1. Field of the Invention
The present invention relates to a semiconductor device and, more particularly, to a semiconductor device provided by mounting a semiconductor on a substrate in a flip-chip manner.
2. Description of the Related Art
Recently, there is a trend toward integration and mounting of electronic components in higher densities as a result of increasing demands for electronic device having more functions and smaller weights and sizes. Accordingly, MCM (multi-chip module) or SIP (system in package) type products provided using flip-chip mounting are becoming the main stream of semiconductor devices. Some semiconductor devices of those types employ a configuration in which a semiconductor chip is flip-chip-mounted on a mounting substrate called an interposer.
A liquid resin is dispensed to a region that is represented by the distance L10, and the resin is absorbed into a very small space between the chip 903 and the substrate 910 by capillarity to fill the space, whereby the liquid resin layer 904 is formed.
A liquid resin is dispensed to a region that is represented by the distance L10, and the resin is absorbed into a very small space between the chip 903 and the substrate 910 by capillarity to fill the space, whereby the liquid resin layer 904 is formed.
However, when the liquid resin is dispensed further so as to cover side surfaces of the chip after filling the very small space, the liquid resin may flow beyond the dam 905 to reach electrode pads 901 and to reach even side surfaces of the substrate.
In order to avoid the problem, the distances L10 and L12 must be made greater, and the external size of the mounting substrate 910 becomes greater accordingly.
When chips are provided in the form of a multiplicity of layers using flip chip mounting, a greater amount of liquid resin must be dispensed. Then, the external size of the mounting substrate 910 must be increased further to prevent the liquid resin from flowing out.
The invention was made to confront the above-described problem, and it is an object of the invention to provide a semiconductor device, a substrate of which can be made small by preventing a liquid resin from flowing out the same.
As a result of close studies, the inventor has found that the problem is solved in a semiconductor device as described below, and the above-described object has been thereby solved.
A first aspect of the present invention provides a semiconductor device comprising:
a substantially rectangular chip provided on a mounting region of a substrate;
a liquid resin layer provided under the rectangular chip and at a side surface of the chip; and
a plurality of dams formed on the substrate so as to extend along the side surface of the rectangular chip.
In the semiconductor device in the first aspect of the invention, since the plurality of dams are formed, the liquid resin will not flow out the substrate even when the liquid resin is dispensed in an increased amount, which allows the substrate to be provided with a small size.
In a second aspect of the present invention, the plurality of dams may be provided in a region having a distance between a predetermined edge of the rectangular chip and an end of the substrate associated with the predetermined edge which is greater than a distance between another edge of the rectangular chip and an end of the substrate associated with the other edge.
In addition to the advantage of the first aspect of the invention, the semiconductor device in the second aspect of the invention is advantageous in that a sufficient liquid resin layer can be formed even when a plurality of chips having a rectangular shape in plan view (hereinafter “rectangular chip”) are stacked because a region where an underfill material is to be dispensed is provided with a large area.
In a third aspect of the present invention, each of the plurality of dams may be disposed such that a recessed part of the same faces the chip.
In a fourth aspect of the present invention, each of the plurality of dams may have a linear shape.
In a ninth aspect of the present invention, wherein a plurality of the chips may be mounted on the substrate
In addition to the advantages of the first and second aspects of the invention, the semiconductor devices in the third, fourth, and ninth aspects of the invention have the following advantages. A liquid resin can be prevented from flowing out even when the liquid resin is dispensed in an increased amount because surface tension is generated at the recessed parts of the plurality of dams to cause the liquid resin to bulge upward. Even when chips are provided in the form of a plurality of layers, a gap (space) between the chip in the top layer and the chip directly below the same can be filled with a liquid resin. Further, it is possible to prevent the generation of any void in a liquid resin between a part of the resin that is absorbed into a gap between a chip and a substrate by capillarity and a part of the resin attracted by the periphery of the chip. Further, even when chips are provided in the form of a plurality of layers, a gap between the chip in the top layer and the chip directly below the same can be filled with a liquid resin.
In a fifth aspect of the present invention, the interval between the chip and the dam adjacent to the chip may be in a range from 400% to 44000% of the width of the dams.
In a sixth aspect of the present invention, the pitch of the dams is in a range from 150% to 500% of the width of the dams.
In addition to the advantages of the first through fourth aspects and the ninth aspect of the invention, the semiconductor devices in the fifth and sixth aspects of the invention are advantageous in that a location to dispense a liquid resin can be easily set and in that a liquid resin can be uniformly spread throughout a chip mounting region to prevent the resin from flowing out the region.
In a seventh aspect of the present invention, the length of a straight line connecting ends of each of the plurality of dams may be equal to or less than the length of the edge of the chip associated with the dam.
In addition to the advantages of the first through sixth aspects and the ninth aspect of the invention, the semiconductor device in the seventh aspect of the invention is advantageous in that the size of the substrate can be made small because the area occupied by the dams can be minimized.
In a eighth aspect of the present invention, one or more dams may be also provided between the other edge of the chip and the end of the substrate associated with the other edge.
In addition to the advantages of the first through seventh aspects and the ninth aspect of the invention, the semiconductor device in the eighth aspect of the invention is advantageous in that a liquid resin absorbed into a gap between a pad and a substrate by capillarity can be prevented from spreading in regions different from the region where the liquid resin is dispensed.
The present invention makes it possible to provide a semiconductor device, a substrate of which can be made small by preventing a liquid resin from flowing out the substrate.
Preferred exemplary embodiments of the invention will be described in detail based on the following figures, wherein:
Best modes of a semiconductor device according to the invention will now be described with reference to the drawings. The description will include partial omissions to avoid duplicated statements.
<Semiconductor Device>
Semiconductor devices according to the invention include a rectangular chip provided in a mounting region on a substrate, a liquid resin layer provided under the rectangular chip and on side surfaces of the chip, and a plurality of dams formed on the substrate so as to extend along the side surfaces of the rectangular chip.
In a preferable mode of such semiconductor devices, the plurality of dams are provided in a region where the distance between a predetermined edge of the rectangular chip and an end of the substrate associated with the predetermined edge is greater than the distance between another edge of the rectangular chip and an end of the substrate associated with the other edge.
For example, the description “the distance between a predetermined edge of the rectangular chip and an end of the substrate associated with the predetermined edge” means a distance L1 in
For example, the description “the distance between another edge of the rectangular chip and an end of the substrate associated with the other edge” means a distance L2 in
The description “a region where the distance between a predetermined edge of the rectangular chip and an end of the substrate associated with the predetermined edge is greater than the distance between another edge of the rectangular chip and an end of the substrate associated with the other edge” means the region indicated by L1 in
A position to dispense a liquid resin can be easily set by providing such a region, and leakage of the liquid resin can be prevented when it is dispensed.
The description “a plurality of dams formed on the substrate so as to extend along the side surfaces of the rectangular chip” means a plurality of dams formed as shown in
The plurality of dams and the chip which are constituent parts of the invention will now be described in detail.
[Plural Dams]
A semiconductor device according to the invention includes a plurality of dams. When a plurality of dams is provided, a liquid resin is prevented from flowing out from the periphery of the substrate by the plurality of dams even when the amount of the liquid resin dispensed is increased. Further, even when chips are provided in the form of a plurality of layers as shown in
A detailed description will now be made on the shape, length, and height of the plurality of dams, the distance between a chip and a dam adjacent to the same, the pitch of the plurality of dams, and the material of the dams.
(Shape of Dams)
Referring to the shape of the plurality of dams, as shown in
For example, the shape having a recessed part 27 may be a U-like shape as shown in
(Length of Dams)
The plurality of dams is characterized in that the length of a straight line connecting ends of each dam is equal to or smaller than the length of an edge of a chip associated with the dam.
For example, when dams 26 are U-shaped as shown in
When the plurality of dams 76 is not parallel to an edge of a chip 72 adjacent to the dams 76 as shown in
(Height of Dams)
The height of a dam is defined such that leakage of a liquid resin will be prevented. Specifically, a dam has a height of 3 μm or more when the height of a top surface of a chip above a bottom surface of the substrate is 560 μm.
When there is a plurality of dams, the dams may have heights increasing toward a chip, and the dams may alternatively have heights decreasing toward the chip. Further, the plurality of dams may have the same height. From the viewpoint of ease of manufacture, it is preferable that the plurality of dams have the same height.
(Width of Dams)
Referring to
(Distance Between Chip and Dam Adjacent to the Chip and the Pitch of a Plurality of Dams)
In a semiconductor device according to the invention, the interval between a chip and a dam adjacent to the chip is preferably in the range from 400% to 44000% of the width of the dam.
The pitch of a plurality of dams is preferably in the range from 150% to 500% of the width of the dams.
Referring to
The pitch (represented by L6) between the plurality of dams 16 is in the range from 150% to 500% of the width W of the dams 16 from the viewpoint of the capillarity. More preferably, the pitch is 200% of the width.
(Position of Dams)
Referring to the position to dispose dams, dams may be formed in a region represented as having a length L1 between a predetermined edge of a chip (hereinafter referred to as “supplying edge” where appropriate) and an end of the substrate 10 associated with the predetermined edge as shown in
Thus, after a liquid resin absorbed into the gap between the chip 52 and the substrate 50 flows out from the gap under the chip 52, the periphery of the chip 52 will be more easily covered by the liquid resin. Specifically, a liquid resin 55 which has flowed out from the gap under the chip 52 spreads along the dams 58 to cover the periphery of the chip 52 a shown in
In an especially preferred mode, a dam 65 (hereinafter referred to as “second auxiliary dam” where appropriate) is further provided to cover the periphery of a substrate 60 as shown in
The height and width of the first and second auxiliary dams are the same as those described above.
(Material of Dams)
For ease of manufacture, the dams may be made of organic materials such as polyimide and solder resist, inorganic materials such as SiO2 and SiN, and metal materials such as Cu, Al, Ni, and Au. Above all, polyimide is preferred.
[Chip]
A semiconductor device according to the invention includes a chip 12 having wirings and bumps formed thereon. The chip 12 is preferably flip-chip-mounted to manufacture the semiconductor device with a small size and a higher component density. As shown in
The gap between the substrate 10 and the lowermost chip 12, and the gaps 13 between the chips 12 are preferably gaps such that a liquid resin is absorbed into the same by capillarity, and the gaps preferably have a size in the range from 10 μm to 30 μm.
A chip may be mounted on a substrate, a circuit substrate, or a semiconductor element. For example, a configuration may be employed, in which pads provided on such a substrate and pads on a chip are electrically connected.
<Method of Manufacturing Semiconductor Device>
For example, a semiconductor device according to the invention may be manufactured as follows. Steps of manufacturing the device shown in
First, a polyimide film is formed on a circuit substrate, and the film is exposed using a mask such that dams having predetermined shapes will be provided in predetermined positions as shown in
Then, a chip is flip-chip-connected to the circuit substrate.
Finally, a liquid resin is dispensed to a supplying edge of the circuit substrate to fill a gap between the chip and the circuit substrate with the liquid resin.
A semiconductor device according to the invention can be manufactured through the above-described steps.
As described above, in a semiconductor device according to the invention, a plurality of dams having a predetermined shape is provided in predetermined positions. Thus, a liquid resin can be prevented from flowing out a substrate, and the size of the substrate can therefore be kept small because any unnecessary increase in the substrate size can be avoided by preventing the liquid resin from flowing out.
The embodiments are not to be taken in a limiting sense, and it is obvious that the invention may be carried out in any mode as long as the requirements of the invention are satisfied.
Number | Date | Country | Kind |
---|---|---|---|
2007-094715 | Mar 2007 | JP | national |
This is a continuation of parent application Ser. No. 12/073,494, filed Mar. 6, 2008 now U.S. Pat. No. 7,804,161, and allowed on May 26, 2010. The entire disclosure of the parent application is incorporated herein by reference. Furthermore, this application claims priority under 35 USC 119 of Japanese Patent Application No. 2007-094715, filed Mar. 30, 2007, the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5202577 | Ichigi et al. | Apr 1993 | A |
5311060 | Rostoker et al. | May 1994 | A |
5953589 | Shim et al. | Sep 1999 | A |
6291264 | Tang et al. | Sep 2001 | B1 |
6455348 | Yamaguchi | Sep 2002 | B1 |
6459144 | Pu et al. | Oct 2002 | B1 |
6570259 | Alcoe et al. | May 2003 | B2 |
6750533 | Wang et al. | Jun 2004 | B2 |
6809406 | Yoshiike et al. | Oct 2004 | B2 |
7148560 | Lee et al. | Dec 2006 | B2 |
7288725 | Takeuchi et al. | Oct 2007 | B2 |
20030178709 | Andoh | Sep 2003 | A1 |
20030193082 | Wang et al. | Oct 2003 | A1 |
20040212061 | Ochi et al. | Oct 2004 | A1 |
20060163749 | Lee et al. | Jul 2006 | A1 |
20060266545 | Takeuchi et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
02058357 | Feb 1990 | JP |
02130857 | May 1990 | JP |
03019259 | Jan 1991 | JP |
03025965 | Feb 1991 | JP |
04146654 | May 1992 | JP |
04164344 | Jun 1992 | JP |
04290252 | Oct 1992 | JP |
06169033 | Jun 1994 | JP |
2004-179576 | Jun 2004 | JP |
2005276879 | Oct 2005 | JP |
2006-294986 | Oct 2006 | JP |
WO 2004114402 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20100320581 A1 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12073494 | Mar 2008 | US |
Child | 12805914 | US |