This application claims the benefit of Korean Patent Application No. 10-2015-0070567, filed on May 20, 2015, and Korean Patent Application No. 10-2015-0110233, filed on Aug. 4, 2015, in the Korean Intellectual Property Office, the disclosures of each of which are incorporated herein in their entirety by reference.
1. Field
Example embodiments relate to a semiconductor device, and more particularly, to a semiconductor device including a two-dimensional material layer that has a two-dimensional crystal structure and is interposed between a metal and a semiconductor to reduce a contact resistivity therebetween.
2. Description of the Related Art
A semiconductor device includes a metal and a semiconductor that are in contact with each other in a particular part of the semiconductor device to externally exchange electric signals. The metal has a lower resistivity than the semiconductor and can be more easily wired to the external environment. In this case, however, a contact resistivity is generated due to a hetero-contact between the semiconductor and metal.
To reduce such contact resistivity, various methods to reduce a Schottky energy barrier between a semiconductor and a metal have been suggested. For example, a metal having a work function of about 4 eV is used for an n-type semiconductor and a metal having a work function of about 5 eV is used for a p-type semiconductor. However, because a phenomenon occurs when a work function of a metal is pinned on a surface of a semiconductor, there is a limit in reducing the Schottky energy barrier regardless of a type of the metal. As another method, a depletion width may be reduced by doping a surface of a semiconductor contacting a metal to have a relatively high concentration. However, although a doping concentration needs to be further increased as a demand for a semiconductor device having a smaller size has gradually increased, there is a limit in methods of increasing a doping concentration, maintaining a stable doping state, and reducing a depletion width according to an increase in the doping concentration.
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the presented example embodiments.
According to example embodiments, a semiconductor device includes a semiconductor layer including a well region doped to a first conductivity type and a source region and a drain region doped to a second conductivity type electrically opposite the first conductivity type, a metal layer electrically contacting the semiconductor layer, and a two-dimensional material layer between the semiconductor layer and the metal layer, the two-dimensional material layer having a two-dimensional crystal structure, and including a first two-dimensional material layer on the source region and a second two-dimensional material layer on the drain region. The metal layer includes a source electrode on the first two-dimensional material layer and a drain electrode on the second two-dimensional material layer.
The two-dimensional material layer may be formed of a carbon-based 2D material including at least one of graphene and nano crystalline graphene (nc-G).
The two-dimensional material layer may be formed of a transition metal dichalcogenide including at least one of MoS2, WS2, TaS2, HfS2, ReS2, TiS2, NbS2, SnS2, MoSe2, WSe2, TaSe2, HfSe2, ReSe2, TiSe2, NbSe2, SnSe2, MoTe2, WTe2, TaTe2, HfTe2, ReTe2, TiTe2, NbTe2, and SnTe2.
The two-dimensional material layer may include at least one of TiOx, NbOx, MnOx VaOx, MnO3, TaO3, WO3, MoCl2, CrCl3, RuCl3, BiI3, PbCl4, GeS, GaS, GeSe, GaSe, PtSe2, In2Se3, GaTe, InS, InSe, InTe, hexagonal BN (h-BN), and phosphorene.
The two-dimensional material layer may have a doped structure obtained by one of replacing some elements of the two-dimensional crystal structure with other elements and combining other elements to the two-dimensional crystal structure.
The two-dimensional material layer may be one of a nanowire pattern, a nano-slit pattern, a nano-dot pattern and a nano-hole pattern.
A thickness of the two-dimensional material layer may be such that a contact resistivity between the semiconductor layer and the metal layer is equal to or less than 10-7 Ωcm2.
The thickness of the two-dimensional material layer may be within a range of about 0.3 nm to about 5 nm.
The two-dimensional material layer may include multiple layers of a single-layer two-dimensional crystal structure having a thickness T1, and the total thickness TD of the two-dimensional material layer may be a sum of each of the thicknesses T1 of the single-layer two-dimensional crystal structures.
A surface of the semiconductor layer contacting the two-dimensional material layer may be surface-treated with monolayer atoms.
The metal layer may include a metal material and the semiconductor layer may include a semiconductor material, and the semiconductor layer, the mixture layer between the two-dimensional material layer and the metal layer, the mixture layer including the metal material and the semiconductor material.
The semiconductor device may further include a gate insulating film on the well region between the source region and the drain region, a gate electrode on the gate insulating film, and a spacer surrounding side walls of the gate insulating film and the gate electrode.
Each of the first two-dimensional material layer and the second two-dimensional material layer may contact a lower surface of the spacer.
Each of the first two-dimensional material layer and the second two-dimensional material layer may contact a side surface of the spacer.
A doping concentration of each of the source region and the drain region may be equal to or higher than 1019/cm3.
According to example embodiments, a semiconductor device includes a gate insulating film between a gate electrode and an undoped semiconductor layer, a metal layer electrically contacting the semiconductor layer, and a two-dimensional material layer between the semiconductor layer and metal layer, the two-dimensional material layer having a two-dimensional crystal structure including non-carbon based two-dimensional crystals.
The metal layer may include a source electrode on the gate insulating film and facing a first side surface of the semiconductor layer, and a drain electrode on the gate insulating film and facing a second side surface of the semiconductor layer, and the two-dimensional material layer may include a first two-dimensional material layer between the source electrode and the first side surface of the semiconductor layer and a second two-dimensional material layer between the drain electrode and the second side surface of the semiconductor layer.
The first two-dimensional material layer may be bent to extend from the first side surface of the semiconductor layer up to a first region of an upper surface of the semiconductor layer, and the second two-dimensional material layer may be bent to extend from the second side surface of the semiconductor layer up to a second region of the upper surface of the semiconductor layer.
According to example embodiments, a semiconductor device includes a gate insulating film between an undoped semiconductor layer and a gate electrode, a first two-dimensional material layer adjacent to a first side surface of the gate insulating film, the first two-dimensional material layer having a two-dimensional crystal structure including non-carbon based two-dimensional crystals, a second two-dimensional material layer adjacent to a second side surface of the gate insulating film opposite the first side surface, the second two-dimensional material layer having a two-dimensional crystal structure including non-carbon based two-dimensional crystals, a source electrode on the first two-dimensional material layer, and a drain electrode on the second two-dimensional material layer.
The source electrode and the drain electrode may be spaced apart from the gate insulating film.
These and/or other aspects will become apparent and more readily appreciated from the following description of the example embodiments, taken in conjunction with the accompanying drawings in which:
Reference will now be made in detail to a semiconductor device including contact of metal-two dimensional material-semiconductor, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. Also, the size of each layer illustrated in the drawings may be exaggerated for convenience of explanation and clarity. In this regard, the present embodiments may have different forms and should not be construed as being limited to the descriptions set forth herein. Accordingly, the embodiments are merely described below, by referring to the figures, to explain aspects of the present description. In a layer structure, when a constituent element is disposed “above” or “on” to another constituent element, the constituent element may be only directly on the other constituent element or above the other constituent elements in a non-contact manner.
It will be understood that when an element is referred to as being “on,” “connected to,” “electrically connected to,” or “coupled to” to another component, it may be directly on, connected to, electrically connected to, or coupled to the other component or intervening components may be present. In contrast, when a component is referred to as being “directly on,” “directly connected to,” “directly electrically connected to,” or “directly coupled to” another component, there are no intervening components present. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that although the terms first, second, third, etc., may be used herein to describe various elements, components, regions, layers, and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, and/or section from another element, component, region, layer, and/or section. For example, a first element, component, region, layer, and/or section could be termed a second element, component, region, layer, and/or section without departing from the teachings of example embodiments.
Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper,” and the like may be used herein for ease of description to describe the relationship of one component and/or feature to another component and/or feature, or other component(s) and/or feature(s), as illustrated in the drawings. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Example embodiments may be described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized example embodiments (and intermediate structures). As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, example embodiments should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle will typically have rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature, their shapes are not intended to illustrate the actual shape of a region of a device, and their shapes are not intended to limit the scope of the example embodiments.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belong. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The semiconductor layers 101, 102, and 103 may include, for example, a well region 101 doped to a first conductivity type, a source region 102 doped to a second conductivity type opposite the first conductivity type, and a drain region 103 doped to the second conductivity type. Although
The semiconductor layers 101, 102, and 103 may be a Group IV semiconductor, e.g., silicon (Si) or germanium (Ge), a Group III-V compound semiconductor, e.g., GaAs or GaP, a Group II-VI compound semiconductor, e.g., CdS or ZnTe, a Group IV-VI compound semiconductor, e.g., PbS, a Group IV-IV compound semiconductor, e.g., SiC, an oxide semiconductor, e.g., IGZO, or a 2D crystal structure semiconductor having a bandgap, e.g., MoS2.
Also, upper surfaces of the source region 102 and the drain region 103 contacting the 2D material layers 104 and 105, which are described later, may be surface-treated with monolayer atoms to improve combination properties with the 2D material layers 104 and 105. Because the semiconductor, for example, silicon, generally has a relatively weak binding force with respect to a 2D material, the 2D material layers 104 and 105 respectively disposed on the source region 102 and the drain region 103 may be more easily detached from the source region 102 and the drain region 103. To prevent or inhibit the above phenomenon, the upper surfaces of the source region 102 and the drain region 103 may be surface-treated with elements exhibiting a desirable binding force with respect to the 2D material layers 104 and 105. For example, oxygen, sulfur, or selenium may be combined, in a monolayer, on the surfaces of the source region 102 and the drain region 103.
The 2D material layers 104 and 105 may include a first 2D material layer 104 disposed on the source region 102 and a second 2D material layer 105 disposed on the drain region 103. The 2D material layers 104 and 105 may be formed in a layered structure because the 2D material layers 104 and 105 are formed of a 2D material having a 2D crystal structure. Layers of the 2D material layers 104 and 105 may weakly interact with each other through the Van der Waals force. Accordingly, because the 2D material layers 104 and 105 may be formed in units of layers, a thickness thereof may be more easily adjusted.
The 2D material layers 104 and 105 may be formed of a carbon-based 2D material or a non-carbon based 2D material. The carbon-based 2D material may be formed in a crystal of a carbon element, for example, graphene or nano crystalline graphene (nc-G). General graphene is formed on catalyst metal in a chemical vapor deposition (CVD) method at a relatively high temperature process of about 700° C. to 1000° C. and a grain size thereof is about several micrometers. Because the general graphene may grow on metal, e.g., nickel (Ni) or copper (Cu), the general graphene may be transferred to another layer like semiconductor after growth. In contrast, nano crystalline graphene may be formed at a relatively low temperature of about 600° C. by an inductively coupled plasma CVD (ICP-CVD) method or a plasma enhanced CVD (PE-CVD) method, and a grain size thereof is about 100 nm or less. The nano crystalline graphene may grow on a semiconductor, for example, silicon, at a relatively low temperature.
The non-carbon based 2D material is a 2D material including elements other than carbon. A typical non-carbon based 2D material includes a transition metal dichalcogenide (TMD) that is a compound of transition metal and a chalcogen element. For example, TMD may include MoS2, WS2, TaS2, HfS2, ReS2, TiS2, NbS2, SnS2, MoSe2, WSe2, TaSe2, HfSe2, ReSe2, TiSe2, NbSe2, SnSe2, MoTe2, WTe2, TaTe2, HfTe2, ReTe2, TiTe2, NbTe2, and SnTe2.SnTe2 There are various non-carbon based 2D materials other than TMD. For example, the non-carbon based 2D material may include hexagonal BN (h-BN), phosphorene, TiOx, NbOx, MnOx VaOx, MnO3, TaO3, WO3, MoCl2, CrCl3, RuCl3, BiI3, PbCl4, GeS, GaS, GeSe, GaSe, PtSe2, In2Se3, GaTe, InS, InSe, and InTe. The h-BN is formed in a hexagonal crystal structure by combining boron (B) and nitrogen (N). The phosphorene is a 2D allotropy of black phosphorus.
Although any of the above materials may be used for the 2D material layers 104 and 105, when the semiconductor layers 101, 102, and 103 are semiconductors having a 2D crystal structure, the material of the 2D material layers 104 and 105 may be chosen to be different from that of the semiconductor layers 101, 102, and 103.
Also, the 2D material layers 104 and 105 may use the above materials without modifying them, and/or the materials may be doped to further improve electrical characteristics of the semiconductor device 100. In other words, the 2D material layers 104 and 105 may have a doped structure by replacing some of elements forming the 2D crystal structure of the 2D material layers 104 and 105 with other elements or additionally combining other elements to the 2D crystal structure. For example, when the 2D material layers 104 and 105 are graphene, some of the carbon may be replaced with or combined with other elements, e.g., boron or nitrogen.
The metal layers 106 and 107 may include a source electrode 106 disposed on the first 2D material layer 104 and a drain electrode 107 disposed on the second 2D material layer 105. The metal layers 106 and 107 including the source electrode 106 and the drain electrode 107 may include, for example, a metal, e.g., magnesium (Mg), aluminum (Al), scandium (Sc), titanium (Ti), vanadium (V), chrome (Cr), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), zirconium (Zr), niobium (Nb), molybdenum (Mo), lead (Pd), silver (Ag), cadmium (Cd), indium (In), tin (Sn), lanthanum (La), hafnium (Hf), tantalum (Ta), tungsten (W), iridium (Ir), platinum (Pt), gold (Au), bismuth (Bi), or an alloy thereof.
Also, the semiconductor device 100 may further include a gate insulating film 108 disposed on the well region 101 between the source region 102 and the drain region 103, a gate electrode 109 disposed on the gate insulating film 108, and a spacer 110 surrounding side walls of the gate insulating film 108 and the gate electrode 109. The spacer 110 may prevent or inhibit the gate insulating film 108 and the gate electrode 109 from directly contacting the source electrode 106 and the drain electrode 107. The gate insulating film 108 may be formed of SiO2, SiNx, HfO2, or Al2O3, and the gate electrode 109 may be formed of polysilicon or the same metal material as the metal layers 106 and 107. The spacer 110 may be formed of an insulation material, e.g., SiO2 or SiNx.
As described above, the semiconductor device 100 according to example embodiments may include a 2D material interposed between semiconductor and metal. In detail, the semiconductor device 100 may include the first 2D material layer 104 interposed between the source region 102 and the source electrode 106 and the second 2D material layer 105 interposed between the drain region 103 and the drain electrode 107. Because a surface of the 2D material layers 104 and 105 have no reactant, a phenomenon in which work functions of metals of the source electrode 106 and the drain electrode 107 are pinned on the surfaces of the source region 102 and the drain region 103 may be prevented or inhibited. Accordingly, an effect according to a work function intrinsic to the metals of the source electrode 106 and the drain electrode 107 may occur, and as a result, contact resistivity may be reduced between the source region 102 and the source electrode 106, and between the drain region 103 and the drain electrode 107.
For example,
Also, each of the 2D material layers 104 and 105 have a 2D layered crystal structure and may be formed layer by layer. Accordingly, the thicknesses of the 2D material layers 104 and 105 may be easily adjusted within 5 nm according to the number of layers of the 2D material layers 104 and 105 and uniformity of the thickness is improved. For example,
Also, because the 2D material layers 104 and 105 generally have relatively high thermal stability, durability of the semiconductor device 100 may be improved. Also, because the 2D material layers 104 and 105 may function as a diffusion barrier with respect to semiconductor atoms and metal atoms, no additional diffusion barrier is needed to be formed between the source region 102 and the source electrode 106 and between the drain region 103 and the drain electrode 107. Accordingly, total resistivity of the semiconductor device 100 may be additionally reduced.
The 2D material layers 104 and 105 may completely fill the gap between the source region 102 and the source electrode 106 and between the drain region 103 and the drain electrode 107. However, when necessary, the 2D material layers 104 and 105 may be patterned such that a part of the source region 102 directly contacts the source electrode 106 and a part of the drain region 103 directly contacts the drain electrode 107. For example,
The above-described semiconductor devices 100, 200, and 300 are unipolar metal oxide semiconductor field effect transistors (MOSFET) in which the well region 101 in the semiconductor layers 101, 102, and 103 is doped to have a polarity opposite to the source and drain regions 102 and 103. However, the above-described principle may be applied not only to the unipolar MOSFET but also to any semiconductor device having hetero-contact between metal and semiconductor. For example, when all regions of a semiconductor layer are undoped or all regions of a semiconductor layer are doped to the same polarity, contact resistivity may be reduced by interposing a 2D material between semiconductor and metal.
For example,
The metal layers 205 and 206 may include a source electrode 205 disposed on the gate insulating film 202 and facing one side of the semiconductor layer 203 and a drain electrode 206 disposed on the gate insulating film 202 and facing the other side of the semiconductor layer 203. Also, the gate electrode 201 may also be formed of a metal material. The above-described materials may be used as the metal material of the gate electrode 201, the source electrode 205, and the drain electrode 206.
The 2D material layers 204a and 204b may include a first 2D material layer 204a disposed between the source electrode 205 and one side surface of the semiconductor layer 203 and a second 2D material layer 204b disposed between the drain electrode 206 and the other side surface of the semiconductor layer 203. As illustrated in
The 2D material layers 224a and 224b may include a first 2D material layer 224a and a second 2D material layer 224b that are disposed adjacent to opposite side surfaces of the gate insulating film 225 on the upper surface of the semiconductor layer 223. For example, the gate insulating film 225 may be disposed in a central area of the upper surface of the semiconductor layer 223, and the first 2D material layer 224a and the second 2D material layer 224b may be disposed at the opposite sides of the gate insulating film 225. Although
Also, the metal layers 227 and 228 may include a source electrode 227 disposed on the first 2D material layer 224a and a drain electrode 228 disposed on the second 2D material layer 224b. The materials described with reference to
It should be understood that example embodiments described herein should be considered in a descriptive sense only and not for purposes of limitation. Descriptions of features or aspects within each example embodiment should typically be considered as available for other similar features or aspects in other example embodiments.
While one or more example embodiments have been described with reference to the figures, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope as defined by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0070567 | May 2015 | KR | national |
10-2015-0110233 | Aug 2015 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
7067867 | Duan | Jun 2006 | B2 |
7381586 | Cheng | Jun 2008 | B2 |
7746418 | Wakita | Jun 2010 | B2 |
8063451 | Zhang | Nov 2011 | B2 |
8089152 | Miller | Jan 2012 | B2 |
8106383 | Jenkins | Jan 2012 | B2 |
8183566 | Kobayashi | May 2012 | B2 |
8198653 | Imada | Jun 2012 | B2 |
8361853 | Cohen | Jan 2013 | B2 |
8642996 | Cohen | Feb 2014 | B2 |
8890271 | Tut | Nov 2014 | B2 |
8962408 | Cao | Feb 2015 | B2 |
9053932 | Lee | Jun 2015 | B2 |
9252704 | Nayfeh | Feb 2016 | B2 |
9546995 | Jeon | Jan 2017 | B2 |
9647012 | Liang | May 2017 | B1 |
9857328 | Hoffman | Jan 2018 | B2 |
9887361 | Bol | Feb 2018 | B2 |
9893155 | Shah | Feb 2018 | B2 |
20040188765 | Narasimha et al. | Sep 2004 | A1 |
20050056826 | Appenzeller | Mar 2005 | A1 |
20050263795 | Choi | Dec 2005 | A1 |
20060017106 | Suh | Jan 2006 | A1 |
20060226424 | Chae | Oct 2006 | A1 |
20070072335 | Baik | Mar 2007 | A1 |
20070235714 | Kwon | Oct 2007 | A1 |
20070275530 | Hung | Nov 2007 | A1 |
20070290280 | Kwon | Dec 2007 | A1 |
20080001176 | Gopalakrishnan | Jan 2008 | A1 |
20080042120 | Shibata | Feb 2008 | A1 |
20080138940 | Lee | Jun 2008 | A1 |
20090283822 | Hsieh | Nov 2009 | A1 |
20100117163 | Miyashita | May 2010 | A1 |
20100127269 | Daniel | May 2010 | A1 |
20100200755 | Kawano | Aug 2010 | A1 |
20100200840 | Anderson | Aug 2010 | A1 |
20100230821 | Madakasira | Sep 2010 | A1 |
20110057163 | Liu | Mar 2011 | A1 |
20110121264 | Choi | May 2011 | A1 |
20110309372 | Xin | Dec 2011 | A1 |
20120085991 | Cohen | Apr 2012 | A1 |
20120235118 | Avouris | Sep 2012 | A1 |
20130032777 | Yin | Feb 2013 | A1 |
20130032794 | Lee et al. | Feb 2013 | A1 |
20130075700 | Yang et al. | Mar 2013 | A1 |
20130130037 | Bol | May 2013 | A1 |
20130285019 | Kim | Oct 2013 | A1 |
20140001151 | Tzeng | Jan 2014 | A1 |
20140008661 | Iwami | Jan 2014 | A1 |
20140042390 | Gruner | Feb 2014 | A1 |
20140158989 | Byun et al. | Jun 2014 | A1 |
20140191400 | Chien | Jul 2014 | A1 |
20140225066 | Weber et al. | Aug 2014 | A1 |
20140284547 | Dimitrakopoulos | Sep 2014 | A1 |
20140299841 | Nourbakhsh | Oct 2014 | A1 |
20140306184 | Ruhl | Oct 2014 | A1 |
20140319452 | Seabaugh | Oct 2014 | A1 |
20140326989 | Zan | Nov 2014 | A1 |
20150041854 | Wang et al. | Feb 2015 | A1 |
20150091747 | Watanabe | Apr 2015 | A1 |
20150155374 | Byun et al. | Jun 2015 | A1 |
20150236284 | Chan | Aug 2015 | A1 |
20150303315 | Das | Oct 2015 | A1 |
20150357504 | Chen | Dec 2015 | A1 |
20150364589 | Lee | Dec 2015 | A1 |
20160056301 | Lee | Feb 2016 | A1 |
20160087042 | Lee | Mar 2016 | A1 |
20160190244 | Lee | Jun 2016 | A1 |
20160190321 | Wang et al. | Jun 2016 | A1 |
20160204224 | Fukui | Jul 2016 | A1 |
20160284704 | Moroz | Sep 2016 | A1 |
20160314968 | Kim | Oct 2016 | A1 |
20170018626 | Hoffman | Jan 2017 | A1 |
20170040443 | Lemaitre | Feb 2017 | A1 |
20170053908 | Hoffman | Feb 2017 | A1 |
20170059514 | Hoffman | Mar 2017 | A1 |
20170092592 | Shin | Mar 2017 | A1 |
20170098693 | Lin | Apr 2017 | A1 |
20170117367 | Engel | Apr 2017 | A1 |
20170140821 | Mazed | May 2017 | A1 |
20170141194 | Shah | May 2017 | A1 |
20170162654 | Maeda | Jun 2017 | A1 |
20170168612 | Lee | Jun 2017 | A1 |
20170179263 | Pourtois | Jun 2017 | A1 |
20170218442 | van Rooyen | Aug 2017 | A1 |
20170236968 | Heo | Aug 2017 | A1 |
20170261465 | Balijepalli, IV | Sep 2017 | A1 |
20180013012 | Chen | Jan 2018 | A1 |
20180108747 | Van Dal | Apr 2018 | A1 |
20180114839 | Wu | Apr 2018 | A1 |
20180151751 | Yeh | May 2018 | A1 |
20180182849 | Alian | Jun 2018 | A1 |
20180219055 | Bu | Aug 2018 | A1 |
20180261702 | Bessonov | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
2339638 | Jun 2011 | EP |
2005-0107591 | Nov 2005 | KR |
2013-0092752 | Aug 2013 | KR |
2014-0075460 | Jun 2014 | KR |
2015-0062656 | Jun 2015 | KR |
Entry |
---|
Jong Woo Shin, “Contact resistance of graphene-metal interface for high performance graphene transistor”, KAIST, Department of Electical Engineering (2014). |
Extended European Search Report dated Aug. 8, 2016 issued in corresponding European Patent Application No. 16155329.2. |
Number | Date | Country | |
---|---|---|---|
20160343805 A1 | Nov 2016 | US |