5m
m0m0000m00m00m0m0m0*0*m0TEGChol


5p
0*5m0*5m0*5m0*5m0*0


MIMAT0018005


hsa-miR-362-3p
5′Pm0000f05f005f05f05f005f0f00*5m0*0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0004683
m0*f0*0*0


hsa-miR-362-5p
5′Pm005f05f05f05f005f05f00005f00*0*5m0*
m0m0m0m0m0m00m00m000*m0*m0TEGChol


MIMAT0000705
0*5m0*5m0*0


hsa-miR-363
5′Pm05f000f0005f0f005f00f05m0*0*0*0*f0*
m0m0m00m0m00m0m0m0m0m0*0*m0TEGChol


MIMAT0000707
0*0


hsa-miR-363*
5′Pm05f0005f00005f005f05f05f00*5m0*5m0
m0m000m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0003385
*0*f0*0*0


hsa-miR-3646
5′Pm0005f05f05f05f00f005f05f05f00*5m0*0
m0m000m0m0m000m00m0*m0*m0TEGChol


MIMAT0018065
*0*f0*0*0


hsa-miR-3647-3p
5′Pm05f05f005f05f0005f05f000f00*0*5m0*0
m0m0m0m00m0m0m00m0m00*0*m0TEGChol


MIMAT0018067
*f0*0*0


hsa-miR-3647-5p
5′Pm0000f05f05f00f05f0005f05m0*0*5m0*5
m0m0m0m00m0m000m0m0m0*m0*m0TEGChol


MIMAT0018066
m0*5m0*5m0*0


hsa-miR-3648
5′Pm00005f005f05f0f05f005f0f00*5m0*5m0
m0m00m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0018068
*0*f0*5m0*0


hsa-miR-3649
5′Pm0005f0f005f005f005f05f0f05m0*0*0*5
m0m000m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0018069
m0*5m0*5m0*0


hsa-miR-365
5′Pm05f05f05f05f05f005f05f005f05f0f05m0*
m0m000m0m00m00m000*0*m0TEGChol


MIMAT0000710
5m0*5m0*5m0*5m0*0*0


hsa-miR-365*
5′Pm0005f0f05f0005f05f05f05f0f00*0*5m0*
m0m0000m0m0m00m00m0*m0*m0TEGChol


MIMAT0009199
0*f0*0*0


hsa-miR-3650
5′Pm05f05f05f05f005f005f0005f0f05m0*5m0
m0m00m0m0m0m00m0m000*0*m0TEGChol


MIMAT0018070
*5m0*5m0*5m0*5m0*0


hsa-miR-3651
5′Pm0000f0005f0f0005f0f05m0*5m0*0*0*f0
m0m00m0m0m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0018071
*0*0


hsa-miR-3652
5′Pm05f0005f05f005f0f005f00f00*5m0*5m0
m0m0m00m0m00m00m0m0m0*0*m0TEGChol


MIMAT0018072
*0*f0*0*0


hsa-miR-3653
5′Pm0000f05f0005f05f005f0f00*0*5m0*5m0
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0018073
*5m0*5m0*0


hsa-miR-3654
5′Pm00005f05f005f0f05f05f005f00*0*5m0*0
m0m0m000m00m00m0m0m0*m0*m0TEGChol


MIMAT0018074
*5m0*5m0*0


hsa-miR-3655
5′Pm05f05f00f0005f05f005f00f05m0*0*0*0*
m0m0m00m0m00m0m0m0m00*0*m0TEGChol


MIMAT0018075
f0*5m0*0


hsa-miR-3656
5′Pm0005f0f05f005f0f00005f00*5m0*5m0*0
m0m0m0m0m0m00m00m00m0*m0*m0TEGChol


MIMAT0018076
*f0*5m0*


hsa-miR-3657
5′Pm05f05f05f05f0005f05f05f05f00f05m0*0*
m0m0m000m00m0m0m000*0*m0TEGChol


MIMAT0018077
0*0*f0*0*0


hsa-miR-3658
5′Pm0000f05f05f005f0005f05f00*5m0*5m0*
m0m00m0m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0018078
5m0*5m0*5m0*0


hsa-miR-3659
5′Pm05f05f00f0005f05f05f005f0f00*0*0*5m
m0m00m00m00m0m0m0m00*0*m0TEGChol


MIMAT0018080
0*f0*0*0


hsa-miR-3660
5′Pm0000f005f05f0f05f005f05f05m0*0*5m0
m0m00m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0018081
*5m0*5m0*5m0*0


hsa-miR-3661
5′Pm005f00f05f005f0f05f0005f05m0*0*0*5
m0m0m0m00m00m00m0m00*m0*m0TEGChol


MIMAT0018082
m0*5m0*5m0*0


hsa-miR-3662
5′Pm05f0005f0000f05f000f00*5m0*5m0*0*f
m0m0m0m00m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0018083
0*5m0*0


hsa-miR-3663-3p
5′Pm0005f05f05f05f00f0000f00*0*0*0*f0**
m0m0m0m0m0m0m000m00m0*m0*m0TEGChol


MIMAT0018085


hsa-miR-3663-5p
5′Pm0005f0f05f05f005f05f000f05m0*0*0*5
m0m0m0m00m0m000m00m0*m0*m0TEGChol


MIMAT0018084
m0*f0*0*0


hsa-miR-3664
5′Pm00005f0005f0f0005f05f00*0*5m0*0*f0
m0m00m0m0m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0018086
*5m0*0


hsa-miR-3665
5′Pm05f000f005f00f005f005f05m0*0*0*5m0
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0018087
*5m0*5m0*0


hsa-miR-3666
5′Pm0000f005f05f05f05f0005f05m0*0*5m0*
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0018088
5m0*5m0*5m0*0


hsa-miR-3667-3p
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0018090
m0*0*0


hsa-miR-3667-5p
5′Pm0000f05f05f05f0f05f005f05f05m0*0*0*
m0m00m00m0000m0m0m0*m0*m0TEGChol


MIMAT0018089
0*f0**


hsa-miR-3668
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0018091
m0*5m0*0*0


hsa-miR-3669
5′Pm05f05f05f0f0005f05f0000f00*0*5m0*0*
m0m0m0m0m0m00m0m0m000*0*m0TEGChol


MIMAT0018092
5m0*5m0*0


hsa-miR-367
5′Pm05f05f005f0005f0f0000f05m0*0*5m0*5
m0m0m0m0m0m00m0m0m0m00*0*m0TEGChol


MIMAT0000719
m0*5m0*0*0


hsa-miR-367*
5′Pm005f005f05f05f00f05f005f05f00*5m0*5
m0m00m00m0m000m0m00*m0*m0TEGChol


MIMAT0004686
m0*0*f0*5m0*0


hsa-miR-3670
5′Pm0005f05f0005f05f005f005f05m0*0*5m0
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0018093
*0*5m0*5m0*0


hsa-miR-3671
5′Pm0000f005f05f05f05f0005f05m0*0*5m0*
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0018094
5m0*5m0*5m0*0


hsa-miR-3672
5′Pm05f05f05f0f05f05f00f0005f0f00*0*0*5m
m0m00m0m0m0m000m000*0*m0TEGChol


MIMAT0018095
0*5m0*5m0*0


hsa-miR-3673
5′Pm005f005f05f005f0f005f00f00*5m0*5m0
m0m0m00m0m00m00m0m00*m0*m0TEGChol


MIMAT0018096
*5m0*f0*5m0*0


hsa-miR-3674
5′Pm0005f0f005f05f05f05f005f0f05m0*0*0*
m0m00m00m000m0m00m0*m0*m0TEGChol


MIMAT0018097
0*f0*0*0


hsa-miR-3675-3p
5′Pm005f005f05f05f005f05f05f00f00*0*0*5
m0m0m000m0m000m0m00*m0*m0TEGChol


MIMAT0018099
m0*f0*0*0


hsa-miR-3675-5p
5′Pm05f05f00f05f000f05f000f00*0*0*5m0*5
m0m0m0m00m0m0m00m0m00*0*m0TEGChol


MIMAT0018098
m0*5m0*0


hsa-miR-3676
5′Pm0000f05f005f0f05f0005f05m0*5m0*0*5
m0m0m0m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0018100
m0*5m0*5m0*0


hsa-miR-3677
5′Pm005f05f05f05f005f05f05f0005f00*0*5m
m0m0m0m00m00m00m000*m0*m0TEGChol


MIMAT0018101
0*0*5m0*5m0*0


hsa-miR-3678-3p
5′Pm0005f0f05f05f005f05f005f05f05m0*5m0
m0m00m00m0m000m00m0*m0*m0TEGChol


MIMAT0018103
*5m0*5m0*f0*0*0


hsa-miR-3678-5p
5′Pm0000f05f005f0f00005f00*5m0*0*0*f0*
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0018102
0*0


hsa-miR-3679-3p
5′Pm05f05f05f05f05f05f005f05f05f05f0f05m
m0m0000m0m000m000*0*m0TEGChol


MIMAT0018105
0*5m0*5m0*5m0*5m0*5m0*0


hsa-miR-3679-5p
5′Pm0005f05f05f005f0f05f05f005f05m0*5m0
m0m0m000m00m00m00m0*m0*m0TEGChol


MIMAT0018104
*0*0*f0*0*0


hsa-miR-3680
5′Pm05f05f05f05f005f005f005f005f00*5m0*
m0m0m00m0m0m00m0m000*0*m0TEGChol


MIMAT0018106
5m0*5m0*5m0*5m0*0


hsa-miR-3680*
5′Pm05f005f05f0005f05f05f05f00f05m0*0*0
m0m0m000m00m0m0m00m0*0*m0TEGChol


MIMAT0018107
*5m0*f0**


hsa-miR-3681
5′Pm0005f05f05f05f005f005f005f00*0*0*5m
m0m0m00m0m0m000m00m0*m0*m0TEGChol


MIMAT0018108
0*5m0*0*0


hsa-miR-3681*
5′Pm05f05f005f05f0005f05f005f05f00*0*5m
m0m00m00m0m0m00m0m00*0*m0TEGChol


MIMAT0018109
0*5m0*f0*5m0*0


hsa-miR-3682
5′Pm0005f05f05f005f05f05f005f0f00*0*0*0*
m0m00m00m00m00m00m0*m0*m0TEGChol


MIMAT0018110
5m0*0*0


hsa-miR-3683
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0018111
m0*5m0*5m0*0


hsa-miR-3684
5′Pm0000f05f0005f0005f0f05m0*5m0*5m0*
m0m00m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0018112
5m0*5m0*5m0*0


hsa-miR-3685
5′Pm00005f05f05f005f005f05f05f00*5m0*0*
m0m000m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0018113
0*f0*5m0*0


hsa-miR-3686
5′Pm0000f005f05f0f05f0005f05m0*5m0*5m
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0018114
0*5m0*5m0*5m0*0


hsa-miR-3687
5′Pm0000f05f05f05f0f005f00f00*5m0*5m0*
m0m0m00m0m0000m0m0m0*m0*m0TEGChol


MIMAT0018115
5m0***


hsa-miR-3688
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0018116
m0*5m0*5m0*0


hsa-miR-3689a-
5′Pm0005f05f005f00f005f05f05f05m0*5m0*
m0m000m0m0m00m0m00m0*m0*m0TEGChol


3p
0*5m0*5m0*0*0


MIMAT0018118


hsa-miR-3689a-
5′Pm05f05f05f0f0005f05f005f00f00*0*0*5m
m0m0m00m0m00m0m0m000*0*m0TEGChol


5p
0*f0*5m0*0


MIMAT0018117


hsa-miR-3689b
5′Pm00005f005f05f0f05f0005f00*5m0*5m0*
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0018180
5m0*f0*0*0


hsa-miR-3689b*
5′Pm05f005f0f05f05f00f05f005f0f05m0*0*0*
m0m00m00m0m000m00m0*0*m0TEGChol


MIMAT0018181
5m0*f0*0*0


hsa-miR-3690
5′Pm05f0005f0005f0f05f000f00*0*5m0*5m0
m0m0m0m00m00m0m0m0m0m0*0*m0TEGChol


MIMAT0018119
*f0*0*0


hsa-miR-3691
5′Pm0000f005f00f05f005f05f05m0*5m0*5m
m0m00m00m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0018120
0*0*f0*0*0


hsa-miR-3692
5′Pm05f05f005f05f0005f05f005f05f00*0*5m
m0m00m00m0m0m00m0m00*0*m0TEGChol


MIMAT0018122
0*5m0*f0*5m0*0


hsa-miR-3692*
5′Pm05f05f00f05f005f05f0005f0f00*5m0*5m
m0m00m0m0m00m00m0m00*0*m0TEGChol


MIMAT0018121
0*5m0*5m0*0*0


hsa-miR-369-3p
5′Pm0005f05f05f005f0f05f05f005f05m0*5m0
m0m0m000m00m00m00m0*m0*m0TEGChol


MIMAT0000721
*5m0*0*5m0**


hsa-miR-369-5p
5′Pm005f00f05f005f05f05f05f00f05m0*0*5m
m0m0m000m00m00m0m00*m0*m0TEGChol


MIMAT0001621
0*5m0*f0*0*0


hsa-miR-370
5′Pm00005f005f05f05f05f0005f00*0*5m0*0
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0000722
*f0*0*0


hsa-miR-3713
5′Pm05f000f005f005f05f05f00f00*0*5m0*5
m0m0m000m0m00m0m0m0m0*0*m0TEGChol


MIMAT0018164
m0*f0*5m0*0


hsa-miR-371-3p
5′Pm05f05f05f05f05f05f05f0f05f05f005f05m
m0m0m000m0000m000*0*m0TEGChol


MIMAT0000723
0*5m0*5m0*0*5m0*0*0


hsa-miR-3714
5′Pm005f05f05f05f05f005f05f000f00*5m0*5
m0m0m0m00m0m000m000*m0*m0TEGChol


MIMAT0018165
m0*5m0*5m0*5m0*


hsa-miR-371-5p
5′Pm05f05f05f05f005f05f05f05f05f05f0f00*0
m0m0000m000m0m000*0*m0TEGChol


MIMAT0004687
*0*0*5m0*5m0*0


hsa-miR-372
5′Pm05f000f005f05f05f005f00f05m0*0*0*5
m0m0m00m0m000m0m0m0m0*0*m0TEGChol


MIMAT0000724
m0*f0*5m0*0


hsa-miR-373
5′Pm05f005f0f05f05f005f0005f05f00*5m0*0
m0m00m0m0m0m000m00m0*0*m0TEGChol


MIMAT0000726
*5m0*5m0*0*0


hsa-miR-373*
5′Pm0000f05f05f00f0005f05f00*5m0*5m0*5
m0m00m0m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0000725
m0*5m0*5m0*0


hsa-miR-374a
5′Pm0005f0f05f05f05f05f05f005f0f00*5m0*0
m0m00m00m0000m00m0*m0*m0TEGChol


MIMAT0000727
*5m0*f0*5m0*0


hsa-miR-374a*
5′Pm05f05f005f005f05f0f0000f05m0*5m0*0
m0m0m0m0m0m000m0m0m00*0*m0TEGChol


MIMAT0004688
*0*f0*5m0*0


hsa-miR-374b
5′Pm05f005f0f05f05f005f05f005f05f00*5m0*
m0m00m00m0m000m00m0*0*m0TEGChol


MIMAT0004955
0*5m0*5m0*0*0


hsa-miR-374b*
5′Pm00005f005f05f05f05f0005f05m0*5m0*5
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0004956
m0*0*f0*0*0


hsa-miR-374c
5′Pm005f05f05f0005f05f05f05f05f0f00*5m0*
m0m0000m00m0m0m000*m0*m0TEGChol


MIMAT0018443
0*5m0*f0*0*0


hsa-miR-375
5′Pm05f05f005f05f000f005f005f00*0*5m0*5
m0m0m00m0m0m0m00m0m00*0*m0TEGChol


MIMAT0000728
m0*5m0*5m0*0


hsa-miR-376a
5′Pm05f05f00f0005f0f0005f05f05m0*0*0*5
m0m00m0m0m00m0m0m0m00*0*m0TEGChol


MIMAT0000729
m0*5m0*5m0*0


hsa-miR-376a*
5′Pm05f05f05f05f05f05f005f05f05f005f05m0
m0m0m000m0m000m000*0*m0TEGChol


MIMAT0003386
*5m0*0*5m0*5m0*5m0*0


hsa-miR-376b
5′Pm005f00f05f005f05f005f05f0f00*0*0*5m
m0m000m0m00m00m0m00*m0*m0TEGChol


MIMAT0002172
0*5m0*0*0


hsa-miR-376c
5′Pm00005f05f000f005f05f0f00*0*0*5m0*5
m0m000m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0000720
m0*0*0


hsa-miR-377
5′Pm0005f05f05f05f05f0f05f05f005f05m0*5
m0m0m000m0000m00m0*m0*m0TEGChol


MIMAT0000730
m0*0*0*f0*5m0*0


hsa-miR-377*
5′Pm05f000f0005f05f0005f0f00*0*0*0*f0*0
m0m00m0m0m00m0m0m0m0m0*0*m0TEGChol


MIMAT0004689
*0


hsa-miR-378
5′Pm05f05f05f0f00005f0000f00*5m0*0*5m0
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0000732
*5m0*5m0*0


hsa-miR-378*
5′Pm05f05f05f0f005f005f0005f0f05m0*5m0*
m0m00m0m0m0m00m0m000*0*m0TEGChol


MIMAT0000731
0*0*5m0*5m0*0


hsa-miR-378b
5′Pm05f0005f00005f05f05f00f05m0*5m0*5
m0m0m000m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0014999
m0*0*5m0**


hsa-miR-378c
5′Pm05f005f0f005f005f0005f05f05m0*0*0*5
m0m00m0m0m0m00m0m00m0*0*m0TEGChol


MIMAT0016847
m0*f0*0*0


hsa-miR-379
5′Pm0000f05f05f005f0005f05f00*5m0*5m0*
m0m00m0m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0000733
5m0*5m0*5m0*


hsa-miR-379*
5′Pm05f05f05f05f005f05f05f05f05f00f05m0*
m0m0m000m000m0m000*0*m0TEGChol


MIMAT0004690
0*5m0*5m0***


hsa-miR-380
5′Pm05f05f05f05f05f05f05f0f0000f05m0*0*5
m0m0m0m0m0m0000m000*0*m0TEGChol


MIMAT0000735
m0*5m0*5m0*5m0*


hsa-miR-380*
5′Pm05f005f05f05f005f05f00005f05m0*5m0
m0m0m0m0m0m00m00m00m0*0*m0TEGChol


MIMAT0000734
*5m0*5m0***


hsa-miR-381
5′Pm05f005f05f0000f05f0005f05m0*5m0*5
m0m0m0m00m0m0m0m0m00m0*0*m0TEGChol


MIMAT0000736
m0*5m0*f0*5m0*0


hsa-miR-382
5′Pm0005f0f05f05f05f05f0005f0f00*5m0*0*
m0m00m0m0m0000m00m0*m0*m0TEGChol


MIMAT0000737
5m0*f0*0*0


hsa-miR-383
5′Pm005f005f05f05f005f05f0005f05m0*0*5
m0m0m0m00m0m000m0m00*m0*m0TEGChol


MIMAT0000738
m0*5m0*f0*5m0*0


hsa-miR-384
5′Pm00005f0000f0000f00*0*5m0*5m0*5m0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0001075
*0*0
Chol


hsa-miR-3907
5′Pm05f005f0f00005f0005f0f00*0*0*5m0*5
m0m00m0m0m0m0m0m0m00m0*0*m0TEGChol


MIMAT0018179
m0*0*0


hsa-miR-3908
5′Pm0005f0f05f05f00f05f05f00f00*5m0*0*5
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0018182
m0*5m0*0*0


hsa-miR-3909
5′Pm05f05f05f05f05f005f05f05f05f005f05m0
m0m0m000m00m00m000*0*m0TEGChol


MIMAT0018183
*0*0*0*f0*5m0*0


hsa-miR-3910
5′Pm0005f0f0005f05f005f00f00*0*5m0*0*5
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0018184
m0*0*0


hsa-miR-3911
5′Pm05f05f005f05f05f05f0f005f05f0f05m0*5
m0m000m0m0000m0m00*0*m0TEGChol


MIMAT0018185
m0*5m0*5m0*f0*5m0*0


hsa-miR-3912
5′Pm05f005f0f05f05f05f0f0005f0f00*0*0*0*
m0m00m0m0m0000m00m0*0*m0TEGChol


MIMAT0018186
5m0*5m0*0


hsa-miR-3913
5′Pm05f05f05f0f05f005f0f0000f05m0*5m0*0
m0m0m0m0m0m00m00m000*0*m0TEGChol


MIMAT0018187
*5m0*f0*5m0*0


hsa-miR-3914
5′Pm05f0005f0000f0005f0f00*0*0*5m0*5m
m0m00m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0018188
0*0*0


hsa-miR-3915
5′Pm0000f0005f05f0000f05m0*5m0*5m0*5
m0m0m0m0m0m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0018189
m0*f0*0*0


hsa-miR-3916
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0018190
m0*5m0*0


hsa-miR-3917
5′Pm05f05f005f05f000f05f05f005f00*5m0*5
m0m0m000m0m0m00m0m00*0*m0TEGChol


MIMAT0018191
m0*0*5m0*0*0


hsa-miR-3918
5′Pm005f05f05f05f05f005f05f005f05f05m0*0
m0m00m00m0m000m000*m0*m0TEGChol


MIMAT0018192
*0*0*5m0**


hsa-miR-3919
5′Pm05f0005f0000f0005f0f00*0*0*5m0*5m
m0m00m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0018193
0*0*0


hsa-miR-3920
5′Pm0005f0f05f0005f005f05f0f00*0*0*0*f0*
m0m000m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0018195
0*0


hsa-miR-3921
5′Pm005f005f05f05f005f05f005f05f00*5m0*
m0m00m00m0m000m0m00*m0*m0TEGChol


MIMAT0018196
5m0*0*f0*5m0*0


hsa-miR-3922
5′Pm05f05f005f005f05f0f05f005f05f00*5m0*
m0m00m00m000m0m0m00*0*m0TEGChol


MIMAT0018197
5m0*0*5m0*5m0*0


hsa-miR-3923
5′Pm05f005f0f005f005f0005f05f05m0*0*5m
m0m00m0m0m0m00m0m00m0*0*m0TEGChol


MIMAT0018198
0*5m0*f0*0*0


hsa-miR-3924
5′Pm0000f05f005f05f005f05f05f00*5m0*0*0
m0m000m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0018199
*5m0*5m0*0


hsa-miR-3925
5′Pm00005f05f05f05f0f05f0005f00*5m0*5m
m0m0m0m00m0000m0m0m0*m0*m0TEGChol


MIMAT0018200
0*5m0*5m0*0*0


hsa-miR-3926
5′Pm05f0005f005f005f0005f05f00*0*5m0*5
m0m00m0m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0018201
m0*5m0*5m0*0


hsa-miR-3927
5′Pm005f005f005f05f05f00005f00*0*0*0*f0
m0m0m0m0m0m000m0m0m00*m0*m0TEGChol


MIMAT0018202
*5m0*0


hsa-miR-3928
5′Pm00005f05f005f0f005f05f0f05m0*5m0*5
m0m000m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0018205
m0*5m0*5m0*0*0


hsa-miR-3929
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0018206
m0*5m0*5m0*0


hsa-miR-3934
5′Pm00005f005f005f05f005f0f00*5m0*0*5m
m0m00m00m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0018349
0*f0*5m0*0


hsa-miR-3935
5′Pm0005f05f05f005f05f05f0005f05m0*5m0
m0m0m0m00m00m00m00m0*m0*m0TEGChol


MIMAT0018350
*5m0*5m0*5m0*0*0


hsa-miR-3936
5′Pm005f005f05f005f0f05f0005f05m0*0*0*5
m0m0m0m00m00m00m0m00*m0*m0TEGChol


MIMAT0018351
m0*5m0*5m0*0


hsa-miR-3937
5′Pm05f005f05f005f005f0000f05m0*5m0*0*
m0m0m0m0m0m0m00m0m00m0*0*m0TEGChol


MIMAT0018352
5m0*5m0*0*


hsa-miR-3938
5′Pm0005f0f05f0005f0005f0f00*0*0*0*f0*0
m0m00m0m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0018353
*0


hsa-miR-3939
5′Pm05f05f00f05f000f05f05f005f00*5m0*5m
m0m0m000m0m0m00m0m00*0*m0TEGChol


MIMAT0018355
0*0*5m0*5m0*0


hsa-miR-3940
5′Pm0000f0005f05f05f05f05f0f00*0*0*5m0*
m0m0000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0018356
5m0*5m0*0


hsa-miR-3941
5′Pm05f05f00f05f05f05f05f05f0005f05m0*5
m0m0m0m00m0000m0m00*0*m0TEGChol


MIMAT0018357
m0*0*0*f0*0*0


hsa-miR-3942
5′Pm05f0005f005f00f05f05f05f0f05m0*5m0*
m0m0000m0m00m0m0m0m0*0*m0TEGChol


MIMAT0018358
0*0*f0*5m0*0


hsa-miR-3943
5′Pm005f05f05f05f0005f0000f05m0*0*0*0*f
m0m0m0m0m0m0m0m00m000*m0*m0TEGChol


MIMAT0018359
0*5m0*0


hsa-miR-3944
5′Pm0005f0f0005f0f0000f00*5m0*5m0*0*5
m0m0m0m0m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0018360
m0*0*0


hsa-miR-3945
5′Pm005f05f0f05f005f05f05f005f05f05m0*5
m0m00m00m00m00m000*m0*m0TEGChol


MIMAT0018361
m0*0*0*5m0*5m0*0


hsa-miR-409-3p
5′Pm005f05f05f00005f05f000f00*5m0*5m0*
m0m0m0m00m0m0m0m0m000*m0*m0TEGChol


MIMAT0001639
0*5m0*0*0


hsa-miR-409-5p
5′Pm05f05f005f05f05f005f05f05f00f05m0*5
m0m0m000m0m000m0m00*0*m0TEGChol


MIMAT0001638
m0*5m0*0*5m0*0*0


hsa-miR-410
5′Pm005f05f05f05f05f05f0f05f05f05f05f05m
m0m0000m0000m000*m0*m0TEGChol


MIMAT0002171
0*0*0*0*5m0*0*0


hsa-miR-411
5′Pm005f005f005f05f05f00005f00*0*0*0*f0
m0m0m0m0m0m000m0m0m00*m0*m0TEGChol


MIMAT0003329
*5m0*0


hsa-miR-411*
5′Pm0005f0f05f05f005f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0004813
0*f0*5m0*0


hsa-miR-412
5′Pm0000f05f005f0f05f0005f00*0*0*5m0*f0
m0m0m0m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0002170
*5m0*0


hsa-miR-421
5′Pm05f05f005f0000f0000f00*5m0*5m0*5m
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0003339
0*f0*5m0*0


hsa-miR-422a
5′Pm05f000f05f05f05f05f05f05f05f05f05m0*
m0m0000m0000m0m0m0*0*m0TEGChol


MIMAT0001339
5m0*0*5m0*f0*0*0


hsa-miR-423-3p
5′Pm005f05f05f005f05f05f005f005f00*5m0*
m0m0m00m0m000m0m000*m0*m0TEGChol


MIMAT0001340
5m0*5m0*f0*5m0*0


hsa-miR-423-5p
5′Pm0005f05f005f05f0f05f005f0f05m0*5m0*
m0m00m00m000m0m00m0*m0*m0TEGChol


MIMAT0004748
0*0*f0*5m0*0


hsa-miR-424
5′Pm05f05f005f0000f0000f00*5m0*5m0*5m
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0001341
0*f0*5m0*0


hsa-miR-424*
5′Pm05f000f05f005f05f05f005f05f05m0*0*5
m0m00m00m00m00m0m0m0*0*m0TEGChol


MIMAT0004749
m0*5m0*5m0*5m0*0


hsa-miR-425
5′Pm005f005f0000f0000f05m0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0003393
m0*f0*5m0*0


hsa-miR-425*
5′Pm05f05f005f005f00f00005f00*0*5m0*5m
m0m0m0m0m0m0m00m0m0m00*0*m0TEGChol


MIMAT0001343
0*5m0*5m0*0


hsa-miR-4251
5′Pm0000f0000f0000f00*0*0*5m0*f0*0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0016883

Chol


hsa-miR-4252
5′Pm0005f0f005f005f05f05f05f0f00*5m0*5m
m0m0000m0m00m0m00m0*m0*m0TEGChol


MIMAT0016886
0*0*f0*5m0*0


hsa-miR-4253
5′Pm005f05f05f05f05f05f05f05f05f05f05f05
m0m0000m0000m000*m0*m0TEGChol


MIMAT0016882
m0*5m0*5m0*5m0*5m0*5m0*


hsa-miR-4254
5′Pm005f05f05f05f0005f0005f0f00*5m0*0*0
m0m00m0m0m0m0m00m000*m0*m0TEGChol


MIMAT0016884
*5m0*0*0


hsa-miR-4255
5′Pm05f05f05f05f05f005f05f005f05f05f00*0
m0m000m0m00m00m000*0*m0TEGChol


MIMAT0016885
*0*5m0*f0*5m0*0


hsa-miR-4256
5′Pm05f005f05f0005f05f00005f05m0*5m0*5
m0m0m0m0m0m00m0m0m00m0*0*m0TEGChol


MIMAT0016877
m0*5m0*f0*5m0*0


hsa-miR-4257
5′Pm05f05f05f05f0005f05f05f05f005f00*0*5
m0m0m000m00m0m0m000*0*m0TEGChol


MIMAT0016878
m0*5m0*5m0*5m0*0


hsa-miR-4258
5′Pm005f005f05f05f005f0005f0f00*0*5m0*5
m0m00m0m0m0m000m0m00*m0*m0TEGChol


MIMAT0016879
m0*5m0*5m0*0


hsa-miR-4259
5′Pm05f05f00f05f000f0005f0f00*5m0*5m0*
m0m00m0m0m0m0m00m0m00*0*m0TEGChol


MIMAT0016880
***


hsa-miR-4260
5′Pm0000f05f0005f05f005f0f00*0*5m0*5m0
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0016881
*5m0*5m0*0


hsa-miR-4261
5′Pm0005f05f0000f05f05f00f05m0*5m0*0*5
m0m0m000m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0016890
m0*f0*0*0


hsa-miR-4262
5′Pm05f0005f05f000f05f000f05m0*0*0*0*f0
m0m0m0m00m0m0m00m0m0m0*0*m0TEGChol


MIMAT0016894
*5m0*0


hsa-miR-4263
5′Pm05f05f05f05f05f05f05f05f05f05f005f05
m0m0m000m0000m000*0*m0TEGChol


MIMAT0016898
m0*0*5m0*0*5m0*5m0*0


hsa-miR-4264
5′Pm05f005f0f005f005f00005f05m0*5m0*0*
m0m0m0m0m0m0m00m0m00m0*0*m0TEGChol


MIMAT0016899
0*5m0*5m0*0


hsa-miR-4265
5′Pm0005f05f0005f0f0005f0f05m0*0*5m0*5
m0m00m0m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0016891
m0*f0*5m0*0


hsa-miR-4266
5′Pm05f05f05f05f00005f05f0005f05m0*5m0
m0m0m0m00m0m0m0m0m000*0*m0TEGChol


MIMAT0016892
*5m0*0*f0**


hsa-miR-4267
5′Pm05f05f005f0005f05f05f000f00*0*5m0*0
m0m0m0m00m00m0m0m0m00*0*m0TEGChol


MIMAT0016893
*f0*5m0*0


hsa-miR-4268
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0016896
m0*0*0


hsa-miR-4269
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0016897
m0*5m0*5m0*0


hsa-miR-4270
5′Pm005f00f005f05f05f05f05f005f05m0*5m0
m0m0m000m000m0m0m00*m0*m0TEGChol


MIMAT0016900
*5m0*5m0*5m0*5m0*0


hsa-miR-4271
5′Pm005f05f05f005f00f0005f05f00*0*5m0*5
m0m00m0m0m0m00m0m000*m0*m0TEGChol


MIMAT0016901
m0*5m0*5m0*0


hsa-miR-4272
5′Pm0005f05f005f05f0f005f05f05f05m0*0*5
m0m000m0m000m0m00m0*m0*m0TEGChol


MIMAT0016902
m0*5m0*f0*5m0*0


hsa-miR-4273
5′Pm0005f0f005f05f05f005f00f05m0*5m0*0
m0m0m00m0m000m0m00m0*m0*m0TEGChol


MIMAT0016903
*5m0*f0*0*0


hsa-miR-4274
5′Pm05f05f005f0005f05f05f05f05f0f00*5m0*
m0m0000m00m0m0m0m00*0*m0TEGChol


MIMAT0016906
5m0*0*5m0*5m0*0


hsa-miR-4275
5′Pm0000f00005f00005f00*5m0*0*0*5m0**
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0016905

Chol


hsa-miR-4276
5′Pm005f00f005f00f05f000f00*5m0*0*0*f0*
m0m0m0m00m0m00m0m0m00*m0*m0TEGChol


MIMAT0016904
0*0


hsa-miR-4277
5′Pm0000f005f05f05f0005f0f00*0*5m0*0*5
m0m00m0m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0016908
m0*5m0*0


hsa-miR-4278
5′Pm0005f05f05f0005f0000f00*5m0*0*0***
m0m0m0m0m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0016910


hsa-miR-4279
5′Pm005f00f05f005f05f005f00f05m0*0*0*5
m0m0m00m0m00m00m0m00*m0*m0TEGChol


MIMAT0016909
m0*5m0*0*0


hsa-miR-4280
5′Pm00005f0005f0f05f05f005f05m0*0*0*5m
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0016911
0*5m0*0*0


hsa-miR-4281
5′Pm0000f05f005f05f05f005f0f00*0*5m0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0016907
m0*5m0*5m0*0


hsa-miR-4282
5′Pm005f05f0f05f05f00f05f05f005f00*5m0*0
m0m0m000m0m000m000*m0*m0TEGChol


MIMAT0016912
*0*5m0*5m0*0


hsa-miR-4283
5′Pm0000f05f005f05f05f005f0f00*0*5m0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0016914
m0*5m0*5m0*0


hsa-miR-4284
5′Pm0000f05f005f0f0000f00*0*5m0*0*5m0
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0016915
*0*0


hsa-miR-4285
5′Pm0000f05f05f005f05f05f05f05f00*0*5m0
m0m0000m0m000m0m0m0*m0*m0TEGChol


MIMAT0016913
*0*f0*0*0


hsa-miR-4286
5′Pm05f05f05f05f00005f05f005f05f05m0*5m
m0m00m00m0m0m0m0m000*0*m0TEGChol


MIMAT0016916
0*0*0*f0*5m0*0


hsa-miR-4287
5′Pm005f005f05f05f00f05f05f05f0f05m0*5m
m0m0000m0m000m0m00*m0*m0TEGChol


MIMAT0016917
0*0*0*5m0*0*0


hsa-miR-4288
5′Pm05f000f005f00f005f00f00*0*0*0*5m0*
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0016918
5m0*0


hsa-miR-4289
5′Pm05f05f00f005f05f05f0000f05m0*5m0*0
m0m0m0m0m0m000m0m0m00*0*m0TEGChol


MIMAT0016920
*0*f0*0*0


hsa-miR-429
5′Pm005f05f05f05f05f00f00005f05m0*5m0*
m0m0m0m0m0m0m000m000*m0*m0TEGChol


MIMAT0001536
0*0*f0*5m0*0


hsa-miR-4290
5′Pm05f005f0f05f0005f05f05f005f05m0*0*5
m0m0m000m0m0m00m00m0*0*m0TEGChol


MIMAT0016921
m0*5m0*5m0*5m0*0


hsa-miR-4291
5′Pm0000f005f005f05f05f005f00*0*5m0*5m
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0016922
0*5m0*5m0*0


hsa-miR-4292
5′Pm05f000f005f00f005f00f00*0*0*0*5m0*
m0m0m00m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0016919
5m0*0


hsa-miR-4293
5′Pm0000f005f00f05f05f005f00*0*0*5m0*5
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0016848
m0*5m0*0


hsa-miR-4294
5′Pm0005f0f005f00f00005f00*0*5m0*5m0*
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0016849
5m0*5m0*0


hsa-miR-4295
5′Pm0005f0f005f005f0005f05f00*0*5m0*5m
m0m00m0m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0016844
0*f0*0*0


hsa-miR-4296
5′Pm05f05f05f05f0005f05f05f05f00f00*5m0*
m0m0m000m00m0m0m000*0*m0TEGChol


MIMAT0016845
5m0*5m0*5m0*0*0


hsa-miR-4297
5′Pm05f005f05f0005f05f005f00f05m0*0*0*0
m0m0m00m0m00m0m0m00m0*0*m0TEGChol


MIMAT0016846
*f0*0*0


hsa-miR-4298
5′Pm0005f0f0000f05f05f05f0f05m0*5m0*0*
m0m0000m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0016852
5m0*f0*5m0*0


hsa-miR-4299
5′Pm0000f05f05f05f0f05f0005f00*0*0*0***
m0m0m0m00m0000m0m0m0*m0*m0TEGChol


MIMAT0016851


hsa-miR-4300
5′Pm005f005f05f005f05f05f0005f00*0*5m0*
m0m0m0m00m00m00m0m00*m0*m0TEGChol


MIMAT0016853
5m0*f0*5m0*0


hsa-miR-4301
5′Pm05f05f00f0005f05f0000f05m0*0*5m0*0
m0m0m0m0m0m00m0m0m0m00*0*m0TEGChol


MIMAT0016850
*f0*5m0*0


hsa-miR-4302
5′Pm05f05f05f05f005f005f05f005f05f05m0*0
m0m00m00m0m00m0m000*0*m0TEGChol


MIMAT0016855
*5m0*5m0*5m0*5m0*0


hsa-miR-4303
5′Pm0005f0f05f0005f005f05f05f05m0*5m0*
m0m000m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0016856
5m0*5m0*5m0**


hsa-miR-4304
5′Pm0000f005f00f005f00f05m0*0*0*0*f0*0
m0m0m00m0m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0016854
*0


hsa-miR-4305
5′Pm005f05f0f05f05f00f05f05f005f05m0*0*0
m0m0m000m0m000m000*m0*m0TEGChol


MIMAT0016857
*0*5m0*0*0


hsa-miR-4306
5′Pm005f05f05f005f00f005f05f05f00*0*5m0
m0m000m0m0m00m0m000*m0*m0TEGChol


MIMAT0016858
*5m0*5m0*5m0*0


hsa-miR-4307
5′Pm05f005f0f005f05f05f0005f05f05m0*5m0
m0m00m0m0m000m0m00m0*0*m0TEGChol


MIMAT0016860
*5m0*0*5m0*5m0*0


hsa-miR-4308
5′Pm005f00f05f005f05f005f05f0f00*5m0*0*
m0m000m0m00m00m0m00*m0*m0TEGChol


MIMAT0016861
5m0*5m0*0*


hsa-miR-4309
5′Pm0005f05f05f05f00f05f05f05f0f05m0*0*5
m0m0000m0m000m00m0*m0*m0TEGChol


MIMAT0016859
m0*5m0*5m0*5m0*0


hsa-miR-431
5′Pm0000f05f000f05f000f00*0*0*0*f0*0*
m0m0m0m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0001625


hsa-miR-431*
5′Pm00005f05f05f05f05f05f05f00f00*5m0*5
m0m0m000m0000m0m0m0*m0*m0TEGChol


MIMAT0004757
m0*5m0*5m0*5m0*0


hsa-miR-4310
5′Pm0000f05f005f05f05f005f0f00*5m0*0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0016862
m0*f0*0*0


hsa-miR-4311
5′Pm005f05f0f05f005f05f05f005f05f05m0*5
m0m00m00m00m00m000*m0*m0TEGChol


MIMAT0016863
m0*0*0*5m0*5m0*0


hsa-miR-4312
5′Pm05f05f005f0000f05f05f05f0f05m0*5m0*
m0m0000m0m0m0m0m0m00*0*m0TEGChol


MIMAT0016864
5m0*5m0*f0*0*0


hsa-miR-4313
5′Pm005f05f0f0005f05f0005f05f00*5m0*0*0
m0m00m0m0m00m0m0m000*m0*m0TEGChol


MIMAT0016865
*f0*0*0


hsa-miR-4314
5′Pm05f000f005f05f0f05f0005f05m0*0*5m0
m0m0m0m00m000m0m0m0m0*0*m0TEGChol


MIMAT0016868
*5m0*5m0*5m0*0


hsa-miR-4315
5′Pm05f000f005f05f0f0000f00*5m0*0*5m0*
m0m0m0m0m0m000m0m0m0m0*0*m0TEGChol


MIMAT0016866
5m0*5m0*0


hsa-miR-4316
5′Pm005f05f0f005f005f05f05f005f05m0*0*0
m0m0m000m0m00m0m000*m0*m0TEGChol


MIMAT0016867
*5m0*5m0*5m0*0


hsa-miR-4317
5′Pm05f005f0f0005f05f05f000f05m0*5m0*5
m0m0m0m00m00m0m0m00m0*0*m0TEGChol


MIMAT0016872
m0*0***


hsa-miR-4318
5′Pm05f05f00f005f05f05f0000f00*5m0*0*0*
m0m0m0m0m0m000m0m0m00*0*m0TEGChol


MIMAT0016869
f0*0*


hsa-miR-4319
5′Pm05f05f00f005f05f05f0000f05m0*5m0*0
m0m0m0m0m0m000m0m0m00*0*m0TEGChol


MIMAT0016870
*0*f0*0*0


hsa-miR-432
5′Pm005f05f05f05f05f05f05f005f05f05f00*5
m0m000m0m0000m000*m0*m0TEGChol


MIMAT0002814
m0*0****


hsa-miR-432*
5′Pm05f05f005f005f05f0f05f000f05m0*0*5m
m0m0m0m00m000m0m0m00*0*m0TEGChol


MIMAT0002815
0*5m0*5m0*0*0


hsa-miR-4320
5′Pm05f0005f0000f005f05f0f05m0*5m0*5m
m0m000m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0016871
0*5m0*f0*0*0


hsa-miR-4321
5′Pm0000f05f05f00f0000f05m0*0*5m0*5m0
m0m0m0m0m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0016874
*f0*0*0


hsa-miR-4322
5′Pm0005f0f0005f05f005f00f00*0*5m0*0*5
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0016873
m0*0*0


hsa-miR-4323
5′Pm0000f05f005f05f05f005f0f00*5m0*0*5
m0m00m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0016875
m0*f0*0*0


hsa-miR-4324
5′Pm05f05f005f0005f0f05f000f05m0*0*5m0
m0m0m0m00m00m0m0m0m00*0*m0TEGChol


MIMAT0016876
*5m0*5m0*5m0*0


hsa-miR-4325
5′Pm00005f005f00f05f0005f00*0*0*0*f0**
m0m0m0m00m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0016887


hsa-miR-4326
5′Pm0005f05f005f05f0f05f0005f00*5m0*5m
m0m0m0m00m000m0m00m0*m0*m0TEGChol


MIMAT0016888
0*0*f0*5m0*0


hsa-miR-4327
5′Pm05f000f005f00f0000f00*0*0*0*f0*0*0
m0m0m0m0m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0016889


hsa-miR-4328
5′Pm05f000f05f000f005f05f05f05m0*0*5m0
m0m000m0m0m0m00m0m0m0*0*m0TEGChol


MIMAT0016926
*0*5m0*0*0


hsa-miR-4329
5′Pm05f0005f005f05f0f05f000f00*5m0*0*5
m0m0m0m00m000m0m0m0m0*0*m0TEGChol


MIMAT0016923
m0*5m0*5m0*0


hsa-miR-433
5′Pm05f05f005f00005f005f05f05f05m0*5m0
m0m000m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0001627
*5m0*0*f0*5m0*0


hsa-miR-4330
5′Pm005f005f0005f0f05f0005f05m0*5m0*0*
m0m0m0m00m00m0m0m0m00*m0*m0TEGChol


MIMAT0016924
5m0*5m0*0*0


hsa-miR-448
5′Pm05f05f00f05f0005f005f00f00*0*0*0*5m
m0m0m00m0m0m0m00m0m00*0*m0TEGChol


MIMAT0001532
0**


hsa-miR-449a
5′Pm005f005f0005f0f05f0005f05m0*5m0*0*
m0m0m0m00m00m0m0m0m00*m0*m0TEGChol


MIMAT0001541
5m0*f0*5m0*0


hsa-miR-449b
5′Pm0005f05f0005f05f005f00f00*0*5m0*0*
m0m0m00m0m00m0m0m00m0*m0*m0TEGChol


MIMAT0003327
5m0*0*0


hsa-miR-449b*
5′Pm05f005f0f05f0005f0000f05m0*0*0*0*5
m0m0m0m0m0m0m0m00m00m0*0*m0TEGChol


MIMAT0009203
m0*5m0*0


hsa-miR-449c
5′Pm0000f05f005f05f05f05f05f05f05m0*0*0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0010251
*0*5m0*0*0


hsa-miR-449c*
5′Pm0005f05f05f005f05f00005f05m0*0*0*5
m0m0m0m0m0m00m00m00m0*m0*m0TEGChol


MIMAT0013771
m0*f0*5m0*0


hsa-miR-450a
5′Pm0005f0f05f05f00f05f05f00f05m0*0*0*0
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0001545
*5m0*5m0*0


hsa-miR-450b-3p
5′Pm05f005f0f05f05f05f0f05f05f05f0f00*5m
m0m0000m0000m00m0*0*m0TEGChol


MIMAT0004910
0*5m0*5m0*5m0*5m0*0


hsa-miR-450b-5p
5′Pm05f005f0f05f005f0f05f0005f00*0*5m0*
m0m0m0m00m00m00m00m0*0*m0TEGChol


MIMAT0004909
0*f0*5m0*0


hsa-miR-451
5′Pm05f05f05f05f05f05f05f0f05f05f005f05m
m0m0m000m0000m000*0*m0TEGChol


MIMAT0001631
0*5m0*5m0*5m0*5m0*0*0


hsa-miR-452
5′Pm0000f05f0005f00005f00*0*5m0*0*5m0
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0001635
*5m0*0


hsa-miR-452*
5′Pm0005f05f0000f0000f00*0*5m0*0*5m0*
m0m0m0m0m0m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0001636
5m0*0


hsa-miR-454
5′Pm005f005f0000f005f00f00*5m0*5m0*5m
m0m0m00m0m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0003885
0*5m0*5m0*0


hsa-miR-454*
5′Pm05f05f00f05f05f05f05f05f05f05f05f00*0
m0m0000m0000m0m00*0*m0TEGChol


MIMAT0003884
*5m0*5m0*f0*0*0


hsa-miR-455-3p
5′Pm00005f05f005f05f05f005f0f00*5m0*0*0
m0m00m00m00m00m0m0m0*m0*m0TEGChol


MIMAT0004784
*f0*5m0*0


hsa-miR-455-5p
5′Pm05f000f0000f05f0005f05m0*0*5m0*5m
m0m0m0m00m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0003150
0*f0*0*0


hsa-miR-466
5′Pm0000f005f05f0f0000f00*0*5m0*0*5m0
m0m0m0m0m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0015002
*0*0


hsa-miR-483-3p
5′Pm0000f05f0005f00005f05m0*0*5m0*0*5
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0002173
m0*0*0


hsa-miR-483-5p
5′Pm05f05f00f05f000f05f005f05f05m0*0*5m
m0m00m00m0m0m00m0m00*0*m0TEGChol


MIMAT0004761
0*5m0*f0*0*0


hsa-miR-484
5′Pm05f05f05f0f05f005f05f05f0005f05m0*5
m0m0m0m00m00m00m000*0*m0TEGChol


MIMAT0002174
m0*5m0*0*5m0*5m0*0


hsa-miR-485-3p
5′Pm0005f05f05f05f05f05f05f05f05f05f00*0
m0m0000m0000m00m0*m0*m0TEGChol


MIMAT0002176
*0*0*5m0*0*0


hsa-miR-485-5p
5′Pm05f05f05f0f05f005f05f05f05f05f05f00*0
m0m0000m00m00m000*0*m0TEGChol


MIMAT0002175
*0*0*5m0*0*0


hsa-miR-486-3p
5′Pm0005f05f005f00f05f05f05f05f05m0*5m0
m0m0000m0m00m0m00m0*m0*m0TEGChol


MIMAT0004762
*0*0*f0*0*0


hsa-miR-486-5p
5′Pm00005f05f05f05f0f0005f0f00*0*0*0*f0*
m0m00m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0002177
5m0*0


hsa-miR-487a
5′Pm005f05f05f05f000f00005f00*5m0*5m0*
m0m0m0m0m0m0m0m00m000*m0*m0TEGChol


MIMAT0002178
0*5m0*5m0*0


hsa-miR-487b
5′Pm0000f005f05f0f0005f05f00*5m0*5m0*5
m0m00m0m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0003180
m0*5m0**


hsa-miR-488
5′Pm05f05f05f0f05f05f005f05f05f05f0f05m0
m0m0000m0m000m000*0*m0TEGChol


MIMAT0004763
*5m0*5m0*0*5m0*0*0


hsa-miR-488*
5′Pm005f05f0f05f000f05f005f0f00*5m0*0*0
m0m00m00m0m0m00m000*m0*m0TEGChol


MIMAT0002804
*5m0*5m0*0


hsa-miR-489
5′Pm0005f0f05f05f05f05f00005f00*5m0*5m
m0m0m0m0m0m0000m00m0*m0*m0TEGChol


MIMAT0002805
0*5m0*f0*0*0


hsa-miR-490-3p
5′Pm0005f0f0000f05f05f005f00*0*5m0*5m0
m0m0m000m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0002806
*f0*5m0*0


hsa-miR-490-5p
5′Pm005f05f05f05f05f005f0005f05f05m0*5m
m0m00m0m0m0m000m000*m0*m0TEGChol


MIMAT0004764
0*5m0*0*f0*5m0*0


hsa-miR-491-3p
5′Pm05f005f0f0000f0000f00*0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m00m0*0*m0TEGChol


MIMAT0004765
m0*5m0*0


hsa-miR-491-5p
5′Pm05f0005f005f00f05f05f05f0f00*5m0*0*
m0m0000m0m00m0m0m0m0*0*m0TEGChol


MIMAT0002807
0*f0**


hsa-miR-492
5′Pm0005f05f0005f0f05f005f05f05m0*0*5m
m0m00m00m00m0m0m00m0*m0*m0TEGChol


MIMAT0002812
0*0*f0*0*0


hsa-miR-493
5′Pm0005f05f0000f0005f0f00*5m0*5m0*0*
m0m00m0m0m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0003161
5m0*0*0


hsa-miR-493*
5′Pm05f05f05f0f0005f05f0000f00*5m0*0*0*
m0m0m0m0m0m00m0m0m000*0*m0TEGChol


MIMAT0002813
**


hsa-miR-494
5′Pm05f05f00f05f005f0f0000f05m0*0*0*5m
m0m0m0m0m0m00m00m0m00*0*m0TEGChol


MIMAT0002816
0*f0*0*0


hsa-miR-495
5′Pm005f005f05f005f05f005f05f0f05m0*5m0
m0m000m0m00m00m0m00*m0*m0TEGChol


MIMAT0002817
*0*5m0*5m0*0*0


hsa-miR-496
5′Pm05f0005f005f005f05f05f00f00*0*5m0*0
m0m0m000m0m00m0m0m0m0*0*m0TEGChol


MIMAT0002818
***


hsa-miR-497
5′Pm05f05f05f05f05f000f0005f05f00*5m0*5
m0m00m0m0m0m0m00m000*0*m0TEGChol


MIMAT0002820
m0*5m0*f0*5m0*0


hsa-miR-497*
5′Pm0005f0f05f05f05f05f00005f05m0*0*0*5
m0m0m0m0m0m0000m00m0*m0*m0TEGChol


MIMAT0004768
m0*5m0*5m0*0


hsa-miR-498
5′Pm05f05f00f005f005f05f05f05f05f00*0*5m
m0m0000m0m00m0m0m00*0*m0TEGChol


MIMAT0002824
0*5m0*5m0**


hsa-miR-499-3p
5′Pm0000f0000f00005f00*0*5m0*0***
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0004772

Chol


hsa-miR-499-5p
5′Pm0005f0f005f005f00005f00*0*0*5m0*5
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0002870
m0*0*0


hsa-miR-500a
5′Pm05f05f00f05f05f05f05f05f05f05f05f00*0
m0m0000m0000m0m00*0*m0TEGChol


MIMAT0004773
*5m0*5m0*f0*0*0


hsa-miR-500a*
5′Pm0000f005f005f05f05f05f0f00*0*0*0*f0*
m0m0000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0002871
5m0*0


hsa-miR-500b
5′Pm0005f0f005f05f0f005f05f05f00*5m0*0*
m0m000m0m000m0m00m0*m0*m0TEGChol


MIMAT0016925
5m0*f0*0*0


hsa-miR-501-3p
5′Pm005f05f05f05f05f05f0f00005f05m0*5m0
m0m0m0m0m0m0000m000*m0*m0TEGChol


MIMAT0004774
*0*5m0*f0*0*0


hsa-miR-501-5p
5′Pm005f00f05f005f05f005f005f00*0*0*0*5
m0m0m00m0m00m00m0m00*m0*m0TEGChol


MIMAT0002872
m0*5m0*0


hsa-miR-502-3p
5′Pm0000f05f005f0f00005f05m0*0*0*0*f0*
m0m0m0m0m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0004775
5m0*0


hsa-miR-502-5p
5′Pm005f05f05f005f005f00005f00*5m0*5m0
m0m0m0m0m0m0m00m0m000*m0*m0TEGChol


MIMAT0002873
*5m0*f0*0*0


hsa-miR-503
5′Pm05f05f005f05f05f005f005f05f05f05m0*0
m0m000m0m0m000m0m00*0*m0TEGChol


MIMAT0002874
*5m0*0*f0*5m0*0


hsa-miR-504
5′Pm005f005f05f05f005f05f005f05f00*5m0*
m0m00m00m0m000m0m00*m0*m0TEGChol


MIMAT0002875
5m0*0*f0*5m0*0


hsa-miR-505
5′Pm005f05f0f00005f05f05f005f00*0*0*0*f0
m0m0m000m0m0m0m0m000*m0*m0TEGChol


MIMAT0002876
*5m0*0


hsa-miR-505*
5′Pm005f005f05f005f0f005f05f0f05m0*5m0*
m0m000m0m00m00m0m00*m0*m0TEGChol


MIMAT0004776
5m0*0*f0*0*0


hsa-miR-506
5′Pm005f05f05f05f05f00f05f005f0f00*0*0*0
m0m00m00m0m000m000*m0*m0TEGChol


MIMAT0002878
*f0*5m0*0


hsa-miR-507
5′Pm05f0005f05f0005f05f05f05f05f00*5m0*
m0m0000m0m0m00m0m0m0*0*m0TEGChol


MIMAT0002879
5m0*5m0*5m0**


hsa-miR-508-3p
5′Pm05f05f05f05f05f005f0f05f05f00f00*0*0*
m0m0m000m00m00m000*0*m0TEGChol


MIMAT0002880
5m0*5m0*5m0*0


hsa-miR-508-5p
5′Pm005f05f0f05f000f05f0005f00*0*5m0*0*
m0m0m0m00m0m0m00m000*m0*m0TEGChol


MIMAT0004778
f0*5m0*0


hsa-miR-509-3-5p
5′Pm005f005f05f05f05f05f05f05f05f05f00*5
m0m0000m0000m0m00*m0*m0TEGChol


MIMAT0004975
m0*5m0*5m0*5m0*5m0*


hsa-miR-509-3p
5′Pm05f000f0000f0000f05m0*5m0*5m0*0*f
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0002881
0*5m0*0


hsa-miR-509-5p
5′Pm005f05f05f0000f00005f00*0*5m0*0*f0
m0m0m0m0m0m0m0m0m0m000*m0*m0TEGChol


MIMAT0004779
*5m0*0


hsa-miR-510
5′Pm05f05f005f005f05f0f005f05f05f00*5m0*
m0m000m0m000m0m0m00*0*m0TEGChol


MIMAT0002882
5m0*0*f0*0*0


hsa-miR-511
5′Pm005f05f05f05f05f05f05f005f00f05m0*0*
m0m0m00m0m0000m000*m0*m0TEGChol


MIMAT0002808
5m0*5m0*f0*5m0*0


hsa-miR-512-3p
5′Pm005f05f0f05f005f05f05f05f05f05f05m0*
m0m0000m00m00m000*m0*m0TEGChol


MIMAT0002823
5m0*5m0*5m0*5m0*0*0


hsa-miR-512-5p
5′Pm005f05f05f05f05f05f05f05f005f05f00*0
m0m00m00m0000m000*m0*m0TEGChol


MIMAT0002822
*0*0*f0*5m0*0


hsa-miR-513a-3p
5′Pm005f00f05f05f00f05f05f00f05m0*5m0*0
m0m0m000m0m000m0m00*m0*m0TEGChol


MIMAT0004777
*0*f0*0*0


hsa-miR-513a-5p
5′Pm05f05f05f0f05f000f05f000f00*0*5m0*5
m0m0m0m00m0m0m00m000*0*m0TEGChol


MIMAT0002877
m0*5m0*5m0*0


hsa-miR-513b
5′Pm0005f05f05f000f005f05f0f05m0*5m0*0
m0m000m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0005788
*0*f0*0*0


hsa-miR-513c
5′Pm05f005f05f05f05f05f05f005f05f05f05m0
m0m000m0m0000m00m0*0*m0TEGChol


MIMAT0005789
*0*5m0*0*f0*5m0*0


hsa-miR-514
5′Pm05f000f05f05f00f005f05f0f05m0*0*5m0
m0m000m0m0m000m0m0m0*0*m0TEGChol


MIMAT0002883
*5m0*f0*5m0*0


hsa-miR-514b-3p
5′Pm05f000f0005f0f05f000f00*0*0*0*5m0*
m0m0m0m00m00m0m0m0m0m0*0*m0TEGChol


MIMAT0015088
5m0*0


hsa-miR-514b-5p
5′Pm05f0005f05f000f005f05f0f05m0*0*0*5
m0m000m0m0m0m00m0m0m0*0*m0TEGChol


MIMAT0015087
m0*5m0*0*0


hsa-miR-515-3p
5′Pm0005f0f005f05f05f0000f00*5m0*5m0*5
m0m0m0m0m0m000m0m00m0*m0*m0TEGChol


MIMAT0002827
m0*f0*5m0*0


hsa-miR-515-5p
5′Pm05f05f05f05f0000f05f05f05f05f05m0*5
m0m0000m0m0m0m0m000*0*m0TEGChol


MIMAT0002826
m0*5m0*5m0*5m0**


hsa-miR-516a-3p
5′Pm005f00f005f05f05f05f05f00f00*0*5m0*
m0m0m000m000m0m0m00*m0*m0TEGChol


MIMAT0006778
0*f0*0*


hsa-miR-516a-5p
5′Pm0000f005f00f05f05f005f00*0*5m0*5m0
m0m0m000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0004770
*5m0*5m0*0


hsa-miR-516b
5′Pm0000f005f05f0f05f0005f05m0*0*5m0*5
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0002859
m0*5m0*5m0*0


hsa-miR-516b*
5′Pm05f05f05f0f05f05f05f05f005f05f05f00*5
m0m000m0m0000m000*0*m0TEGChol


MIMAT0002860
m0*5m0*5m0*5m0*5m0*0


hsa-miR-517*
5′Pm05f000f005f05f05f0000f05m0*5m0*5m
m0m0m0m0m0m000m0m0m0m0*0*m0TEGChol


MIMAT0002851
0*5m0*f0**


hsa-miR-517a
5′Pm05f05f05f05f05f05f05f0f05f005f0f00*0*
m0m00m00m0000m000*0*m0TEGChol


MIMAT0002852
5m0*0*5m0*5m0*0


hsa-miR-517b
5′Pm05f005f05f05f05f05f05f05f05f05f05f05
m0m0000m0000m00m0*0*m0TEGChol


MIMAT0002857
m0*5m0*5m0*5m0*5m0*5m0*0


hsa-miR-517c
5′Pm05f0005f005f05f0f0005f0f05m0*0*0*5
m0m00m0m0m000m0m0m0m0*0*m0TEGChol


MIMAT0002866
m0*5m0*5m0*0


hsa-miR-518a-3p
5′Pm0005f0f005f05f05f05f05f00f05m0*5m0*
m0m0m000m000m0m00m0*m0*m0TEGChol


MIMAT0002863
0*5m0*f0*0*0


hsa-miR-518a-5p
5′Pm05f000f005f05f05f05f05f00f00*0*5m0*
m0m0m000m000m0m0m0m0*0*m0TEGChol


MIMAT0005457
5m0*5m0*5m0*0


hsa-miR-518b
5′Pm05f0005f00005f005f00f00*5m0*0*0*f0
m0m0m00m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0002844
*5m0*0


hsa-miR-518c
5′Pm005f05f05f005f05f05f005f005f05m0*5m
m0m0m00m0m000m0m000*m0*m0TEGChol


MIMAT0002848
0*0*5m0*5m0*0*0


hsa-miR-518c*
5′Pm005f05f0f05f0005f05f005f05f05m0*5m0
m0m00m00m0m0m00m000*m0*m0TEGChol


MIMAT0002847
*5m0*0*5m0*0*0


hsa-miR-518d-3p
5′Pm05f0005f05f05f005f00005f05m0*0*0*5
m0m0m0m0m0m0m000m0m0m0*0*m0TEGChol


MIMAT0002864
m0*f0*0*0


hsa-miR-518d-5p
5′Pm005f005f00005f0005f0f00*5m0*5m0*0
m0m00m0m0m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0005456
*5m0*0*0


hsa-miR-518e
5′Pm005f00f05f05f05f05f05f05f005f05m0*5
m0m0m000m0000m0m00*m0*m0TEGChol


MIMAT0002861
m0*5m0*5m0*f0*5m0*0


hsa-miR-518e*
5′Pm005f005f005f05f0f05f0005f05m0*0*5m
m0m0m0m00m000m0m0m00*m0*m0TEGChol


MIMAT0005450
0*5m0*5m0*5m0*0


hsa-miR-518f
5′Pm0005f05f05f05f00f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0002842
5m0*5m0*0*0


hsa-miR-518f*
5′Pm0005f05f005f00f0005f05f05m0*0*0*0*f
m0m00m0m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0002841
0*5m0*


hsa-miR-519a
5′Pm0005f05f05f05f05f0f05f000f05m0*0*0*
m0m0m0m00m0000m00m0*m0*m0TEGChol


MIMAT0002869
0*5m0*0*0


hsa-miR-519a*
5′Pm00005f05f05f05f0f05f0005f00*5m0*5m
m0m0m0m00m0000m0m0m0*m0*m0TEGChol


MIMAT0005452
0*5m0*5m0*5m0*0


hsa-miR-519b-3p
5′Pm005f05f0f05f005f05f0000f00*5m0*5m0
m0m0m0m0m0m00m00m000*m0*m0TEGChol


MIMAT0002837
*0*f0*5m0*0


hsa-miR-519b-5p
5′Pm0005f05f005f05f0f0000f05m0*5m0*0*0
m0m0m0m0m0m000m0m00m0*m0*m0TEGChol


MIMAT0005454
*f0*0*0


hsa-miR-519c-3p
5′Pm05f005f0f05f05f05f0f005f05f05f00*0*5
m0m000m0m0000m00m0*0*m0TEGChol


MIMAT0002832
m0*5m0*f0*5m0*0


hsa-miR-519c-5p
5′Pm05f05f05f0f0005f05f05f000f05m0*5m0*
m0m0m0m00m00m0m0m000*0*m0TEGChol


MIMAT0002831
5m0*0*5m0*0*0


hsa-miR-519d
5′Pm05f0005f05f05f05f0f05f05f00f00*5m0*0
m0m0m000m0000m0m0m0*0*m0TEGChol


MIMAT0002853
*5m0*5m0*0*0


hsa-miR-519e
5′Pm05f05f05f05f0005f05f005f05f0f00*0*0*
m0m000m0m00m0m0m000*0*m0TEGChol


MIMAT0002829
0*5m0*0*0


hsa-miR-519e*
5′Pm005f05f05f05f005f0f0005f05f00*5m0*5
m0m00m0m0m00m00m000*m0*m0TEGChol


MIMAT0002828
m0*0*5m0*0*0


hsa-miR-520a-3p
5′Pm005f00f00005f05f000f00*5m0*5m0*0*
m0m0m0m00m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0002834
5m0*0*0


hsa-miR-520a-5p
5′Pm0000f05f0005f005f05f0f00*0*0*5m0*f0
m0m000m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0002833
*0*0


hsa-miR-520b
5′Pm005f00f05f05f05f05f05f05f005f05m0*5
m0m0m000m0000m0m00*m0*m0TEGChol


MIMAT0002843
m0*5m0*5m0*f0*5m0*0


hsa-miR-520c-3p
5′Pm05f005f0f00005f05f000f00*0*5m0*5m0
m0m0m0m00m0m0m0m0m00m0*0*m0TEGChol


MIMAT0002846
*f0*5m0*0


hsa-miR-520c-5p
5′Pm00005f005f05f05f05f05f05f05f05m0*0*
m0m0000m000m0m0m0m0*m0*m0TEGChol


MIMAT0005455
5m0*5m0*5m0*5m0*0


hsa-miR-520d-3p
5′Pm05f05f05f05f005f05f05f005f05f05f05m0
m0m000m0m000m0m000*0*m0TEGChol


MIMAT0002856
*0*0*5m0*f0*0*0


hsa-miR-520d-5p
5′Pm0000f05f05f05f05f05f000f05m0*5m0*5
m0m0m0m00m0000m0m0m0*m0*m0TEGChol


MIMAT0002855
m0*5m0*f0*0*0


hsa-miR-520e
5′Pm005f05f0f05f05f005f05f05f05f0f00*0*5
m0m0000m0m000m000*m0*m0TEGChol


MIMAT0002825
m0*0*f0*0*0


hsa-miR-520f
5′Pm0000f0000f05f05f00f00*5m0*5m0*5m0
m0m0m000m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0002830
*f0*5m0*0


hsa-miR-520g
5′Pm005f00f05f05f05f05f005f05f0f00*0*5m0
m0m000m0m0000m0m00*m0*m0TEGChol


MIMAT0002858
*0*5m0*5m0*0


hsa-miR-520h
5′Pm00005f05f000f05f05f05f0f00*0*5m0*0*
m0m0000m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0002867
5m0*5m0*0


hsa-miR-521
5′Pm0000f0000f0005f05f00*0*5m0*5m0*5
m0m00m0m0m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0002854
m0*0*0


hsa-miR-522
5′Pm00005f05f005f0f005f05f0f00*0*5m0*0*
m0m000m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0002868
5m0*5m0*0


hsa-miR-522*
5′Pm00005f05f000f05f005f0f05m0*0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0005451
m0*f0*0*0


hsa-miR-523
5′Pm05f005f05f005f05f05f0000f00*5m0*0*5
m0m0m0m0m0m000m0m00m0*0*m0TEGChol


MIMAT0002840
m0*f0*5m0*0


hsa-miR-523*
5′Pm05f000f0005f05f05f05f05f05f00*0*0*0*
m0m0000m00m0m0m0m0m0*0*m0TEGChol


MIMAT0005449
5m0*5m0*0


hsa-miR-524-3p
5′Pm0005f05f005f05f05f00005f00*5m0*0*0
m0m0m0m0m0m000m0m00m0*m0*m0TEGChol


MIMAT0002850
*5m0*5m0*0


hsa-miR-524-5p
5′Pm05f05f00f05f005f05f005f005f00*5m0*5
m0m0m00m0m00m00m0m00*0*m0TEGChol


MIMAT0002849
m0*0*f0*0*0


hsa-miR-525-3p
5′Pm0005f05f005f05f0f005f05f0f00*0*0*0*f
m0m000m0m000m0m00m0*m0*m0TEGChol


MIMAT0002839
0*5m0*0


hsa-miR-525-5p
5′Pm0005f0f05f05f005f05f005f0f00*5m0*5m
m0m00m00m0m000m00m0*m0*m0TEGChol


MIMAT0002838
0*0*f0*0*0


hsa-miR-526a
5′Pm05f05f00f005f00f0005f05f05m0*5m0*5
m0m00m0m0m0m00m0m0m00*0*m0TEGChol


MIMAT0002845
m0*0*f0*0*0


hsa-miR-526b
5′Pm005f05f05f0005f05f05f05f00f00*0*0*5
m0m0m000m00m0m0m000*m0*m0TEGChol


MIMAT0002835
m0*f0*5m0*0


hsa-miR-526b*
5′Pm005f05f05f05f05f05f0f005f00f05m0*0*0
m0m0m00m0m0000m000*m0*m0TEGChol


MIMAT0002836
*0*5m0*5m0*0


hsa-miR-527
5′Pm0005f0f005f00f00005f05m0*5m0*0*5m
m0m0m0m0m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0002862
0*5m0*5m0*0


hsa-miR-532-3p
5′Pm005f05f05f0000f005f05f0f00*0*0*5m0*
m0m000m0m0m0m0m0m000*m0*m0TEGChol


MIMAT0004780
5m0*5m0*0


hsa-miR-532-5p
5′Pm005f005f05f000f005f00f00*0*0*0*f0*0
m0m0m00m0m0m0m00m0m00*m0*m0TEGChol


MIMAT0002888
*0


hsa-miR-539
5′Pm00005f05f005f05f05f05f005f00*0*0*0*
m0m0m000m00m00m0m0m0*m0*m0TEGChol


MIMAT0003163
5m0*5m0*0


hsa-miR-541
5′Pm005f00f0000f00005f00*0*0*5m0*5m0*
m0m0m0m0m0m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0004920
5m0*0


hsa-miR-541*
5′Pm005f005f00005f05f05f05f0f00*0*0*0*f0
m0m0000m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0004919
*0*0


hsa-miR-542-3p
5′Pm00005f05f05f05f0f05f05f05f05f05m0*5
m0m0000m0000m0m0m0*m0*m0TEGChol


MIMAT0003389
m0*5m0*0*f0*0*0


hsa-miR-542-5p
5′Pm0005f0f05f005f0f005f005f00*0*0*5m0*
m0m0m00m0m00m00m00m0*m0*m0TEGChol


MIMAT0003340
f0*5m0*0


hsa-miR-543
5′Pm05f05f00f0005f05f0005f05f05m0*5m0*
m0m00m0m0m00m0m0m0m00*0*m0TEGChol


MIMAT0004954
0*0*5m0*0*0


hsa-miR-544
5′Pm0005f0f0000f0005f05f00*0*0*0*f0*0*0
m0m00m0m0m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0003164


hsa-miR-544b
5′Pm005f05f0f0005f0f005f00f00*0*0*0*f0*0
m0m0m00m0m00m0m0m000*m0*m0TEGChol


MIMAT0015004
*0


hsa-miR-545
5′Pm0000f005f05f0f0000f00*5m0*0*0*f0*0
m0m0m0m0m0m000m0m0m0m0*m0*m0TEGChol


MIMAT0003165
*0


hsa-miR-545*
5′Pm05f000f0000f00005f00*0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0004785
m0*5m0*0


hsa-miR-548a-3p
5′Pm0000f05f0005f05f005f0f00*5m0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0003251
m0*5m0*5m0*0


hsa-miR-548a-5p
5′Pm0000f005f05f0f05f0005f05m0*0*5m0*5
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0004803
m0*5m0*5m0*0


hsa-miR-548aa
5′Pm05f05f005f0000f00005f00*5m0*5m0*0
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0018447
*5m0**


hsa-miR-548b-3p
5′Pm05f0005f005f05f05f005f005f05m0*5m0
m0m0m00m0m000m0m0m0m0*0*m0TEGChol


MIMAT0003254
*5m0****


hsa-miR-548b-5p
5′Pm0000f05f0005f05f005f05f00*5m0*5m0*
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0004798
5m0*5m0*5m0*0


hsa-miR-548c-3p
5′Pm0000f0000f05f05f00f00*5m0*0*5m0*f0
m0m0m000m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0003285
**


hsa-miR-548c-5p
5′Pm0000f005f05f0f05f0005f05m0*0*5m0*5
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0004806
m0*5m0*5m0*0


hsa-miR-548d-3p
5′Pm0005f0f005f05f0f05f000f05m0*0*0*0*5
m0m0m0m00m000m0m00m0*m0*m0TEGChol


MIMAT0003323
m0*5m0*0


hsa-miR-548d-5p
5′Pm005f005f05f05f00f0000f00*5m0*0*0*f0
m0m0m0m0m0m0m000m0m00*m0*m0TEGChol


MIMAT0004812
*0*0


hsa-miR-548e
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0005874
*5m0*5m0*f0*5m0*0


hsa-miR-548f
5′Pm05f05f005f0000f00005f00*5m0*5m0*0
m0m0m0m0m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0005895
*5m0*5m0*0


hsa-miR-548g
5′Pm0000f0000f00005f00*0*5m0*5m0*f0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0005912
*0
Chol


hsa-miR-548h
5′Pm005f05f05f05f005f05f05f05f05f05f05m0
m0m0000m00m00m000*m0*m0TEGChol


MIMAT0005928
*0*0*0*5m0*0*0


hsa-miR-548i
5′Pm05f05f05f0f05f05f05f05f05f05f05f0f00*
m0m0000m0000m000*0*m0TEGChol


MIMAT0005935
0*5m0*0*5m0*5m0*0


hsa-miR-548j
5′Pm05f0005f05f05f005f05f05f05f05f00*0*5
m0m0000m0m000m0m0m0*0*m0TEGChol


MIMAT0005875
m0*5m0*5m0*5m0*0


hsa-miR-548k
5′Pm005f05f05f05f005f05f05f05f05f0f05m0*
m0m0000m00m00m000*m0*m0TEGChol


MIMAT0005882
5m0*5m0*5m0*5m0*0*


hsa-miR-548l
5′Pm005f05f05f05f05f05f0f005f05f05f05m0*
m0m000m0m0000m000*m0*m0TEGChol


MIMAT0005889
0*0*0*5m0*5m0*0


hsa-miR-548m
5′Pm05f05f05f05f0000f00005f00*5m0*5m0*
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0005917
0*5m0*5m0*0


hsa-miR-548n
5′Pm0005f0f05f05f05f0f05f05f05f05f05m0*0
m0m0000m0000m00m0*m0*m0TEGChol


MIMAT0005916
*5m0*5m0*f0*0*0


hsa-miR-548o
5′Pm05f05f05f0f0000f005f00f00*0*5m0*0*f
m0m0m00m0m0m0m0m0m000*0*m0TEGChol


MIMAT0005919
0**


hsa-miR-548p
5′Pm05f05f00f005f05f05f00005f05m0*5m0*
m0m0m0m0m0m000m0m0m00*0*m0TEGChol


MIMAT0005934
5m0*5m0*5m0*5m0*0


hsa-miR-548q
5′Pm05f05f00f05f005f05f05f05f05f0f05m0*0
m0m0000m00m00m0m00*0*m0TEGChol


MIMAT0011163
*0*0*5m0*0*0


hsa-miR-548s
5′Pm05f05f05f0f0005f05f00005f00*0*0*5m0
m0m0m0m0m0m00m0m0m000*0*m0TEGChol


MIMAT0014987
*f0*0*0


hsa-miR-548t
5′Pm0000f05f05f05f05f05f0005f00*5m0*5m
m0m0m0m00m0000m0m0m0*m0*m0TEGChol


MIMAT0015009
0*5m0*f0*0*0


hsa-miR-548u
5′Pm05f0005f05f05f005f005f05f05f00*0*5m
m0m000m0m0m000m0m0m0*0*m0TEGChol


MIMAT0015013
0*5m0*5m0*5m0*0


hsa-miR-548v
5′Pm005f05f0f05f005f05f005f05f05f00*5m0*
m0m000m0m00m00m000*m0*m0TEGChol


MIMAT0015020
5m0*0*f0*0*0


hsa-miR-548w
5′Pm00005f05f000f05f005f0f00*0*5m0*0*f0
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0015060
*0*0


hsa-miR-548x
5′Pm005f00f005f00f05f05f00f05m0*5m0*0*
m0m0m000m0m00m0m0m00*m0*m0TEGChol


MIMAT0015081
0*f0*5m0*0


hsa-miR-548y
5′Pm05f05f00f05f005f05f05f05f05f0f05m0*0
m0m0000m00m00m0m00*0*m0TEGChol


MIMAT0018354
*0*0*5m0*0*0


hsa-miR-548z
5′Pm00005f0005f0f00005f05m0*5m0*5m0*
m0m0m0m0m0m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0018446
0*5m0*5m0*0


hsa-miR-549
5′Pm05f05f05f05f0000f0000f00*0*5m0*0*f0
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0003333
*5m0*0


hsa-miR-550a
5′Pm05f05f00f05f05f05f05f0005f05f05m0*0*
m0m00m0m0m0000m0m00*0*m0TEGChol


MIMAT0004800
0*5m0*5m0*0*0


hsa-miR-550a*
5′Pm05f005f0f005f05f05f05f005f0f05m0*0*0
m0m00m00m000m0m00m0*0*m0TEGChol


MIMAT0003257
*5m0*f0*5m0*0


hsa-miR-550b
5′Pm05f000f05f005f05f05f000f05m0*5m0*5
m0m0m0m00m00m00m0m0m0*0*m0TEGChol


MIMAT0018445
m0*5m0*5m0*0*0


hsa-miR-551a
5′Pm05f05f00f05f005f05f05f0005f00*0*0*5
m0m0m0m00m00m00m0m00*0*m0TEGChol


MIMAT0003214
m0*f0*5m0*0


hsa-miR-551b
5′Pm05f05f00f05f0005f0005f0f00*0*0*5m0*
m0m00m0m0m0m0m00m0m00*0*m0TEGChol


MIMAT0003233
5m0*5m0*0


hsa-miR-551b*
5′Pm00005f00005f05f000f05m0*5m0*5m0*
m0m0m0m00m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0004794
5m0*5m0*0*0


hsa-miR-552
5′Pm0005f0f05f05f05f05f05f05f05f05f05m0*
m0m0000m0000m00m0*m0*m0TEGChol


MIMAT0003215
0*0*0*f0*5m0*0


hsa-miR-553
5′Pm05f05f00f05f05f05f0f0000f00*0*0*5m0
m0m0m0m0m0m0000m0m00*0*m0TEGChol


MIMAT0003216
*5m0*5m0*0


hsa-miR-554
5′Pm005f05f0f005f005f05f005f0f00*0*5m0*
m0m00m00m0m00m0m000*m0*m0TEGChol


MIMAT0003217
5m0*f0*0*0


hsa-miR-555
5′Pm005f05f0f05f05f00f0000f05m0*5m0*5m
m0m0m0m0m0m0m000m000*m0*m0TEGChol


MIMAT0003219
0*0*f0*0*0


hsa-miR-556-3p
5′Pm0005f05f05f05f00f005f05f05f00*5m0*5
m0m000m0m0m000m00m0*m0*m0TEGChol


MIMAT0004793
m0*0*f0*5m0*0


hsa-miR-556-5p
5′Pm0000f0000f05f05f00f05m0*0*5m0*0*5
m0m0m000m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0003220
m0*0*0


hsa-miR-557
5′Pm05f05f05f05f05f000f05f005f0f00*5m0*5
m0m00m00m0m0m00m000*0*m0TEGChol


MIMAT0003221
m0*5m0*5m0*0*0


hsa-miR-558
5′Pm0005f05f05f05f05f0f0005f05f05m0*5m0
m0m00m0m0m0000m00m0*m0*m0TEGChol


MIMAT0003222
*0*0*5m0*0*0


hsa-miR-559
5′Pm05f05f05f0f00005f05f05f05f05f05m0*0*
m0m0000m0m0m0m0m000*0*m0TEGChol


MIMAT0003223
0*5m0*f0*0*0


hsa-miR-561
5′Pm05f005f05f005f05f0f05f05f00f05m0*5m
m0m0m000m000m0m00m0*0*m0TEGChol


MIMAT0003225
0*5m0*0*5m0*5m0*0


hsa-miR-562
5′Pm05f005f05f05f05f05f05f00005f05m0*0*
m0m0m0m0m0m0000m00m0*0*m0TEGChol


MIMAT0003226
0*0*5m0**


hsa-miR-563
5′Pm05f000f005f05f0f05f000f05m0*0*0*0*f
m0m0m0m00m000m0m0m0m0*0*m0TEGChol


MIMAT0003227
0*0*0


hsa-miR-564
5′Pm005f00f0005f05f0005f05f00*0*5m0*0*
m0m00m0m0m00m0m0m0m00*m0*m0TEGChol


MIMAT0003228
**


hsa-miR-566
5′Pm05f005f05f05f000f05f05f05f0f00*0*0*0
m0m0000m0m0m00m00m0*0*m0TEGChol


MIMAT0003230
*5m0*5m0*0


hsa-miR-567
5′Pm005f00f05f0005f0005f0f00*5m0*0*0*f0
m0m00m0m0m0m0m00m0m00*m0*m0TEGChol


MIMAT0003231
*5m0*0


hsa-miR-568
5′Pm05f000f00005f0000f00*0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0003232
m0*0*0


hsa-miR-569
5′Pm05f05f05f05f05f0005f05f05f05f05f05m0
m0m0000m0m0m00m000*0*m0TEGChol


MIMAT0003234
*0*5m0*0*f0*5m0*0


hsa-miR-570
5′Pm005f05f05f005f05f0f05f005f0f05m0*5m
m0m00m00m000m0m000*m0*m0TEGChol


MIMAT0003235
0*0*0*f0*0*0


hsa-miR-571
5′Pm05f005f05f0000f05f05f05f05f05m0*0*0
m0m0000m0m0m0m0m00m0*0*m0TEGChol


MIMAT0003236
*0*f0*0*0


hsa-miR-572
5′Pm05f05f00f05f005f05f05f05f05f05f05m0*
m0m0000m00m00m0m00*0*m0TEGChol


MIMAT0003237
5m0*5m0*5m0*5m0**


hsa-miR-573
5′Pm05f05f05f05f05f000f0000f00*0*5m0*0*
m0m0m0m0m0m0m0m00m000*0*m0TEGChol


MIMAT0003238
5m0*5m0*0


hsa-miR-574-3p
5′Pm05f05f005f005f00f005f005f00*5m0*0*5
m0m0m00m0m0m00m0m0m00*0*m0TEGChol


MIMAT0003239
m0*f0*5m0*0


hsa-miR-574-5p
5′Pm005f05f05f05f05f05f05f05f05f00f00*0*
m0m0m000m0000m000*m0*m0TEGChol


MIMAT0004795
0*0*5m0**


hsa-miR-575
5′Pm05f05f05f05f0000f0000f00*0*0*5m0*f0
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0003240
*5m0*0


hsa-miR-576-3p
5′Pm005f05f0f005f00f005f05f05f05m0*0*0*
m0m000m0m0m00m0m000*m0*m0TEGChol


MIMAT0004796
0*f0*0*0


hsa-miR-576-5p
5′Pm05f000f05f005f05f05f000f05m0*0*5m0
m0m0m0m00m00m00m0m0m0*0*m0TEGChol


MIMAT0003241
*0*5m0*0*0


hsa-miR-577
5′Pm0005f05f05f05f05f05f005f05f05f00*0*0
m0m000m0m0000m00m0*m0*m0TEGChol


MIMAT0003242
*0*f0*5m0*0


hsa-miR-578
5′Pm05f005f05f005f05f05f00005f00*0*0*5m
m0m0m0m0m0m000m0m00m0*0*m0TEGChol


MIMAT0003243
0*f0*0*0


hsa-miR-579
5′Pm05f05f05f0f005f005f005f00f05m0*0*5m
m0m0m00m0m0m00m0m000*0*m0TEGChol


MIMAT0003244
0*0*f0*0*0


hsa-miR-580
5′Pm005f05f05f00005f05f05f05f05f00*0*5m
m0m0000m0m0m0m0m000*m0*m0TEGChol


MIMAT0003245
0*5m0*5m0*0*0


hsa-miR-581
5′Pm0000f05f005f0f005f00f05m0*0*0*5m0*
m0m0m00m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0003246
f0*5m0*0


hsa-miR-582-3p
5′Pm05f05f05f0f0000f05f000f00*0*0*5m0*f
m0m0m0m00m0m0m0m0m000*0*m0TEGChol


MIMAT0004797
0*5m0*0


hsa-miR-582-5p
5′Pm005f05f0f05f005f05f05f0005f05m0*0*5
m0m0m0m00m00m00m000*m0*m0TEGChol


MIMAT0003247
m0*5m0*f0*0*0


hsa-miR-583
5′Pm05f05f00f05f005f05f0005f0f05m0*0*5m
m0m00m0m0m00m00m0m00*0*m0TEGChol


MIMAT0003248
0*5m0*5m0*5m0*0


hsa-miR-584
5′Pm0000f05f0005f00005f05m0*0*0*0*5m0
m0m0m0m0m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0003249
**


hsa-miR-585
5′Pm05f05f00f05f05f005f05f05f05f0f00*5m0
m0m0000m0m000m0m00*0*m0TEGChol


MIMAT0003250
*5m0*5m0*5m0*5m0*0


hsa-miR-586
5′Pm05f05f00f05f0005f05f0005f00*5m0*0*0
m0m0m0m00m0m0m00m0m00*0*m0TEGChol


MIMAT0003252
*f0*5m0*0


hsa-miR-587
5′Pm05f000f0000f05f05f05f05f05m0*0*0*0*
m0m0000m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0003253
f0*5m0*0


hsa-miR-588
5′Pm05f005f05f005f05f0f0000f00*5m0*5m0
m0m0m0m0m0m000m0m00m0*0*m0TEGChol


MIMAT0003255
*5m0***


hsa-miR-589
5′Pm005f05f0f05f000f05f005f0f05m0*0*5m0
m0m00m00m0m0m00m000*m0*m0TEGChol


MIMAT0004799
*5m0***


hsa-miR-589*
5′Pm005f00f005f05f05f005f05f0f05m0*0*0*
m0m000m0m000m0m0m00*m0*m0TEGChol


MIMAT0003256
5m0*f0*5m0*0


hsa-miR-590-3p
5′Pm0000f00005f05f005f05f00*0*0*0*5m0*
m0m00m00m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0004801
5m0*0


hsa-miR-590-5p
5′Pm005f05f0f005f05f05f005f05f0f00*0*5m0
m0m000m0m000m0m000*m0*m0TEGChol


MIMAT0003258
*0*5m0*5m0*0


hsa-miR-591
5′Pm0000f005f005f05f05f05f0f05m0*0*0*5
m0m0000m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0003259
m0*f0*5m0*0


hsa-miR-592
5′Pm005f00f0005f0f005f00f00*0*5m0*5m0*
m0m0m00m0m00m0m0m0m00*m0*m0TEGChol


MIMAT0003260
f0*0*0


hsa-miR-593
5′Pm005f005f005f05f05f0005f0f00*0*5m0*5
m0m00m0m0m000m0m0m00*m0*m0TEGChol


MIMAT0004802
m0*f0*0*0


hsa-miR-593*
5′Pm05f05f05f05f00005f0000f05m0*5m0*0*
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0003261
5m0***


hsa-miR-595
5′Pm05f05f05f0f00005f00005f05m0*0*5m0*
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0003263
5m0*f0*0*0


hsa-miR-596
5′Pm00005f05f005f05f0005f0f00*5m0*5m0*
m0m00m0m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0003264
5m0*5m0*0*0


hsa-miR-597
5′Pm005f005f05f000f005f00f00*0*0*5m0*f0
m0m0m00m0m0m0m00m0m00*m0*m0TEGChol


MIMAT0003265
*0*0


hsa-miR-598
5′Pm005f00f05f005f05f0005f0f00*0*0*5m0*
m0m00m0m0m00m00m0m00*m0*m0TEGChol


MIMAT0003266
5m0*5m0*0


hsa-miR-599
5′Pm05f000f05f05f005f05f000f00*0*0*5m0*
m0m0m0m00m0m000m0m0m0*0*m0TEGChol


MIMAT0003267
5m0*0*0


hsa-miR-600
5′Pm05f000f05f0005f05f05f05f05f05m0*5m0
m0m0000m0m0m00m0m0m0*0*m0TEGChol


MIMAT0003268
*0*5m0*f0*5m0*0


hsa-miR-601
5′Pm05f05f05f05f00005f005f05f0f05m0*0*5
m0m000m0m0m0m0m0m000*0*m0TEGChol


MIMAT0003269
m0*0*5m0*5m0*0


hsa-miR-602
5′Pm05f05f05f0f05f005f0f0005f0f00*0*5m0*
m0m00m0m0m00m00m000*0*m0TEGChol


MIMAT0003270
5m0*5m0*5m0*0


hsa-miR-603
5′Pm05f000f005f005f005f05f05f00*5m0*0*0
m0m000m0m0m00m0m0m0m0*0*m0TEGChol


MIMAT0003271
*5m0*0*0


hsa-miR-604
5′Pm00005f05f05f05f0f05f0005f05m0*5m0*
m0m0m0m00m0000m0m0m0*m0*m0TEGChol


MIMAT0003272
5m0*5m0*5m0**


hsa-miR-605
5′Pm05f05f00f05f05f05f05f0005f05f05m0*0*
m0m00m0m0m0000m0m00*0*m0TEGChol


MIMAT0003273
0*5m0*5m0*5m0*0


hsa-miR-606
5′Pm005f05f05f05f05f05f05f05f05f00f00*0*
m0m0m000m0000m000*m0*m0TEGChol


MIMAT0003274
0*0*5m0**


hsa-miR-607
5′Pm0000f00005f00005f00*0*0*0*f0*5m0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0003275

Chol


hsa-miR-608
5′Pm00005f05f005f05f005f005f05m0*0*0*0
m0m0m00m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0003276
*f0*5m0*


hsa-miR-609
5′Pm05f05f005f05f05f05f0f05f0005f00*5m0*
m0m0m0m00m0000m0m00*0*m0TEGChol


MIMAT0003277
5m0*0*f0*0*0


hsa-miR-610
5′Pm05f05f05f05f00005f0000f00*5m0*0*5m
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0003278
0*5m0*0*0


hsa-miR-611
5′Pm0000f0000f0005f05f00*0*0*0*f0*5m0*0
m0m00m0m0m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0003279


hsa-miR-612
5′Pm05f0005f0005f0f0005f05f00*5m0*5m0*
m0m00m0m0m00m0m0m0m0m0*0*m0TEGChol


MIMAT0003280
5m0*5m0*0*0


hsa-miR-613
5′Pm00005f0005f0f05f05f05f05f00*0*5m0*0
m0m0000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0003281
*f0*5m0*0


hsa-miR-614
5′Pm05f05f005f05f05f05f0f05f0005f00*5m0*
m0m0m0m00m0000m0m00*0*m0TEGChol


MIMAT0003282
5m0*0*f0*0*0


hsa-miR-615-3p
5′Pm0000f05f005f0f005f05f0f05m0*0*0*0*f
m0m000m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0003283
0*5m0*0


hsa-miR-615-5p
5′Pm005f05f0f005f00f05f005f05f00*0*0*5m
m0m00m00m0m00m0m000*m0*m0TEGChol


MIMAT0004804
0*5m0*0*0


hsa-miR-616
5′Pm05f05f005f005f005f05f05f05f05f05m0*5
m0m0000m0m00m0m0m00*0*m0TEGChol


MIMAT0004805
m0*0*0*f0*0*0


hsa-miR-616*
5′Pm0000f05f005f0f005f05f05f05m0*0*5m0
m0m000m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0003284
*5m0*f0*0*0


hsa-miR-617
5′Pm0005f0f005f00f0005f0f00*0*0*5m0*5m
m0m00m0m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0003286
0*5m0*0


hsa-miR-618
5′Pm05f05f005f0005f0f05f005f0f05m0*0*5m
m0m00m00m00m0m0m0m00*0*m0TEGChol


MIMAT0003287
0*5m0*5m0*5m0*0


hsa-miR-619
5′Pm005f05f05f005f005f05f0005f00*0*0*0*f
m0m0m0m00m0m00m0m000*m0*m0TEGChol


MIMAT0003288
0*0*0


hsa-miR-620
5′Pm0005f05f05f05f005f05f05f005f05m0*5m
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0003289
0*5m0*5m0*5m0*5m0*0


hsa-miR-621
5′Pm05f005f0f05f005f05f05f05f05f05f05m0*
m0m0000m00m00m00m0*0*m0TEGChol


MIMAT0003290
0*0*0*f0*5m0*0


hsa-miR-622
5′Pm05f0005f00005f00005f05m0*0*0*5m0*
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0003291
f0*5m0*0


hsa-miR-623
5′Pm05f05f005f00005f005f05f0f00*0*0*0*5
m0m000m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0003292
m0*0*0


hsa-miR-624
5′Pm05f05f005f005f005f05f05f05f05f05m0*5
m0m0000m0m00m0m0m00*0*m0TEGChol


MIMAT0004807
m0*0*0*f0*0*0


hsa-miR-624*
5′Pm05f005f05f05f05f005f005f05f05f05m0*0
m0m000m0m0m000m00m0*0*m0TEGChol


MIMAT0003293
*5m0*0*5m0*5m0*0


hsa-miR-625
5′Pm05f05f05f0f05f005f05f005f00f05m0*5m
m0m0m00m0m00m00m000*0*m0TEGChol


MIMAT0003294
0*5m0*0*f0*5m0*0


hsa-miR-625*
5′Pm005f00f005f05f0f00005f05m0*5m0*0*5
m0m0m0m0m0m000m0m0m00*m0*m0TEGChol


MIMAT0004808
m0*f0*0*0


hsa-miR-626
5′Pm05f005f0f05f005f0f05f005f0f00*5m0*5
m0m00m00m00m00m00m0*0*m0TEGChol


MIMAT0003295
m0*0*5m0*5m0*0


hsa-miR-627
5′Pm05f005f05f05f0005f05f05f05f05f05m0*0
m0m0000m0m0m00m00m0*0*m0TEGChol


MIMAT0003296
*5m0*0*5m0*5m0*0


hsa-miR-628-3p
5′Pm0000f05f000f05f005f0f05m0*0*5m0*5
m0m00m00m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0003297
m0*f0*0*0


hsa-miR-628-5p
5′Pm0005f0f005f005f05f05f05f0f05m0*5m0*
m0m0000m0m00m0m00m0*m0*m0TEGChol


MIMAT0004809
5m0*0*f0*5m0*0


hsa-miR-629
5′Pm00005f005f00f00005f05m0*5m0*0*0*f
m0m0m0m0m0m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0004810
0*5m0*0


hsa-miR-629*
5′Pm005f00f05f000f005f00f00*0*5m0*5m0*
m0m0m00m0m0m0m00m0m00*m0*m0TEGChol


MIMAT0003298
5m0*5m0*0


hsa-miR-630
5′Pm00005f0000f0005f05f00*0*5m0*0*f0*0
m0m00m0m0m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0003299
*0


hsa-miR-631
5′Pm05f005f05f05f000f05f05f05f05f05m0*0*
m0m0000m0m0m00m00m0*0*m0TEGChol


MIMAT0003300
5m0*0*5m0*5m0*0


hsa-miR-632
5′Pm005f005f05f005f05f005f05f0f05m0*0*5
m0m000m0m00m00m0m00*m0*m0TEGChol


MIMAT0003302
m0*5m0*f0*0*0


hsa-miR-633
5′Pm05f000f05f05f05f05f005f00f05m0*0*0*
m0m0m00m0m0000m0m0m0*0*m0TEGChol


MIMAT0003303
0*f0*0*0


hsa-miR-634
5′Pm005f005f00005f05f000f05m0*0*5m0*5
m0m0m0m00m0m0m0m0m0m00*m0*m0TEGChol


MIMAT0003304
m0*f0*5m0*0


hsa-miR-635
5′Pm0005f0f05f000f00005f05m0*0*0*0*5m
m0m0m0m0m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0003305
0*0*0


hsa-miR-636
5′Pm005f05f0f05f000f005f00f00*0*5m0*5m
m0m0m00m0m0m0m00m000*m0*m0TEGChol


MIMAT0003306
0*f0*5m0*0


hsa-miR-637
5′Pm0000f05f05f05f0f0000f05m0*0*0*0*f0*
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0003307
0*0


hsa-miR-638
5′Pm005f05f05f00005f005f005f05m0*5m0*0
m0m0m00m0m0m0m0m0m000*m0*m0TEGChol


MIMAT0003308
*5m0*f0*5m0*0


hsa-miR-639
5′Pm0000f0000f00005f00*0*5m0*5m0*5m0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0003309
*5m0*0
Chol


hsa-miR-640
5′Pm05f005f0f0005f05f05f0005f00*5m0*0*5
m0m0m0m00m00m0m0m00m0*0*m0TEGChol


MIMAT0003310
m0*f0*0*0


hsa-miR-641
5′Pm05f000f0005f05f05f005f0f00*0*5m0*5
m0m00m00m00m0m0m0m0m0*0*m0TEGChol


MIMAT0003311
m0*5m0*5m0*0


hsa-miR-642a
5′Pm05f05f05f0f05f05f05f05f05f05f05f05f05
m0m0000m0000m000*0*m0TEGChol


MIMAT0003312
m0*5m0*5m0*5m0*5m0*5m0*0


hsa-miR-642b
5′Pm0005f05f05f05f005f0005f05f05m0*5m0
m0m00m0m0m0m000m00m0*m0*m0TEGChol


MIMAT0018444
*0*0*f0**


hsa-miR-643
5′Pm0000f05f05f00f05f05f05f05f05m0*5m0*
m0m0000m0m000m0m0m0*m0*m0TEGChol


MIMAT0003313
5m0*5m0*5m0*0*0


hsa-miR-644
5′Pm0005f0f005f05f05f05f005f05f05m0*5m0
m0m00m00m000m0m00m0*m0*m0TEGChol


MIMAT0003314
*0*5m0*f0*0*0


hsa-miR-645
5′Pm005f005f005f05f05f005f05f05f00*0*0*0
m0m000m0m000m0m0m00*m0*m0TEGChol


MIMAT0003315
*f0*5m0*0


hsa-miR-646
5′Pm0000f05f0005f005f005f00*5m0*5m0*0
m0m0m00m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0003316
*5m0*5m0*0


hsa-miR-647
5′Pm0000f0005f05f05f05f05f05f05m0*5m0*
m0m0000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0003317
5m0*5m0*f0*0*0


hsa-miR-648
5′Pm05f000f0005f0f0005f0f05m0*0*0*0*f0*
m0m00m0m0m00m0m0m0m0m0*0*m0TEGChol


MIMAT0003318
0*0


hsa-miR-649
5′Pm05f05f005f05f05f05f05f005f05f0f05m0*
m0m000m0m0000m0m00*0*m0TEGChol


MIMAT0003319
5m0*5m0*0*f0*0*0


hsa-miR-650
5′Pm0000f05f05f05f0f00005f05m0*5m0*5m
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0003320
0*5m0*f0*0*0


hsa-miR-651
5′Pm05f05f05f0f00005f05f05f05f0f00*5m0*5
m0m0000m0m0m0m0m000*0*m0TEGChol


MIMAT0003321
m0*5m0*5m0*0*0


hsa-miR-652
5′Pm005f05f05f05f05f00f0005f05f05m0*0*0
m0m00m0m0m0m000m000*m0*m0TEGChol


MIMAT0003322
*0*5m0*0*0


hsa-miR-653
5′Pm05f005f0f05f05f05f0f05f05f05f05f00*0*
m0m0000m0000m00m0*0*m0TEGChol


MIMAT0003328
5m0*0*f0**


hsa-miR-654-3p
5′Pm05f05f05f05f05f000f05f005f0f00*5m0*0
m0m00m00m0m0m00m000*0*m0TEGChol


MIMAT0004814
*0*f0*5m0*0


hsa-miR-654-5p
5′Pm00005f0005f05f005f005f05m0*0*5m0*
m0m0m00m0m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0003330
5m0*5m0*0*0


hsa-miR-655
5′Pm0000f0005f05f0000f00*5m0*0*0*f0*0*0
m0m0m0m0m0m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0003331


hsa-miR-656
5′Pm005f05f0f05f005f0f005f005f05m0*5m0*
m0m0m00m0m00m00m000*m0*m0TEGChol


MIMAT0003332
0*5m0*5m0*5m0*0


hsa-miR-657
5′Pm05f05f005f005f05f0f05f05f00f00*0*0*5
m0m0m000m000m0m0m00*0*m0TEGChol


MIMAT0003335
m0*5m0*5m0*0


hsa-miR-658
5′Pm00005f0000f05f05f05f05f05m0*0*5m0*
m0m0000m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0003336
5m0*5m0*5m0*0


hsa-miR-659
5′Pm005f05f05f05f05f05f05f005f05f05f05m0
m0m000m0m0000m000*m0*m0TEGChol


MIMAT0003337
*5m0*5m0*0*f0*0*0


hsa-miR-660
5′Pm05f05f05f0f0000f05f000f05m0*5m0*5m
m0m0m0m00m0m0m0m0m000*0*m0TEGChol


MIMAT0003338
0*5m0*5m0*5m0*0


hsa-miR-661
5′Pm05f005f0f05f05f05f05f005f005f05m0*0*
m0m0m00m0m0000m00m0*0*m0TEGChol


MIMAT0003324
5m0*0*f0*5m0*0


hsa-miR-662
5′Pm005f05f0f05f0005f005f00f00*0*5m0*5
m0m0m00m0m0m0m00m000*m0*m0TEGChol


MIMAT0003325
m0*5m0*0*0


hsa-miR-663
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0003326
*5m0*0*5m0*5m0*0


hsa-miR-663b
5′Pm05f05f00f05f05f00f005f05f0f00*5m0*0*
m0m000m0m0m000m0m00*0*m0TEGChol


MIMAT0005867
5m0*f0*0*0


hsa-miR-664
5′Pm00005f00005f0000f00*0*0*0*5m0*0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0005949

Chol


hsa-miR-664*
5′Pm0005f05f0005f0f05f005f0f05m0*5m0*5
m0m00m00m00m0m0m00m0*m0*m0TEGChol


MIMAT0005948
m0*5m0*5m0*5m0*


hsa-miR-665
5′Pm0005f0f05f0005f005f05f0f00*5m0*0*0*
m0m000m0m0m0m00m00m0*m0*m0TEGChol


MIMAT0004952
f0*5m0*


hsa-miR-668
5′Pm05f05f05f05f005f005f005f00f00*0*5m0
m0m0m00m0m0m00m0m000*0*m0TEGChol


MIMAT0003881
*5m0*5m0*0*0


hsa-miR-670
5′Pm005f05f05f05f05f05f0f05f005f0f00*5m0
m0m00m00m0000m000*m0*m0TEGChol


MIMAT0010357
*0*0*f0*0*0


hsa-miR-671-3p
5′Pm00005f05f05f05f05f0000f00*5m0*0*0*f
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0004819
0*0*0


hsa-miR-671-5p
5′Pm0005f0f05f05f05f0f05f0005f05m0*5m0*
m0m0m0m00m0000m00m0*m0*m0TEGChol


MIMAT0003880
5m0*0*f0*5m0*


hsa-miR-675
5′Pm0000f05f000f005f005f00*0*5m0*0*5m
m0m0m00m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0004284
0*0*0


hsa-miR-675*
5′Pm0005f05f05f005f0f00005f05m0*0*0*0*f
m0m0m0m0m0m00m00m00m0*m0*m0TEGChol


MIMAT0006790
0*5m0*0


hsa-miR-676
5′Pm0000f05f05f05f05f05f05f05f05f05m0*5
m0m0000m0000m0m0m0*m0*m0TEGChol


MIMAT0018204
m0*0*5m0*f0*0*0


hsa-miR-676*
5′Pm0005f0f05f05f005f05f05f00f05m0*0*0*
m0m0m000m0m000m00m0*m0*m0TEGChol


MIMAT0018203
0*f0*0*0


hsa-miR-7
5′Pm0005f0f00005f005f05f0f05m0*0*0*0*f0
m0m000m0m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0000252
*5m0*0


hsa-miR-708
5′Pm05f005f0f0000f0000f05m0*5m0*5m0*5
m0m0m0m0m0m0m0m0m0m00m0*0*m0TEGChol


MIMAT0004926
m0*5m0*5m0*0


hsa-miR-708*
5′Pm005f05f05f005f005f0000f00*0*5m0*5m
m0m0m0m0m0m0m00m0m000*m0*m0TEGChol


MIMAT0004927
0*f0*0*


hsa-miR-7-1*
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0004553
*5m0*0*f0*0*0


hsa-miR-711
5′Pm005f00f05f05f05f0f005f05f0f05m0*0*5
m0m000m0m0000m0m00*m0*m0TEGChol


MIMAT0012734
m0*5m0*5m0*0*0


hsa-miR-718
5′Pm05f000f0005f05f05f000f00*0*0*5m0*f0
m0m0m0m00m00m0m0m0m0m0*0*m0TEGChol


MIMAT0012735
*0*


hsa-miR-7-2*
5′Pm0005f05f0000f0005f0f00*0*5m0*0*f0*
m0m00m0m0m0m0m0m0m00m0*m0*m0TEGChol


MIMAT0004554
0*0


hsa-miR-720
5′Pm05f05f005f005f05f0f05f05f00f00*0*0*5
m0m0m000m000m0m0m00*0*m0TEGChol


MIMAT0005954
m0*5m0*0*0


hsa-miR-744
5′Pm005f05f0f005f00f05f0005f00*5m0*5m0
m0m0m0m00m0m00m0m000*m0*m0TEGChol


MIMAT0004945
*5m0*f0*5m0*0


hsa-miR-744*
5′Pm0000f05f005f0f05f05f05f0f00*5m0*0*5
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0004946
m0*f0*0*0


hsa-miR-758
5′Pm00005f05f05f05f05f0005f0f05m0*0*5m
m0m00m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0003879
0*5m0*f0*0*0


hsa-miR-759
5′Pm05f0005f05f05f005f05f000f00*5m0*5m
m0m0m0m00m0m000m0m0m0*0*m0TEGChol


MIMAT0010497
0*0*f0*0*0


hsa-miR-760
5′Pm0000f05f05f005f00005f00*5m0*5m0*0
m0m0m0m0m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0004957
*f0*5m0*0


hsa-miR-761
5′Pm005f05f05f005f05f05f005f05f05f05m0*5
m0m000m0m000m0m000*m0*m0TEGChol


MIMAT0010364
m0*0*0*5m0*5m0*0


hsa-miR-762
5′Pm005f005f005f05f05f05f05f05f05f00*0*0
m0m0000m000m0m0m00*m0*m0TEGChol


MIMAT0010313
*0*5m0*0*0


hsa-miR-764
5′Pm05f05f005f005f05f0f05f05f00f05m0*0*0
m0m0m000m000m0m0m00*0*m0TEGChol


MIMAT0010367
*5m0*5m0*0*0


hsa-miR-765
5′Pm00005f05f05f005f005f05f05f00*5m0*0*
m0m000m0m0m000m0m0m0*m0*m0TEGChol


MIMAT0003945
0*f0*5m0*0


hsa-miR-766
5′Pm05f005f05f05f000f05f05f05f0f00*0*0*0
m0m0000m0m0m00m00m0*0*m0TEGChol


MIMAT0003888
*f0*5m0*0


hsa-miR-767-3p
5′Pm00005f00005f0000f00*0*0*0*5m0*0*0
m0m0m0m0m0m0m0m0m0m0m0m0*m0*m0TEG


MIMAT0003883

Chol


hsa-miR-767-5p
5′Pm00005f05f000f005f05f0f00*0*0*0*f0*5
m0m000m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0003882
m0*0


hsa-miR-769-3p
5′Pm00005f00005f05f005f0f00*5m0*0*5m0
m0m00m00m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0003887
*f0*0*0


hsa-miR-769-5p
5′Pm00005f00005f005f05f05f00*0*5m0*0*f
m0m000m0m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0003886
0*0*0


hsa-miR-770-5p
5′Pm05f0005f0000f005f00f00*0*0*5m0*5m
m0m0m00m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0003948
0*5m0*0


hsa-miR-802
5′Pm05f05f00f05f05f00f0000f00*0*5m0*0*f
m0m0m0m0m0m0m000m0m00*0*m0TEGChol


MIMAT0004185
0*5m0*0


hsa-miR-873
5′Pm05f0005f05f05f05f05f05f05f00f00*0*5m
m0m0m000m0000m0m0m0*0*m0TEGChol


MIMAT0004953
0*5m0***


hsa-miR-874
5′Pm005f05f05f05f05f05f0f005f005f00*0*5m
m0m0m00m0m0000m000*m0*m0TEGChol


MIMAT0004911
0*0*5m0*5m0*0


hsa-miR-875-3p
5′Pm05f05f00f0005f05f05f05f00f05m0*5m0*
m0m0m000m00m0m0m0m00*0*m0TEGChol


MIMAT0004923
5m0*5m0*f0*5m0*


hsa-miR-875-5p
5′Pm005f00f05f005f05f05f05f05f05f00*5m0*
m0m0000m00m00m0m00*m0*m0TEGChol


MIMAT0004922
5m0*5m0*5m0*0*0


hsa-miR-876-3p
5′Pm05f05f005f0005f0f0005f05f05m0*5m0*
m0m00m0m0m00m0m0m0m00*0*m0TEGChol


MIMAT0004925
5m0*5m0*f0*0*0


hsa-miR-876-5p
5′Pm05f05f005f05f05f05f0f0005f0f05m0*5m
m0m00m0m0m0000m0m00*0*m0TEGChol


MIMAT0004924
0*5m0*5m0*5m0*5m0*0


hsa-miR-877
5′Pm05f005f05f05f05f00f05f05f05f0f00*0*0*
m0m0000m0m000m00m0*0*m0TEGChol


MIMAT0004949
0*f0*5m0*0


hsa-miR-877*
5′Pm00005f005f00f0000f00*5m0*5m0*0*f0
m0m0m0m0m0m00m0m0m0m0*m0*m0TEGChol


MIMAT0004950
*0*0


hsa-miR-885-3p
5′Pm05f05f05f05f05f05f005f0000f00*5m0*5
m0m0m0m0m0m0m000m000*0*m0TEGChol


MIMAT0004948
m0*0*5m0*5m0*0


hsa-miR-885-5p
5′Pm005f00f0005f0f0000f00*5m0*0*5m0*5
m0m0m0m0m0m00m0m0m0m00*m0*m0TEGChol


MIMAT0004947
m0*0*0


hsa-miR-887
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0004951
*5m0*0*f0*0*0


hsa-miR-888
5′Pm05f05f05f05f0000f0000f00*5m0*0*5m0
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0004916
*5m0*5m0*0


hsa-miR-888*
5′Pm0000f05f000f005f005f05m0*0*5m0*0*f
m0m0m00m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0004917
0*5m0*0


hsa-miR-889
5′Pm05f05f05f0f0005f05f0000f05m0*5m0*5
m0m0m0m0m0m00m0m0m000*0*m0TEGChol


MIMAT0004921
m0*5m0*f0*5m0*


hsa-miR-890
5′Pm005f00f0005f0f05f05f00f05m0*0*5m0*
m0m0m000m00m0m0m0m00*m0*m0TEGChol


MIMAT0004912
5m0*f0*5m0*0


hsa-miR-891a
5′Pm05f005f0f05f005f0f05f000f00*5m0*0*5
m0m0m0m00m00m00m00m0*0*m0TEGChol


MIMAT0004902
m0*5m0*5m0*0


hsa-miR-891b
5′Pm0005f05f05f0005f05f05f00f05m0*0*0*0
m0m0m000m0m0m00m00m0*m0*m0TEGChol


MIMAT0004913
*f0*0*0


hsa-miR-892a
5′Pm0005f0f05f05f00f05f05f05f05f05m0*5m
m0m0000m0m000m00m0*m0*m0TEGChol


MIMAT0004907
0*0*5m0*5m0*0*0


hsa-miR-892b
5′Pm005f00f005f00f05f000f05m0*5m0*5m0
m0m0m0m00m0m00m0m0m00*m0*m0TEGChol


MIMAT0004918
*5m0*f0*0*0


hsa-miR-9
5′Pm05f000f05f05f05f0f05f05f05f0f00*0*5m
m0m0000m0000m0m0m0*0*m0TEGChol


MIMAT0000441
0*5m0*5m0*0*0


hsa-miR-9*
5′Pm05f005f0f05f000f05f005f0f05m0*0*5m0
m0m00m00m0m0m00m00m0*0*m0TEGChol


MIMAT0000442
*0*5m0*0*0


hsa-miR-920
5′Pm05f05f00f0000f05f05f00f00*0*5m0*5m
m0m0m000m0m0m0m0m0m00*0*m0TEGChol


MIMAT0004970
0*5m0*5m0*0


hsa-miR-921
5′Pm005f05f0f05f05f05f0f005f05f05f00*0*5
m0m000m0m0000m000*m0*m0TEGChol


MIMAT0004971
m0*5m0*5m0*0*0


hsa-miR-922
5′Pm05f05f05f05f05f000f05f005f0f05m0*0*5
m0m00m00m0m0m00m000*0*m0TEGChol


MIMAT0004972
m0*0*f0*5m0*0


hsa-miR-924
5′Pm0000f0005f05f05f05f00f00*0*5m0*5m0
m0m0m000m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0004974
*5m0*5m0*0


hsa-miR-92a
5′Pm005f005f0005f0f05f05f005f00*5m0*5m
m0m0m000m00m0m0m0m00*m0*m0TEGChol


MIMAT0000092
0*5m0*5m0*5m0*0


hsa-miR-92a-1*
5′Pm0000f05f005f05f05f05f05f05f05m0*5m0
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0004507
*5m0*0*f0*0*0


hsa-miR-92a-2*
5′Pm05f05f05f0f0000f0000f05m0*0*5m0*5
m0m0m0m0m0m0m0m0m0m000*0*m0TEGChol


MIMAT0004508
m0*5m0*5m0*0


hsa-miR-92b
5′Pm005f00f05f005f0f0005f0f00*5m0*0*5m
m0m00m0m0m00m00m0m00*m0*m0TEGChol


MIMAT0003218
0*f0*5m0*0


hsa-miR-92b*
5′Pm05f05f00f00005f005f05f0f00*0*0*5m0*
m0m000m0m0m0m0m0m0m00*0*m0TEGChol


MIMAT0004792
5m0*0*0


hsa-miR-93
5′Pm00005f05f0005f005f00f00*5m0*0*0*f0
m0m0m00m0m0m0m00m0m0m0*m0*m0TEGChol


MIMAT0000093
*5m0*0


hsa-miR-93*
5′Pm05f000f00005f0000f00*0*0*5m0*f0*0*0
m0m0m0m0m0m0m0m0m0m0m0m0*0*m0TEGChol


MIMAT0004509


hsa-miR-933
5′Pm05f05f00f05f05f05f05f05f000f00*5m0*5
m0m0m0m00m0000m0m00*0*m0TEGChol


MIMAT0004976
m0*5m0*5m0*0*0


hsa-miR-934
5′Pm005f05f05f005f05f0f0005f05f00*0*5m0
m0m00m0m0m000m0m000*m0*m0TEGChol


MIMAT0004977
*0*5m0*5m0*0


hsa-miR-935
5′Pm0005f0f05f05f005f05f005f0f05m0*0*5m
m0m00m00m0m000m00m0*m0*m0TEGChol


MIMAT0004978
0*5m0*f0*5m0*0


hsa-miR-936
5′Pm0000f05f005f05f005f05f05f00*5m0*0*5
m0m000m0m00m00m0m0m0*m0*m0TEGChol


MIMAT0004979
m0*f0*0*0


hsa-miR-937
5′Pm05f05f05f05f05f005f05f05f000f05m0*0*
m0m0m0m00m00m00m000*0*m0TEGChol


MIMAT0004980
5m0*5m0*f0**


hsa-miR-938
5′Pm05f000f05f005f0f0000f05m0*5m0*0*0*
m0m0m0m0m0m00m00m0m0m0*0*m0TEGChol


MIMAT0004981
f0*0*0


hsa-miR-939
5′Pm005f005f05f05f05f0f005f05f05f05m0*0*
m0m000m0m0000m0m00*m0*m0TEGChol


MIMAT0004982
5m0*5m0*f0*0*0


hsa-miR-940
5′Pm0005f0f005f005f005f05f0f05m0*5m0*0
m0m000m0m0m00m0m00m0*m0*m0TEGChol


MIMAT0004983
*0*5m0*5m0*0


hsa-miR-941
5′Pm005f00f0005f0f0000f05m0*0*0*5m0*f0
m0m0m0m0m0m00m0m0m0m00*m0*m0TEGChol


MIMAT0004984
*0*0


hsa-miR-942
5′Pm05f005f0f05f0005f05f05f005f05m0*0*5
m0m0m000m0m0m00m00m0*0*m0TEGChol


MIMAT0004985
m0*5m0*5m0*5m0*0


hsa-miR-943
5′Pm0000f05f005f0f05f05f05f0f00*5m0*0*5
m0m0000m00m00m0m0m0*m0*m0TEGChol


MIMAT0004986
m0*f0*0*0


hsa-miR-944
5′Pm005f00f05f05f05f05f0000f00*0*0*0*5m
m0m0m0m0m0m0000m0m00*m0*m0TEGChol


MIMAT0004987
0*0*0


hsa-miR-95
5′Pm00005f0000f05f000f05m0*5m0*5m0*0
m0m0m0m00m0m0m0m0m0m0m0*m0*m0TEGChol


MIMAT0000094
*f0*5m0*0


hsa-miR-96
5′Pm0005f0f0005f0f05f0005f00*5m0*0*0*5
m0m0m0m00m00m0m0m00m0*m0*m0TEGChol


MIMAT0000095
m0*5m0*0


hsa-miR-96*
5′Pm005f00f005f005f00005f00*5m0*5m0*0
m0m0m0m0m0m0m00m0m0m00*m0*m0TEGChol


MIMAT0004510
*f0*5m0*0


hsa-miR-98
5′Pm0000f005f05f05f05f000f00*0*0*0*5m0
m0m0m0m00m000m0m0m0m0*m0*m0TEGChol


MIMAT0000096
*5m0*0


hsa-miR-99a
5′Pm005f00f005f00f05f005f05f05m0*0*5m0
m0m00m00m0m00m0m0m00*m0*m0TEGChol


MIMAT0000097
*5m0*f0*0*0


hsa-miR-99a*
5′Pm005f05f05f05f000f05f005f05f05m0*5m0
m0m00m00m0m0m00m000*m0*m0TEGChol


MIMAT0004511
*5m0*5m0*5m0*5m0*0


hsa-miR-99b
5′Pm0000f0005f0f05f005f0f00*5m0*0*0*f0*
m0m00m00m00m0m0m0m0m0*m0*m0TEGChol


MIMAT0000689
5m0*0


hsa-miR-99b*
5′Pm00005f05f05f05f0f0000f05m0*0*5m0*5
m0m0m0m0m0m0000m0m0m0*m0*m0TEGChol


MIMAT0004678
m0*f0*0*0









Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the invention. Accordingly, the foregoing description and drawings are by way of example only.


EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.


All references, including patent documents, disclosed herein are incorporated by reference in their entirety. This application incorporates by reference the entire contents, including all the drawings and all parts of the specification.

Claims
  • 1. An isolated nucleic acid molecule comprising a guide strand of 18-23 nucleotides in length that has complementarity to a miRNA sequence, anda passenger strand of 8-16 nucleotides in length,wherein the guide strand and the passenger strand form the nucleic acid molecule such that the nucleic acid molecule has a double stranded region of 10-15 nucleotides in length and a single stranded region, wherein the single stranded region is at the 3′ end of the guide strand and is 2-13 nucleotides in length and comprises at least two phosphorothioate modifications, wherein at least 50% of the pyrimidines in the nucleic acid molecule are modified, and wherein the isolated nucleic acid molecule modulates miRNA-mediated gene expression in a mammalian cell.
  • 2. The nucleic acid molecule of claim 1, wherein the nucleotide in position one of the guide strand has a 2′-O-methyl modification.
  • 3. The nucleic acid molecule of claim 2, wherein at least 60%, at least 80%, at least 90% or wherein 100% of the pyrimidines in the nucleic acid molecule are modified.
  • 4. The nucleic acid molecule of claim 2, wherein modified pyrimidines are 2′fluoro or 2′O methyl modified.
  • 5. The nucleic acid molecule of claim 2, wherein at least one U or C includes a hydrophobic modification.
  • 6. The nucleic acid molecule of claim 5, wherein the hydrophobic modification is a methyl or ethyl hydrophobic base modification.
  • 7. The nucleic acid molecule of claim 2, wherein the guide strand contains 6-8 phosphorothioate modifications.
  • 8. The nucleic acid molecule of claim 2, wherein the guide strand includes 4-14 phosphate modifications.
  • 9. The nucleic acid molecule of claim 2, wherein the single stranded region of the guide strand is 6 nucleotides long or 8 nucleotides long.
  • 10. The nucleic acid molecule of claim 2, wherein the double stranded region is 13 nucleotides long.
  • 11. The nucleic acid molecule of claim 2, wherein the double stranded nucleic acid molecule has one end that is blunt or includes a one nucleotide overhang.
  • 12. The nucleic acid molecule of claim 2, wherein the passenger strand is linked at the 3′ end to a sterol.
  • 13. The nucleic acid molecule of claim 2, wherein the isolated double stranded nucleic acid molecule is an miRNA mimic and wherein the miRNA sequence to which the guide strand is complementary is a miRNA recognition element.
  • 14. The nucleic acid molecule of claim 2, wherein the isolated double stranded nucleic acid molecule is an miRNA inhibitor and wherein the miRNA sequence to which the guide strand is complementary is an antisense strand of a mature miRNA.
  • 15. The nucleic acid molecule of claim 14, wherein the guide strand is at least 50% chemically modified.
  • 16. The nucleic acid molecule of claim 14, wherein the mature miRNA is miR 17-92.
  • 17. A method for modulating miRNA-mediated gene expression in a mammalian cell, comprising contacting the mammalian cell with an isolated double stranded nucleic acid molecule of claim 1 in an effective amount to modulate miRNA-mediated gene expression.
  • 18. The method of claim 17, wherein the mammalian cell is contacted with the isolated nucleic acid in vivo or ex vivo.
  • 19. A method for modulating miRNA-mediated gene expression in a stem cell, comprising contacting the stem cell with an isolated double stranded nucleic acid molecule of claim 1 in an effective amount to modulate miRNA-mediated gene expression in the stem cell.
  • 20. The nucleic acid molecule of claim 2, wherein the 2′-O-methyl modification is a 5P-2′O-methyl U modification.
  • 21. The nucleic acid molecule of claim 2, wherein a plurality of U's and/or C's include a hydrophobic modification.
  • 22. The nucleic acid molecule of claim 2, wherein the 3′ terminal 10 nucleotides of the guide strand include at least eight phosphorothioate modifications.
  • 23. The nucleic acid molecule of claim 12, wherein the sterol is cholesterol.
  • 24. The nucleic acid molecule of claim 13, wherein the miRNA mimic is a mimic of a miRNA selected from the group consisting of miR21, miR 139, miR 7, miR29, miR 122, miR 302-367 cluster, miR 221, miR-96, miR 126, miR 225 and miR 206.
RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. § 120, as a Continuation in Part, of U.S. application Ser. No. 13/120,342 entitled “Reduced Size Self-delivering RNAi Compounds,” filed on Mar. 22, 2011, which is a national stage filing under 35 U.S.C. § 371 of international application PCT/US2009/005247, filed Sep. 22, 2009, which was published under PCT Article 21(20) in English, and claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application Ser. No. U.S. 61/192,954, entitled “Chemically Modified Polynucleotides and Methods of Using the Same,” filed on Sep. 22, 2008, U.S. 61/149,946, entitled “Minimum Length Triggers of RNA Interference,” filed on Feb. 4, 2009, and U.S. 61/224,031, entitled “Minimum Length Triggers of RNA Interference,” filed on Jul. 8, 2009, the disclosure of each of which is incorporated by reference herein in its entirety.

US Referenced Citations (282)
Number Name Date Kind
3687808 Merigan et al. Aug 1972 A
4201860 Naito et al. May 1980 A
4235871 Papahadjopoulos et al. Nov 1980 A
4415732 Caruthers et al. Nov 1983 A
4426330 Sears Jan 1984 A
4501728 Geho et al. Feb 1985 A
4737323 Martin et al. Apr 1988 A
4837028 Allen Jun 1989 A
4897355 Eppstein et al. Jan 1990 A
4904582 Tullis Feb 1990 A
4958013 Letsinger Sep 1990 A
5023243 Tullis Jun 1991 A
5112963 Pieles et al. May 1992 A
5149782 Chang et al. Sep 1992 A
5151510 Stec et al. Sep 1992 A
5177198 Spielvogel et al. Jan 1993 A
5185444 Summerton et al. Feb 1993 A
5188897 Suhadolnik et al. Feb 1993 A
5264423 Cohen et al. Nov 1993 A
5264562 Matteucci Nov 1993 A
5391723 Priest Feb 1995 A
5405939 Suhadolnik et al. Apr 1995 A
5414077 Lin et al. May 1995 A
5416203 Letsinger May 1995 A
5417978 Tari et al. May 1995 A
5432272 Benner Jul 1995 A
5453496 Caruthers et al. Sep 1995 A
5459255 Cook et al. Oct 1995 A
5466786 Buhr et al. Nov 1995 A
5470967 Huie et al. Nov 1995 A
5486603 Buhr Jan 1996 A
5489677 Sanghvi et al. Feb 1996 A
5495009 Matteucci et al. Feb 1996 A
5512667 Reed et al. Apr 1996 A
5514786 Cook et al. May 1996 A
5525465 Haralambidis et al. Jun 1996 A
5532130 Alul Jul 1996 A
5534259 Zalipsky et al. Jul 1996 A
5556948 Tagawa et al. Sep 1996 A
5561225 Maddry et al. Oct 1996 A
5574142 Meyer, Jr. et al. Nov 1996 A
5578718 Cook et al. Nov 1996 A
5580731 Chang et al. Dec 1996 A
5580972 Tu et al. Dec 1996 A
5587469 Cook et al. Dec 1996 A
5591721 Agrawal et al. Jan 1997 A
5591722 Montgomery et al. Jan 1997 A
5591843 Eaton Jan 1997 A
5594121 Froehler et al. Jan 1997 A
5596086 Matteucci et al. Jan 1997 A
5596091 Switzer Jan 1997 A
5599797 Cook et al. Feb 1997 A
5602240 De Mesmaeker et al. Feb 1997 A
5607923 Cook et al. Mar 1997 A
5614617 Cook et al. Mar 1997 A
5614621 Ravikumar et al. Mar 1997 A
5623070 Cook et al. Apr 1997 A
5625050 Beaton et al. Apr 1997 A
5633360 Bischofberger et al. May 1997 A
5643889 Suhadolnik et al. Jul 1997 A
5646126 Cheng et al. Jul 1997 A
5646265 McGee Jul 1997 A
5658731 Sproat et al. Aug 1997 A
5661134 Cook et al. Aug 1997 A
5663312 Chaturvedula Sep 1997 A
5670633 Cook et al. Sep 1997 A
5674683 Kool Oct 1997 A
5681940 Wang et al. Oct 1997 A
5681941 Cook et al. Oct 1997 A
5684143 Gryaznov et al. Nov 1997 A
5688941 Cook et al. Nov 1997 A
5700785 Suhadolnik et al. Dec 1997 A
5700920 Altmann et al. Dec 1997 A
5466786 Buhr et al. Apr 1998 B1
5736392 Hawley-Nelson et al. Apr 1998 A
5750666 Caruthers et al. May 1998 A
5767099 Harris et al. Jun 1998 A
5770713 Imbach et al. Jun 1998 A
5777153 Lin et al. Jul 1998 A
5780053 Ashley et al. Jul 1998 A
5789416 Lum et al. Aug 1998 A
5792847 Buhr et al. Aug 1998 A
5808023 Sanghvi et al. Sep 1998 A
5817781 Swaminathan et al. Oct 1998 A
5830430 Unger et al. Nov 1998 A
5830653 Froehler et al. Nov 1998 A
5851548 Dattagupta et al. Dec 1998 A
5855910 Ashley et al. Jan 1999 A
5856455 Cook Jan 1999 A
5914396 Cook et al. Jun 1999 A
5945521 Just et al. Aug 1999 A
5948767 Scheule et al. Sep 1999 A
5969116 Martin Oct 1999 A
5976567 Wheeler et al. Nov 1999 A
5981501 Wheeler et al. Nov 1999 A
5986083 Dwyer et al. Nov 1999 A
6001841 Cook et al. Dec 1999 A
6005096 Matteucci et al. Dec 1999 A
6015886 Dale et al. Jan 2000 A
6020475 Capaldi et al. Feb 2000 A
6020483 Beckvermit et al. Feb 2000 A
6028183 Lin et al. Feb 2000 A
6033910 Monia et al. Mar 2000 A
6043352 Manoharan et al. Mar 2000 A
6051699 Ravikumar Apr 2000 A
6096875 Khan et al. Aug 2000 A
6107094 Crooke Aug 2000 A
6111085 Cook et al. Aug 2000 A
6121437 Guzaev et al. Sep 2000 A
6153737 Manoharan et al. Nov 2000 A
6172208 Cook Jan 2001 B1
6207819 Manoharan et al. Mar 2001 B1
6271358 Manoharan et al. Aug 2001 B1
6326358 Manoharan Dec 2001 B1
6331617 Weeks et al. Dec 2001 B1
6335434 Guzaev et al. Jan 2002 B1
6335437 Manoharan Jan 2002 B1
6344436 Smith et al. Feb 2002 B1
6355787 Beckvermit et al. Mar 2002 B1
6358931 Cook et al. Mar 2002 B1
6395474 Buchardt et al. May 2002 B1
6395492 Manoharan et al. May 2002 B1
6399754 Cook Jun 2002 B1
6410702 Swaminathan et al. Jun 2002 B1
6420549 Cook et al. Jul 2002 B1
6432963 Hisamichi et al. Aug 2002 B1
6440943 Cook et al. Aug 2002 B1
6444806 Veerapanani et al. Sep 2002 B1
6465628 Ravikumar et al. Oct 2002 B1
6476205 Buhr et al. Nov 2002 B1
6506559 Fire et al. Jan 2003 B1
6528631 Cook et al. Mar 2003 B1
6531584 Cook et al. Mar 2003 B1
6559279 Manoharan et al. May 2003 B1
6656730 Manoharan Dec 2003 B1
6673611 Thompson et al. Jan 2004 B2
6683167 Metelev et al. Jan 2004 B2
6815432 Wheeler et al. Nov 2004 B2
6849726 Usman et al. Feb 2005 B2
6858225 Semple et al. Feb 2005 B2
7041824 Bordon-Pallier et al. May 2006 B2
7056704 Tuschl et al. Jun 2006 B2
7078196 Tuschl et al. Jul 2006 B2
7132530 Bennett et al. Nov 2006 B2
7205297 Beauchamp et al. Apr 2007 B2
7432250 Crooke Oct 2008 B2
7538095 Fire et al. May 2009 B2
7560438 Fire et al. Jul 2009 B2
7595387 Leake et al. Sep 2009 B2
7622455 Bennett et al. Nov 2009 B2
7622633 Fire et al. Nov 2009 B2
7629321 Crooke Dec 2009 B2
7695902 Crooke Apr 2010 B2
7745608 Manoharan et al. Jun 2010 B2
7750144 Zamore et al. Jul 2010 B2
7786290 Woppmann et al. Aug 2010 B2
7829693 Kreutzer et al. Nov 2010 B2
7902163 Bennett et al. Mar 2011 B2
8110674 Manoharan et al. Feb 2012 B2
8263569 Baulcombe et al. Sep 2012 B2
8383600 Czech et al. Feb 2013 B2
8664189 Khvorova et al. Mar 2014 B2
8796443 Khvorova Aug 2014 B2
8815818 Samarsky et al. Aug 2014 B2
9074211 Woolf et al. Jul 2015 B2
9080171 Khvorova Jul 2015 B2
9095504 Libertine et al. Aug 2015 B2
9175289 Khvorova Nov 2015 B2
9222092 Giese et al. Dec 2015 B2
9303259 Khvorova et al. Apr 2016 B2
9340786 Khvorova et al. May 2016 B2
9493774 Kamens Nov 2016 B2
9745574 Woolf et al. Aug 2017 B2
20020132788 Lewis et al. Sep 2002 A1
20020147332 Kaneko et al. Oct 2002 A1
20020160393 Symonds et al. Oct 2002 A1
20020162126 Beach et al. Oct 2002 A1
20030004325 Cook et al. Jan 2003 A1
20030077829 MacLachlan Apr 2003 A1
20030108923 Tuschl et al. Jun 2003 A1
20030139585 Uhlmann et al. Jul 2003 A1
20030157030 Davis et al. Aug 2003 A1
20030158403 Manoharan et al. Aug 2003 A1
20030166282 Brown et al. Sep 2003 A1
20040009938 Manoharan et al. Jan 2004 A1
20040014957 Eldrup et al. Jan 2004 A1
20040018999 Beach et al. Jan 2004 A1
20040054155 Woolf et al. Mar 2004 A1
20040063654 Davis et al. Apr 2004 A1
20040072785 Wolff et al. Apr 2004 A1
20040137471 Vickers et al. Jul 2004 A1
20040162235 Trubetskoy et al. Aug 2004 A1
20040167090 Monahan et al. Aug 2004 A1
20040171033 Baker et al. Sep 2004 A1
20040180351 Giese et al. Sep 2004 A1
20040191773 Crooke Sep 2004 A1
20040192629 Xu et al. Sep 2004 A1
20040204377 Rana Oct 2004 A1
20040229266 Tuschl et al. Nov 2004 A1
20040241845 Desgroseillers et al. Dec 2004 A1
20040248839 Kowalik Dec 2004 A1
20040259247 Tuschl et al. Dec 2004 A1
20050020521 Rana Jan 2005 A1
20050026286 Chi et al. Feb 2005 A1
20050032733 McSwiggen et al. Feb 2005 A1
20050037496 Rozema et al. Feb 2005 A1
20050042227 Zankel et al. Feb 2005 A1
20050064595 MacLachlan et al. Mar 2005 A1
20050080246 Allerson et al. Apr 2005 A1
20050107325 Manoharan et al. May 2005 A1
20050142535 Damha et al. Jun 2005 A1
20050181382 Zamore et al. Aug 2005 A1
20050239731 McSwiggen et al. Oct 2005 A1
20050245474 Baker et al. Nov 2005 A1
20050246794 Khvorova et al. Nov 2005 A1
20050255487 Khvorova et al. Nov 2005 A1
20050281781 Ostroff Dec 2005 A1
20060008910 MacLachlan et al. Jan 2006 A1
20060009409 Woolf Jan 2006 A1
20060069050 Rana Mar 2006 A1
20060127891 McSwiggen et al. Jun 2006 A1
20060142228 Ford et al. Jun 2006 A1
20060178324 Hadwiger et al. Aug 2006 A1
20060178327 Yeung Aug 2006 A1
20060240093 MacLachlan et al. Oct 2006 A1
20060247193 Taira et al. Nov 2006 A1
20070032441 McSwiggen et al. Feb 2007 A1
20070166734 Bhat et al. Jul 2007 A1
20070167384 Leake et al. Jul 2007 A1
20070173476 Leake et al. Jul 2007 A1
20070231392 Wagner et al. Oct 2007 A1
20070269889 Leake et al. Nov 2007 A1
20080020990 Yano et al. Jan 2008 A1
20080038296 Brahmbhatt et al. Feb 2008 A1
20080071068 Oba et al. Mar 2008 A1
20080085869 Yamada et al. Apr 2008 A1
20080107694 Trogden et al. May 2008 A1
20080112916 Wagner et al. May 2008 A1
20080152661 Rozema et al. Jun 2008 A1
20080311040 Berry et al. Dec 2008 A1
20090023216 Woolf Jan 2009 A1
20090131360 Woolf et al. May 2009 A1
20090143326 Obad Jun 2009 A1
20090186802 Alluis et al. Jul 2009 A1
20090208564 Li et al. Aug 2009 A1
20090247608 Manoharan et al. Oct 2009 A1
20090298916 Kauppinen et al. Dec 2009 A1
20100069620 Zon Mar 2010 A1
20100081705 Bennett et al. Apr 2010 A1
20100136695 Woolf Jun 2010 A1
20100286234 Elmen et al. Nov 2010 A1
20110039914 Pavco et al. Feb 2011 A1
20110237522 Khvorova et al. Sep 2011 A1
20110237648 Khvorova et al. Sep 2011 A1
20110251258 Samarsky et al. Oct 2011 A1
20110268761 Levis et al. Nov 2011 A1
20110288147 Brown et al. Nov 2011 A1
20120016005 Samarsky et al. Jan 2012 A1
20120040459 Khvorova et al. Feb 2012 A1
20120059046 Woolf et al. Mar 2012 A1
20120065243 Woolf et al. Mar 2012 A1
20120094374 Bentwich et al. Apr 2012 A1
20130131141 Khvorova et al. May 2013 A1
20130131142 Libertine et al. May 2013 A1
20130197055 Kamens et al. Aug 2013 A1
20140113950 Khvorova et al. Apr 2014 A1
20150057362 Levis et al. Feb 2015 A1
20160115482 Libertine et al. Apr 2016 A1
20160115484 Woolf et al. Apr 2016 A1
20160130578 Khvorova et al. May 2016 A1
20160244765 Khvorova et al. Aug 2016 A1
20160304873 Wolfson et al. Oct 2016 A1
20160304875 Cauwenbergh et al. Oct 2016 A1
20160319278 Khvorova et al. Nov 2016 A1
20160355808 Khvorova et al. Dec 2016 A1
20160355826 Khvorova et al. Dec 2016 A1
20170009239 Khvorova et al. Jan 2017 A1
20170051288 Byrne et al. Feb 2017 A1
20170051290 Byrne et al. Feb 2017 A1
20170067056 Khvorova et al. Mar 2017 A1
20170137823 Kamens et al. May 2017 A1
20180030451 Cauwenbergh Feb 2018 A1
Foreign Referenced Citations (53)
Number Date Country
2004206255 Aug 2004 AU
1 568 373 Jan 2005 CN
0 552 766 Jul 1993 EP
1 214 945 Jun 2002 EP
1 144 623 Mar 2003 EP
1 352 061 Oct 2003 EP
0 928 290 Mar 2005 EP
1 407 044 Sep 2007 EP
1 605 978 Sep 2010 EP
4 095 895 Sep 2004 JP
2009-519033 May 2009 JP
WO 9014074 Nov 1990 WO
WO 9116024 Oct 1991 WO
WO 9117424 Nov 1991 WO
WO 9203464 Mar 1992 WO
WO 9423028 Oct 1994 WO
WO 9511910 May 1995 WO
WO 9523162 Aug 1995 WO
WO 9640964 Dec 1996 WO
WO 9913915 Mar 1999 WO
WO 03012052 Feb 2003 WO
WO 2003064626 Aug 2003 WO
WO 2004042027 May 2004 WO
WO 2004065600 Aug 2004 WO
WO 2004065601 Aug 2004 WO
WO 2004090105 Oct 2004 WO
WO 2005019430 Mar 2005 WO
WO 2005078096 Aug 2005 WO
WO 2005079533 Sep 2005 WO
WO 2005097992 Oct 2005 WO
WO 2006007372 Jan 2006 WO
WO 2006019430 Feb 2006 WO
WO 2006039656 Apr 2006 WO
WO 2006065601 Jun 2006 WO
WO 2006113679 Oct 2006 WO
WO 2006128141 Nov 2006 WO
WO 2007030167 Mar 2007 WO
WO 2007044362 Apr 2007 WO
WO 2007050643 May 2007 WO
WO 2007069068 Jun 2007 WO
WO 2007089607 Aug 2007 WO
WO 2008036825 Mar 2008 WO
WO 2008109353 Sep 2008 WO
WO 2009005813 Jan 2009 WO
WO 2009020344 Feb 2009 WO
WO 2009029688 Mar 2009 WO
WO 2009029690 Mar 2009 WO
WO 2009044392 Apr 2009 WO
WO 2009078685 Jun 2009 WO
WO 2010006237 Jan 2010 WO
WO 2010027830 Mar 2010 WO
WO 2010042281 Apr 2010 WO
WO 2011109698 Sep 2011 WO
Non-Patent Literature Citations (111)
Entry
Liu et al. (Int. J. Mol. Sci. 2008, vol. 9, pp. 978-999).
Ford (Leukemia Research (2006), vol. 30(5), pp. 511-513).
Fabbri et al. (Proceed. Nat. Acad. Sci. (epub Sep. 21, 2007), vol. 104(40), pp. 15805-15810).
[No Author Listed] RedChip Small-Cap Investor Conference. RXI Pharmaceuticals (Nasdaq RXII). Jun. 16, 2009 Presentation. 5 pages.
Aleckovic et al., RNAi at Oxford. J RNAi Gene Silencing. May 27, 2008;4(1):266-8.
Aouadi et al., Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature. Apr. 30, 2009;458(7242):1180-4. doi: 10.1038/nature07774.
Baigude et al., Design and creation of new nanomaterials for therapeutic RNAi. ACS Chem Biol. Apr. 24, 2007;2(4):237-41.
Bergan et al., Electroporation enhances c-myc antisense oligodeoxynucleotide efficacy. Nucleic Acids Res. Jul. 25, 1993;21(15):3567-73.
Bjergarde et al., Solid phase synthesis of oligodeoxyribonucleoside phosphorodithioates from thiophosphoramidites. Nucleic Acids Res. Nov. 11, 1991;19(21):5843-50.
Bongartz et al., Improved biological activity of antisense oligonucleotides conjugated to a fusogenic peptide. Nucleic Acids Res. Nov. 11, 1994;22(22):4681-8.
Boutorin et al., Synthesis of alkylating oligonucleotide derivatives containing cholesterol or phenazinium residues at their 3′-terminus and their interaction with DNA within mammalian cells. FEBS Lett. Aug. 28, 1989;254(1-2):129-32.
Braasch et al., RNA Interference in Mammalian Cells by Chemically-Modified RNA. Biochem. 2003;42(26):7967-75.
Brown et al., Light at the end of the tunnel. J RNAi Gene Silencing. Jul. 28, 2006;2(2):175-7.
Chiu et al., siRNA function in RNAi: a chemical modification analysis. RNA. Sep. 2003;9(9):1034-48.
Choung et al. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun. Apr. 14, 2006;342(3):919-27.
Chu et al., Potent RNAi by short RNA triggers. RNA. 2008;14:1714-9.
Cload et al., Polyether tethered oligonucleotide probes. Journal of the American Chemical Society. 1991;113 (16): 6324-6326.
Collins et al., A small interfering RNA screen for modulators of tumor cell motility identifies MAP4K4 as a promigratory kinase. Proc Natl Acad Sci U S A. Mar. 7, 2006; 103(10): 3775-3780.
Constantinides et al., Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharm Res. Oct. 1994;11(10):1385-90.
Czauderna et al., Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. Jun. 1, 2003;31(11):2705-16.
De Smidt et al., Association of antisense oligonucleotides with lipoproteins prolongs the plasma half-life and modifies the tissue distribution. Nucleic Acids Res. Sep. 11, 1991;19(17):4695-700.
Debart et al., Chemical modifications to improve the cellular uptake of oligonucleotides. Curr Top Med Chem. 2007;7(7):727-37.
Dykxhoorn et al., The silent treatment: siRNAs as small molecule drugs. Gene Ther. Mar. 2006;13(6):541-52. Review.
Elbashir et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. May 24, 2001;411(6836):494-8.
Elbashir et al., Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. Dec. 3, 2001;20(23):6877-88.
Fedorov et al., Off-target effects by siRNA can induce toxic phenotype. RNA. Jul. 2006;12(7):1188-96. Epub May 8, 2006.
Ferentz et al., Disulfide-crosslinked oligonucleotides. Journal of the American Chemical Society. 1991;113 (10): 4000-4002.
Griffiths-Jones et al., miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. Jan. 1, 2006;34(Database issue):D140-4.
Griffiths-Jones et al., miRBase: tools for microRNA genomics. Nucleic Acids Res. Jan. 2008;36(Database issue):D154-8. Epub Nov. 8, 2007.
Griffiths-Jones et al., The microRNA Registry. Nucleic Acids Res. Jan. 1, 2004;32(Database issue):D109-11.
Jablonski et al., Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes. Nucleic Acids Res. Aug. 11, 1986;14(15):6115-28.
Jackson et al., Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA. Jul. 2006;12(7):1197-1205. Epub May 8, 2006.
Jiang et al., miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. Jan. 2009;37(Database issue):D98-104. doi:10.1093/nar/gkn714. Epub Oct. 15, 2008.
Kamata et al., Amphiphilic peptides enhance the efficiency of liposome-mediated DNA transfection. Nucleic Acids Res. Feb. 11, 1994;22(3):536-7.
Kim et al., Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. Mol Ther. Jun. 2007;15(6):1145-52. Epub Apr. 17, 2007.
Kraynack et al., Small interfering RNAs containing full 2′-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. RNA. Jan. 2006;12(1):163-76. Epub Nov. 21, 2005.
Krutzfeldt et al., Silencing of microRNAs in vivo with ‘antagomirs’. Nature. Dec. 1, 2005;438(7068):685-9. Epub Oct. 30, 2005.
Kubo et al., Modified 27-nt dsRNAs with dramatically enhanced stability in serum and long-term RNAi activity. Oligonucleotides. 2007 Winter;17(4):445-64.
Layzer et al., In vivo activity of nuclease-resistant siRNAs. RNA. May 2004;10(5):766-71.
Lee et al., Contributions of 3′-overhang to the dissociation of small interfering RNAs from the PAZ domain: molecular dynamics simulation study. J Mol Graph Model. Mar. 2007;25(6):784-93. Epub Jul. 11, 2006.
Letsinger et al., Cholesteryl-conjugated oligonucleotides: synthesis, properties, and activity as inhibitors of replication of human immunodeficiency virus in cell culture. Proc Natl Acad Sci U S A. Sep. 1989;86(17):6553-6.
Leuschner et al., Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. Mar. 2006;7(3):314-20. Epub Jan. 20, 2006.
Lewis et al., A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. Apr. 16, 1996;93(8):3176-81.
Li et al., Surface-modified LPD nanoparticles for tumor targeting. Ann N Y Acad Sci. Oct. 2006;1082:1-8.
Lu et al., An analysis of human microRNA and disease associations. PLoS One. 2008;3(10):e3420. doi:10.1371/journal.pone.0003420. Epub Oct. 15, 2008.
Ma et al., Design and synthesis of RNA miniduplexes via a synthetic linker approach. Biochemistry. Feb. 23, 1993;32(7):1751-8.
Ma et al., Design and synthesis of RNA miniduplexes via a synthetic linker approach. 2. Generation of covalently closed, double-stranded cyclic HIV-1 TAR RNA analogs with high Tat-binding affinity. Nucleic Acids Res. Jun. 11, 1993;21(11):2585-9.
Manoharan et al., Chemical modifications to improve uptake and bioavailability of antisense oligonucleotides. Ann N Y Acad Sci. Oct. 28, 1992;660:306-9.
Manoharan, Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev. Apr. 2002;12(2):103-28.
Martins et al., Sterol side chain length and structure affect the clearance of chylomicron-like lipid emulsions in rats and mice. J Lipid Res. Feb. 1998;39(2):302-12.
Mescalchin et al., Cellular uptake and intracellular release are major obstacles to the therapeutic application of siRNA: novel options by phosphorothioate-stimulated delivery. Expert Opin Biol Ther. Oct. 2007;7(10):1531-8. Review.
Mori et al., Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med. Jan. 21, 2008;205(1):43-51. doi: 10.1084/jem.20071412. Epub Jan. 7, 2008. Online Supplemental Material Included. 4 Pages.
Murphy et al., A combinatorial approach to the discovery of efficient cationic peptoid reagents for gene delivery. Proc Natl Acad Sci U S A. Feb. 17, 1998;95(4):1517-22.
Oberhauser et al., Effective incorporation of 2′-O-methyl-oligoribonucleotides into liposomes and enhanced cell association through modification with thiocholesterol. Nucleic Acids Res. Feb. 11, 1992;20(3):533-8.
Ono et al., DNA triplex formation of oligonucleotide analogues consisting of linker groups and octamer segments that have opposite sugar-phosphate backbone polarities. Biochemistry. Oct. 15, 1991;30(41):9914-2.
Overhoff et al., Phosphorothioate-stimulated uptake of short interfering RNA by human cells. EMBO Rep. Dec. 2005;6(12):1176-81.
Rajeev et al., 2′-modified-2-thiothymidine oligonucleotides. Org Lett. Aug. 21, 2003;5(17):3005-8.
Rump et al., Preparation of conjugates of oligodeoxynucleotides and lipid structures and their interaction with low-density lipoprotein. Bioconjug Chem. May-Jun. 1998;9(3):341-9.
Sato et al., Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice. Clin Cancer Res. Nov. 2001;7(11):3606-12.
Shen, Advances in the development of siRNA-based therapeutics for cancer. IDrugs. Aug. 2008;11(8):572-8. Review.
Shi, Mammalian RNAi for the masses. Trends Genet. Jan. 2003;19(1):9-12.
Soutschek et al., Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. Nov. 11, 2004;432(7014):173-8.
Sui et al., A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci U S A. Apr. 16, 2002;99(8):5515-20.
Sun et al., Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol. Dec. 2008;26(12):1379-82. doi: 10.1038/nbt.1512. Epub Nov. 23, 2008.
Tang et al., An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPARgamma, adipogenesis, and insulin-responsive hexose transport. Proc Natl Acad Sci U S A. Feb. 14, 2006;103(7):2087-92. Epub Feb. 3, 2006.
Tang et al., MicroRNAs are tightly associated with RNA-induced gene silencing complexes in vivo. Biochem Biophys Res Commun. Jul. 18, 2008;372(1):24-9. doi:10.1016/j.bbrc.2008.04.137. Epub May 12, 2008.
Uhlmann et al., Antisense oligonucleotides: a new therapeutic principle. Chem Rev. 1990;90(4):543-84.
Vlassov et al., Transport of oligonucleotides across natural and model membranes. Biochim Biophys Acta. Jun. 29, 1994;1197(2):95-108.
Wolfrum et al., Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol. Oct. 2007;25(10):1149-57. Epub Sep. 16, 2007.
Xue et al., Mesodermal patterning defect in mice lacking the Ste20 NCK interacting kinase (NIK). Development. May 2001;128(9):1559-72.
Yamada et al., Synthesis and properties of oligonucleotides having a chemically stable 2-(trimethylsilyl)benzoyl group. Nucleic Acids Symp Ser (Oxf). 2008;(52):301-2. doi: 10.1093/nass/nrn152.
Yu et al., RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci U S A. Apr. 30, 2002;99(9):6047-52. Epub Apr. 23, 2002.
[No Author Listed] RedChip Small-Cap Investor Conference. RXI Pharmaceuticals (Nasdaq RXII). Jun. 16, 2009 Presentation. 22 pages.
[No Author Listed], RXi Pharmaceuticals Presents Self-Delivering RNAi Data at Scar Club Meeting in France. Drugs.com. Mar. 26, 2010. http://www.drugs.com/clinical_trials/rxi-pharmaceuticals-presents-self-delivering-rnai-data-scar-club-meeting-france-9093.html [last accessed Aug. 19, 2014].
Cardia et al., Novel self-delivering RNAi compounds with enhanced cellular uptake and distribution properties. Keystone RNAi Silencing Conference. Jan. 14-19, 2010. Poster. 1 Page.
Kamens et al., Novel, chemically modified RNAi compounds with improved potency, stability and specificity. Keystone RNAi Silencing: Mechanism, Biology and Application Conference. Jan. 14-19, 2010. Poster. 1 Page.
Mathews et al., Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. May 11, 2004;101(19):7287-92. Epub May 3, 2004.
Parrish et al., Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell. Nov. 2000;6(5):1077-87.
Pavco et al., Robust Intradermal efficacy with novel chemically modified self-delivering RNAi compounds. Keystone RNAi Silencing Conference: Mechanism, Biology and Application Conference. Jan. 14-19, 2010. Poster. 1 Page.
Salomon et al., Modified dsRNAs that are not processed by Dicer maintain potency and are incorporated into the RISC. Nucleic Acids Res. Jun. 2010;38(11):3771-9. doi: 10.1093/nar/gkq055. Epub Feb. 18, 2010.
Seela et al., Oligodeoxyribonucleotides containing 1,3-propanediol as nucleoside substitute. Nucleic Acids Res. Apr. 10, 1987;15(7):3113-29.
Holmes et al., Syntheses and oligonucleotide incorporation of nucleoside analogues containing pendant imidazolyl or amino functionalities—the search for sequence-specific artificial ribonucleases. Eur J Org Chem. Apr. 13, 2005;5171-83. DOI; 10.1002/ejoc.20050413.
Rozners et al., Expanding functionality of RNA: synthesis and properties of RNA containing imidazole modified tandem G-U wobble base pairs. Chem Commun (Camb). Dec. 14, 2005;(46):5778-80.
[No Author Listed] Rxi Pharmaceutical Corporation. Ex 99.1. OTC: RXII. Mar. 2013. 38 pages.
Augustyns et al., Incorporation of hexose nucleoside analogues into oligonucleotides: synthesis, base-pairing properties and enzymatic stability. Nucleic Acids Res. Sep. 25, 1992;20(18):4711-6.
Chen et al., Functionalization of single-walled carbon nanotubes enables efficient intracellular delivery of siRNA targeting MDM2 to inhibit breast cancer cells growth. Biomed Pharmacother. Jul. 2012;66(5):334-8. doi: 10.1016/j.biopha.2011.12.005. Epub Feb. 17, 2012.
Chen et al., Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. Sep. 2010;18(9):1650-6. doi: 10.1038/mt.2010.136. Epub Jul. 6, 2010.
Chiang et al., Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem. Sep. 25, 1991;266(27):18162-71.
Fisher et al., Intracellular disposition and metabolism of fluorescently-labeled unmodified and modified oligonucleotides microinjected into mammalian cells. Nucleic Acids Res. Aug. 11, 1993;21(16):3857-65.
Ortigão et al., Antisense effect of oligodeoxynucleotides with inverted terminal internucleotidic linkages: a minimal modification protecting against nucleolytic degradation. Antisense Res Dev. 1992 Summer;2(2):129-46.
Snead et al., RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics. Nucleic Acid Ther. Jun. 2012;22(3):139-46. doi: 10.1089/nat.2012.0361. Review.
Stein et al., A specificity comparison of four antisense types: morpholino, 2′-O-methyl RNA, DNA, and phosphorothioate DNA. Antisense Nucleic Acid Drug Dev. Jun. 1997;7(3):151-7.
Summerton et al., Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev. Apr. 1997;7(2):63-70.
U.S. Appl. No. 15/041,738, filed Feb. 11, 2016, Khvorova et al.
U.S. Appl. No. 15/099,481, filed Apr. 14, 2016, Khvorova et al.
U.S. Appl. No. 15/101,770, filed Jun. 3, 2016, Cauwenbergh et al.
U.S. Appl. No. 15/286,948, filed Oct. 6, 2016, Kamens et al.
U.S. Appl. No. 14/104,450, filed Dec. 12, 2013, Khvorova et al.
U.S. Appl. No. 14/278,900, filed May 15, 2014, Khvorova et al.
U.S. Appl. No. 15/532,804, filed Jun. 2, 2017, Cauwenbergh et al.
U.S. Appl. No. 15/742,093, filed Jan. 5, 2018, Cardia et al.
U.S. Appl. No. 15/742,117, filed Jan. 5, 2018, Byrne et al.
U.S. Appl. No. 15/905,118, filed Feb. 26, 2018, Khvorova et al.
U.S. Appl. No. 15/508,768, filed Mar. 3, 2017, Cauwenbergh.
U.S. Appl. No. 15/638,586, filed Jun. 30, 2017, Woolf et al.
U.S. Appl. No. 13/636,755, filed Sep. 24, 2012, Khvorova et al.
PCT/US2009/005247, dated Jan. 29, 2010, Invitation to Pay Additional Fees.
PCT/US2009/005247, dated Apr. 16, 2010, International Search Report and Written Opinion.
PCT/US2009/005247, dated Mar. 31, 2011, International Preliminary Report on Patentability.
Alahari et al., Inhibition of expression of the multidrug resistance-associated P-glycoprotein of by phosphorothioate and 5′ cholesterol-conjugated phosphorothioate antisense oligonucleotides. Mol Pharmacol. Oct. 1996;50(4):808-19.
Hosono et at., Properties of base-pairing in the stern region of hairpin antisense oligonucleotides containing 2′-methoxynucleosides. Biochim Biophys Acta. Jun. 9, 1995;1244(2-3):339-44.
Related Publications (1)
Number Date Country
20110263680 A1 Oct 2011 US
Provisional Applications (3)
Number Date Country
61192954 Sep 2008 US
61149946 Feb 2009 US
61224031 Jul 2009 US
Continuation in Parts (1)
Number Date Country
Parent 13120342 US
Child 13069780 US