1. Field of the Invention
Embodiments of the present invention relate generally to a method of barrier layer formation.
2. Description of the Related Art
Integrated circuits have evolved into complex devices that can include millions of components (e.g., transistors, capacitors and resistors) on a single chip. The evolution of chip designs continually requires faster circuitry and greater circuit densities. The demand for greater circuit densities necessitates a reduction in the dimensions of the integrated circuit components.
As the dimensions of the integrated circuit components are reduced (e.g., sub-micron dimensions), the materials used to fabricate such components contribute to the electrical performance thereof. For example, low resistivity metal interconnects (e.g., aluminum (Al) and copper (Cu)) provide conductive paths between the components on integrated circuits.
Referring to
In order to minimize capacitive coupling between adjacent metal interconnects, low dielectric constant bulk insulating materials 4 (e.g., dielectric constants less than about 3.5) are used. Examples of low dielectric constant bulk insulating materials include silicon dioxide (SiO2), silicate glass and organosilicate glass, among others.
In addition, a barrier layer 6 often separates the metal interconnects 2 from the bulk insulating material 4. The barrier layer 6 minimizes the diffusion of the metal from the metal interconnects 2 into the bulk insulating material 4. Diffusion of the metal from the metal interconnects 2 into the bulk insulating material 4 is undesirable because such diffusion can affect the electrical performance of the integrated circuit (e.g., cross-talk and/or RC delay) or render it inoperable. Examples of barrier materials include refractory metals such as titanium (Ti), tantalum (Ta) and tungsten (W), among others and refractory metal nitrides such as titanium nitride (TiN), tantalum.nitride (TaN) and tungsten nitride (WN), among others.
Barrier materials are typically deposited using physical vapor deposition (PVD) techniques and/or chemical vapor deposition (CVD) techniques. Such techniques deposit the barrier material on all surfaces of the interconnect structure including the metal interconnect 2 and the insulating material 4. However, when the dimensions of the interconnect structures are sub-quarter micron, deposition of barrier material on the metal interconnects 2 tends to increase the resistivity of the interconnect structure which may degrade the electrical properties of the device.
Thus, a need exists for a method to selectively deposit a barrier layer on a dielectric material.
A method to selectively deposit a barrier layer on dielectric material that surrounds one or more metal interconnects on a substrate is described. The barrier layer may comprise a refractory metal nitride such as, for example, tantalum nitride (TaN). The barrier layer is selectively deposited on the dielectric layer using a cyclical deposition process including a predetermined number of deposition cycles followed by a purge step.
In the cyclical deposition process, each deposition cycle comprises alternately adsorbing a refractory metal-containing precursor and a reducing gas on the dielectric material formed on the substrate in a process chamber. The refractory metal-containing precursor and the reducing gas react to form the barrier layer on the dielectric material. After a predetermined number of deposition cycles are completed, the process chamber is purged of both the refractory metal-containing precursor and the reducing gas. This deposition sequence of performing a predetermined number of deposition cycles followed by a process chamber purge may be repeated until a desired barrier layer thickness is achieved.
The predetermined number of deposition cycles is selected to take advantage of differences in the number of deposition cycles needed to start depositing the barrier material on different types of material layers. Thus, the predetermined number of deposition cycles is advantageously selected to start deposition of the barrier material on the dielectric material but is less than the number of deposition cycles needed to start deposition of such barrier material on the metal interconnects. As such, barrier material is only deposited on the dielectric material without being deposited on any metal interconnects.
The selective deposition of the barrier layer is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, the barrier layer is used in a damascene structure. For such an embodiment, a preferred process sequence includes providing a substrate with one or more dielectric material layers thereon having vias defined therethrough to metal features. A barrier layer is selectively deposited on the dielectric material using a cyclic deposition process in which a predetermined number of deposition cycles, each comprising alternately adsorbing a refractory metal-containing precursor and a reducing gas on the dielectric material, is followed by a process chamber purge step. The cyclical deposition process is repeated until a desired thickness for the barrier layer is achieved. After the barrier layer is selectively deposited on the dielectric material, the damascene structure is completed by filling the vias with a conductive material.
So that the manner in which the above recited features of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the embodiments thereof which are illustrated in the appended drawings.
It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
Depending on the specific process, the substrate can be heated to some desired temperature prior to or during deposition. For example, the wafer support pedestal 148 may be heated using an embedded heater element 152a. The wafer support pedestal 148 may be resistively heated by applying an electric current from an AC power supply 152 to the heater element 152a. The substrate (not shown) is, in turn, heated by the pedestal 148. Alternatively, the wafer support pedestal 148 may be heated using radiant heaters, such as, for example, lamps (not shown).
A temperature sensor 150a, such as a thermocouple, is also embedded in the wafer support pedestal 148 to monitor the temperature of the pedestal 148 in a conventional manner. The measured temperature is used in a feedback loop to control the AC power supply 152 for heating element 152a, such that the substrate temperature can be maintained or controlled at a desired temperature which is suitable for a particular process application.
A vacuum pump 118 is used to evacuate the process chamber 36 and to maintain the pressure inside the process chamber 36. A gas manifold 134, through which process gases are introduced into the process chamber 36, is located above the wafer support pedestal 148. The gas manifold 134 is connected to a gas panel 111, which controls and supplies various process gases to the process chamber 36.
Proper control and regulation of the gas flows to the gas manifold 134 are performed by mass flow controllers (not shown) and a microprocessor controller 154. The gas manifold 134 allows process gases to be introduced and uniformly distributed in the process chamber 36. Additionally, the gas manifold 134 may optionally be heated to prevent condensation of any reactive gases within the manifold.
The gas manifold 134 includes a plurality of electronic control valves (not shown). The electronic control valves as used herein refer to any control valve capable of providing rapid and precise gas flow to the process chamber 36 with valve open and close cycles of less than about 1-2 seconds, and more preferably less than about 0.1 second.
The microprocessor controller 154 may be one of any form of general purpose computer processor (CPU) 171 that can be used in an industrial setting for controlling various chambers and sub-processors. The computer may use any suitable memory 172, such a random access memory, read only memory, floppy disk drive, hard disk, or any other form of digital storage, local or remote. Various support circuits 173 may be coupled to the CPU for supporting the processor in a conventional manner. Software routines as required may be stored in the memory or executed by a second CPU that is remotely located.
The software routines are executed to initiate process recipes or sequences. The software routines, when executed, transform the general purpose computer into a specific process computer that controls the chamber operation so that a chamber process is performed. For example, software routines may be used to precisely control the activation of the electronic control valves for the execution of process sequences according to the present invention. Alternatively, the software routines may be performed in hardware, as an application specific integrated circuit or other type of hardware implementation, or combination of software or hardware.
Selective Barrier Layer Deposition on a Dielectric Layer
A method to selectively deposit a barrier layer on a dielectric layer formed on a substrate is described. The barrier layer may comprise a refractory metal nitride, such as, for example, tantalum nitride (TaN), among others. The barrier layer is selectively deposited on the dielectric layer using a cyclical deposition process including a predetermined number of deposition cycles followed by a purge step.
In the cyclical deposition process, each deposition cycle comprises alternately adsorbing a refractory metal-containing precursor and a reducing gas on the dielectric layer formed on the substrate in a process chamber. The refractory metal-containing precursor and the reducing gas react to form the barrier layer on the dielectric layer. After a predetermined number of deposition cycles are completed, the process chamber is purged of both the refractory metal-containing precursor and the reducing gas. This deposition sequence of performing a predetermined number of deposition cycles followed by a process chamber purge may be repeated until a desired barrier layer thickness is achieved.
The predetermined number of deposition cycles is selected to take advantage of differences in the number of deposition cycles needed to start depositing the barrier material on different types of material layers. Thus, the predetermined number of deposition cycles is advantageously selected to start deposition of the barrier material on the dielectric layer, but is less than the number of deposition cycles needed to start deposition of such barrier material on metal films adjacent thereto.
In one embodiment where a constant carrier gas flow is desired, a carrier gas stream is established within the process chamber, as indicated in step 204. Carrier gases may be selected so as to also act as a purge gas for removal of volatile reactants and/or by-products from the process chamber. Carrier gases such as, for example, helium (He), argon (Ar), nitrogen (N2) and hydrogen (H2), as well as combinations thereof, among others, may be used.
Referring to step 206, after the carrier gas stream is established within the process chamber, a pulse of the refractory metal-containing precursor is added to the carrier gas stream. The term pulse as used herein refers to a dose of material injected into the process chamber or into the carrier gas stream. The pulse may comprise one injection of the refractory metal-containing precursor or several short, sequential injections. The pulse of the refractory metal-containing precursor lasts for a predetermined time interval. When the barrier layer comprises tantalum nitride (TaN), suitable tantalum-containing precursors may include, for example, pentakis(dimethylamido) tantalum (PDMAT), pentakis(diethylamido) tantalum (PDEAT), pentakis(ethylmethylamido) tantalum (PEMAT), t-butylamino tris(methylethylamido) tantalum (TBTMET), t-butylamino tris(dimethylamido) tantalum (TBTDMT), bis(cyclopentadienyl) tantalum trihydride, bis(methylcyclopentadienyl) tantalum trihydride and t-butylamino tris(diethylamido) tantalum (TBTDET), among others.
The time interval for the pulse of the refractory metal-containing precursor is variable depending on a number of factors such as, for example, the volume capacity of the process chamber employed, the vacuum system coupled thereto and the volatility/reactivity of the reactants used. In general, the process conditions are advantageously selected so that at least a monolayer of the refractory metal-containing precursor may be adsorbed on the dielectric layer, without adsorption of the refractory metal-containing precursor on adjacent metal films. Thereafter, excess refractory metal-containing precursor remaining in the process chamber may be removed therefrom by the constant carrier gas stream in combination with the vacuum system.
In step 208, after excess refractory metal-containing precursor has been sufficiently removed from the process chamber by the carrier gas stream to prevent co-reaction or particle formation with a subsequently provided process gas, a pulse of a reducing gas is added to the carrier gas stream. When the barrier layer comprises tantalum nitride (TaN) suitable reducing gases include, for example, ammonia (NH3), hydrazine (N2H4), methyl hydrazine (CH3N2H3), dimethyl hydrazine (C2H6N2H2), t-butyl hydrazine (C4H9N2H3), phenyl hydrazine (C6H5N2H3), 2,2′-azoisobutane ((CH3)6C2N2) and ethylazide (C2H5N3), among others.
The pulse of the reducing gas also lasts for a predetermined time interval. In general, the time interval for the pulse of the reducing gas should be long enough to provide a sufficient amount of the reducing gas for reaction with the refractory metal-containing precursor that is already adsorbed on the dielectric layer. Thereafter, excess reducing gas is flushed from the process chamber by the carrier gas stream in combination with the vacuum system.
Steps 204 through 208 comprise one embodiment of a deposition cycle for the barrier layer. For such an embodiment, a constant flow of the carrier gas is provided to the process chamber modulated by alternating periods of pulsing and non-pulsing where the periods of pulsing alternate between the refractory metal-containing precursor and the reducing gas along with the carrier gas stream, while the periods of non-pulsing include only the carrier gas stream.
The time interval for each of the pulses of the refractory metal-containing precursor and the reducing gas may have the same duration. That is, the duration of the pulse of the refractory metal-containing precursor may be identical to the duration of the pulse of the reducing gas. For such an embodiment, a time interval (T1) for the pulse of the refractory metal-containing precursor is equal to a time interval (T2) for the pulse of the reducing gas.
Alternatively, the time interval for each of the pulses of the refractory metal-containing precursor and the reducing gas may have different durations. That is, the duration of the pulse of the refractory metal-containing precursor may be shorted or longer than the duration of the pulse of the reducing gas. For such an embodiment, the time interval (T1) for the pulse of the refractory metal-containing precursor is different than the time interval (T2) for the pulse of the reducing gas.
In addition, the periods of non-pulsing between each of the pulses of the refractory metal-containing precursor and the reducing gas may have the same duration. That is, the duration of the period of non-pulsing between each pulse of the refractory metal-containing precursor and each pulse of the reducing gas may be identical. For such an embodiment, a time interval (T3) of non-pulsing between the pulse of the refractory metal-containing precursor and the pulse of the reducing gas is equal to a time interval (T4) of non-pulsing between the pulse of the reducing gas and the pulse of the refractory metal-containing precursor. During the time periods of non-pulsing only the constant carrier gas stream is provided to the process chamber.
Alternatively, the periods of non-pulsing between each of the pulses of the refractory metal-containing precursor and the reducing gas may have different durations. That is, the duration of the period of non-pulsing between each pulse of the refractory metal-containing precursor and each pulse of the reducing gas may be shorter or longer than the duration of the period of non-pulsing between each pulse of the reducing gas and each pulse of the refractory metal-containing precursor. For such, an embodiment, a time interval (T3) of non-pulsing between the pulse of the refractory metal-containing precursor and the pulse of the reducing gas is different from a time interval (T4) of non-pulsing between the pulse of the reducing gas and the pulse of the refractory metal-containing precursor. During the periods of non-pulsing only the constant carrier gas stream is provided to the process chamber.
Additionally, the time intervals for each pulse of the refractory metal-containing precursor, the reducing gas and the periods of non-pulsing therebetween for each deposition cycle may have the same duration. For example, in a first deposition cycle (C1), a time interval (T1) for the pulse of the refractory metal-containing precursor may have the same duration as the time interval (T1) for the pulse of the refractory metal-containing precursor in subsequent deposition cycles (C2 . . . CN). Similarly, the duration of each pulse of the reducing gas as well as the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in the first deposition cycle (C1) may have the same duration as each pulse of the reducing gas and the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in subsequent deposition cycles (C2 . . . CN), respectively.
Alternatively, the time interval for at least one pulse of the refractory metal-containing precursor, the reducing gas and the periods of non-pulsing therebetween for one or more of the deposition cycles of the barrier layer deposition process may have different durations. For example, in a first deposition cycle (C1), the time interval (T1) for the pulse of the refractory metal-containing precursor may be longer or shorter than the time interval (T1) for the pulse of the refractory metal-containing precursor in subsequent deposition cycles (C2 . . . CN). Similarly, the duration of one or more pulse of the reducing gas or the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in deposition cycle (C1) may be longer or shorter than the duration of corresponding pulses of the reducing gas or the periods of non-pulsing between the pulses of the refractory metal-containing precursor and the reducing gas in subsequent deposition cycles (C2 . . . CN), respectively.
Referring to step 210, after each deposition cycle (steps 204 through 208), the total number of deposition cycles performed is determined. If a predetermined number of deposition cycles have not been performed, steps 204 through 208 are repeated until such predetermined number of deposition cycles have been completed. However, if a predetermined number of deposition cycles have been completed, the process chamber is purged of both the refractory metal-containing precursor and the reducing gas, as indicated by step 212. The process chamber may be purged using the carrier gas stream. After the process chamber is purged, additional predetermined numbers of deposition cycles (steps 204 through 208) may be performed until a desired thickness for the barrier layer is achieved as indicated by step 214, or ended as indicated by step 216.
For a particular barrier material, the predetermined number of deposition cycles is selected to start depositing barrier material on the dielectric layer within the first few deposition cycles, but is less than the number of deposition cycles needed to start depositing such barrier material on the adjacent metal film. Limiting the number of deposition cycles to a predetermined number that is less than the number needed to start deposition of the barrier material on the adjacent metal film and then purging the process chamber, permits selective deposition of the barrier material only on the dielectric layer.
In an alternate process sequence described with respect to
The time intervals for each of the pulses of the refractory metal-containing precursor, the reducing gas and the carrier gas may have the same or different durations as discussed above with respect to FIG. 3. Alternatively, corresponding time intervals for one or more pulses of the refractory metal-containing precursor, the reducing gas and the carrier gas in one or more of the deposition cycles of the barrier layer deposition process may have different durations.
In
One exemplary deposition cycle for selectively forming a tantalum nitride barrier layer on silicon oxide dielectric material that is adjacent to copper features comprises sequentially providing pulses of pentakis(ethylmethylamido) tantalum (PEMAT) and pulses of ammonia (NH3) to a process chamber similar to that described above with reference to FIG. 2. For such a deposition cycle, argon may be provided to an appropriate flow control valve, for example an electronic flow control valve, at a flow rate of between about 100 sccm (standard cubic centimeters per second) to about 1000 sccm, preferably at about 500 sccm, and thereafter pulsed for about 5 seconds to about 25 seconds, preferably for about 15 seconds. The pentakis(ethylmethylamido) tantalum (PEMAT) may be provided to an appropriate flow control valve, for example an electronic flow control valve, by flowing hydrogen (H2) at a flow rate of between 30 sccm to about 1500 sccm, preferably at about 100 sccm through an ampoule containing liquid PEMAT at a temperature of about 50° C. to about 95° C., and thereafter pulsed for about 5 seconds to about 50 seconds, preferably for about 15 seconds. Argon is then provided at a flow rate of between about 100 sccm to about 1000 sccm, preferably at about 500 sccm, and thereafter pulsed for about 5 seconds to about 25 seconds, preferably for about 15 seconds. The ammonia (NH3) may be provided to an appropriate flow control valve, for example an electronic flow control valve, at a flow rate of between about 150 sccm to about 700 sccm, preferably for about 250 sccm, and thereafter pulsed for about 3 seconds to about 45 seconds, preferably for about 5 seconds. The substrate may be maintained at a temperature between about 150° C. to about 350° C., preferably at about 200° C., at a chamber pressure of up to about 40 torr, preferably at about 0.5 torr.
After a predetermined number of deposition cycles are performed, the process chamber is purged by providing a flow of the carrier gas thereto. Gases such as for example, argon (Ar), helium (He), nitrogen (N2) and hydrogen (H2), among others may be used. The process chamber may be purged by providing a flow of gas at about 100 sccm to about 1000 sccm, preferably at about 500 sccm, for a duration of up to about 2 minutes, preferably for about 1 minute.
Referring to
The number of deposition cycles needed to start forming a tantalum nitride (TaN) layer on material layers may vary as a function of the substrate temperature. For example, a tantalum nitride (TaN) layer was formed on both silicon oxide and copper at a substrate temperature of 200° C. Each deposition cycle was performed at a deposition chamber pressure of about 0.5 torr, a pentakis(ethylmethylamido) tantalum flow of about 100 sccm with hydrogen (H2) that is pulsed for about 15 seconds, an ammonia (NH3) flow of 250 sccm that is pulsed for about 5 seconds and an argon (Ar) flow of about 500 sccm that is pulsed for about 15 seconds between each pulse of the pentakis(ethylmethylamido) tantalum (PEMAT) and each pulse of the ammonia (NH3).
Referring to
The number of deposition cycles needed to start forming a tantalum nitride (TaN) layer on silicon oxide may vary as a function of the process chamber pressure. For example, a tantalum nitride (TaN) layer was formed on silicon oxide at a process chamber pressures of 0.5 torr, 1 torr, 2 torr and 6 torr. Each deposition cycle was performed at a substrate temperature of about 210° C., a pentakis(ethylmethylamido) tantalum flow of about 100 sccm with hydrogen (H2) that is pulsed for about 15 seconds, an ammonia (NH3) flow of 250 sccm that is pulsed for about 5 seconds and an argon (Ar) flow of about 500 sccm that is pulsed for about 15 seconds between each pulse of the pentakis(ethylmethylamido) tantalum (PEMAT) and each pulse of the ammonia (NH3).
Referring to
Integrated Circuit Fabrication Process
Vias 503 are defined in the dielectric material 502 to the copper leads 501. The vias are defined in the dielectric material 502 using conventional lithography and etching techniques.
Referring to
Thereafter, referring to
Formation of the tantalum nitride barrier layer 505 on the dielectric material 502 comprising the sidewalls of the vias 503 advantageously prevents metal migration into such dielectric material when the vias 503 are subsequently filled with the conductive material 506. In addition, selective deposition of the barrier layer 505 only on the sidewalls of the vias 503 minimizes any increase to the overall resistivity of the interconnect structure which would otherwise occur had the barrier material 505 also been deposited on the copper leads 501.
While the foregoing is directed to the preferred embodiment of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. provisional patent application Ser. No. 60/342,307, filed on Dec. 21, 2001, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4389973 | Suntola et al. | Jun 1983 | A |
4413022 | Suntola et al. | Nov 1983 | A |
5916365 | Sherman | Jun 1999 | A |
5923056 | Lee et al. | Jul 1999 | A |
6015917 | Bhandari et al. | Jan 2000 | A |
6084302 | Sandhu | Jul 2000 | A |
6124158 | Dautartas et al. | Sep 2000 | A |
6144060 | Park et al. | Nov 2000 | A |
6174809 | Kang et al. | Jan 2001 | B1 |
6197683 | Kang et al. | Mar 2001 | B1 |
6200893 | Sneh | Mar 2001 | B1 |
6203613 | Gates et al. | Mar 2001 | B1 |
6207487 | Kim et al. | Mar 2001 | B1 |
6270572 | Kim et al. | Aug 2001 | B1 |
6284646 | Leem | Sep 2001 | B1 |
6287965 | Kang et al. | Sep 2001 | B1 |
6305314 | Sneh et al. | Oct 2001 | B1 |
6342277 | Sherman | Jan 2002 | B1 |
6348376 | Lim et al. | Feb 2002 | B2 |
6358829 | Yoon et al. | Mar 2002 | B2 |
6372598 | Kang et al. | Apr 2002 | B2 |
6379748 | Bhandari et al. | Apr 2002 | B1 |
6391785 | Satta et al. | May 2002 | B1 |
6399491 | Jeon et al. | Jun 2002 | B2 |
6416577 | Suntoloa et al. | Jul 2002 | B1 |
6416822 | Chiang et al. | Jul 2002 | B1 |
6428859 | Chiang et al. | Aug 2002 | B1 |
6451119 | Sneh et al. | Sep 2002 | B2 |
6451695 | Sneh | Sep 2002 | B2 |
6468924 | Lee et al. | Oct 2002 | B2 |
6475276 | Elers et al. | Nov 2002 | B1 |
6475910 | Sneh | Nov 2002 | B1 |
6482262 | Elers et al. | Nov 2002 | B1 |
6482733 | Raaijmakers et al. | Nov 2002 | B2 |
6511539 | Raaijmakers | Jan 2003 | B1 |
6632279 | Ritala et al. | Oct 2003 | B1 |
20010000866 | Sneh et al. | May 2001 | A1 |
20010002280 | Sneh | May 2001 | A1 |
20010009695 | Saanila et al. | Jul 2001 | A1 |
20010024387 | Raaijmakers et al. | Sep 2001 | A1 |
20010025979 | Kim et al. | Oct 2001 | A1 |
20010028924 | Sherman | Oct 2001 | A1 |
20010034123 | Jeon et al. | Oct 2001 | A1 |
20010041250 | Werkhoven et al. | Nov 2001 | A1 |
20010054730 | Kim et al. | Dec 2001 | A1 |
20010054769 | Raaijmakers et al. | Dec 2001 | A1 |
20020000598 | Kang et al. | Jan 2002 | A1 |
20020007790 | Park | Jan 2002 | A1 |
20020020869 | Park et al. | Feb 2002 | A1 |
20020021544 | Cho et al. | Feb 2002 | A1 |
20020031618 | Sherman | Mar 2002 | A1 |
20020048635 | Kim et al. | Apr 2002 | A1 |
20020052097 | Park | May 2002 | A1 |
20020068458 | Chiang et al. | Jun 2002 | A1 |
20020073924 | Chiang et al. | Jun 2002 | A1 |
20020076481 | Chiang et al. | Jun 2002 | A1 |
20020076507 | Chiang et al. | Jun 2002 | A1 |
20020076508 | Chiang et al. | Jun 2002 | A1 |
20020076837 | Hujanen et al. | Jun 2002 | A1 |
20020094689 | Park | Jul 2002 | A1 |
20020098627 | Pomarede et al. | Jul 2002 | A1 |
20020104481 | Chiang et al. | Aug 2002 | A1 |
20020106536 | Lee et al. | Aug 2002 | A1 |
20020144655 | Chiang et al. | Oct 2002 | A1 |
20020144657 | Chiang et al. | Oct 2002 | A1 |
20020146511 | Chiang et al | Oct 2002 | A1 |
20020155722 | Satta et al. | Oct 2002 | A1 |
20020162506 | Sneh et al. | Nov 2002 | A1 |
20020164421 | Chiang et al. | Nov 2002 | A1 |
20020164423 | Chiang et al. | Nov 2002 | A1 |
20020177282 | Song | Nov 2002 | A1 |
20020182320 | Leskela et al. | Dec 2002 | A1 |
20020187256 | Elers et al. | Dec 2002 | A1 |
20020195683 | Lee et al. | Dec 2002 | A1 |
20020197402 | Chiang et al. | Dec 2002 | A1 |
20030013320 | Kim et al. | Jan 2003 | A1 |
20030031807 | Elers et al. | Feb 2003 | A1 |
20030042630 | Babcoke et al. | Mar 2003 | A1 |
20030049942 | Haukka et al. | Mar 2003 | A1 |
20030072975 | Shero et al. | Apr 2003 | A1 |
20030082296 | Elers et al. | May 2003 | A1 |
20030124262 | Chen et al. | Jul 2003 | A1 |
Number | Date | Country |
---|---|---|
1 167 569 | Jan 2002 | EP |
2 355 727 | May 2001 | GB |
2001111000 | Apr 2001 | JP |
2001172767 | Jun 2001 | JP |
20011172767 | Jun 2001 | JP |
WO 9929924 | Jun 1999 | WO |
WO 9965064 | Dec 1999 | WO |
WO 0016377 | Mar 2000 | WO |
WO 00054320 | Sep 2000 | WO |
WO 0115220 | Mar 2001 | WO |
WO 0117692 | Mar 2001 | WO |
WO 0127346 | Apr 2001 | WO |
WO 0127347 | Apr 2001 | WO |
WO 0129280 | Apr 2001 | WO |
WO 0129891 | Apr 2001 | WO |
WO 0129893 | Apr 2001 | WO |
WO 0136702 | May 2001 | WO |
WO 0166832 | Sep 2001 | WO |
WO 0208485 | Jan 2002 | WO |
WO 0243115 | May 2002 | WO |
WO 0245167 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20030224578 A1 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
60342307 | Dec 2001 | US |