This invention relates to reducing gate oxide thinning at the field edge of complimentary metal oxide semiconductor (CMOS) devices and, more particularly, to reducing field edge thinning in peripheral devices.
Some CMOS devices are fabricated in such a way that a thin gate oxide and a thick gate oxide are grown on the device. In some processes for fabricating these peripheral CMOS devices, the thin gate oxide devices are sometimes stripped with a wet oxide etch prior to gate oxidation. In other processes, the thick gate oxide devices are sometimes stripped with a wet oxide etch prior to gate oxidation. When a device is stripped with a wet oxide etch, the silicon corners at the field edges may be exposed. This results in increased gate oxide thinning at the field edges (e.g., at the exposed corners). This increased thinning may lead to undesirable variability in the electrical parameters of the peripheral devices.
For example, the increased thinning at the field edges may cause a MOSFET (metal oxide semiconductor field effect transistor) to break down at the corners due to the non-uniformity of the gate oxide. This results in what is sometimes called a threshold kink. That is, a MOSFET may turn on closer to the device's field edges before the rest of the device turns on. When enough voltage is applied to the rest of the gate, the rest of the device may turn on. In essence, this results in two devices in parallel. This variability and other factors may lead to degradation in functionality, yield, and reliability in these devices.
It would therefore be desirable to be able to provide fabrication processes that reduce field edge thinning in peripheral devices.
It is an object of this invention to provide fabrication processes that reduce field edge thinning in peripheral devices.
Some peripheral devices (e.g., CMOS) include a low voltage device and a high voltage device separated by a field oxide or isolation dielectric. Field oxides or isolation dielectrics may also separate these peripheral devices from other devices. The invention is directed to the fabrication of these low and high voltage devices.
Low voltage and high voltage devices are typically fabricated in silicon. The field oxide may be a dielectric such as silicon dioxide. The fabrication processes of the invention eliminate a wet oxide etch used in other fabrication processes. Eliminating the wet oxide etch reduces the exposure of the silicon corners of the peripheral devices at their field edges. Reducing the exposure of the silicon corners results in more uniform gate oxides for such devices. More uniform gate oxides leads to less variable and more reliable devices.
The invention uses a dielectric layer as an oxidation and wet oxide etch barrier to prevent exposure of the silicon corners of the thick and thin gate oxide devices. Thinning of the gate oxides at the field edges is therefore reduced. The dielectric layer may be an interpoly dielectric layer, which may be, for example, an oxide-nitride-oxide.
The dielectric layer is deposited on both the low voltage and high voltage devices of a peripheral device. The low voltage device will ultimately have a thin gate oxide grown over it, while the high voltage device will ultimately have a thick gate oxide grown over it. Generally, the dielectric layer is not removed from a low or high voltage device until that device is ready to be processed. That is, the dielectric layer remains on a device until the process of growing a gate oxide on the device has begun. Masks may be deposited on or placed over the device to selectively etch dielectric layers.
A portion of the thick gate oxide may be grown on a high voltage device before the thin gate oxide is grown on a low voltage device. That is, the gate oxide for the high voltage device may be the thick gate oxide grown over the high voltage device and an additional layer of oxide grown over the device (e.g., a thin layer of oxide grown over the low and high voltage devices—the thin layer of oxide grown over the low voltage device may be the gate oxide for that device). In other words, the thin gate oxide is grown directly over the thick gate oxide. The thin and thick gate oxides grown over the high voltage device will be the gate oxide for that device.
When masks are not lined up exactly with the dielectric layers they are intended to cover, a small portion of the dielectric layer may not be removed from the device when oxides are grown. These small portions are sometimes referred to as hedges. Hedges may be removed by exposing a trench in the field oxide near the hedge. Field oxides may be locally exposed by depositing or placing a mask with openings or windows on or over the device. The field oxide is then etched at the hedges which will in turn remove the hedges.
The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
The invention is directed to the fabrication of peripheral devices. Peripheral devices may be used to implement storage cells in memory devices such as, for example, SRAMs, DRAMs, and memory devices used in flash applications.
In the fabrication of some peripheral memory devices, a dielectric layer is deposited over the peripheral devices and the memory devices to which the peripheral devices are coupled. The dielectric layer may be an interpoly dielectric layer. Such an interpoly dielectric layer may be, for example, oxide-nitride-oxide or aluminum-oxide. The dielectric is used as an oxidation and wet-oxide etch barrier. In some peripheral device fabrication, the dielectric layer is removed from the entire peripheral device but not the memory device. The dielectric layer is removed from the peripheral device to allow thin and thick gate oxides to be grown over the peripheral device. That is, the low and high voltage devices are exposed before the growth of the thin and thick gate oxides.
In processes such as these, one device may be stripped more times with a wet oxide etch prior to gate oxidation than the other device (e.g., a low voltage device compared to a high voltage device). This increases exposure of the silicon corners at the field edges resulting in increased gate oxide thinning at the field edges.
Thin gate oxide devices and thick gate oxide devices are sometimes referred to as low voltage and high voltage devices, respectively. The thin and thick gate oxide devices are respectively referred to as such because of the amount of voltage required to turn the devices on. Hereinafter, “low voltage device” and “high voltage device” are used to refer to thin gate oxide and thick gate oxide devices, respectively.
As mentioned above, a dielectric layer is sometimes deposited over a memory device as well as peripheral devices.
As shown in
Although the processes of the invention relate primarily to the fabrication of CMOS peripheral devices, these processes may be used to reduce or prohibit gate oxide thinning at field edges in other devices such as, for example, capacitors, other types of field effect transistors, and other related MOS devices.
The fabrication processes in accordance with the invention reduce the increased gate oxide thinning at the field edge by, among other things, using a dielectric layer as an oxidation and wet oxide etch barrier for the low and high voltage devices.
After dielectric layer 110 is deposited, a mask 120 is deposited on or placed over peripheral device 80 such that the portion of dielectric layer 110 covering high voltage device 100 can be removed, as shown in
As illustrated in
As illustrated in
Oxide layer 130 is preferably a portion of the total gate oxide for high voltage device 100. That is, the fabrication process may subsequently grow more oxide on top of oxide layer 130. Oxide layer 130 in conjunction with additional oxide may serve as the gate oxide for device 100.
After oxide layer 130 is grown over high voltage device 100, a mask 140 is deposited on or placed over oxide layer 130, as shown in
As illustrated in
During the fabrication of peripheral devices, masks may not line up exactly with the oxide layers or dielectric layers that they are intended to cover. At times, a mask may unintentionally cover a small portion of a dielectric layer. This is illustrated in
Portions such as portion 330 are sometimes referred to as hedges. Hedges are often undesirable because they may lift off in subsequent fabrication processing, unpredictably disrupting the grown oxide layer. Hedges may be controllably removed by exposing trenches in the field oxide under the hedges. To expose a trench in the field oxide, a mask may be deposited on or placed over a device. The mask may have openings that line up with desired trench locations (i.e., where the hedges are located). The field oxide is exposed at those openings, and the mask is then removed.
As illustrated in
The fabrication process illustrated in
Subsequently, a second mask may be deposited on or placed over the high voltage device (step 2112). The dielectric layer is then removed from the low voltage device at step 2114. Then, the second mask is removed from the high voltage device and a second oxide layer is grown on the low voltage device (steps 2116 and 2118). Any hedges that result from this process may be removed by exposing a trench in the field oxide at step 2120.
The first mask is then removed from the first device and a first oxide layer is grown on the second device (steps 2208 and 2210). A second mask is then deposited on or placed over the second device (step 2212). The dielectric layer is then removed from the first device at step 2214. Then, the second mask is removed from the second device and a second oxide layer is grown on the first device (steps 2216 and 2218). Any hedges that result from this fabrication process may be removed by exposing a trench in the field oxide at step 2220.
Thus it is seen that fabrication processes for reducing field edge thinning in peripheral devices are provided. One skilled in the art will appreciate that the invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation, and the invention is limited only by the claims which follow.
This application is a continuation of U.S. patent application Ser. No. 11/233,569, filed Sep. 23, 2005 (now U.S. Pat. No. 7,262,102) which is a division of U.S. patent application Ser. No. 10/180,415, filed Jun. 24, 2002 (now U.S. Pat. No. 7,241,662) each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4743563 | Pfiester et al. | May 1988 | A |
4907049 | Slotboom | Mar 1990 | A |
5502009 | Lin | Mar 1996 | A |
6114203 | Ghidini et al. | Sep 2000 | A |
6130805 | Sasaki et al. | Oct 2000 | A |
6162683 | Chen | Dec 2000 | A |
6225167 | Yu et al. | May 2001 | B1 |
6235591 | Balasubramanian et al. | May 2001 | B1 |
6380020 | Shimizu | Apr 2002 | B1 |
6436771 | Jang et al. | Aug 2002 | B1 |
6461915 | Rudeck | Oct 2002 | B1 |
6468099 | Kim | Oct 2002 | B2 |
6562683 | Wang et al. | May 2003 | B1 |
6569742 | Taniguchi et al. | May 2003 | B1 |
7132330 | Kobayashi | Nov 2006 | B2 |
7241662 | Wolstenholme et al. | Jul 2007 | B2 |
7262102 | Wolstenholme et al. | Aug 2007 | B2 |
20020096783 | Shen et al. | Jul 2002 | A1 |
Number | Date | Country |
---|---|---|
2000349164 | Dec 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20070264784 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10180415 | Jun 2002 | US |
Child | 11233569 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11233569 | Sep 2005 | US |
Child | 11880003 | US |