1. Field of the Invention
The invention relates generally to the field of semiconductor devices and fabrication and, more particularly, to memory elements and methods for making memory elements.
2. Background of the Related Art
This section is intended to introduce the reader to various aspects of art which may be related to various aspects of the present invention that are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Microprocessor-controlled integrated circuits are used in a wide variety of applications. Such applications include personal computers, vehicle control systems, telephone networks, and a host of consumer products. As is well known, microprocessors are essentially generic devices that perform specific functions under the control of a software program. This program is stored in one or more memory devices that are coupled to the microprocessor. Not only does the microprocessor access memory devices to retrieve the program instructions, but it also stores and retrieves data created during execution of the program in one or more memory devices.
There are a variety of different memory devices available for use in microprocessor-based systems. The type of memory device chosen for a specific function within a microprocessor-based system depends largely upon what features of the memory are best suited to perform the particular function. For instance, volatile memories, such as dynamic random access memories (DRAMs), must be continually powered in order to retain their contents, but they tend to provide greater storage capability and programming options and cycles than non-volatile memories, such as read only memories (ROMs). While non-volatile memories that permit limited reprogramming exist, such as electrically erasable and programmable “ROMs,” all true random access memories, i.e., those memories capable of 1014 programming cycles are more, are volatile memories. Although one time programmable read only memories and moderately reprogrammable memories serve many useful applications, a true nonvolatile random access memory (NVRAM) would likely be needed to surpass volatile memories in usefulness.
Efforts have been underway to create a commercially viable memory device that is both random access and nonvolatile using structure changing memory elements, as opposed to the charge storage memory elements used in most commercial memory devices. The use of electrically writable and erasable phase change materials, i.e., materials which can be electrically switched between generally amorphous and generally crystalline states or between different resistive states while in crystalline form, in memory applications is known in the art and is disclosed, for example, in U.S. Pat. No. 5,296,716 to Ovshinsky et al. The Ovshinsky patent contains a discussion of the general theory of operation of chalcogenide materials, which are a particular type of structure changing material.
As disclosed in the Ovshinsky patent, such phase change materials can be electrically switched between a first structural state, in which the material is generally amorphous, and a second structural state, in which the material has a generally crystalline local order. The material may also be electrically switched between different detectable states of local order across the entire spectrum between the completely amorphous and the completely crystalline states. In other words, the switching of such materials is not required to take place in a binary fashion between completely amorphous and completely crystalline states. Rather, the material may be switched in incremental steps reflecting changes of local order to provide a “gray scale” represented by a multiplicity of conditions of local order spanning the spectrum from the completely amorphous state to the completely crystalline state.
These memory elements are monolithic, homogeneous, and formed of chalcogenide material typically selected from the group of Te, Se, Sb, Ni, and Ge. This chalcogenide material exhibits different electrical characteristics depending upon its state. For instance, in its amorphous state the material exhibits a higher resistivity than it does in its crystalline state. Such chalcogenide materials may be switched between numerous electrically detectable conditions of varying resistivity in nanosecond time periods with the input of picojoules of energy. The resulting memory element is truly non-volatile. It will maintain the integrity of the information stored by the memory cell without the need for periodic refresh signals, and the data integrity of the information stored by these memory cells is not lost when power is removed from the device. The memory material is also directly overwritable so that the memory cells need not be erased, i.e., set to a specified starting point, in order to change information stored within the memory cells. Finally, the large dynamic range offered by the memory material theoretically provides for the gray scale storage of multiple bits of binary information in a single cell by mimicking the binary encoded information in analog form and, thereby, storing multiple bits of binary encoded information as a single resistance value in a single cell.
Traditionally, the operation of chalcogenide memory cells requires that a region of the chalcogenide memory material, called the “active region,” be subjected to a current pulse to change the crystalline state of the chalcogenide material within the active region. Typically, a current density of between about 105 and 107 amperes/cm2 is needed. To obtain this current density in a commercially viable device having at least one million memory cells, for instance, one theory suggests that the active region of each memory cell should be made as small as possible to minimize the total current drawn by the memory device.
However, such traditional chalcogenide memory cells have evolved into what is referred to as a programmable metallization cell or a plated chalcogenide memory cell for use in a plated chalcogenide random access memory (PCRAM) device. Such a cell includes a chalcogenide material between opposing electrodes. A fast ion conductor material is incorporated into the chalcogenide material. The resistance of such material can be changed between highly resistive and highly conductive states.
To perform a write operation with the memory cell in its normal high resistive state, a voltage potential is applied to a certain one of the electrodes, with the other of the electrode being held at zero voltage or ground. The electrode having the voltage applied to it functions as an anode, while the electrode held at zero or ground functions as a cathode. The nature of the fast ion conductor material is such that it undergoes a chemical and structural change at a certain applied voltage level. Specifically, at some suitable threshold voltage, the metal ions within the chalcogenide material begin to plate on the cathode and progress through the chalcogenide material toward the anode. The process continues until a conductive dendrite or filament extends between the electrodes, effectively interconnecting the top and bottom electrodes to create an electrical short circuit.
Once this occurs, dendrite growth stops, and the dendrite is retained when the voltage potentials are removed. This results in the resistance of the chalcogenide material between the electrodes dropping by a factor of about 1,000. The material can be returned to its highly resistive state by reversing the voltage potential between the anode and cathode to cause the dendrite to disappear. Again, the highly resistive state is maintained when the reverse voltage potential is removed. Accordingly, such a device can, for example, function as a reprogrammable memory cell of non-volatile random access memory circuit.
As mentioned above, the variable resistance material disposed between the electrodes typically is a chalcogenide material having metal ions diffused therein. A specific example is germanium selenide with silver ions. Typically, to provide the silver ions within the germanium selenide material, germanium selenide is deposited onto the first electrode using chemical vapor deposition. A thin layer of silver is then deposited on the glass, for example by physical vapor deposition or another technique. The layer of silver is then irradiated with ultraviolet radiation. The thin nature of the deposited silver allows the energy to pass through the silver to the silver/glass interface to cause the silver to diffuse into the chalcogenide material. The applied energy and overlying silver result in the silver migrating into the glass layer such that a homegenous distribution of silver throughout the layer is ultimately achieved.
Unfortunately, chalcogenide materials are relatively delicate. The nature of the deposition technique used to deposit the silver can damage the chalcogenide material and, thus, adversely affect the resulting memory cell. Furthermore, it can be challenging to etch and polish chalcogenide materials. Accordingly, it would be desirable to develop memory cell fabrication methods that avoid steps that can damage such materials.
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
Specific embodiments of microprocessor-based systems, memories, memory elements, and methods of making such memory elements are described below as they might be implemented for use in semiconductor memory circuits. In the interest of clarity, not all features of an actual implementation are described in this specification. It should be appreciated that in the development of any such actual implementation, as in any engineering project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill having the benefit of this disclosure.
Turning now to the drawings, and referring initially to
The device 10 typically includes a power supply 14. For instance, if the device 10 is portable, the power supply 14 would advantageously include permanent batteries, replaceable batteries, and/or rechargeable batteries. The power supply 14 may also include an A/C adapter, so that the device may be plugged into a wall outlet, for instance. In fact, the power supply 14 may also include a D/C adapter, so that the device 10 may be plugged into a vehicle's cigarette lighter, for instance.
Various other devices may be coupled to the processor(s) 12, depending upon the functions that the device 10 performs. For instance, a user interface 16 may be coupled to the processor(s) 12. The user interface 16 may include an input device, such as buttons, switches, a keyboard, a light pin, a mouse, and/or a voice recognition system, for instance. A display 18 may also be coupled to the processor(s) 12. The display 18 may include an LCD display, a CRT, LEDs, and/or an audio display. Furthermore, an RF subsystem/baseband processor 20 may also be coupled to the processor(s) 12. The RF subsystem/baseband processor 20 may include an antenna that is coupled to an RF receiver and to an RF transmitter (not shown). A communication port 22 may also be coupled to the processor(s) 12. The communication port 22 may be adapted to be coupled to a peripheral device 24, such as a modem, a printer, or a computer, for instance, or to a network, such as a local area network or the Internet.
Because the processor(s) 12 controls the functioning of the device 10 generally under the control of software programming, memory is coupled to the processor(s) 12 to store and facilitate execution of the software program. For instance, the processor(s) 12 may be coupled to volatile memory 26, which may include dynamic random access memory (DRAM), static random access memory (SRAM), Double Data Rate (DDR) memory, etc. The processor(s) 12 may also be coupled to non-volatile memory 28. The non-volatile memory 28 may include a read only memory (ROM), such as an EPROM or Flash Memory, to be used in conjunction with the volatile memory. The size of the ROM is typically selected to be just large enough to store any necessary operating system, application programs, and fixed data. The volatile memory, on the other hand, is typically quite large so that it can store dynamically loaded applications. Additionally, the non-volatile memory 28 may include a high capacity memory such as a disk drive, tape drive memory, CD ROM drive, DVD, read/write CD ROM drive, and/or a floppy disk drive.
An exemplary memory device is illustrated in
A more detailed depiction of the memory matrix 34 is illustrated in
Turning now to
One method of fabricating the memory cell 40A is disclosed with reference to the various stages of fabrication illustrated in
A layer of dielectric material 54A, for example an oxide such as silicon dioxide, is formed over the substrate 56A, as illustrated in
As illustrated in
A fast ion conductive material is then disposed on the word line 42A. The fast ion conductive material is selected to cooperate with a subsequently applied layer of chalcogenide material to form the memory element of the memory cell 40A. In this embodiment, the word line 42A is plated with the conductive material 50A using an immersion plating process. In general, immersion plating replaces a less noble metal with a more noble metal. It is an ion exchange process that requires neither external electricity nor a catalyst. Immersion plating can be used in a self-limiting process, and it usually plates thinner films than other plating methods. Immersion plating depends on the base metal, i.e., the less noble metal. Many factors can influence immersion plating, such as the type of ligand used to take up the base metal and to keep the base metal in solution.
In this exemplary embodiment, the base metal of the word line 42A is selected to be copper, and the more noble metal of the conductive layer 50A is selected to be silver. Of course, it should be recognized that other base metals, such as nickel, aluminum, or tungsten, for example, may be used in place of copper, and that alloys of such metals may be used as well. In addition, various “more noble” metals, such as gold, may be used in place of silver. However, for the purposes of this exemplary embodiment utilizing copper and silver, a silver immersion solution called “argentomerse” available from Technic, Inc. may be used. This silver immersion solution utilizes a cyanide salt chemistry, which essentially represents a general purpose immersion plating solution. A silver immersion solution such as argentomerse should suffice for plating silver on base metals such as nickel or copper. However, for immersion plating of silver on tungsten, it may be desirable to utilize another silver immersion solution in order to optimize the chemistry. The structure illustrated in
After the conductive layer 50A has been formed on the word line 42A, a layer of chalcogenide material 52A, such as germanium selenide, may be formed over the conductive layer 50A, as illustrated in
Once the layer of chalcogenide material 52A is formed over the layer of conductive material 50A, the structure illustrated in
After this conversion process, the layer of chalcogenide material 52A has metal ions in it, as illustrated in
It should be appreciated from the discussion of the structure and method of fabrication of the memory cell 40A that it represents an inverted PCRAM memory cell. As discussed previously, a typical PCRAM memory cell is fabricated by forming a layer of chalcogenide material on the Metal 1 layer, thus requiring the conductive layer, such as silver, to be disposed on the chalcogenide layer. However, because chalcogenide is a very delicate material as discussed previously, known methods of depositing silver on chalcogenide are difficult to control in a reliable and repeatable fashion. However, by inverting the traditional PCRAM memory cell so that the conductive layer, such as silver, is disposed on the Metal 1 layer, the delicate nature of the subsequently deposited chalcogenide material does not pose a problem.
One method of fabricating the memory cell 40B is disclosed with reference to, the various stages of fabrication illustrated in
A fast ion conductive material is then disposed on the portion of the word line 42B exposed by the window 62. The selection of the fast ion conductive material and the manner in which it may be applied does not differ from the previous embodiment. Accordingly, for the sake of clarity, in this exemplary embodiment, the base metal of the word line 42B is selected to be copper, and the more noble metal of the conductive layer 50B is selected to be silver. The structure illustrated in
After the conductive layer 50B has been formed on the word line 42B, a layer of chalcogenide material 52B, such as germanium selenide, may be deposited in the window 62 over the conductive layer 50B, as illustrated in
Once the layer of chalcogenide material 52B is formed in the window 62, the structure illustrated in
After this conversion process, the layer of chalcogenide material 52B has metal ions in it, as illustrated in
One method of fabricating the memory cell 40C is disclosed with reference to the various stages of fabrication illustrated in
A window 64 is formed in the layer of dielectric material 60C and in the layer of conductive material 44′C to expose at least a portion of the underlying word line 42C. The window 64 may be formed in any suitable manner, such as by the use of standard photolithographic techniques.
A fast ion conductive material is then disposed on the portion of the word line 42C exposed by the window 64. The selection of the fast ion conductive material and the manner in which it may be applied does not differ from the previous embodiments. Accordingly, for the sake of clarity, in this exemplary embodiment, the base metal of the word line 42C is selected to be copper, and the more noble metal of the conductive layer 50C is selected to be silver. The structure illustrated in
After the conductive layer 50C has been formed on the word line 42C, a layer of chalcogenide material 52C, such as germanium selenide, may be deposited in the window 64 over the conductive layer 50C, as illustrated in
Once the layer of chalcogenide material 52C is formed in the window 64, the structure illustrated in
After this conversion process, the layer of chalcogenide material 52C has metal ions in it, as illustrated in
As previously mention, chalcogenide material is somewhat susceptible to damage from planarization techniques, such as chemical mechanical planarization. However, it should be noted that the memory cell 40C is relatively immune to any “over planarization” of the chalcogenide material 52C within the window 64. Although the planarization step can remove some of the relatively delicate chalcogenide material 52C from the top of the window 64, the electrical path from the digit line 44C through the chalcogenide material 52C typically does not extend directly from the layer of conductive material 44″C. Rather, the shortest path typically extends from the edge of the layer of conductive material 44′C. Thus, for over planarization to affect the memory cell 40C adversely, chalcogenide material 52C below the level of the dielectric layer 60C would have to be removed. Since over planarization to such an extent is unlikely, the memory cell 40C typically provides for relatively repeatable and consistent memory operation.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
This application is a continuation of U.S. patent application Ser. No. 11/302,119, filed Dec. 14, 2005, now U.S. Pat. No. 7,235,419 which is a continuation of patent application Ser. No. 10/205,387, filed on Jul. 25, 2002, now U.S. Pat. No. 7,071,021 which in turn is a divisional of U.S. patent application Ser. No. 09/853,233, filed on May 11, 2001 now U.S. Pat. No. 7,102,150. Each application being incorporated in its entirety hereby by reference.
Number | Name | Date | Kind |
---|---|---|---|
3271591 | Ovshinsky | Sep 1966 | A |
3622319 | Sharp | Nov 1971 | A |
3743847 | Boland | Jul 1973 | A |
3961314 | Klose et al. | Jun 1976 | A |
3966317 | Wacks et al. | Jun 1976 | A |
3983542 | Ovshinsky | Sep 1976 | A |
3988720 | Ovshinsky | Oct 1976 | A |
4177474 | Ovshinsky | Dec 1979 | A |
4267261 | Hallman et al. | May 1981 | A |
4269935 | Masters et al. | May 1981 | A |
4312938 | Drexler et al. | Jan 1982 | A |
4316946 | Masters et al. | Feb 1982 | A |
4320191 | Yoshikawa et al. | Mar 1982 | A |
4405710 | Balasubramanyam et al. | Sep 1983 | A |
4419421 | Wichelhaus et al. | Dec 1983 | A |
4499557 | Holmberg et al. | Feb 1985 | A |
4597162 | Johnson et al. | Jul 1986 | A |
4608296 | Keem et al. | Aug 1986 | A |
4637895 | Ovshinsky et al. | Jan 1987 | A |
4646266 | Ovshinsky et al. | Feb 1987 | A |
4664939 | Ovshinsky | May 1987 | A |
4668968 | Ovshinsky et al. | May 1987 | A |
4670763 | Ovshinsky et al. | Jun 1987 | A |
4671618 | Wu et al. | Jun 1987 | A |
4673957 | Ovshinsky et al. | Jun 1987 | A |
4678679 | Ovshinsky | Jul 1987 | A |
4696758 | Ovshinsky et al. | Sep 1987 | A |
4698234 | Ovshinsky et al. | Oct 1987 | A |
4710899 | Young et al. | Dec 1987 | A |
4728406 | Banerjee et al. | Mar 1988 | A |
4737379 | Hudgens et al. | Apr 1988 | A |
4766471 | Ovshinsky et al. | Aug 1988 | A |
4769338 | Ovshinsky et al. | Sep 1988 | A |
4775425 | Guha et al. | Oct 1988 | A |
4788594 | Ovshinsky et al. | Nov 1988 | A |
4795657 | Formigoni et al. | Jan 1989 | A |
4800526 | Lewis | Jan 1989 | A |
4809044 | Pryor et al. | Feb 1989 | A |
4818717 | Johnson et al. | Apr 1989 | A |
4843443 | Ovshinsky et al. | Jun 1989 | A |
4845533 | Pryor et al. | Jul 1989 | A |
4847674 | Sliwa et al. | Jul 1989 | A |
4853785 | Ovshinsky et al. | Aug 1989 | A |
4891330 | Guha et al. | Jan 1990 | A |
5128099 | Strand et al. | Jul 1992 | A |
5159661 | Ovshinsky et al. | Oct 1992 | A |
5166758 | Ovshinsky et al. | Nov 1992 | A |
5177567 | Klersy et al. | Jan 1993 | A |
5219788 | Abernathey et al. | Jun 1993 | A |
5238862 | Blalock et al. | Aug 1993 | A |
5272359 | Nagasubramanian et al. | Dec 1993 | A |
5296716 | Ovshinsky et al. | Mar 1994 | A |
5314772 | Kozicki | May 1994 | A |
5315131 | Kishimoto et al. | May 1994 | A |
5335219 | Ovshinsky et al. | Aug 1994 | A |
5341328 | Ovshinsky et al. | Aug 1994 | A |
5350484 | Gardner et al. | Sep 1994 | A |
5359205 | Ovshinsky | Oct 1994 | A |
5360981 | Owen et al. | Nov 1994 | A |
5406509 | Ovshinsky et al. | Apr 1995 | A |
5414271 | Ovshinsky et al. | May 1995 | A |
5500532 | Kozicki et al. | Mar 1996 | A |
5512328 | Yoshimura et al. | Apr 1996 | A |
5512773 | Wolf et al. | Apr 1996 | A |
5534711 | Ovshinsky et al. | Jul 1996 | A |
5534712 | Ovshinsky et al. | Jul 1996 | A |
5536947 | Klersy et al. | Jul 1996 | A |
5543737 | Ovshinsky | Aug 1996 | A |
5591501 | Ovshinsky et al. | Jan 1997 | A |
5596522 | Ovshinsky et al. | Jan 1997 | A |
5687112 | Ovshinsky | Nov 1997 | A |
5694054 | Ovshinsky et al. | Dec 1997 | A |
5714768 | Ovshinsky et al. | Feb 1998 | A |
5726083 | Takaishi | Mar 1998 | A |
5751012 | Wolstenholme et al. | May 1998 | A |
5761115 | Kozicki et al. | Jun 1998 | A |
5789277 | Zahorik et al. | Aug 1998 | A |
5814527 | Wolstenholme et al. | Sep 1998 | A |
5818749 | Harshfield | Oct 1998 | A |
5825046 | Czubatyj et al. | Oct 1998 | A |
5841150 | Gonzalez et al. | Nov 1998 | A |
5846889 | Harbison et al. | Dec 1998 | A |
5851882 | Harshfield | Dec 1998 | A |
5869843 | Harshfield | Feb 1999 | A |
5896312 | Kozicki et al. | Apr 1999 | A |
5912839 | Ovshinsky et al. | Jun 1999 | A |
5914893 | Kozicki et al. | Jun 1999 | A |
5920788 | Reinberg | Jul 1999 | A |
5933365 | Klersy et al. | Aug 1999 | A |
5998066 | Block et al. | Dec 1999 | A |
6011757 | Ovshinsky | Jan 2000 | A |
6031287 | Harshfield | Feb 2000 | A |
6072716 | Jacobson et al. | Jun 2000 | A |
6077729 | Harshfield | Jun 2000 | A |
6084796 | Kozicki et al. | Jul 2000 | A |
6087674 | Ovshinsky et al. | Jul 2000 | A |
6117720 | Harshfield | Sep 2000 | A |
6141241 | Ovshinsky et al. | Oct 2000 | A |
6143604 | Chiang et al. | Nov 2000 | A |
6177338 | Liaw et al. | Jan 2001 | B1 |
6236059 | Wolsteinholme et al. | May 2001 | B1 |
RE37259 | Ovshinsky | Jul 2001 | E |
6297170 | Gabriel et al. | Oct 2001 | B1 |
6300684 | Gonzalez et al. | Oct 2001 | B1 |
6316784 | Zahorik et al. | Nov 2001 | B1 |
6329606 | Freyman et al. | Dec 2001 | B1 |
6339544 | Chiang et al. | Jan 2002 | B1 |
6348365 | Moore et al. | Feb 2002 | B1 |
6350679 | McDaniel et al. | Feb 2002 | B1 |
6376284 | Gonzalez et al. | Apr 2002 | B1 |
6388324 | Kozicki et al. | May 2002 | B2 |
6391688 | Gonzalez et al. | May 2002 | B1 |
6404665 | Lowery et al. | Jun 2002 | B1 |
6414376 | Thakur et al. | Jul 2002 | B1 |
6418049 | Kozicki et al. | Jul 2002 | B1 |
6420725 | Harshfield | Jul 2002 | B1 |
6423628 | Li et al. | Jul 2002 | B1 |
6429064 | Wicker | Aug 2002 | B1 |
6437383 | Xu | Aug 2002 | B1 |
6440837 | Harshfield | Aug 2002 | B1 |
6462984 | Xu et al. | Oct 2002 | B1 |
6469364 | Kozicki | Oct 2002 | B1 |
6473332 | Ignatiev et al. | Oct 2002 | B1 |
6480438 | Park | Nov 2002 | B1 |
6487106 | Kozicki | Nov 2002 | B1 |
6487113 | Park et al. | Nov 2002 | B1 |
6501111 | Lowery | Dec 2002 | B1 |
6507061 | Hudgens et al. | Jan 2003 | B1 |
6511862 | Hudgens et al. | Jan 2003 | B2 |
6511867 | Lowery et al. | Jan 2003 | B2 |
6512241 | Lai | Jan 2003 | B1 |
6514805 | Xu et al. | Feb 2003 | B2 |
6531373 | Gill et al. | Mar 2003 | B2 |
6534781 | Dennison | Mar 2003 | B2 |
6545287 | Chiang | Apr 2003 | B2 |
6545907 | Lowery et al. | Apr 2003 | B1 |
6555860 | Lowery et al. | Apr 2003 | B2 |
6563164 | Lowery et al. | May 2003 | B2 |
6566700 | Xu | May 2003 | B2 |
6567293 | Lowery et al. | May 2003 | B1 |
6569705 | Chiang et al. | May 2003 | B2 |
6570784 | Lowery | May 2003 | B2 |
6576921 | Lowery | Jun 2003 | B2 |
6586761 | Lowrey | Jul 2003 | B2 |
6589714 | Maimon et al. | Jul 2003 | B2 |
6590807 | Lowery | Jul 2003 | B2 |
6593176 | Dennison | Jul 2003 | B2 |
6597009 | Wicker | Jul 2003 | B2 |
6605527 | Dennison et al. | Aug 2003 | B2 |
6613604 | Maimon et al. | Sep 2003 | B2 |
6621095 | Chiang et al. | Sep 2003 | B2 |
6625054 | Lowery et al. | Sep 2003 | B2 |
6642102 | Xu | Nov 2003 | B2 |
6646297 | Dennison | Nov 2003 | B2 |
6649928 | Dennison | Nov 2003 | B2 |
6667900 | Lowery et al. | Dec 2003 | B2 |
6671710 | Ovshinsky et al. | Dec 2003 | B2 |
6673648 | Lowery | Jan 2004 | B2 |
6673700 | Dennison et al. | Jan 2004 | B2 |
6674115 | Hudgens et al. | Jan 2004 | B2 |
6687153 | Lowrey | Feb 2004 | B2 |
6687427 | Ramalingam et al. | Feb 2004 | B2 |
6690026 | Peterson | Feb 2004 | B2 |
6696355 | Dennison | Feb 2004 | B2 |
6707712 | Lowery | Mar 2004 | B2 |
6714954 | Ovshinsky et al. | Mar 2004 | B2 |
7102150 | Harshfield et al. | Sep 2006 | B2 |
20020000666 | Kozicki et al. | Jan 2002 | A1 |
20020072188 | Gilton | Jun 2002 | A1 |
20020106849 | Moore | Aug 2002 | A1 |
20020123169 | Moore et al. | Sep 2002 | A1 |
20020123170 | Moore et al. | Sep 2002 | A1 |
20020123248 | Moore et al. | Sep 2002 | A1 |
20020127886 | Moore et al. | Sep 2002 | A1 |
20020132417 | Li | Sep 2002 | A1 |
20020160551 | Harshfield | Oct 2002 | A1 |
20020163828 | Krieger et al. | Nov 2002 | A1 |
20020168820 | Kozicki | Nov 2002 | A1 |
20020168852 | Harshfield et al. | Nov 2002 | A1 |
20020190289 | Harshfield et al. | Dec 2002 | A1 |
20020190350 | Kozicki et al. | Dec 2002 | A1 |
20030001229 | Moore et al. | Jan 2003 | A1 |
20030027416 | Moore | Feb 2003 | A1 |
20030032254 | Gilton | Feb 2003 | A1 |
20030035314 | Kozicki | Feb 2003 | A1 |
20030035315 | Kozicki | Feb 2003 | A1 |
20030038301 | Moore | Feb 2003 | A1 |
20030043631 | Gilton et al. | Mar 2003 | A1 |
20030045049 | Campbell et al. | Mar 2003 | A1 |
20030045054 | Campbell et al. | Mar 2003 | A1 |
20030047765 | Campbell | Mar 2003 | A1 |
20030047772 | Li | Mar 2003 | A1 |
20030047773 | Li | Mar 2003 | A1 |
20030048519 | Kozicki | Mar 2003 | A1 |
20030048744 | Ovshinsky et al. | Mar 2003 | A1 |
20030049912 | Campbell et al. | Mar 2003 | A1 |
20030068861 | Li et al. | Apr 2003 | A1 |
20030068862 | Li et al. | Apr 2003 | A1 |
20030095426 | Hush et al. | May 2003 | A1 |
20030096497 | Moore et al. | May 2003 | A1 |
20030107105 | Kozicki | Jun 2003 | A1 |
20030117831 | Hush | Jun 2003 | A1 |
20030128612 | Moore et al. | Jul 2003 | A1 |
20030137869 | Kozicki | Jul 2003 | A1 |
20030143782 | Gilton et al. | Jul 2003 | A1 |
20030155589 | Campbell et al. | Aug 2003 | A1 |
20030155606 | Campbell et al. | Aug 2003 | A1 |
20030156447 | Kozicki | Aug 2003 | A1 |
20030156463 | Casper et al. | Aug 2003 | A1 |
20030209728 | Kozicki et al. | Nov 2003 | A1 |
20030209971 | Kozicki et al. | Nov 2003 | A1 |
20030210564 | Kozicki et al. | Nov 2003 | A1 |
20030212724 | Ovshinsky et al. | Nov 2003 | A1 |
20030212725 | Ovshinsky et al. | Nov 2003 | A1 |
20040035401 | Ramachandran et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
5-6126916 | Oct 1981 | JP |
WO 9748032 | Dec 1997 | WO |
WO 9928914 | Jun 1999 | WO |
WO 0048196 | Aug 2000 | WO |
WO 0221542 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070235712 A1 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09853233 | May 2001 | US |
Child | 10205387 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11302119 | Dec 2005 | US |
Child | 11751896 | US | |
Parent | 10205387 | Jul 2002 | US |
Child | 11302119 | US |