The disclosure relates generally to photonic die and systems, dicing and packaging apparatus and methods for separating a die on wafer in preparation for packaging. The disclosure also relates to methods for manufacturing photonic systems and apparatus. More particularly, the present invention is in the technical field of manufacturing edge coupled photonic devices for packaging or coupling to other devices.
Manufacturing of dies on silicon wafers include dicing of the wafers to separate the dies on the wafer in preparation for packaging of such dies. The process of dicing the wafers into individual dies using mechanical dicing blades results in the separated dies with rough edges. Photonic systems with edge coupling require much smother surfaces for direct connect of waveguides or optical cables to die due to inherent losses of signal associated with rough connected edges.
Traditional means of creating smooth die surface involve time intensive and costly manual polishing of dies. Other means available for dicing such as plasma dicing, laser dicing, or stealth dicing either are time intensive, require specialized tooling, or have other adverse effects on wafers.
For reasons stated above and for other reasons which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for improved systems and methods for separating dies with smooth edges on a wafer for uses requiring such smooth edges such as for use in photonic chips and other edge connected devices requiring direct connection of waveguides and optical fibers, and for improved methods of manufacturing the same.
The above-mentioned shortcomings, disadvantages and problems are addressed herein, as will be understood by those skilled in the art upon reading and studying the following specification.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in more detail in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Direct attachment of fiber optic cable, laser die, photodetector die, or any other edge connection to a photonic integrated chip requires saw dicing followed by facet polishing to reach a smoothness to avoid light scattering.
In one aspect, systems, apparatus, and methods are provided through which the above objective of dicing of dies on wafers may be accomplished by using dry-etched facet without the cost and tooling of plasma dicing, enabling a cost-effective way to prepare edge-coupled photonic devices for packaging or coupling to other devices.
In one aspect, systems, apparatus and methods are provided through which ideal surface roughness may be achieved by providing an etched surface at the location (depth) of the waveguide, giving an ideal surface roughness beyond that of saw dicing, polishing, or laser dicing. This reduces scattering loss of the integrated waveguide at the surface, decreasing the coupling loss to externally coupled devices. This low roughness is achieved through dry etching in a cleanroom environment.
SAFE dicing may also use a backside dicing saw to improve cost and throughput. The backside sawing mechanism causes a lateral recess relative to the etched facet. This is ideal and grants direct access for other coupled devices of any thickness to the dry-etched facet waveguide(s).
Plasma Dicing refers to dry etching through the entire wafer in a cleanroom environment to achieve a high-quality facet. However, it is relatively a long and expensive process that requires special tooling and is not suitable for large die sizes. By use of the disclosed invention, a cleanroom die etch is only needed to traverse through the waveguide and partway into the substrate. This enables the use of standard cleanroom equipment and reduces tool time and associated cost. The backside saw completes the dicing, a process which is more cost effective, efficient and the resulting roughness at the diced edge is of no consequence to the dry-etched waveguide surface which is not affected by the dicing saw.
Apparatus, systems, and methods of varying scope are described herein. These aspects are indicative of various non-limiting ways in which the disclosed subject matter may be utilized, all of which are intended to be within the scope of the disclosed subject matter. In addition to the aspects and advantages described in this summary, further aspects, features, and advantages will become apparent by reference to the associated drawings, detailed description, and claims.
The disclosed subject matter itself, as well as further objectives, and advantages thereof, will best be illustrated by reference to the following detailed description of embodiments of the methods and systems read in conjunction with the accompanying drawings, wherein:
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments which may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the embodiments and disclosure. It is to be understood that other embodiments may be utilized, and that logical, mechanical, electrical, and other changes may be made without departing from the scope of the embodiments and disclosure. In view of the foregoing, the following detailed description is not to be taken as limiting the scope of the embodiments or disclosure.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
It will be appreciated that for simplicity and clarity of illustration, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the implementations described herein. However, it will be understood by those of ordinary skill in the art that the implementations described herein may be practiced without these specific details. In other instances, well-known methods, procedures and components have not been described in detail so as not to obscure the implementations described herein. Also, the description is not to be considered as limiting the scope of the implementations described herein.
The detailed description set forth herein in connection with the appended drawings is intended as a description of exemplary embodiments in which the presently disclosed apparatus and system can be practiced. The term “exemplary” used throughout this description means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments.
Illustrated in
Dicing the wafer from the backside of the wafer accomplishes the objective of getting a smooth edge on the die in the active layers as the dicing blade does not go through the active layers and the resulting rough edges associated with the dicing blade may be avoided in the layers of interest.
In other embodiments, the depth of the etched cavity may not go all the way through all the active layers on the wafer if the relevant layers that require the desired smoothness happen to be only a few of the top active layers but not all active layers.
The etching 110 step in combination with dicing 135 the remaining wafer from the backside to a thickness less than the whole wafer thickness may produce dies that are useful for any photonic system looking to edge-couple to other integrated waveguides.
In the discussion that follows describes a set of steps that may be used to separate dies with smooth edges that may be suitable for photonic circuit applications. In other embodiments, the method may be used to dice through one side of a double sided die where one side of the die needs smooth edges but the other side of the die may not require such smooth edges. Illustrated in
Referring to
The step of etching 110 as described in
Similarly, the protective material used in the step of protecting 120, to protect against any damage during dicing operation, may also be chosen with consideration of its capability to be dissolved through the use of certain solvents to enable easy removal of such protective material by use of such solvents.
It will be understood by a person with ordinary skills in the art that other embodiments may make use of other types of materials for these purposes and other use available techniques for removal of these materials used in the steps of masking 105 and protecting 120.
Referring to
Referring to
Referring to
In certain embodiments the backside of the wafer may also be covered with a protective material to protect the wafer against damage from mounting upside down or during dicing 135.
Illustrated in
Referring to
Referring to
Illustrated in
Referring to
Finally,
It is to be understood that other embodiments may be utilized, such as methods where the backside of the wafer may also be coated with a protective material coating.
Apparatus, methods and systems according to embodiments of the disclosure are described. Although specific embodiments are illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purposes may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of the embodiments and disclosure. For example, although described in terminology and terms common to the field of art, exemplary embodiments, systems, methods and apparatus described herein, one of ordinary skill in the art will appreciate that implementations may be made for other fields of art, systems, apparatus or methods that provide the required functions. The invention should therefore not be limited by the above described embodiment, method, and examples, but by all embodiments and methods within the scope and spirit of the invention.
In particular, one of ordinary skill in the art will readily appreciate that the names of the methods and apparatus are not intended to limit embodiments or the disclosure. Furthermore, additional methods, steps, and apparatus can be added to the components, functions can be rearranged among the components, and new components to correspond to future enhancements and physical devices used in embodiments can be introduced without departing from the scope of embodiments and the disclosure. One of skill in the art will readily recognize that embodiments are applicable to future systems, future apparatus, future methods, and different materials.
All methods described herein can be performed in a suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”), is intended merely to better illustrate the disclosure and does not pose a limitation on the scope of the disclosure unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the disclosure as used herein.
Terminology used in the present disclosure is intended to include all environments and alternate technologies that provide the same functionality described herein.
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/785,546 filed on Dec. 27, 2018 is hereby expressly incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4608569 | Dickey, Jr. et al. | Aug 1986 | A |
5444864 | Smith | Aug 1995 | A |
5699176 | Cohen | Dec 1997 | A |
RE35736 | Powell | Feb 1998 | E |
5757312 | Szmurlo | May 1998 | A |
5867293 | Kotten | Feb 1999 | A |
5904546 | Wood et al. | May 1999 | A |
6359714 | Imajo | Mar 2002 | B1 |
6373909 | Lindquist | Apr 2002 | B2 |
6507728 | Watanabe | Jan 2003 | B1 |
6539204 | Marsh | Mar 2003 | B1 |
6567648 | Ahn | May 2003 | B1 |
6567649 | Souissi | May 2003 | B2 |
6745018 | Zehavi | Jun 2004 | B1 |
6751447 | Jin | Jun 2004 | B1 |
6760454 | Shreve | Jul 2004 | B1 |
6771931 | Waltho | Aug 2004 | B2 |
6778319 | Chavez-Pirson | Aug 2004 | B2 |
6907093 | Blount | Jun 2005 | B2 |
7020396 | Izadpanah | Mar 2006 | B2 |
7058368 | Nicholls | Jun 2006 | B2 |
7064697 | Taylor et al. | Jun 2006 | B2 |
7085497 | Tiemann | Aug 2006 | B2 |
7123676 | Gebara | Oct 2006 | B2 |
7130289 | Kuan et al. | Oct 2006 | B2 |
7355993 | Adkins | Apr 2008 | B2 |
7366244 | Gebara | Apr 2008 | B2 |
7446601 | LeChevalier | Nov 2008 | B2 |
7496257 | Levner | Feb 2009 | B2 |
7509054 | Calabro et al. | Mar 2009 | B2 |
7566634 | Beyne et al. | Jul 2009 | B2 |
7650080 | Yap | Jan 2010 | B2 |
7660531 | Lee | Feb 2010 | B2 |
7672643 | Loh | Mar 2010 | B2 |
7680368 | Welch et al. | Mar 2010 | B2 |
7711329 | Aparin | May 2010 | B2 |
7720029 | Orava | May 2010 | B2 |
7729431 | Gebara | Jun 2010 | B2 |
7756480 | Loh | Jul 2010 | B2 |
7809047 | Kummetz | Oct 2010 | B2 |
7826808 | Faulkner | Nov 2010 | B2 |
7853195 | Higgins | Dec 2010 | B2 |
7869527 | Vetter | Jan 2011 | B2 |
7876867 | Filipovic | Jan 2011 | B2 |
7907895 | Shinagawa | Mar 2011 | B2 |
7917177 | Bauman | Mar 2011 | B2 |
8036606 | Kenington | Oct 2011 | B2 |
8055235 | Gupta et al. | Nov 2011 | B1 |
8078130 | Fudge | Dec 2011 | B2 |
8081946 | Fudge | Dec 2011 | B2 |
8155605 | Hwang | Apr 2012 | B2 |
8170487 | Sahota et al. | May 2012 | B2 |
8233872 | Nagai | Jul 2012 | B2 |
8249540 | Gupta | Aug 2012 | B1 |
8270843 | Nakamoto | Sep 2012 | B2 |
8299555 | Su et al. | Oct 2012 | B2 |
8320504 | Peng | Nov 2012 | B2 |
8331509 | Wang | Dec 2012 | B2 |
8351874 | Dent | Jan 2013 | B2 |
8477871 | Neumann | Jul 2013 | B2 |
8521090 | Kim | Aug 2013 | B2 |
8526903 | Gudem | Sep 2013 | B2 |
8565681 | Kim | Oct 2013 | B2 |
8600200 | Rakich et al. | Dec 2013 | B1 |
8618966 | Kanter | Dec 2013 | B2 |
8682170 | Prucnal | Mar 2014 | B2 |
8730786 | Wang | May 2014 | B2 |
8781030 | Peng | Jul 2014 | B2 |
8785332 | Johnson et al. | Jul 2014 | B2 |
8805298 | McCallister | Aug 2014 | B2 |
8845854 | Lei et al. | Sep 2014 | B2 |
8867928 | Piehler | Oct 2014 | B2 |
8872583 | Lee | Oct 2014 | B2 |
8971712 | Fan et al. | Mar 2015 | B2 |
8977223 | Gupta | Mar 2015 | B1 |
9020307 | Ishikawa | Apr 2015 | B2 |
9100099 | Loh | Aug 2015 | B2 |
9106453 | Wang | Aug 2015 | B2 |
9178635 | Ben-Shlomo | Nov 2015 | B2 |
9184902 | Khojastepour | Nov 2015 | B2 |
9195052 | Long | Nov 2015 | B2 |
9214718 | Mow | Dec 2015 | B2 |
9224650 | Lei et al. | Dec 2015 | B2 |
9252857 | Negus | Feb 2016 | B2 |
9253003 | Harel | Feb 2016 | B1 |
9257811 | Gao | Feb 2016 | B2 |
9258052 | George | Feb 2016 | B2 |
9268092 | Jarecki, Jr. | Feb 2016 | B1 |
9344125 | Kpodzo | May 2016 | B2 |
9344139 | Sjoland | May 2016 | B2 |
9385268 | Minamiru et al. | Jul 2016 | B2 |
9391667 | Sundstrom | Jul 2016 | B2 |
9438288 | Feld | Sep 2016 | B2 |
9450623 | Weissman | Sep 2016 | B2 |
9490963 | Choi | Nov 2016 | B2 |
9520985 | Choi | Dec 2016 | B2 |
9571205 | Suarez | Feb 2017 | B1 |
9589812 | Takahashi et al. | Mar 2017 | B2 |
9602149 | Tanzi | Mar 2017 | B1 |
9608718 | Monsen | Mar 2017 | B2 |
9651652 | Kpodzo et al. | May 2017 | B2 |
9667404 | Sjoland | May 2017 | B2 |
9696492 | Cox | Jul 2017 | B1 |
9698913 | Foster | Jul 2017 | B2 |
9712233 | Deng | Jul 2017 | B1 |
9722713 | Tanzi | Aug 2017 | B2 |
9723612 | Stapleton | Aug 2017 | B2 |
9726821 | Murray et al. | Aug 2017 | B2 |
9748906 | Stewart | Aug 2017 | B2 |
9768852 | Ling | Sep 2017 | B2 |
9774364 | Shih | Sep 2017 | B2 |
9775123 | Harel | Sep 2017 | B2 |
9793943 | Sjoland | Oct 2017 | B2 |
9793992 | Hino | Oct 2017 | B2 |
9807700 | Harel | Oct 2017 | B2 |
9847258 | Rohleder et al. | Dec 2017 | B2 |
9871552 | Din | Jan 2018 | B2 |
9885806 | Steinhardt | Feb 2018 | B2 |
9885825 | Kopp | Feb 2018 | B2 |
9900044 | Sjoland | Feb 2018 | B2 |
9923593 | Andersson | Mar 2018 | B2 |
9923708 | Khandani | Mar 2018 | B2 |
9960805 | Wyville | May 2018 | B2 |
9960850 | Daniel | May 2018 | B2 |
9973282 | Welch | May 2018 | B2 |
9997363 | Ono et al. | Jun 2018 | B2 |
10009120 | Ranson | Jun 2018 | B2 |
10027465 | Sjoland | Jul 2018 | B2 |
10031246 | Zhou | Jul 2018 | B2 |
10038471 | Chang | Jul 2018 | B2 |
10084506 | Sjoland | Sep 2018 | B2 |
10110306 | Jain et al. | Oct 2018 | B2 |
10177836 | Hong | Jan 2019 | B2 |
10187158 | Kikuchi | Jan 2019 | B2 |
10257746 | Jain et al. | Apr 2019 | B2 |
10321357 | Jain et al. | Jun 2019 | B1 |
10325861 | Miccoli | Jun 2019 | B2 |
10341028 | Kanter | Jul 2019 | B2 |
10356782 | Negus | Jul 2019 | B2 |
10367584 | Rakich | Jul 2019 | B2 |
10418775 | Gao | Sep 2019 | B2 |
10491313 | Jain | Nov 2019 | B2 |
10656350 | Chen et al. | May 2020 | B2 |
10663663 | Painchaud | May 2020 | B2 |
10673519 | Hong | Jun 2020 | B2 |
10727945 | Nguyen et al. | Jul 2020 | B1 |
10754091 | Nagarajan | Aug 2020 | B1 |
10873877 | Jain et al. | Dec 2020 | B2 |
20030161637 | Yamamoto | Aug 2003 | A1 |
20040151238 | Masenten | Aug 2004 | A1 |
20040264610 | Marro | Dec 2004 | A1 |
20060068567 | Beyne | Mar 2006 | A1 |
20110065408 | Kenington | Mar 2011 | A1 |
20110065409 | Kenington | Mar 2011 | A1 |
20130295980 | Reuven | Nov 2013 | A1 |
20140169236 | Choi | Jun 2014 | A1 |
20150205041 | Neelakantan | Jul 2015 | A1 |
20160056080 | Takahashi | Feb 2016 | A1 |
20160103341 | Long | Apr 2016 | A1 |
20160133784 | Minamiru | May 2016 | A1 |
20180006795 | Raaf | Jan 2018 | A1 |
20180096952 | Miccoli | Apr 2018 | A1 |
20180248627 | Daniel | Aug 2018 | A1 |
20190007140 | Vishwanath et al. | Jan 2019 | A1 |
20200209476 | Mattis et al. | Jul 2020 | A1 |
20200229031 | Jain et al. | Jul 2020 | A1 |
20210036779 | Nguyen et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
101379718 | Mar 2009 | CN |
104484852 | Apr 2015 | CN |
3561561 | Oct 2019 | EP |
2139374 | Nov 1984 | GB |
2002214461 | Jul 2002 | JP |
2006301415 | Nov 2006 | JP |
2474056 | Jan 2013 | RU |
WO 06072086 | Jul 2006 | WO |
WO 07092767 | Aug 2007 | WO |
WO 08036356 | Mar 2008 | WO |
WO 12112357 | Aug 2012 | WO |
Entry |
---|
Chang et al., “Full-duplex spectrum sensing in cognitive radios using optical self-interference cancellation,” 2015 9th International Conference on Sensing Technology (ICST), IEEE, Dec. 8, 2015, pp. 341-344. |
IBM, “Silicon Nanophotonic Packaging,” https://researcher.watson.ibm.com/researcher/view_group_subpage.php?id=5522, Jul. 2016. |
Li et al., “Multimode silicon photonics,” Nanophotonics, vol. 8, No. 2, May 16, 2019, pp. 2270247. |
Velha et al., “Simultaneous data transmissions on engineered closely packed silicon-on-insulator waveguide arrays,” 19th International Conference on Transparent Optical Networks (ICTON), IEEE, Jul. 2, 2017, pp. 1-4. |
Tang et al., “System limitations due to channel cross-coupling in a highly parallel polymer-based single-mode channel waveguide array,” Advances in Resistive Technology and Processing XVI, vol. 2042, Aug. 16, 1993, 12 pages. |
Yoo et al., “Heterogeneous 2D/3D photonic integrated microsystems,” Microsystems & Nanoengineering, 2016, 2, 16030, Aug. 2016. |
Number | Date | Country | |
---|---|---|---|
20200209476 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62785546 | Dec 2018 | US |