The present disclosure relates to a semiconductor device and a method of manufacturing the same.
Conventionally, a semiconductor device can be reduced in size by bonding a plurality of substrates each of which has semiconductor elements or integrated circuits formed thereon. The bonding surface of each substrate includes an insulating layer and a plurality of metal pads for interconnection formed therein. This bonding surface is subjected to a polishing process for planarization. However, even after polishing the bonding surface of each substrate, a step difference may occur at the metal pad and its adjacent bonding surface, and if the step difference is not controlled to the tolerance range, defects such as voids may occur even after bonding, which can result in a serious yield drop.
According to an aspect of an embodiment, there is provided a semiconductor device comprising a first semiconductor chip; and a second semiconductor chip disposed on the first semiconductor chip. The first semiconductor chip includes a first substrate; a first insulating layer disposed on the first substrate and having a top surface; a first metal pad embedded in the first insulating layer and having a top surface substantially planar with the top surface of the first insulating layer; and a first barrier disposed between the first insulating layer and the first metal pad. The second semiconductor chip includes a second substrate; a second insulating layer disposed below the second substrate and having a top surface; a second metal pad embedded in the second insulating layer and having a top surface substantially planar with the top surface of the second insulating layer; and a second barrier disposed between the second insulating layer and the second metal pad. The top surfaces of the first insulating layer and the second insulating layer are bonded to provide a bonding interface, the first metal pad and the second metal pad are mutually connected, and a portion of the first insulating layer is in contact with a side region of the first metal pad.
According to another aspect of an embodiment, there is provided a semiconductor device comprising a first substrate; a first insulating layer disposed on the first substrate and having a top surface; a first metal pad embedded in the first insulating layer and having a top surface substantially planar with the top surface of the first insulating layer; a first barrier disposed between the first insulating layer and the first metal pad; and a second insulating layer disposed on the first insulating layer and having a top surface, wherein the first insulating layer and the second insulating layer are bonded to provide a bonded interface, and a portion of the first insulating layer adjacent to the bonded interface contacts a side region of the first metal pad.
According to another aspect of an embodiment, there is provided a semiconductor device comprising a first semiconductor chip; and a second semiconductor chip disposed on the first semiconductor chip. The first semiconductor chip includes a first substrate, a first insulating layer disposed on the first substrate and having a planar top surface, a first metal pad embedded in the first insulating layer and having a top surface substantially planar with the top surface of the first insulating layer, a first barrier disposed between the first insulating layer and the first metal pad. The second semiconductor chip includes a second substrate, a second insulating layer disposed below the second substrate and having a planar top surface, a second metal pad embedded in the second insulating layer and having a top surface substantially planar with the top surface of the second insulating layer, and a second barrier disposed between the second insulating layer and the second metal pad. The top surfaces of the first insulating layer and the second insulating layer are bonded to provide a bonding interface, the first metal pad and the second metal pad are connected, an end portion of the first barrier is spaced apart from the bonding surface, and a portion of the first insulating layer in contact with a side region of the first metal pad includes a material different from the remaining portion of the first insulating layer.
According to another aspect of an embodiment, there is provided a semiconductor device comprising a first semiconductor chip; and a second semiconductor chip disposed on the first semiconductor chip. The first semiconductor chip includes a first substrate; a first insulating layer disposed on the first substrate and having a top surface; a first metal pad embedded in the first insulating layer and having a top surface substantially planar with the top surface of the first insulating layer; and a first barrier disposed between the first insulating layer and the first metal pad. The second semiconductor chip includes a second substrate; a second insulating layer disposed below the second substrate and having a planar surface; a second metal pad embedded in the second insulating layer and having a surface substantially planar with the surface of the second insulating layer; and a second barrier disposed between the second insulating layer and the second metal pad. The surfaces of the first insulating layer and the second insulating layer are bonded to provide a bonding interface, the first metal pad and the second metal pad are connected, an end portion of the first barrier extends to the bonding interface, and a portion of the first insulating layer in contact with a side region of the first metal pad is separated from another portion of the first insulating layer by the first barrier, and includes a material different from another portion of the first insulating layer.
According to another aspect of an embodiment, there is provided a method of manufacturing a semiconductor device, the method comprising forming an opening in an insulating layer disposed on a substrate; forming a barrier on a surface exposed by the opening; forming an metal pad on the barrier to fill an interior of the opening; chemically mechanically polishing the metal pad such that a gap is generated in the opening between an upper end of the metal pad and the barrier; selectively removing the exposed portion of the barrier such that the barrier is removed from the gap, the gap is expanded, and a region of the insulating layer is exposed; forming an additional insulating layer on the metal pad to fill the opening together with the expanded gap; and after the forming the additional insulating layer, polishing the additional insulating layer such that the metal pad has a top surface substantially planar with a surface of the additional insulating layer.
According to another embodiment of the present disclosure, there is provided a method of manufacturing a semiconductor device, the method comprising forming an opening in an insulating layer disposed on a substrate; forming a barrier on a surface exposed by the opening; forming an metal pad on the barrier to fill an interior of the opening; chemically mechanically polishing the metal pad to expose a portion of the barrier; selectively removing the exposed portion of the barrier; forming an additional insulating layer on the metal pad to fill the opening; and polishing the additional insulating layer such that the metal pad has a top surface substantially planar with a surface of the additional insulating layer.
These and other aspects will be apparent to those of skill in the art by describing in detail exemplary embodiments with reference to the attached drawings in which:
Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. The same reference numerals are used for the same constituent elements in the drawings, and duplicate description thereof will be omitted.
Referring to
The semiconductor device 500 may be, for example, a stacked CMOS image sensor (CIS). In this case, the second semiconductor chip 200 may be a sensor chip such as a complementary metal oxide semiconductor (CMOS) image sensor for capturing an object, and the first semiconductor chip 100 may be a logic chip having a logic circuit for reading out the image signal of a captured image from the second semiconductor chip 200 and performing various signal processing on the read image signal.
As illustrated in
The first semiconductor chip 100 may include a logic area LA and a logic peripheral area PEI. The logic region LA may be disposed in the central region of the second semiconductor chip 200, and a plurality of logic elements may be disposed. The plurality of logic elements may configure various circuits for processing pixel signals from pixels of the first semiconductor chip 100. For example, the circuits may include analog signal processing circuits, analog-to-digital converter (ADC) circuits, image signal processing circuits, control circuits, and the like.
In the present disclosure, the logic peripheral area PEI and the pixel peripheral area PEp are disposed on all of the outer portions of the four sides, but embodiments are not limited thereto. At least one of the logic peripheral area PEI and the pixel peripheral area PEp may not include a logic peripheral area PEI on an outer portion of at least one of the four sides.
The first and second semiconductor chips 100 and 200 may be bonded to each other and provide a semiconductor device 500 such as a stacked CMOS image sensor CIS. Referring to the partial cross sections D1-D1′, that is, the cross section along the Y direction in the stacked state of the first and second semiconductor chips 100 and 200 shown in
Referring to
The first substrate 120 may include a first device substrate 105 having a logic circuit implemented thereon, and a first wiring part 115 disposed on an upper surface of the first device substrate 105. The first wiring part 115 may include first interlayer insulating layers 111, first wiring lines 112, and first vertical contacts 113. The first vertical contacts 113 may electrically connect the first wiring lines 112 or electrically connect the first wiring lines 112 to the first substrate 120 (e.g., a logic circuit).
Similarly, the second substrate 220 may include a second device substrate 205 in which a CMOS circuit is implemented, and a second wiring part 215 disposed on a bottom surface of the second device substrate 205. The second wiring part 215 may include second interlayer insulating layers 211, second wiring lines 212, and second vertical contacts 213. The second vertical contacts 213 may electrically connect the second wiring lines 212 or electrically connect the second wiring lines 212 to the second substrate 220 (e.g., a CMOS circuit).
Although not shown, color filters and micro lenses may be formed on the upper surface of the second device substrate 205. Based on the second device substrate 205 on which the pixels are formed, a structure in which color filters and microlenses are formed in the opposite direction with respect to the second interconnection part 215 is called a back side illumination (BSI) structure. On the contrary, based on the second device substrate 250, the structure in which the color filters and the micro lenses are formed in the same direction as the second wiring part 215, that is, the color filters and the micro lenses are formed on the second wiring part 215, is called a front side illumination (FSI) structure.
The first bonded structure BS1 of the first semiconductor chip 100 may include a first insulating layer 131 disposed on a surface (e.g., an upper surface) of the first substrate 120, a plurality of first metal pads 155 embedded in the first insulating layer 131 and having an end surface exposed by the first insulating layer 131, and a first barrier 152 disposed between the first insulating layer 131 and the first metal pad 155. The first insulating layer 131 may have a planar surface, and the surface of the first insulating layer 131 may have a coplanar surface (hereinafter, also referred to as a “surface”) that is substantially planar with the upper section of the first metal pad 155. Each of the first metal pads 155 may be connected to a logic circuit through the first wiring part 115 of the first substrate 120.
Similarly, the second bonded structure BS2 of the second semiconductor chip 200 may include a second insulating layer 231 formed on a surface (e.g., a lower surface) of the second substrate 220, a plurality of second metal pads 255 embedded in a position corresponding to the second metal pad 255 and having an end surface exposed by the second insulating layer 231, and a second barrier 252 disposed between the second insulating layer 231 and the second metal pad 255. The second insulating layer 231 may have a planar surface, and the surface of the second insulating layer 231 may have coplanar surface (hereinafter, also referred to as a “surface”) that is substantially planar with the lower section of the second metal pad 255. Each second metal pad 255 may be connected to the CMOS circuit through, for example, the second wiring part 215 of the second substrate 220.
For example, at least one of the first and second metal pads 155, 255 may include Cu, Co, Mo, Ru, W, or an alloy thereof. The first and second barriers 152, 252 may be conductive barriers, and at least one of the first and second barriers 152, 252 may include Ta, TaN, Mn, MnN, WN, Ti, TiN, or a combination thereof.
In the embodiment of
For example, the first and second insulating layers 131, 231 may include silicon oxide, silicon nitride, silicon oxynitride, silicon carbonitride, or the like, and may have a multilayer structure having mutually different materials. The first and second insulating layers 131, 231 employed in the embodiment of
As illustrated in
In the embodiment of
As described above, the first semiconductor chip 100 and the second semiconductor chip 200 are interconnected by direct bonding of the first and second metal pads 155, 255, and thus the image signals from the second semiconductor chip 200 may be transferred to the logic circuit of the second semiconductor chip 200.
Because bonding of the first and second semiconductor chips 100 and 200 according to the embodiment of
For example, a wafer including a plurality of first semiconductor chips 100 and a wafer including a plurality of second semiconductor chips 200 may be bonded, and then be separated into a plurality of individual stacked chip structures through a sawing process. Each of the stacked chip structures may have a two-layer structure including the first semiconductor chip 100 and the second semiconductor chip 200, like the semiconductor device 500 illustrated in
In the bonding structure BS employed in the embodiment of
Referring to
In the embodiment of
In the embodiment of
In the embodiment of
The semiconductor device 500 according to the embodiment of
For example, a stacked CIS according to some embodiments may include a first semiconductor chip in which logic elements are disposed and a second semiconductor chip disposed on top of the first semiconductor chip and having a pixel and a CMOS sensor, and a third semiconductor chip disposed under the first semiconductor chip. The third semiconductor chip may include a memory device. Even in this case, at least one of the two bonding structures between the first to third semiconductor chips may have the bonding structure according to the embodiment of
Referring to
The first insulating layer 131 is formed to cover the first wiring line 112 exposed from a surface of the first substrate 120. The first insulating layer 131 may include a first insulating film 131a disposed on the first substrate 120 and a second insulating film 131b disposed on the first insulating layer 131a. For example, the first insulating film 131a may be silicon oxide, and the second insulating film 131b may be silicon oxynitride, silicon carbonitride, or silicon nitride.
The opening H may be formed to expose a portion of the first wiring line 112. As described above, the first wiring line 112 may be connected to a logic element of the first substrate 120. The opening H may be formed in the form of a hole or a trench. When the etch stop layer 116 is provided on the first wiring line 112, the etch stop layer 116 may be removed to expose the first wiring line 112.
Referring to
The first barrier 152 is conformally formed on the inner surfaces of the opening H and the top surface of the first insulating layer 131. For example, the first barrier 152 may include Ta, TaN, Mn, MnN, WN, Ti, TiN, or a combination thereof. A first metal pad is formed on the first barrier to fill the inside of the opening H. For example, the first metal pad 155 may include Cu, Co, Mo, Ru, W, or an alloy thereof. In some embodiments, the first barrier 152 may be TaN, and the first metal pad 155 may be Cu.
Next, referring to
In this process, a portion of the first metal pad 155 positioned on the first insulating layer 131 is removed using the CMP process. In this CMP process, the upper end of the first metal pad 155 may have a planar surface with an upper surface of the first insulating layer 131, but in fact, a step difference may occur with the first insulating layer 131.
Meanwhile, galvanic corrosion may occur between the material of the first insulating layer 131 and the metal of the first metal pad 155. And as a result, as shown in
Referring to
The process may be performed by wet etching, which may selectively etch the first barrier 152. For example, when the first barrier 152 is TaN, a wet etching process to selectively remove the material of the first barrier 152 may be performed so that the first insulating layer 131 and the first metal pad 155 which is formed of other metals are not damaged.
A portion of the first barrier 152 disposed on the upper surface of the first insulating layer 131 and a portion of the first barrier 152 exposed in the inside of the opening H may also be removed. Since the first barrier 152 is removed by a wet etching process, the first barrier 152 may additionally be removed in a portion which is not exposed by the first gap G1, that is, in the portion between the first insulating layer 131 and the first metal pad 155 to a depth equal to the distance d1. The depth (and thus the distance) may be predetermined. Although embodiments are not limited thereto, the additionally removed depth (and thus the distance d1) may, for example, be equal to or less than 100 nm.
As a result, the first gap G1 between the upper end 155T′ of the first metal pad 155 and the first insulating layer 131 may be provided as an expanded second gap G2. For example, as compared with the first gap G1 of
Next, referring to
The expanded gap G2 may also be filled while the opening H is filled by the additional insulating layer 131b′. In particular, since the second gap G2 extends to a sufficient size (e.g., several tens of nm or more) in the foregoing process, the expanded second gap G2 may be filled by a general insulating layer forming process (e.g., CVD deposition, etc.). The additional insulating layer 131b′ may be in contact with the top surface 155T of the first metal pad 155 and an adjacent side region thereof, i.e., a portion without the first barrier 152.
For example, the additional insulating layer 131b′ may include silicon oxide, silicon nitride, silicon oxynitride, silicon carbonitride, and the like. In the embodiment of
Next, referring to
In the process of
In some embodiments, a similar manufacturing process may be performed to form the second bonding structure BS2 of the second semiconductor chip 200 of the semiconductor device 500 illustrated in
Referring to
The first semiconductor chip 100 employed in embodiment of
On the other hand, the second semiconductor chip 200 employed in embodiment of
Also in the embodiment of
Referring to
In some situations, the first and second metal pads 155 and 255 may be exactly aligned prior to form a bonding structure but, during bonding, the first and second metal pads 155 and 255 may be bonded to be slightly staggered within a tolerance range. Even in this slightly staggered state, both the first and second semiconductor chips 100 and 200 have a void free structure, thereby ensuring a firm bonding, and effectively preventing defect issues due to expansion of the void during a thermal compression for metal bonding of the first and the second metal pads (155, 255).
Referring to
In some embodiments, the first and second metal pads 155 and 255 to be bonded may not necessarily have the same size. As in the embodiment of
Also in the embodiment of
In the fabrication process according to the embodiment of
Referring to
The additional insulating layer 131c may be formed of an insulating material different from the second insulating film 131b. For example, when the first insulating film 131a is silicon oxide and the second insulating film 131b is silicon carbonitride, the additional insulating film 131c may be silicon oxide. Of course, this is only an example, and in some embodiments, the additional insulating film 131c may be formed of a material different from both the first insulating film 131a and the second insulating film 131b. For example, the additional insulating film 131c may be formed of silicon oxynitride, silicon nitride, or the like. The additional insulating film 131c may contact the top surface 155T and the adjacent side region of the first metal pad 155 without the first barrier 152, and may also be separated from the second insulating film 131b.
Next, referring to
After polishing, at the bonding surface BP, the metal pad 155 may have a top surface 155T that is substantially planar with the surface of the first insulating layer 131. An end portion 152T of the first barrier 152 may be spaced apart from the bonding surface BP. In the spaced region, a side region of the first metal pad 155 adjacent to the bonding surface BP may be in contact with the remaining portion 131S of the additional insulating film. The portion 131S may include a material different from that of the first insulating layer 131.
In addition, the shape of the upper end of the first metal pad 155 may be different from that of the embodiments of
Referring to
Similar to the embodiment of
Similarly, the second bonding structure of the second semiconductor chip 200 may include a second insulating layer 231 formed on a surface (e.g., a bottom surface) of the second substrate 220, a plurality of second metal pads 255 embedded in a position corresponding to the second metal pad 255 and having an exposed section from the second insulating layer 231, and the second barrier 252 disposed between the second insulating layer 231 and the second metal pad 255. The second insulating layer 231 may have may have a coplanar surface substantially planar with an upper surface of the second metal pad 255. Each second metal pad 255 may be connected to the CMOS circuit through, for example, the second wiring part 215 of the second substrate 220.
Unlike the embodiment of
The first insulating layer 131 may have a portion 131S in contact with a side region of the first metal pad 155 adjacent to the bonding interface BL. Similarly, the second insulating layer 231 may have a portion 231S in contact with a side region of the second metal pad 255 adjacent to the bonding interface BL. As a result, no voids exist around the first and second metal pads 155 and 255 adjacent to the bonding interface BL, and thus the bonding strength may be enhanced.
Referring to
The first insulating layer 131 may include, for example, silicon oxide as a single material. The opening H may be formed to expose a portion of the first wiring line 112. As described above, the first wiring line 112 may be connected to a logic element of the substrate 120. The first barrier 152 is conformally formed on the inner surfaces exposed by the opening H and the upper surface of the first insulating layer 131. The first metal pad 155 is formed on the first barrier 152. In some embodiments, the first barrier 152 may be TaN, and the first metal pad 155 may be Cu.
Next, referring to
In this process, a portion of the first metal pad 155 positioned on the first insulating layer 131 is removed using the CMP process. In such a CMP process, a step difference may be generated from the first insulating layer 131, and a corner portion of the upper portion 155T′ of the first metal pad 155 may be removed due to galvanic corrosion. As a result, the first gap G1 may be formed as to the first insulating layer around the upper portion 155T′ of the first metal pad 155. The first gap G1 may remain around the first metal pad 155 to cause voids after the bonding process.
Subsequently, referring to
The process may be performed by wet etching, which may selectively etch the first barrier 152. A portion of the first barrier 152 disposed on the upper surface of the first insulating layer 131 and a portion exposed in the inside of the opening H may also be removed. Since the first barrier 152 is removed by a wet etching process, the first barrier 152 may be additionally removed in a portion that is not exposed in the gap G1, that is, in portion between the first insulating layer 131 and the first metal pad 155 to a depth equal to the distance d1. The depth (and thus the distance) may be predetermined. As a result, the first gap G1 between the upper portion 155T′ of the first metal pad 155 and the first insulating layer 131 may be provided as an expanded second gap G2.
Next, referring to
The expanded second gap G2 may also be filled together while the opening H is filled by the additional insulating layer 131b′. In particular, since the second gap G2 extends to a sufficient size (e.g., several tens of nm or more) in the foregoing process, the expanded second gap G2 may be filled by a general insulation layer forming process (e.g., CVD deposition, etc.). The additional insulating layer 131b′ may contact the top surface 155T and the adjacent side region of the first metal pad 155 without the first barrier 152.
Next, referring to
In the process of
Referring to
The first semiconductor chip 100 employed in embodiment of
On the other hand, the second semiconductor chip 200 has a void V around the second metal pad 255. Specifically, the end portion 252T′ of the second barrier 252 extends to the bonding interface BL, and the void V is generated between the second barrier 252 and a side region of the first metal pad 155 at the region adjacent to the bonding interface BL. In addition, in the embodiment of
Also in the embodiment of
Referring to
Both the first and second semiconductor chips 100 and 200 may have a void-free structure. Specifically, end portions 152T and 252T of the first and second barriers 152 and 252 are spaced apart from the bonding interface, respectively, and at the spaced region, the first and second insulating layers 131 and 231 have portions 131S′ and 231S′ contacting side surfaces of the first and second metal pads 155, adjacent to the bonding interface, respectively. The contact portions 131S′ and 231S′ may include a material different from those of the first and second insulating layers 131 and 231, respectively. According to this structure, the semiconductor device illustrated in
Unlike the foregoing embodiments, the barrier may be formed by filling the gap generated in the CMP process with the insulating material without wet etching the barrier. This embodiment is shown in
Referring to
Similarly, the second semiconductor chip 200 may include a second substrate 220, a second insulating layer 231 disposed on the second substrate 220 and having a planar surface, a second metal pad 255 buried in the second insulating layer 231 and having a cross section substantially planar with the surface of the second insulating layer 231, and a second barrier 252 disposed between the second insulating layer 231 and the second metal pad 255.
The first and second insulating layers 131 and 231 employed in the embodiment of
Surfaces of the first insulating layer 131 and the second insulating layer 231 may be bonded to each other to provide a bonding interface BL. The first metal pad 155 and the second metal pad 255 may be connected to each other.
An end portion of the first barrier 155 extends to the bonding interface BL, and a portion 131F of the first insulating layer 131 that contacts a side region of the first metal pad 155 may be separated by the other portions 131a and 131b of the first insulating layer 131 and by the first barrier 152. Similarly, an end portion of the second barrier 255 extends to the bonding interface BL, and the portion 231F of the second insulating layer 231 in contact with a side region of the second metal pad 255 may be separated by the other portions 231a and 231b of the second insulating layer 231 and by the second barrier 252.
In other words, as shown in
As a result, no void may exist around the first and second metal pads 155 and 255 adjacent to the bonding interface BL, thereby enhancing the bonding strength.
In the embodiment of
Referring to
In the process of
Next, referring to
The gap G1 may also be filled while the opening H is filled by the additional insulating layer 131c. Unlike the previous embodiment (
Referring to
At the bonding surface BP, the metal pad 155 may have a top surface 155T that is substantially planar with the surface of the first insulating layer 131. An end portion 152T of the first barrier 152 may be spaced apart from the bonding surface BP. After the polishing process, the additional insulating layer may remain as a portion 131F having a surface that is substantially planar with the surface of the first insulating layer 131. The remaining portion 131F may be understood as a portion of the first insulating layer 131, and the remaining portion 131F in direct contact with a side region of the first metal pad 155 and adjacent to the bonding surface BP may be separated from other portions of the first insulating layer 131 by the first barrier 152.
Referring to
The first semiconductor chip 100 employed in this embodiment has a void-free structure as described in the embodiment of
Similarly, the second semiconductor chip 200 has voids V around the second metal pad 255. Specifically, the end portion 252T′ of the second barrier 252 extends to the bonding interface BL, and the voids V are generated between the second barrier 252 and a side region of the second metal pad 255 at the region adjacent to the bonding interface BL.
In addition, in the embodiment of
Also in the embodiment of
Referring to
Unlike the embodiment of
End portions of the first and second barriers 152 and 252 extend to the bonding interface BL, respectively, and the filling portions 131F′ and 231F′ contacting side regions of the first and second metal pads 155 and 255 adjacent to the bonding interface BL may be separated from the first and second insulating layers 131 and 231 by the first and second barriers 152 and 252, respectively. The filling portions 131F′ and 231F′ may be materials different from those of the first and second insulating layers 131 and 231, respectively.
Specifically, in the forming process (see
Referring to
The first semiconductor chip 100 has a void-free structure described with reference to
On the other hand, the second semiconductor chip 200 has a void-free structure as described in the embodiment of
As a result, no void exists around the first and second metal pads 155 and 255 adjacent to the bonding interface BL, and thus the bonding strength may be enhanced.
By removing the voids generated during the chemical mechanical polishing process through a subsequent process, it is possible to improve the reliability of the bonding strength between the first and second semiconductor chips.
Various and advantageous advantages and effects of the present disclosure are not limited to the above description. Rather additional advantageous advantages and effects will be more readily understood in the process of describing the specific embodiments of the present disclosure. Example embodiments have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. In some instances, as would be apparent to one of ordinary skill in the art as of the filing of the present application. Features, characteristics, and/or elements described in connection with a particular embodiment may be used singly or in combination with features, characteristics, and/or elements described in connection with other embodiments unless otherwise specifically indicated. Accordingly, it will be understood by those of skill in the art that various changes in form and details may be made without departing from the spirit and scope of the present disclosure as set forth in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2019-0104505 | Aug 2019 | KR | national |
This application is a continuation application of U.S. application Ser. No. 17/694,035 filed Mar. 14, 2022, which is a continuation application of U.S. application Ser. No. 16/831,331 filed Mar. 26, 2020 (now U.S. Pat. No. 11,296,045), which claims priority under 35 USC § 119 to Korean Patent Application No. 10-2019-0104505, filed on Aug. 26, 2019, in the Korean Intellectual Property Office (KIPO), the contents of each of which being incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6277731 | Gonzalez et al. | Aug 2001 | B1 |
9027821 | Di Cioccio et al. | May 2015 | B2 |
9312229 | Chen et al. | Apr 2016 | B2 |
9761463 | Tanida et al. | Sep 2017 | B2 |
9941243 | Kim et al. | Apr 2018 | B2 |
10262963 | Enquist | Apr 2019 | B2 |
10340247 | Lin | Jul 2019 | B2 |
10461014 | Lin | Oct 2019 | B2 |
10629592 | Thei | Apr 2020 | B2 |
10651157 | Su | May 2020 | B1 |
10665580 | Hosoda | May 2020 | B1 |
10790248 | Chen | Sep 2020 | B2 |
10886245 | Chen | Jan 2021 | B2 |
10910782 | Vandroux | Feb 2021 | B2 |
10998370 | Ikakura | May 2021 | B2 |
20020146899 | Chun | Oct 2002 | A1 |
20130112849 | Shimotsusa | May 2013 | A1 |
20140048939 | Park et al. | Feb 2014 | A1 |
20150108648 | Tsumura et al. | Apr 2015 | A1 |
20160013099 | Tanida | Jan 2016 | A1 |
20160126136 | Ashidate et al. | May 2016 | A1 |
20160141282 | Jang | May 2016 | A1 |
20180226371 | Enquist | Aug 2018 | A1 |
20180269248 | Fujii | Sep 2018 | A1 |
20190096842 | Fountain, Jr. et al. | Mar 2019 | A1 |
20190109042 | Katkar et al. | Apr 2019 | A1 |
20190148336 | Chen et al. | May 2019 | A1 |
20190148446 | Shimotsusa | May 2019 | A1 |
Number | Date | Country |
---|---|---|
2012-19147 | Jan 2012 | JP |
10-2016-0052330 | May 2016 | KR |
10-2016-0057077 | May 2016 | KR |
Entry |
---|
Communication issued Jan. 11, 2024 by the Korean Patent Office in Korean Application No. 10-2019-0104505. |
Number | Date | Country | |
---|---|---|---|
20230238343 A1 | Jul 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17694035 | Mar 2022 | US |
Child | 18126205 | US | |
Parent | 16831331 | Mar 2020 | US |
Child | 17694035 | US |