The present application relates generally to semiconductor devices, and more specifically to methods for manufacturing fin field effect transistors.
Fully-depleted devices such as fin field effect transistors (FinFETs) are candidates to enable scaling of next generation gate lengths to 14 nm and below. Fin field effect transistors (FinFETs) present a three-dimensional architecture where the transistor channel is raised above the surface of a semiconductor substrate, rather than locating the channel at or just below the surface. With a raised channel, the gate can be wrapped around the sides of the channel, which provides improved electrostatic control of the device.
The manufacture of FinFETs typically leverages a self-aligned process to produce extremely thin fins, e.g., 20 nm wide or less, on the surface of a substrate using selective-etching techniques. A gate structure is then deposited to contact multiple surfaces of each fin to form a multi-gate architecture.
The gate structure may be formed using a gate-first or a gate-last fabrication process. A gate-last process, such as a replacement metal gate (RMG) process, utilizes a sacrificial or dummy gate, which is typically replaced by a functional gate after device activation, i.e., after epitaxial growth and/or dopant implantation into source/drain regions of the fins and an associated drive-in anneal, in order to avoid exposing the functional gate materials to the thermal budget associated with such processes.
Prior to removing the sacrificial gate and forming a functional gate, a gate cut module may be used to sever the sacrificial gate layer and form an opening within select regions of the architecture in order to isolate adjacent devices. In association with such a process, the sacrificial gate layer material removed from the openings is replaced with another, etch selective dielectric material. However, at advanced nodes, notwithstanding recent developments, it remains a challenge to define a gate cut opening with both the desired critical dimension(s) and alignment precision amidst a plurality of densely-arrayed fins.
Accordingly, it would be beneficial to provide a method for defining a sacrificial gate structure at critical dimensions with a high degree of accuracy and precision, especially a gate structure that enables formation of a functional replacement metal gate at advanced nodes without altering design rules or otherwise compromising real estate.
Disclosed is a gate cut scheme that may be used in conjunction with a replacement metal gate (RMG) process flow for manufacturing fin field effect transistors (FinFETs) where an isolation layer is self-aligned between adjacent fins to form a gate cut region. By fainting a self-aligned isolation layer, a gate cut region having desired critical dimensions and alignment can be formed independent of limitations associated with conventional photolithography.
In accordance with embodiments of the present application, a method of forming a semiconductor structure includes forming a plurality of semiconductor fins over a semiconductor substrate, forming a spacer layer over sidewalls of the plurality of semiconductor fins, forming an isolation layer at self-aligned locations between adjacent spacer layers, forming a second layer over the isolation layer and over the semiconductor fins, etching an opening in the second layer to expose a top surface of the isolation layer, and forming a dielectric layer within the opening.
An example semiconductor structure includes a plurality of semiconductor fins arranged over a semiconductor substrate, n isolation layer disposed over the substrate and between adjacent fins, and a dielectric layer disposed over the isolation layer, wherein a top surface of the isolation layer within a first region of the substrate is below a top surface of semiconductor fins adjacent to the isolation layer, and a top surface of the isolation layer within a second region of the substrate is above a top surface of semiconductor fins adjacent to the isolation layer.
The following detailed description of specific embodiments of the present application can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Reference will now be made in greater detail to various embodiments of the subject matter of the present application, some embodiments of which are illustrated in the accompanying drawings. The same reference numerals will be used throughout the drawings to refer to the same or similar parts.
Disclosed are FinFET device structures and methods of manufacturing FinFET devices, and more particularly methods where the separation of adjacent devices includes the formation of sacrificial spacers over sidewalls of the fins, and the formation of an isolation layer between adjacent fins at self-aligned locations between the sacrificial spacers.
An additional layer such as a sacrificial gate layer is formed over the isolation layer, and photolithography and etching techniques are used to cut, or segment, the additional layer to define a gate opening over the isolation layer. According to various embodiments, the gate cut opening is backfilled with a dielectric material, such that the backfilled dielectric and the isolation layer cooperate to isolate neighboring sacrificial gates and hence the later-formed functional gates associated with respective devices. Independent transistors may be connected by local interconnection methods and/or back end of the line metallization layers to form integrated circuits, such as SRAM devices.
In various embodiments, a distance (d) between the sidewall of the self-aligned isolation layer and an adjacent fin may be less than 20 nm, e.g., 12, 14, 16 or 18 nm, including ranges between any of the foregoing values. Decreasing the distance (d) beneficially impacts the achievable density of devices. However, decreasing the distance (d) between adjacent structures may introduce design and processing challenges. As will be appreciated, such challenges may include the deposition of a functional gate stack, including a gate dielectric layer, gate conductor layer (e.g., work function metal layer) and conductive fill material within the available geometry, e.g., the space between the sidewall of the isolation layer and a neighboring fin. Using the presently-disclosed methods, a structure can be formed having a controlled and consistent distance (d) between the sidewall of an isolation layer and an adjacent fin without altering the design rules for the structure.
Referring to
A cross-sectional diagram along the dimension of the shared gate of
Semiconductor substrate 100 may include a semiconductor material such as silicon, e.g., single crystal Si or polycrystalline Si, or a silicon-containing material. Silicon-containing materials include, but are not limited to, single crystal silicon germanium (SiGe), polycrystalline silicon germanium, silicon doped with carbon (Si:C), amorphous Si, as well as combinations and multi-layers thereof. As used herein, the term “single crystal” denotes a crystalline solid, in which the crystal lattice of the entire solid is substantially continuous and substantially unbroken to the edges of the solid with substantially no grain boundaries.
The substrate 100 is not limited to silicon-containing materials, however, as the substrate 100 may include other semiconductor materials, including Ge and compound semiconductors, including compound semiconductors such as GaAs, InAs, GaN, GaP, InSb, ZnSe, and ZnS, and II-VI compound semiconductors such as CdSe, CdS, CdTe, ZnSe, ZnS and ZnTe.
Substrate 100 may be a bulk substrate or a composite substrate such as a semiconductor-on-insulator (SOI) substrate that includes, from bottom to top, a handle portion, an isolation layer (e.g., buried oxide layer), and a semiconductor material layer.
Substrate 100 may have dimensions as typically used in the art and may include, for example, a semiconductor wafer. Example wafer diameters include, but are not limited to, 50, 100, 150, 200, 300 and 450 mm. The total substrate thickness may range from 250 microns to 1500 microns, although in particular embodiments the substrate thickness is in the range of 725 to 775 microns, which corresponds to thickness dimensions commonly used in silicon CMOS processing. The semiconductor substrate 100 may be a (100)-oriented silicon wafer or a (111)-oriented silicon wafer, for example.
As will be appreciated by those skilled in the art, the semiconductor fins 120 are arranged in parallel and are laterally isolated from each other within sub-fin region 122 by a shallow trench isolation layer 200. The fins 120 extend above shallow trench isolation layer (STI) layer 200 and form an active device region 124.
In various embodiments, fins 120 include a semiconductor material such as silicon, and may be formed by patterning and then etching the semiconductor substrate 100, e.g., a top portion of the semiconductor substrate. In several embodiments, the fins 120 are etched from, and therefore contiguous with the semiconductor substrate 100. For instance, fins 120 may be formed using a sidewall image transfer (SIT) process as known to those skilled in the art.
In certain embodiments, the fins 120 can have a width of 5 nm to 20 nm, a height of 40 nm to 150 nm, and a pitch of 20 nm to 100 nm, although other dimensions are also contemplated. Fins 120 may be arrayed on the substrate at a regular intrafin spacing or pitch. As used herein, the term “pitch” refers to the sum of the fin width and the spacing between neighboring fins. In example embodiments, the fin pitch may be within a range of 20 to 100 nm, e.g., 20, 30, 40, 50, 60, 70, 80, 90 or 100 nm, including ranges between any of the foregoing values, although smaller and larger pitch values may be used. In certain embodiments, plural fins may be arranged at a constant or variable pitch. For instance, first fins corresponding to a first device may be arranged at a first pitch, while second fins corresponding to a second device may be arranged at a second pitch.
As shown in the illustrated embodiment, portions of the fins 120 may be coated with a thin conformal oxide layer 140, which may be a sacrificial oxide layer or incorporated into a device having a thick gate dielectric layer. The conformal oxide layer 140 may include silicon dioxide, for example, and may be formed over the fins within the active device region 124 and over a fin hard mask. The conformal oxide layer 140 may have a thickness of 2 to 3 nm. During the course of manufacturing the FinFET device, the conformal oxide 140 may be stripped from source and drain regions of the fins and/or channel regions of the fins. By way of example, the revealed fin height, i.e., within active device region 124, may be 30 to 60 nm, e.g., 30, 40, 50 or 60 nm, including ranges between any of the foregoing values.
Shallow trench isolation (STI) layer 200 may be used to provide electrical isolation between the fins 120 and between adjacent devices as is needed for the circuit(s) being implemented. An STI process for FinFET devices involves creating isolation trenches in the semiconductor substrate 100 through an anisotropic etch process. The isolation trench between each adjacent fin may have a relatively high aspect ratio (e.g., ratio of the depth of the isolation trench to its width). A dielectric fill material, such as silicon dioxide, is deposited into the isolation trenches, for example, using an enhanced high aspect ratio process (eHARP) to fill the isolation trenches. The deposited dielectric material may then be polished by a chemical-mechanical polishing (CMP) process that removes the excess dielectric material and recess etched to create a planar STI structure having a uniform thickness.
“Planarization” and “planarize” as used herein refer to a material removal process that employs at least mechanical forces, such as frictional media, to produce a substantially two-dimensional surface. A planarization process may include chemical mechanical polishing (CMP) or grinding. Chemical mechanical polishing (CMP) is a material removal process that uses both chemical reactions and mechanical forces to remove material and planarize a surface.
In certain embodiments, the planarized STI oxide is etched back to form a recessed, uniformly thick oxide isolation layer 200 between the fins 120, where upper sidewalls of the fins 120 can be exposed for further processing.
Referring still to
Sacrificial sidewall spacers 360 are formed over sidewalls of the fins 120 and over the fin caps, i.e., directly over the conformal oxide layer 140 and dielectric layer 340, using a conformal deposition process followed by an anisotropic etch. Amorphous elemental silicon (a-Si) can be deposited using atomic layer deposition (ALD) or chemical vapor deposition, such as low pressure chemical vapor deposition (LPCVD) at temperatures ranging from 450° C. to 700° C. Silane (SiH4) can be used as the precursor for CVD silicon deposition. Adjacent sidewall spacers 360 define openings 365a, 365b between neighboring fins.
Referring to
As used herein, the terms “selective” or “selectively” in reference to a material removal or etch process denote that the rate of material removal for a first material is greater than the rate of removal for at least another material of the structure to which the material removal process is applied. For example, in certain embodiments, a selective etch may include an etch chemistry that removes a first material selectively to a second material by a ratio of 2:1 or greater, e.g., 5:1, 10:1 or 20:1.
The height of the self-aligned isolation layer 370 may be such that a top surface of the isolation layer 370 is initially above a top surface of the adjacent fins 120 but below a top surface of neighboring fin caps, e.g., below a top surface of hard mask 320. In certain embodiments, a height of the isolation layer 370 is less than twice a height of the fins within active device region 124, i.e., less than or equal to twice the height of the portion of the fins 120 that extend above STI 200. By way of example, a top surface of the as-formed self-aligned isolation layer 370 may be 10 to 50 nm above a top surface of a neighboring fin, e.g., 25 nm above the top surface of the neighboring fin.
In the illustrated embodiment, a sacrificial fill layer 380 may be formed over isolation layer 370 within the gate cut dimension (
A sacrificial fill layer 380 including amorphous carbon may be formed from a gas mixture including a hydrocarbon source and a diluent gas at a deposition temperature of 200° C. to 700° C. Optionally, an as-deposited amorphous carbon (a-C) layer may be cured such as by exposure to UV radiation at a curing temperature greater than 200° C.
Exemplary hydrocarbon compounds that may be included in the hydrocarbon source used to form the amorphous carbon layer may be described by the formula CxHy, where 1≤x≤10 and 2≤y≤30. Such hydrocarbon compounds may include, but are not limited to alkanes such as methane, ethane, propane, butane and its isomer isobutane, pentane and its isomers isopentane and neopentane, hexane and its isomers 2-methylpentane, 3-methylpentane, 2,3-dimethylbutane, 2,2-dimethyl butane, and the like; alkenes such as ethylene, propylene, butylene and its isomers, pentane and its isomers, and the like; dienes such as butadiene, isoprene, pentadiene and the like, and halogenated alkenes include monofluoroethylene, difluoroethylenes, trifluoroethylene, tetrachloroethylene, monochloroethylene, dichloroethylenes, trichloroethylene, tetrachloroethylene, and the like; and alkynes such as acetylene, propyne, butyne, vinylacetylene and derivatives thereof. Further hydrocarbon compounds include aromatic molecules such as benzene, styrene, toluene, xylene, ethylbenzene, acetophenone, methyl benzoate, phenyl acetate, phenol, cresol, furan, and the like, as well as halogenated aromatic compounds including monofluorobenzene, difluorobenzenes, tetrafluorobenzenes, hexafluorobenzenes and the like.
Suitable diluent gases may include, but are not limited to, hydrogen (H2), helium (He), argon (Ar), ammonia (NH3), carbon monoxide (CO), carbon dioxide (CO2), and mixtures thereof.
Continuing with reference to
Referring to
Gate cut opening 415 may be formed using patterning and etching processes known to those skilled in the art. The patterning process may include photolithography, for example, which includes forming a layer of photoresist material (not shown) atop one or more layers to be patterned. The photoresist material may include a positive-tone photoresist composition, a negative-tone photoresist composition, or a hybrid-tone photoresist composition. A layer of photoresist material may be formed by a deposition process such as, for example, spin-on coating.
The deposited photoresist is then subjected to a pattern of irradiation, and the exposed photoresist material is developed utilizing a conventional resist developer. The pattern provided by the patterned photoresist material is thereafter transferred into the gate hard mask 420 and into the layer of amorphous silicon 410 layer utilizing at least one pattern transfer etching process.
According to various embodiments, in addition to a layer of photoresist, patterning and etching to form gate cut openings 415 may including forming a lithography stack (not shown) over the layer of amorphous silicon 410. A lithography stack may include one or more of an optical planarization layer, an etch stop layer, an amorphous carbon layer, an adhesion layer, an oxide layer, and a nitride layer. Such layers may be configured as known to those skilled in the art to provide a suitable masking layer to pattern and etch the underlying layer(s).
The pattern transfer etching process is typically an anisotropic etch. In certain embodiments, a dry etching process such as, for example, reactive ion etching (RIE) can be used. In other embodiments, a wet chemical etchant can be used. In still further embodiments, a combination of thy etching and wet etching can be used.
A gate cut opening 415 may have areal dimensions (length and width) that independently range from 15 to 40 nm, although lesser and greater dimensions may be used. According to various embodiments, the areal dimensions of the as-formed gate cut openings 415 are within lithography process windows for forming such structures, and enable the gate cut openings 415 to be defined with substantially vertical sidewalls. As used herein, “substantially vertical” sidewalls deviate from a direction normal to a major surface of the substrate by less than 5°, e.g., 0, 1, 2, 3, 4, or 5°, including ranges between any of the foregoing values. In certain embodiments, the width (w) of the gate cut opening 415 is less than 20 nm, e.g., 5, 10 or 15 nm.
The gate cut opening 415 is then backfilled with a dielectric layer 470. Dielectric layer 470 may include silicon nitride. A CMP step may be used to planarize the structure. According to various embodiments, the dielectric layer 470 is formed from a material that is etch selective to both amorphous silicon and the gate hard mask, which referring to
Referring in particular to
Referring to
According to a further embodiment, with reference to
Shown in
As will be appreciated, in accordance with various embodiments described herein, etching to form the gate cut opening 415 need only extend through the sacrificial fill layer 380 (or conductive fill layer 530) to a top surface of the isolation layer 370, which is higher than a top surface of the adjacent fins 120. Compared to an alternative process where etching to form the gate cut opening 415 extends through the sacrificial fill layer 380 (or conductive fill layer 530) to STI 200, the relatively shallow etch depth results in a method and a resulting structure where the critical dimension of the opening 415 and the subsequent fill step each have a wide process window and are easy to control. For example, even in the example of a misaligned etch to form the gate cut opening 415, which may have a larger CD than the isolation layer 370, as shown schematically in
A further method for forming self-aligned gate isolation, as well as the resulting structure, are described with particular reference to
Referring to
Referring to
Referring to
As shown in
Referring to
A further method for forming self-aligned gate isolation, as well as the resulting structure, is described with reference to
Referring to
Referring to
An isolation layer 370 is deposited within self-aligned locations directly over STI 200 between adjacent layers of the amorphous silicon sidewall spacers 610 and then polished to remove the overburden and form a planarized structure. Hard mask 320 may function as a CMP stopping layer during the polishing, such that dielectric layer 340 is removed from over the hard mask 320. As shown in
Referring to
As used here, “horizontal” refers to a general direction along a primary surface of a substrate, and “vertical” is a direction generally orthogonal thereto. Furthermore, “vertical” and “horizontal” are generally perpendicular directions relative to one another independent of orientation of the substrate in three-dimensional space.
Following removal of exposed portions of the conformal oxide layer 140 from over fins, source/drain regions 820 may be formed by ion implantation or selective epitaxy, e.g., using the sidewall spacers 810 as an alignment mask. According to exemplary embodiments, source/drain regions 820 may be formed by recessing semiconductor fins 120 followed by selective epitaxial growth from exposed portions of the fins.
As used herein, the terms “epitaxy,” “epitaxial” and/or “epitaxial growth and/or deposition” refer to the growth of a semiconductor material layer on a deposition surface of a semiconductor material, in which the semiconductor material layer being grown assumes the same crystalline habit as the semiconductor material of the deposition surface. For example, in an epitaxial deposition process, chemical reactants provided by source gases are controlled and the system parameters are set so that depositing atoms alight on the deposition surface and remain sufficiently mobile via surface diffusion to orient themselves according to the crystalline orientation of the atoms of the deposition surface. Therefore, an epitaxial semiconductor material has the same crystalline characteristics as the deposition surface on which it is formed. For example, an epitaxial semiconductor material deposited on a (100) crystal surface will take on a (100) orientation. Source/drain regions 820 may include silicon, silicon germanium, or another suitable semiconductor material.
The selective epitaxy process deposits an epitaxial layer directly onto the exposed surfaces of the fins 120 adjacent to the sidewall spacers 810. Exposed surfaces of the fins 120 may include the top surface as well as upper portions of the sidewalls of the tins proximate to the top surface. In various embodiments, a silicon epitaxial layer is formed without deposition of silicon on the exposed dielectric surfaces. Selective epitaxial layers may be formed using molecular beam epitaxy or chemical vapor deposition processes that are adapted for selective epitaxy.
An example silicon epitaxial process for forming top source (or drain) region(s) uses a gas mixture eluding H2 and dichlorosilane (SiH2Cl2) at a deposition (e.g., substrate) temperature of 600-800° C. Other suitable gas sources for silicon epitaxy include silicon tetrachloride (SiCl4), slime (SiH4), trichlorosilane (SiHCl3), and other hydrogen-reduced chlorosilanes (SiHxCl4-x).
An interlayer dielectric 840 is deposited directly over the epitaxial layers 820 to fill the openings between adjacent sidewall spacers 810. The interlayer dielectric 840 may include silicon dioxide and may be formed by chemical vapor deposition. The overburden may be removed by chemical mechanical polishing, e.g., using the nitride layer 720 as a CMP stop layer. As seen in
Prior to forming a gate cut opening, a selective etch may be used to recess the ILD layer 840, and the recessed regions may be filled with a nitride layer 850 (e.g., silicon nitride) and the structure again polished, as shown in
As shown in
Etching to form the gate cut opening 415 of
Referring to
An isotropic wet etching process, such as a BHF-containing etch, can be used to etch the first oxide layer 710, followed by an anisotropic dry etch process to etch the gate hard mask 320 and the isolation layer 370. Alternatively, a wet chemical etchant can be used. In still further embodiments, a combination of dry etching and wet etching can be used.
The conformal oxide 140 may be removed along with remaining portions of the amorphous silicon layer 610. A replacement metal gate architecture 500, including a high-k layer, work function metal layer, and conductive fill metal (not separately shown) may be formed over the fins. The high-k layer and the work function metal layer may be deposited conformally, e.g., into the gaps between the isolation layer 370 and the neighboring fins 120. A recess etch of the conductive fill layer may be used to control its thickness.
As will be appreciated, the conductive fill layer forms a shared gate along the shared gate dimension (
Referring to
As will be appreciated, the gate isolation methods and structures described herein leverage the formation of both a self-aligned isolation layer that provides precise alignment for the cut region of a sacrificial gate, and a lithographically-defined dielectric layer that overlies the isolation layer and together with the self-aligned isolation layer provides an effective gate isolation structure. By forming the isolation layer in a self-aligned manner between sacrificial sidewall spacers formed over the sidewalls of adjacent fins, both the desired critical dimension (CD) and alignment of the isolation layer can be achieved. The disclosed methods enable structures that are compatible with both single gate and shared gate devices.
According to various embodiments, the formation or deposition of a layer or structure, including the foregoing layers and structures, may involve one or more techniques suitable for the material or layer being deposited or the structure being formed. In addition to techniques or methods specifically mentioned, various techniques include, but are not limited to, chemical vapor deposition (CVD), low-pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), microwave plasma chemical vapor deposition (MPCVD), metal organic CVD (MOCVD), atomic layer deposition (ALD), molecular beam epitaxy (MBE), electroplating, electroless plating, ion beam deposition, spin-on coating, thermal oxidation, and physical vapor deposition (PVD) techniques such as sputtering or evaporation.
As used herein, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to a “layer” includes examples having two or more “layers” unless the context clearly indicates otherwise.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order. Accordingly, where a method claim does not actually recite an order to be followed by its steps or it is not otherwise specifically stated in the claims or descriptions that the steps are to be limited to a specific order, it is no way intended that any particular order be inferred. Any recited single or multiple feature or aspect in any one claim can be combined or permuted with any other recited feature or aspect in any other claim or claims.
It will be understood that when an element such as a layer, region or substrate is referred to as being formed on, deposited on, or disposed “on” or “over” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or “directly over” another element, no intervening elements are present.
While various features, elements or steps of particular embodiments may be disclosed using the transitional phrase “comprising,” it is to be understood that alternative embodiments, including those that may be described using the transitional phrases “consisting” or “consisting essentially of,” are implied. Thus, for example, implied alternative embodiments to a ferroelectric layer that comprises lead zirconate titanate include embodiments where a ferroelectric layer consists essentially of lead zirconate titanate and embodiments where a ferroelectric layer consists of lead zirconate titanate.
It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit and scope of the invention. Since modifications, combinations, sub-combinations and variations of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and their equivalents.