This application is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2009-74427 filed on Mar. 25, 2009 in Japan, the entire contents of which are incorporated herein by reference.
1. Technical Field
Described herein is a semiconductor device including a MISFET.
2. Related Art
In a MISFET (Metal-Insulator-Semiconductor Field Effect Transistor), the problem of an increase in leakage current between the gate electrode and the substrate is caused by a direct tunneling phenomenon of carriers in a gate insulating film. To avoid such a tunneling phenomenon, formation of the gate insulating film with the use of a material having higher relative permittivity than SiO2 has been suggested. More specifically, the use of a high-dielectric metal oxide such as ZrO2, HfO2, a compound with SiO2, or silicate has been suggested.
Instead of conventional polycrystalline silicon, the use of a metal material for the gate electrode has been considered, to adjust degradation of characteristics due to depletion of the gate electrode and adjust the threshold voltage.
In a MISFET having a gate insulating film including a high-dielectric metal oxide layer, the TDDB (Time Dependent Dielectric Breakdown) lifetime of the gate insulating film is not sufficient to guarantee the device, and it is necessary to improve the reliability of the gate insulating film. To guarantee the lifetime of a device, the lifetime is determined in terms of the necessary area and percent defective by performing statistical processing. Particularly, in a MISFET having a gate insulating film including a high-dielectric metal oxide layer, the distribution of TDDB lifetime is reportedly too wide (as disclosed by S. Inumiya et al., in “DETERMINATION OF TIME TO BE BREAKDOWN OF 0.8-1.2 NM EOT HfSiON GATE DIELECTRICS WITH Poly-Si AND METAL GATE ELECTRODES”, IEEE 06CH37728, 44th Annual International Reliability Physics Symposium, Sa Joes, 2006, p.p. 184-188, for example). Therefore, in terms of the area and percent defective necessary for guaranteeing the device, the life becomes very short.
Possible embodiments of this invention are made in view of these circumstances, and some embodiments of this invention may provide a semiconductor device including a MISFET that can maximize its lifetime.
A semiconductor device according to a first aspect of the present invention includes a MISFET comprising: a semiconductor layer including a semiconductor region formed therein; a gate insulating film formed above the semiconductor region, and including a metal oxide layer containing a metal and oxygen, the metal contained in the metal oxide layer being at least one selected from Hf and Zr, the metal oxide layer further including at least one element selected from the group consisting of Ru, Cr, Os, V, Tc, and Nb, the metal oxide layer having sites that capture or release charges formed by inclusion of the element, density of the element in the metal oxide layer being in the range of 1×1015 cm−3 to 2.96×1020 cm−3, the sites being distributed to have a peak closer to the semiconductor region than to a center of the metal oxide layer; and a gate electrode formed on the gate insulating film.
A semiconductor device according to a second aspect of the present invention includes a MISFET comprising: a semiconductor layer including a semiconductor region formed therein; a gate insulating film formed above the semiconductor region, and including a metal oxide layer containing a metal and oxygen, the metal contained in the metal oxide layer being at least one selected from the group consisting of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, the metal oxide layer further including at least one element selected from the group consisting of V, Cr, Mn, Fe, Zr, Nb, Mo, Tc, Rh, Hf, Ta, Re, Os, and Ir, the metal oxide layer having sites that capture or release charges formed by addition of the element, density of the element in the metal oxide layer being in the range of 1×1015 cm−3 to 2.96×1020 cm−3, the sites being distributed to have a peak closer to the semiconductor region than to a center of the metal oxide layer; and a gate electrode formed on the gate insulating film.
a) and 4(b) show the waveforms of stress applied to MISFETs and the stress conditions;
a) through 5(e) are graphs showing the Weibull distributions of the samples with respect to the stress conditions shown in
a) and 17(b) are graphs showing the preferred ranges of trap levels in an n-MISFET and a p-MISFET;
a) and 18(b) are graphs showing the preferred ranges of trap positions in an n-MISFET and a p-MISFET;
a) through 19(c) are cross-sectional views illustrating the procedures for manufacturing a MISFET of the first embodiment;
a) and 24(b) are graphs showing the preferred ranges of trap levels in a MISFET of the second embodiment;
a) and 25(b) are graphs showing the preferred ranges of trap positions in a MISFET of the second embodiment;
a) and 29(b) are graphs showing the preferred ranges of trap levels in a MISFET of a third embodiment;
a) and 30(b) are graphs showing the preferred ranges of trap positions in a MISFET of the third embodiment;
a) and 31(b) are graphs showing the preferred ranges of trap levels in a MISFET of a fourth embodiment; and
a) and 32(b) are graphs showing the preferred ranges of trap positions in a MISFET of the fourth embodiment.
Before describing the embodiments, the course of events for achieving the present invention will be described below.
Normally, the TDDB lifetime of device is determined with the use of a Weibull distribution. Referring to
Samples A through G of n-channel MISFETs (hereinafter also referred to as n-MISFETs) having metal gate electrodes made of various materials were produced. Each of the samples A through G has a gate insulating film on a silicon substrate. This gate insulating film is a stack structure formed with a SiO2 layer and a HfSiON layer formed on the SiO2 layer. The physical film thickness of the gate insulating film is 2.3 nm to 2.5 nm, and the equivalent oxide thickness EOT of the gate insulating film is 0.9 nm to 1.1 nm. As for the gate electrode, the sample A has a gate electrode made of n+-polycrystalline silicon, the sample B has a gate electrode made of Ni2Si, the sample C has a gate electrode made of TiN, the sample D has a gate electrode formed with a Ta-rich TaC layer of 3 nm in film thickness, the sample E has a gate electrode formed with a Ta-rich TaC layer of 5 nm in film thickness, the sample F has a gate electrode formed with a Ta-rich TaC layer of 10 nm in film thickness, and the sample G has a gate electrode formed with a C-rich TaC layer of 10 nm in film thickness.
In an n-MISFET having a stack gate structure formed with a n+-polycrystalline silicon gate electrode, a HfSiON layer, and a SiO2 layer, the balance of carriers flowing in the gate insulating film is modulated by changing the method of application of stress, and the TDDB lifetime is examined.
As shown in
a), 5(b), 5(c), 5(d), and 5(e) show the Weibull plots of the TDDB lifetime obtained when stress is applied to n-MISFETs by the above described first through fifth application methods. As can be seen from
The above results of experiments show that the distribution of TDDB lifetime can be modulated, and the gradient β of the distribution can be made greater by changing the ratio between the minority carriers and the majority carriers in the gate insulating film.
With the above aspects being taken into consideration, in each of the following embodiments of the present invention, an additional element is added to the gate insulating film having a high-dielectric metal oxide layer. By doing so, a charge trap (hereinafter also referred to simply as the “trap” or “site”) that traps (captures or releases) charges (electrons or holes) is intentionally formed in the metal oxide layer forming the gate insulating film. By increasing the current flowing via the charge trap (site), the ratio of the minority carriers to the majority carriers is made higher. In this manner, a semiconductor device having a steep TDDB lifetime distribution (with a large β) is formed.
The following is a detailed description of embodiments and examples of the present invention, with reference to the accompanying drawings. In the drawings, like components are denoted by same reference numerals, and the same explanation will not be repeated. Each of the drawings is schematic, and the shapes, sizes, and proportions of the components shown in the drawings might differ from the components in actual devices. However, in manufacturing an actual device, the following description and conventional arts can be taken into accounts.
The basic structure described above is the same as a conventional MISFET. In this embodiment, however, the high-dielectric layer 12 is a metal oxide layer with a high dielectric constant, and at least one element selected from the group consisting of Ru, Cr, Os, V, Fe, Tc, Nb, and Ta is added to the metal oxide layer. Among those additional elements, Ru is easily available at low cost, and has excellent compatibility with semiconductor manufacture processes. In this embodiment, the metal element serving as a main component of the metal oxide layer includes at least one element selected from hafnium and zirconium.
It is known that, where an element selected from the group consisting of Ru, Cr, Os, V, Tc, and Nb is added to a hafnia (HfO) layer, a hafnium silicate (HfSiO) layer, a nitrided hafnium silicate (HfSiON) layer, or a hafnium aluminate layer, a shallow trap level is formed according to the first principle calculation.
The following is a description of an example of p-MISFET having Ru (ruthenium) as the element added to the gate insulating film 10 in which the layer thickness of the silicon oxide layer to be the interfacial oxide layer 11 is 1 nm, and the layer thickness of the nitrided hafnium silicate layer to be the high-dielectric layer 12 is 1.5 nm.
The leakage current originating from the minority carriers (electrons) flowing in the gate insulating film having this stack structure is expressed as follows:
where, e represents the elementary charge, m represents the mass of electrons in vacuum, h represents the Planck's constant, kB represents the Boltzmann's constant, T represents the temperature, E represents the energy of the electrons, Ex (=E−Ev) represents the energy in the electron tunneling direction (the x-axis direction), EF represents the Fermi level of the semiconductor substrate, and T*(Ex) represents the effective tunneling probability of the electrons flowing in the gate insulating film. In the embodiment of the present invention, the trap level in the gate insulating film having a stack structure formed with different insulating layers is calculated.
Where the dielectric constants of the interfacial oxide layer 11 as the low-k layer and the high-dielectric layer 12 as the high-k layer are ∈i and ∈2, and the voltages applied to the interfacial oxide layer 11 and the high-dielectric layer 12 are V1 and V2, respectively, different actual electric fields are applied to the respective insulating layers if the flux density is assumed to be fixed in the stack structure of insulating layers with different dielectric constants. With the actual electric fields applied to the interfacial oxide layer and the high-electric layer being E1 and E2, the following relationship is established:
∈ox×Eox=∈1×E1=∈2×E2 (3)
where, ∈ox (=3.9) is the dielectric constant of SiO2. The actual electric fields are defined as E1=V1/T1 and E2=V2/T2, which satisfy the following equation:
∈1×V1/T1=∈2×V2/T2 (4)
As can be seen from the equation (3), the actual electric field of the interfacial oxide layer is stronger than that of the high-dielectric layer.
Since the voltage V2 is applied to the high-dielectric layer, the assist level (the trap level) has the width of V2 in terms of energy level. In this condition, however, the Fermi level EF of the semiconductor substrate is lower than the assist level. Therefore, the assist level does not affect the leakage current. Accordingly, in a low electric field, the leakage current becomes the same as the leakage current from the insulating films of the same stack structure without an assist level. The effective tunneling probability T*(Ex) in that case is expressed as:
T*(Ex)=TFN(φ*b1,m*1,E1)TFN−1(φ*b1−V1,m*1,E1)TFN(φ*b2,m*2,E2)TFN−1(φ*b2−V2,m*2,E2) (5)
where, φb1* is φb1+EF−Ex, and φb2* is φb2+EF−Ex−V1, and m1* and m2* are the effective masses of electrons tunneling in the interfacial oxide layer and the high-dielectric layer, respectively. Also, φb1 and φb2 are the barrier heights of the interfacial oxide layer and the high-dielectric layer, respectively. The effective mass is 0.5 m, which is a typical value. Here, m is the mass of electrons in vacuum. Meanwhile, TFN represents the Fowler-Nordheim (F−N) tunneling probability, and, where 0≦Ex<φb*, it is defined by the following equation (6):
In a case where φb*≦Ex, TFN is defined by the following equation (7):
T
FN(φb*,m*,E)=1 (7)
Here, m* represents the effective mass of electrons tunneling in the tunnel insulating film, φb* represents the effective barrier height of the tunnel insulating film, EF represents the Fermi level, Ex represents the energy in the tunneling direction of electrons, e represents the elementary charge, h represents the Planck's constant, and E1 and E2 represent the actual electric fields in the interfacial oxide layer and the high-dielectric layer, respectively. The F-N tunneling is the minority carriers tunneling through a tilted conduction band of an insulating film.
When a high electric field Eox is applied to a gate insulating film having a stack structure with an assist level, the voltages to be applied to the respective layers are also high, because the electric field Eox is high. More specifically, a high voltage V1 is applied to the interfacial oxide layer, and a voltage V2 lower than the voltage V1 is applied to the high-dielectric layer. Where the electric field Eox is high to a certain degree, a high voltage is applied to the interfacial oxide layer. Therefore, the lower edge Ec of the conduction band of the high-dielectric layer becomes lower by V1, and the assist level also becomes lower by V1. As a result, the Fermi level EF of the semiconductor substrate overlaps with the height of the assist level. Electrons then start tunneling via the assist level. Accordingly, in a gate insulating film having a stack structure with an assist level, the assist level functions as the level to assist the minority carriers (electrons) in tunneling, and so-called TAT (Trap Assisted Tunneling) is caused. According to the mechanism of TAT, the probability P of electrons flowing via the assist level by virtue of the continuity of current density in a steady state satisfies the following equation (8):
P=p
1·(1−f)=p2·f (8)
where p1 represents the probability of electrons tunneling from the semiconductor substrate to the assist level, p2 represents the probability of electrons tunneling from the assist level to the charge storage film (the gate electrode in a MISFET), and f represents the probability of the assist level being occupied (1−f representing the probability of the assist level being unoccupied). Since f is equal to p1/(p1+p2), the following relationship is established:
P=1/(1/p1+1/p2) (9)
The probability of electrons not flowing via the assist level is represented by the product of p1 and p2, or p1·p2, which is smaller than the value expressed by the equation (9). Therefore, the leakage current via the assist level is larger than the leakage current not flowing via the assist level.
In a case where an assist level exists only in the high-dielectric layer in a gate insulating film having a stack structure formed with an interfacial oxide layer and the high-dielectric layer, the tunneling probability can be summed up as follows based on the positional relationship between the energy level Ex of tunneling electrons and φT2:
In a case where electrons tunnel without an assist level, the tunneling probability is expressed by the product of probabilities of electrons tunneling through the high-dielectric layer and the interfacial oxide layer, and is the same as the value represented by the equation (5) where there is not an assist level. In cases where electrons tunnel via an assist level, the probabilities are expressed as follows:
P
L
=T
FN(φ*b1,m*1,E1)TFN−1(φ*b1−V1,m*1,E1)
P
H1
=T
FN(φ*b2,m*2,E2)TFN−1(φ*T2,m*2,E2)
P
H2
=T
FN(φ*T2,m*2,E2)TFN−1(φ*b2−V2,m*2,E2)
Here, the following relationship is defined:
φT2*=φT2−φb2*
In the calculation of leakage current, all the electrons entering the gate insulating film from the electrode are assumed to be captured by an assist level and be released from the assist level.
According to the above equations, the currents flowing in a case where there is not a trap and where there is a trap are calculated. As an example, the trap level and the injection level of electrons obtained when Ru is added to a high-dielectric layer of nitrided hafnium silicate are now described, with reference to a schematic band diagram. Here, the barrier height of electrons in the nitrided hafnium silicate is 1.6 eV, and the in-film trap level formed by the addition of Ru is approximately 1.1 eV. When a power supply voltage (=−1.1 V) is applied, a current flows via the trap.
Next, the preferred position of a trap is described in the film thickness direction. A tunneling current can be expressed by integrating the number dJ/dEx of electrons tunneling in the insulating film from the energy level Ex of the electrode in unit area and unit time with the energy Ex. The relationship between Ex and dJ/dEx is represented by the graph g1 in
Referring now to
∈IL−EIL=∈HK×EHK (a)
The voltage VHK applied to the high-dielectric layer and the voltage VIL applied to the interfacial oxide layer are expressed as:
V
HK
=E
HK
×T
HK (b)
V
IL
=E
IL
×T
IL (c)
The power supply voltage Vg is expressed as:
Vg=V
HK
+V
IL
As can be seen from
E
HK=(φHK−φtrap−Ex_trap)/Xtrap (d)
According to the equations (a) through (d), the trap position Xtrap is expressed as:
X
trap=(ΦHK−Φtrap−Ex_trap)×(THK×∈IL+TIL×∈HK)/(Vg×∈IL) (e)
This trap position Xtrap represents the peak position of the trap distribution.
As a result of the calculation of the trap position Xtrap described above, it becomes apparent that the trap position Xtrap is 1.5 nm and a trap should exist in the vicinity of the interface between the interfacial oxide layer and the high-dielectric layer, in a case where the layer thickness of the interfacial oxide layer of SiO2 is 1 nm, the layer thickness of the high-dielectric layer of nitrided hafnium silicate (HfSiON) is 1.5 nm, and Ru is added to the high-dielectric layer.
a) and 17(b) show the results of calculations of desired trap level regions in cases where the layer thickness of the interfacial oxide layer of SiO2 is fixed at 1 nm, and the layer thickness of the high-dielectric layer of HfSiON is varied in each of an n-MISFET and a p-MISFET. In the n-MISFET, the region interposed between the two functions, y=1.29 exp (−0.149×) and y=2.38 exp (−0.132x), is the desired trap level region, where x represents the layer thickness of the HfSiON layer, and y represents the hole trap level (
a) and 18(b) show the results of calculations of dependence of the trap position from the interface between the HfSiON layer and the SiO2 layer on the layer thickness of the HfSiON layer in a case where the layer thickness of the interfacial oxide layer of SiO2 is 1 nm, and the layer thickness of the high-dielectric layer of HfSiON is varied in each of the n-MISFET and p-MISFET. As can be seen from
Next, the amount of the element to be added to the high-dielectric layer is described. In the following example, a HfO2 layer is used as the high-dielectric layer, and Ru is the element to be added. Where the lattice constant of HfO2 is represented by “a”, four sets of HfO2 can exist in an a×a×a unit. Accordingly, thirty-two Hf atoms and sixty-four oxygen atoms exist in a 2a×2a×2a unit. Where one or more Ru atoms are introduced into the 2a×2a×2a unit, and Hf is substituted by Ru, interactions with adjacent additional materials are caused, and a metallic band (a level that can cause “hopping”) is formed. As a result, a problem is caused in the insulating properties of the high-dielectric layer. The Ru concentration observed where one Ru atom is introduced into a 2a×2a×2a unit, and Hf is substituted by Ru, is 1/(32+64)×100=1.04 atomic %. Therefore, if the concentration of the added element becomes higher than 1 atomic %, a problem is caused in the insulating properties of the high-dielectric layer.
However, in a case where one Ru atom is added to a 3a×3a×3a unit, Ru as the additional element is completely localized, and no interactions with adjacent additional materials are caused. In this 3a×3a×3a unit, 108(33×4) Hf atoms and 216 oxygen atoms are introduced. Accordingly, the concentration of the additional element Ru that is completely localized is 1/(108+216)×100=0.31 atomic %. To maintain excellent insulating properties of the high-dielectric layer even when an additional element is added to the high-dielectric layer, the upper limit of the concentration of the additional element is 0.31 atomic %. This upper limit does not vary with the material of the additional element, but varies with the material of the high-dielectric layer. In a case where a LaAlO3 layer is used as the high-dielectric layer in a later described embodiment, the upper limit of the additional element concentration is 1/230×100=0.43 atomic % through the same calculation as above. The lower limit of the additional element concentration is the value observed where one atom of an additional element is introduced into a MISFET, and is 1×10−16 atomic %. Since the concentration of the additional element varies with the material of the high-dielectric layer, the amount of the additional element is measured in terms of density. The density where one Ru atom is added to a 3a×3a×3a unit is 1/(3a×3a×3a)=2.96×1020 cm−3. Therefore, to maintain excellent insulating properties in the high-dielectric layer even after an additional element is added to the high-dielectric layer, the upper limit of the additional element density is 2.96×1020 cm−3. Also, the lower limit of the additional element density is 1×1015 cm−3. This lower limit is the value equivalent to 1×10−16 atomic %, which is the lower limit of the concentration.
To avoid metal diffusion from the gate insulating film, JP-A 2005-183422 (KOKAI) discloses a technique of adding a metal element of W (tungsten), Mo (molybdenum), Cr (chromium), V (vanadium), Nb (niobium), or Ta (tantalum) at a concentration of 5 atomic % or lower to the gate insulating film. However, in a case where a metal element of 1 atomic % or higher is added, as described above, the gate insulating film is metallized, and ceases functioning as an insulating film. JP-A 2005-183422 (KOKAI) does not disclose this fact, and does not even imply it.
Next, a method for manufacturing the semiconductor device of this embodiment is described.
First, as shown in
A metal film 7 made of TiN or TaC or the like of 2 nm to 50 nm in thickness is then deposited on the Ru layer 13, as shown in
After an insulating film such as a silicon nitride film is deposited on the entire surface, etchback is performed to form the gate sidewall 19 on the side portions of the gate structure, as shown in
Thereafter, the metal silicide 20 is formed on the gate electrode 16 and the source and drain regions 5a and 5b by a known technique, thereby completing the MISFET of this embodiment illustrated in
An additional element may be added to the high-dielectric layer by a method other than the above described methods. More specifically, a high-dielectric layer such as a nitrided hafnium silicate layer is deposited by CVD, ALD, or sputtering, and a gate electrode (the metal film 17 and the polycrystalline silicon film 18) is then deposited. After that, a layer of an additional element is deposited on the gate electrode by CVD, ALD, or sputtering, so as to diffuse the additional element into the insulating film through a heating process performed in a later stage.
Alternatively, an additional element may be deposited by ALD or sputtering during the deposition of a high-dielectric layer of nitrided hafnium silicate or the like by ALD or sputtering. After that, a nitrided hafnium silicate layer is again deposited by ALD or sputtering, so as to introduce the additional element into the high-dielectric layer.
Alternatively, after an interfacial oxide layer of SiO2 is deposited (or formed by thermal oxidation) on the silicon substrate, a layer of an additional element is deposited on the interfacial oxide layer by ALD, CVD, or sputtering, and a high-dielectric layer of nitrided hafnium silicate or the like is deposited on the additional element layer by ALD, CVD, or sputtering. The additional element can be diffused into the high-dielectric layer by a heating process performed in a later stage.
As described above, in accordance with this embodiment, an additional element is added to the high-dielectric layer, so that excellent insulating properties can be maintained in the high-dielectric layer, and a trap can be formed in the high-dielectric layer. Accordingly, the ratio of the minority carriers to the majority carriers can be made higher. With this arrangement, the shape parameter β of the Weibull distribution can be made greater without an increase in leakage current, and the TDDB lifetime can be greatly improved.
Although the interfacial oxide layer is a silicon oxide layer in this embodiment, it may be a silicon oxynitride layer.
Also, instead of nitrided hafnium silicate, a hafnium oxide such as hafnia, hafnium silicate, or hafnium aluminate can be used for the high-dielectric layer in this embodiment.
In this embodiment, nitrided hafnium silicate is used as the high-dielectric layer, and Ru is used as the additional material. However, it is also possible to use a high-dielectric layer made of an oxide containing Zr having substantially the same properties as Hf. As for the additional element, it is possible to use Nb, Cr, Os, V, Tc, or Ta, instead of Ru. Although this embodiment is applied to a p-MISFET, it is also possible to apply this embodiment to an n-MISFET.
In the semiconductor device of this embodiment, at least one element selected from the group consisting of Ru, Cr, Os, V, Tc, and Nb is added to the high-dielectric layer 12, and the density of the additional element is in the range of 1×1015 cm−3 to 2.96×1020 cm−3, as in the first embodiment.
As an example, the trap level and the electron injection level observed when Ru is added to a 1.5-nm thick nitrided hafnium silicate film (a HfSiON film) as the high-dielectric layer are now described, with reference to a band diagram. The electron barrier height of nitrided hafnium silicate is 1.6 eV, and the trap level in the nitrided hafnium silicate film formed by the addition of Ru is in the neighborhood of 1.1 eV. After application of a power supply voltage (=−1.1 V), a current flows via this trap.
A preferred position of a trap in the film thickness direction is determined from the point where Ex_trap at which the current becomes largest when the power supply voltage is applied intersects with the trap level (φtrap=1.1 eV) in the gate insulating film, as described in the first embodiment.
Referring now to
V
HK
=E
HK
×T
HK (f)
and the power supply voltage Vg is expressed as:
Vg=VHK (g)
As can be seen from
E
HK=(φHK−φtrap−Ex_trap)/Xtrap (h)
According to the equations (f) through (h), the trap position Xtrap is expressed as:
X
trap=(ΦHK−Φtrap−Ex_trap)×THK/Vg (i)
As a result of the calculation of the trap position Xtrap described above, assuming that a film thickness of the gate insulating film in the nitrided hafium silicate film is 1.5 nm, it becomes apparent that the trap position Xtrap is 0.8 nm when Ru is added to the nitrided hafnium silicate film. In such a case, a trap should preferably exist closer to the Si substrate than to the center of the gate insulating film of nitrided hafnium silicate.
a) and 24(b) show the results of calculations of desired trap level regions in cases where the film thickness of the HfSiON film 12 is varied in an n-MISFET and a p-MISFET. In the n-MISFET, the region interposed between the two functions, y=1.66 exp (−0.0806×) and y=2.37 exp (−0.130x), is the desired trap level region, where x represents the film thickness of the HfSiON film, and y represents the hole trap level (
a) and 25(b) show the results of calculations of dependence of the trap position from the interface with the interface with the semiconductor region 2 on the film thickness of the HfSiON film 12 in a case where the film thickness of the HfSiON film 12 is varied in each of the n-MISFET and p-MISFET. As can be seen from these results, the trap positions should preferably be located closer to the semiconductor region side than to the center of the nitrided hafnium silicate film.
The method for manufacturing the semiconductor device of this embodiment is the same as the method for manufacturing the semiconductor device of the first embodiment, except that the procedure for forming the interfacial oxide layer is not carried out, and the high-dielectric layer 12 is formed directly on the semiconductor region 2.
As described above, in accordance with this embodiment, an additional element is added to the high-dielectric layer, so that excellent insulating properties can be maintained in the high-dielectric layer, and a trap can be formed in the high-dielectric layer. Accordingly, the ratio of the minority carriers to the majority carriers can be made higher. With this arrangement, the shape parameter β of the Weibull distribution can be made greater without an increase in leakage current, and the TDDB lifetime can be greatly improved.
In this embodiment, hafnium silicate is used as the high-dielectric layer, and Ru is used as the additional material. However, it is also possible to use a high-dielectric layer made of an oxide containing Zr, Ti, Al, Y, La, Ce or some other rare-earth metal element, instead of Hf. As for the additional element, it is possible to use Nb, Cr, Os, V, or Tc, instead of Ru. Although this embodiment is applied to a p-MISFET, it is also possible to apply this embodiment to an n-MISFET.
A semiconductor device according to a third embodiment is now described.
In the semiconductor device of the first embodiment illustrated in
Lanthanum oxide, lanthanum silicate, lanthanum aluminate, or lanthanum alumisilicate can be used as the high-dielectric layer 12 in this embodiment. At least one element selected from the group consisting of V, Cr, Mn, Fe, Zr, Nb, Mo, Tc, Rh, Hf, Ta, Re, Os, and Ir is added to the high-dielectric layer 12. As described in the first embodiment, the preferred density of the additional element ranges from 1×1015 cm−3 to 2.96×1020 cm−3.
Those additional elements form trap levels in an insulating film containing a lanthanoid element, according to the first principle calculation.
In the case of lanthanum aluminate or lanthanum alumisilicate, the elements that from traps at levels near the conduction band are Zr, Nb, Tc, Hf, Ta, and Re, which are preferred as elements to be added to a p-MISFET. The elements that form traps at levels near the valence band are V, Cr, Mn, Fe, Mo, Tc, Rh, Re, Os, and Ir, which are preferred as elements to be added to an n-MISFET. In the case of lanthanum oxide or lanthanum silicate, the elements that from traps at levels near the conduction band are Zr, Nb, Hf, and Ta, which are preferred as elements to be added to a p-MISFET. The elements that form traps at levels near the valence band are V, Cr, Mn, Fe, Mo, Tc, Rh, Re, Os, and Ir, which are preferred as elements to be added to an n-MISFET.
a) through 30(b) show the results of calculations performed to determine trap levels and trap positions in the film thickness direction as required to increase the shape parameter β of the Weibull distribution according to the procedures described in the first embodiment. Here, the dielectric constant of lanthanum aluminate is 25, the barrier height against electrons is 2.4 eV, and the barrier height against holes is 3.0 eV. In the n-MISFET, the region interposed between the two functions, y=2.91 exp (−0.105×) and y=3.13 exp (−0.0977×), is the desired trap level region, where x represents the layer thickness of the LaAlO3 layer, and y represents the hole trap level (
Based on the results shown in
The above introduction of an element is performed by depositing a layer of the additional element by CVD, ALD, or sputtering after an insulating layer such as a lanthanum aluminate layer is deposited by CVD, ALD, or sputtering. The additional element can be then diffused into the insulating film by performing a heating process in a later stage.
Alternatively, during the deposition of an insulating layer such as a lanthanum aluminate layer by ALD or sputtering, a layer of an additional element may be deposited by ALD or sputtering, and an insulating layer such as a lanthanum aluminate layer is again deposited by ALD or sputtering, thereby introducing the additional element into the insulating layer. Alternatively, after a SiO2 layer to be the interfacial oxide layer is deposited or formed through thermal oxidation on a silicon substrate, a layer of an additional element may be deposited on the SiO2 layer by ALD, CVD, or sputtering, and an insulating layer such as a lanthanum aluminate layer may be deposited on the additional element layer by ALD, CVD, or sputtering. The additional element can be diffused into the insulating layer by performing a heating process in a later stage. Alternatively, after the deposition of an insulating layer, an additional element can be introduced into the insulating layer through ion implantation.
In this embodiment, the interfacial oxide layer is a silicon oxide layer, but it may be a silicon oxynitride layer.
Although the high-dielectric layer contains La in this embodiment, it may contain at least one element selected from the group consisting of lanthanoids (Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), instead of La.
As described above, in accordance with this embodiment, an additional element is added to the high-dielectric layer, so that excellent insulating properties can be maintained in the high-dielectric layer, and a trap can be formed in the high-dielectric layer. Accordingly, the ratio of the minority carriers to the majority carriers can be made higher. With this arrangement, the shape parameter β of the Weibull distribution can be made greater without an increase in leakage current, and the TDDB lifetime can be greatly improved.
A semiconductor device according to a fourth embodiment is now described.
The semiconductor device of this embodiment is the same as the semiconductor device of the third embodiment, except that the interfacial oxide layer 11 is removed from the gate insulating film 10. In short, the gate insulating film 10 is formed only with the high-dielectric layer 12 such as a lanthanum aluminate layer in this embodiment. The semiconductor device of this embodiment can be used in a logic circuit.
In the fourth embodiment, the additional elements that can be added to the high-dielectric layer 12 are the same as the additional elements mentioned in the third embodiment, and the density of any one of the additional elements preferably ranges from 1×1015 cm−3 to 2.96×1020 cm−3, as described in the first embodiment.
a) and 31(b) show the results of calculations performed to determine trap levels and trap positions in the film thickness direction as required to increase the shape parameter β of Weibull distribution according to the procedures described in the first embodiment. Here, the gate insulating film 10 is formed with a lanthanum aluminate film (LaAlO3 film) as the high-dielectric layer 12. The dielectric constant of lanthanum aluminate is 25, the barrier height against electrons is 2.4 eV, and the barrier height against holes is 3.0 eV. In the n-MISFET, the region interposed between the two functions, y=2.29 exp (−0.0585×) and y=2.72 exp (−0.0753×), is the desired trap level region, where x represents the film thickness of the LaAlO3 film, and y represents the hole trap level (
Based on the results shown in
The introduction of an additional element into the high-dielectric layer 12 is performed in the same manner as in the third embodiment.
As described above, in accordance with this embodiment, an additional element is added to the high-dielectric layer, so that excellent insulating properties can be maintained in the high-dielectric layer, and a trap can be formed in the high-dielectric layer, as in the third embodiment. Accordingly, the ratio of the minority carriers to the majority carriers can be made higher. With this arrangement, the shape parameter β of the Weibull distribution can be made greater without an increase in leakage current, and the TDDB lifetime can be greatly improved.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concepts as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2009-074427 | Mar 2009 | JP | national |