This application claims the benefit of Japanese Patent Application No. 2006-157137, filed Jun. 6, 2006, which is hereby incorporated by reference herein in its entirety.
This invention relates to a semiconductor package on which a semiconductor chip has been mounted, a method of manufacturing the same, a semiconductor device and an electronic device. More particularly, the invention relates to a semiconductor package suited to an electronic device, the external appearance of which is curved, a method of manufacturing the same, a semiconductor device and an electronic device.
Recent electronic devices tend to be lighter, thinner and smaller, and products in which emphasis is placed on design and that make frequent use of curved surfaces have begun to appear on the market. Further, products with a curved-surface design have been announced in the form of various electronic devices as concept models.
In order to realize lighter, thinner and smaller models the external appearance of which presents a curved surface, it is preferred that internal parts be mounted even on the curved portions, a goal which is not feasible with the packaging of the prior art. Preferably, a semiconductor device in which a semiconductor package is mounted on a substrate is curved to enable mounting in available space.
Prior-art examples of semiconductor devices in which a semiconductor package is mounted on a substrate will be described.
[Patent Document 1]
Japanese Patent Kokai Publication No. P2004-146751A (Paragraph 0093; FIG. 25).
[Patent Document 2]
Japanese Patent Kokai Publication No. JP-A-8-335663 (Paragraph 0031; FIGS. 6A and 6B)
However, with the structures of the semiconductor packages described in Patent Documents 1 and 2, several problems arise in an effort to achieve curving after the package is mounted on a substrate. The structures of the semiconductor packages described in these documents will be analyzed below from the standpoint of the present invention. It should be noted that the content disclosed in Patent Documents 1 and 2 is hereby incorporated by reference herein in its entirety.
With regard to the semiconductor device of Patent Document 1 (see
With regard to the semiconductor device of Patent Document 2 (see
It is a primary object of the present invention to provide a highly reliable semiconductor package in which when a substrate is made curved, stress at the joints of solder bumps mounted on the substrate and in the semiconductor chip is mitigated to eliminate faulty connection, as well as a method of manufacturing this package, a semiconductor device and an electronic device.
In a first aspect of the present invention, a semiconductor package is characterized by comprising: a semiconductor chip having a plurality of electrodes formed on a circuit side surface thereof; and an interposer substrate arranged so as to enclose a portion of the circuit side of the semiconductor chip, a portion of at least one side surface thereof and a portion of the underside surface thereof, and having a wiring layer between two insulating layers; a first conductor connecting an electrode of the semiconductor chip and the first electrode pad; and a second conductor provided on the second electrode pad; wherein at least a portion of the underside surface of the semiconductor chip is adhesively secured to the interposer substrate, a prescribed gap is provided at the side surface of the semiconductor chip by spacing the semiconductor chip and interposer substrate away from each other, and a surface of the interposer substrate opposing the side surface of the semiconductor chip as well as a portion of the underside surface of the semiconductor chip with the exception of an adhesion surface thereof is a non-adhesion surface (Mode 1, or Mode 1-1).
In a second aspect of the present invention, a three-dimensional semiconductor package obtained by stacking a plurality of semiconductor packages is characterized in that at least a semiconductor package among these semiconductor packages that is arranged lowermost and mounted directly on a substrate is the above-described semiconductor package (Mode 2).
In a third aspect of the present invention, a semiconductor device is characterized in that the above-described semiconductor package or the above-described three-dimensional semiconductor package has been mounted on a substrate (Mode 3-1).
In a fourth aspect of the present invention, an electronic device is characterized in that the above-described semiconductor device has been incorporated in a housing (Mode 4).
In a fifth aspect of the present invention, a method of manufacturing a semiconductor package is provided and is characterized by including the steps of: forming a non-adhesion area on an interposer substrate; mounting the semiconductor chip in such a manner that a top side thereof opposes the interposer substrate; arranging a member(s) that forms gap(s) at side surface(s) of the semiconductor chip; and bending the interposer substrate onto an underside of the semiconductor chip via the member(s) (Mode 5).
In accordance with each of the aspects of the present invention, there is a gap between the interposer substrate and the side surface of the semiconductor chip and the interposer substrate has extra length. Even when the substrate on which the semiconductor package has been mounted is made to curve, therefore, the interposer substrate is capable of following up such bending, stress at the joints of solder bumps and in the semiconductor chip is relieved and a highly reliable semiconductor package devoid of faulty connections can be provided.
In a semiconductor package according to the present invention, an interposer substrate is, preferably, an interposer substrate having a first electrode pad, which is for connecting to an electrode of the semiconductor chip, provided on the surface of the semiconductor chip on the side thereof over the wiring layer, and a second electrode pad, which is for external connection, provided on the opposite surface side of the semiconductor chip (Mode 1-2).
In a semiconductor package according to the present invention, there can be provided a first conductor connecting an electrode on the semiconductor chip and the first electrode pad, and a second conductor provided on the second electrode pad (Mode 1-3).
It can be so arranged that when the interposer substrate is pushed from a direction of the side surface of the semiconductor chip, the gap moves at least toward the underside of the semiconductor chip and a state is attained in which the non-adhesion surface of the interposer substrate departs from the underside surface of the semiconductor chip (Mode 1-4).
The area of adhesion between the interposer substrate and semiconductor chip on the underside surface of the semiconductor chip can be made less than half the total area of the underside surface of the semiconductor chip (Mode 1-5).
The interposer substrate is capable of being adhesively secured to the underside surface of the semiconductor chip at a portion thereof in the vicinity of the center of the semiconductor chip (Mode 1-6).
Of the two insulating layers of the interposer substrate, the insulating layer situated on the side of the interposer substrate opposing the top side of the semiconductor chip can be formed of a thermoplastic resin (Mode 1-7).
A filling member formed of a pliable material can be provided in the gap between the semiconductor chip and the interposer substrate on the side surface of the semiconductor chip (Mode 1-8).
It can be so arranged that when the interposer substrate is pushed, or heated and pushed from the direction of the side surface of the semiconductor chip, the gap moves at least toward the underside of the semiconductor chip and a state is attained in which the non-adhesion surface of the interposer substrate departs from the underside of the semiconductor chip (Mode 1-9).
The filling member can be formed of a rubber material (Mode 1-10).
The filling member can be formed of a material that softens at a temperature at which solder melts or below (Mode 1-11).
The interposer substrate is such that its central portion is placed on the circuit side surface of the semiconductor chip and both end portions are folded onto the underside of the semiconductor chip and are spaced away from each other (Mode 1-12).
The interposer substrate is such that its central portion is placed on the circuit side surface of the semiconductor chip and both end portions are folded onto the underside of the semiconductor chip and overlap on the underside of the semiconductor chip (Mode 1-13). The interposer substrate is such that its central portion is placed on the underside surface of the semiconductor chip and both end portions are folded onto the circuit side of the semiconductor chip and are spaced away from each other on the circuit side of the semiconductor chip (Mode 1-14).
The interposer substrate is such that its central portion is placed on the side surface of the semiconductor chip, one end portion is folded onto the circuit side of the semiconductor chip and the other end portion is folded onto the underside of the semiconductor chip (Mode 1-15).
In a three-dimensional semiconductor package obtained by stacking a plurality of semiconductor packages, at least a semiconductor package among these semiconductor packages that is arranged lowermost and mounted directly on a substrate is the semiconductor package of any one of Modes 1-1 to 1-15 (Mode 2).
A semiconductor device can be obtained by mounting the semiconductor package of any one of Modes 1-1 to 1-15 or the three-dimensional semiconductor package of Mode 2 on a substrate (Mode 3-1).
The semiconductor package mounted directly on the substrate is such that when the substrate is made to curve, the gap moves at least toward the underside of the semiconductor chip and the interposer substrate attains a state in which the non-adhesion surface of the semiconductor chip departs from the underside surface of the semiconductor chip (Mode 3-2).
An electronic device can be obtained by incorporating the semiconductor device of Mode 3-1 or Mode 3-2 in a housing.
In a method of manufacturing a semiconductor package (Mode 5), the method can further comprise a step of extracting the members after the interposer substrate is bent onto the underside of the semiconductor chip (Mode 5-1).
A semiconductor package according to a first exemplary embodiment of the present invention will be described with reference to the drawings.
This semiconductor device has a semiconductor package 5 and a substrate 20. This semiconductor device is such that the semiconductor package 5 is mounted on the substrate 20 and is so adapted that even when the substrate 20 is made to curve, stress at the joint with a second conductor 3 and stress in the semiconductor chip 1 can be mitigated. The semiconductor device can be applied when it is incorporated in an electronic device using a housing having a curved surface. It goes without saying that even in a case where the housing has a planar shape, a separate part can be mounted in a space obtained between the device and the housing by curving the substrate 20. The semiconductor device is effective in a case where a part having a height greater than that of parts arranged in the vicinity is placed in a space comprising a large gap formed with the housing beneath the curved substrate.
The semiconductor package 5 is a chip-size package (CSP) in which the semiconductor chip 1 is packaged in a size approximately the same as that of the semiconductor chip 1. The semiconductor package 5 has the semiconductor chip 1, the first conductor 2, an interposer substrate 10 and the second conductor 3.
The semiconductor chip 1 is a chip having a semiconductor integrated circuit and includes a plurality of electrode pads (not shown) formed on the circuit side in a wafer process. The first conductor 2 is formed on each electrode pad (not shown) of the semiconductor chip 1. The semiconductor chip 1 is flip-chip connected to a wiring pattern 12 of the interposer substrate 10 via the first conductor 2 and a first electrode pad 14.
The first conductor 2 is a bump-shaped conductor that electrically connects (joins) each electrode pad (not shown) of the semiconductor chip 1 and the first electrode pad 14 of the interposer substrate 10. A conductor such as an Au, Sn—Ag, Sn—Cu, Sn—Ag—Cu, Sn—Bi, Sn—Zn solder can be used as the first conductor 2.
The second conductor 3 is a means for electrically connecting a second electrode pad 15a of the interposer substrate 10 and an externally connected part. A solder ball, for example, can be used as the second conductor.
The interposer substrate 10 is a flexible wiring board electrically connecting the semiconductor chip 1 and substrate 20. The interposer substrate 10 is formed so as to cover the two opposing sides of the semiconductor chip 1 in such a state that a fixed clearance (gap 4) exists between the interposer substrate and the side surface of the semiconductor chip 1. It should be noted that when the interposer substrate 10 is pushed from the direction of the side surface of the semiconductor chip 1, the gap 4 on the side surface of the semiconductor chip 1 moves at least toward the underside of the semiconductor chip 1 and a state is attained in which a non-adhesion surface 11a of the interposer substrate departs from the underside of the semiconductor chip 1. The interposer substrate 10 according to the first exemplary embodiment is such that the central portion of the substrate is placed on the circuit side of the semiconductor chip 1 and both end portions are folded onto the side (underside) of the semiconductor chip that is opposite the circuit side and are spaced away from each other. Extra length afforded by the gap 4 between the interposer substrate 10 and the side surface of the semiconductor chip 1 is made at such a length that when the substrate 20 is made to curve, the interposer substrate 10 will not be stretched even though it is pulled downward. This extra length is set in accordance with the bending modulus of the substrate 20; it is set to be large if the bending modulus of the substrate 20 is large and to be small if the bonding modulus of the substrate 20 is small. The interposer substrate 10 has a thermoplastic resin 11, wiring pattern 12, insulating resin 13, first electrode pad 14 and second electrode pads 15a, 15b.
The thermoplastic resin 11 is an insulating layer comprising a thermoplastic resin placed on the side of the interposer substrate 10 facing the semiconductor chip 1. The thermoplastic resin 11 has a hole for electrically connecting the electrode pad (not shown) of the semiconductor chip 1 and the wiring pattern 12. The first conductor 2 and first electrode pad 14 are placed in the hole. The thermoplastic resin 11 is adhered to the circuit side surface of the semiconductor chip 1 (with the exception of the surface an which the first electrode pad 14 is disposed) and to a portion in the vicinity of the center of the side (underside) of the semiconductor chip 1 that is opposite the circuit side surface (an area having a width that is half that of the central portion of the underside surface of semiconductor chip 1 that opposes the interposer substrate 10, particularly an area having a width perpendicular to the direction in which the resin extends up to the surface on the side of the semiconductor chip 1). The surface of the thermoplastic resin 11 opposing the side surface of the semiconductor chip 1 and the portion of the underside of semiconductor chip 1 with the exception of the adhesion surface is the non-adhesion surface 11a. It should be noted that if the electrode pad on the circuit side of the semiconductor chip 1 and the conductor are strongly connected at the surface where the first electrode pad 14 is disposed, then the thermoplastic resin 11 need not be adhered to the circuit side of the semiconductor chip 1 (with the exception of the surface where the first electrode pad 14 is disposed). The area of adhesion between the thermoplastic resin 11 and the semiconductor chip 1 at the portion in the vicinity of the center of the underside surface of semiconductor chip 1 preferably is made less than half the total area of the underside surface of semiconductor chip 1 so that when the interposer substrate is pushed from the direction of the side surface of the semiconductor chip 1, the gap 4 will move at least toward the underside surface of the semiconductor chip 1 and a state will be attained in which the non-adhesion surface 11a of the interposer substrate departs from the underside surface of the semiconductor chip 1. The non-adhesion surface 11a of the thermoplastic resin 11 is such that there will be no adhesion to the semiconductor chip 1, even under heating, owing to surface improvement (e.g., plasma treatment or application of a non-viscous coating).
The wiring pattern 12 is a wiring layer comprising a conductor (e.g., copper) adhesively disposed between the thermoplastic resin 11 and insulating resin 13. The wiring pattern 12 is electrically connected to an electrode pad (not shown) of the semiconductor chip 1 via the first electrode pad 14 and first conductor 2 disposed in the hole of the thermoplastic resin 11. The wiring pattern 12 is electrically connected to the electrode pad 21 of the substrate 20 via the second electrode pad 15a and second conductor 3 disposed in a hole of the insulating resin 13. The wiring pattern 12 is electrically connected to the second electrode pad 15a disposed in the hole of the insulating resin 13.
The insulating resin 13 is an insulating layer comprising a thermoplastic resin or thermosetting resin disposed on the side of the interposer substrate 10 opposite the side facing the semiconductor chip 1. At the portion where it is folded onto the side of the laser unit 20, the insulating resin 13 has a hole for electrically connecting the electrode pad 21 of the substrate 20 and the wiring pattern 12. The second electrode pad 15a and second conductor 3 are disposed in this hole. In a case when another semiconductor package is stacked on the semiconductor package 5 (see
The first electrode pad 14 is an electrode pad comprising a conductive material (e.g., Ni/Au and Pd, etc.) for electrically connecting an electrode pad (not shown) of the semiconductor chip 1 and the wiring pattern 12. The first electrode pad 14 is placed in a hole provided in the thermoplastic resin 11 so as to penetrate to the wiring pattern 12 and opened at a position corresponding to an electrode pad (not shown) of the semiconductor chip 1.
The second electrode pad 15a is an electrode pad comprising a conductive material (e.g., Ni/Au and Pd, etc.) for electrically connecting the substrate 20 and the interposer substrate 10. The second electrode pad 15a is placed in a hole provided in the thermoplastic resin 13 so as to penetrate to the wiring pattern 12 and opened at a position corresponding to an electrode pad of the substrate 20. It should be noted that the second electrode pad 15b need not be provided in a case when another semiconductor package is not stacked on the semiconductor package 5.
The second conductor 3 is a conductor for electrically connecting the electrode pad 21 of the substrate 20 and the second electrode pad 15a of the interposer substrate 10. The substrate 20 is a substrate (wiring board) capable of being curved by heating. The substrate 20 has a wiring layer (not shown) provided as an inner layer in an insulating layer, and the electrode pad 21 connected to the wiring layer is exposed at the surface of the insulating layer on the side facing the semiconductor package 5. The electrode pad 21 is electrically connected to the second electrode pad 15a of the interposer substrate 10 via the second conductor 3.
A method of manufacturing the semiconductor package according to the first exemplary embodiment of the printed wiring board will be described next with reference to the drawings.
First, the interposer substrate 10 having a wiring layer in which a pattern has been formed between two insulating layers is prepared. One of the insulating layers is the thermoplastic resin 11 and the one on the opposite side is the insulating resin 13.
Next, using a UV-YAG laser, a carbon dioxide gas laser or an excimer laser, etc., a plurality of holes that reach the wiring pattern 12 are formed at desired locations in the thermoplastic resin 11 and insulating resin 13 that constitute the interposer substrate 10 (step A1). Next, the electrode pads 14, 15a, 15b are formed by a well-known plating method and sputtering method, etc., at portions where the wiring pattern 12 is exposed in these holes (step A2).
Next, on the surface of the thermoplastic resin 11 of interposer substrate 10, a desired portion thereof to which the semiconductor chip 1 will be adhered is protected by being covered with a mask member 32 comprising a metal plate or the like, after which the thermoplastic resin 11 (the portion thereof that will not be adhered to the semiconductor chip 1) exposed from an opening in the mask member 32 is subjected to plasma 31, whereby the non-adhesion surface [11a in
Next, the first conductor 2 formed on the electrode pad (not shown) on the circuit side of semiconductor chip 1 is connected to the first electrode pad 14, which has been formed on the thermoplastic resin 11, by a well-known flip-chip technique such as thermal contact bonding using a flip-chip bonder, etc. (step A4).
Next, the interposer substrate 10, which has been connected to the semiconductor chip 1 via the first conductor 2 and first electrode pad 14, is placed in such a manner that the side of the insulating resin 13 to which the semiconductor chip 1 has not been connected is brought into contact with the top of a heater 34, and the semiconductor chip 1 is secured by vacuum adsorption [step A5; see
Next, spacers are disposed on both side surfaces of the semiconductor chip, the interposer substrate 10 is bent along the spacers 33, which have been placed on the side surfaces of the semiconductor chip 1, and along the underside of the semiconductor chip 1 while being heated on the heater 34, and a prescribed load (in the order of 0.5 to 3 kg) is applied from outside the interposer substrate 10 by rollers 35 made of a material exhibiting excellent resistance to heat such as silicon and Teflon (registered trademark), thereby adhering the circuit side and both end portions of the interposer substrate 10 to the top side of the semiconductor chip 1 [step A6; see
Next, the spacers 33 are extracted (step A7). Finally, the second conductor 3 is formed on the second electrode pad 15a of the interposer substrate 10 [step A8; see
In the manufacturing method described above, the spacers 33 are placed on both side surfaces of the semiconductor chip 1 in order to provide gaps 4. However, in a case where the overall length of the interposer substrate 10 for providing the gaps 4 is known, both end portions of the interposer substrate 10 that have been folded onto the underside of the semiconductor chip 1 are brought into contact with and adhered to the underside (e.g., at the center position) of the semiconductor chip 1 without being spaced apart. As a result, the prescribed load from the rollers 34 need only be applied to the top side of the semiconductor chip 1. Furthermore, an advantage is that the step of extracting the spacers can be eliminated. By adopting this method of manufacture, the semiconductor package having both end portions of the interposer substrate 10 in contact therewith can be obtained. In this case also it goes without saying that curving can be accommodated in a manner similar to a semiconductor package in which both end portions of the interposer substrate are spaced apart.
Next, a case when a semiconductor device in which the semiconductor package according to the first exemplary embodiment of the present invention has been mounted on a substrate is made to curve will be described.
When the flat substrate on which the semiconductor package 5 has been mounted [see
Next, reference will be made to the drawings to describe a semiconductor device in which a three-dimensional semiconductor package obtained by stacking other semiconductor packages on the semiconductor package according to the first exemplary embodiment of the present invention is mounted on a curved substrate.
In
In
In accordance with the first exemplary embodiment, the gap 4 is provided between the interposer substrate 10 and the side surface of the semiconductor chip 1 and the interposer substrate 10 has extra length. When the substrate 20 is made to curve, the interposer substrate 10 can follow up such curving. As a result, stress does not develop at the joints of the second conductor 3 and in the semiconductor chip 1. This makes it possible to provide a highly reliable semiconductor package free of faulty connections.
A semiconductor package according to a second exemplary embodiment of the present invention will be described with reference to the drawings.
In the semiconductor package according to the second exemplary embodiment, a filling member 16 is interposed in the gap (4 in
The filling member 16 is formed of a pliable material, and examples that can be mentioned are materials exhibiting such properties as rubber resilience, viscous elasticity, creep, thermoplasticity, a gel property or a jelly property. Preferably, the filling member 16 is formed of a rubber material having a hardness of 30 or less. Further, a material that is hard at ordinary temperatures but that softens at a temperature not more than that at which the second conductor 3 melts can be used as the filling member 16. For example, a thermoplastic resin can be used. The filling member 16 is arranged between the side surface of the semiconductor chip 1 and the interposer substrate 10 before the substrate 20 is curved [see
Next, reference will be made to the drawings to describe a semiconductor device in which a three-dimensional semiconductor package obtained by stacking other semiconductor packages on the semiconductor package according to the second exemplary embodiment of the present invention is mounted on a curved substrate.
In
In
In accordance with the second exemplary embodiment, effects similar to those of the first exemplary embodiment are obtained. If the filling member 16 is used instead of the spacers [33 in
A semiconductor package according to a third exemplary embodiment of the present invention will be described with reference to the drawings.
In the semiconductor package (5 in
With regard to the interposer substrate 10, the thermoplastic resin 11 is adhered to the circuit side of the semiconductor chip 1 and to the portion in the vicinity of the center of the surface (the underside surface) of the semiconductor chip 1 that is on the side opposite the circuit side surface. The left-side (in
It should be noted that the clearance between the side surface of the semiconductor chip 1 and the interposer substrate 10 in
Further, in a case when the semiconductor package 5 is mounted on a substrate and the substrate is made to curve, the gap 4 or filling member between the side surface of the semiconductor chip 1 and the interposer substrate 10 moves at least to the underside of the semiconductor chip 1 so that a state is attained in which the non-adhesion surface 11a of the interposer substrate 10 departs from the underside of the semiconductor chip 1 in a manner similar to that of the first and second exemplary embodiments.
Further, the arrangement in which both end portions of the interposer substrate 10 of the third exemplary embodiment overlap can also be applied to each of the semiconductor packages in the three-dimensional semiconductor packages of the first and second exemplary embodiments (see 5, 112A, 112B in
In accordance with the third exemplary embodiment, even in a case when curving is performed after the semiconductor package 5 is secondarily mounted on the substrate, stress does not develop at the joints of the second conductor 3 mounted on the substrate and in the semiconductor chip 1 owing to effects similar to those of the first and second exemplary embodiments. This makes it possible to provide a highly reliable semiconductor package structure free of faulty connections. Further, the arrangement is such that both end portions of the interposer substrate 10 overlap each other. In comparison with the first and second exemplary embodiments, therefore, the area of adhesion between both end portions of the interposer substrate 10 folded onto the underside of the semiconductor chip 1 is enlarged. This is advantageous in that reliability can be enhanced.
A semiconductor package according to a fourth exemplary embodiment of the present invention will be described with reference to the drawings.
In the semiconductor package (5 in
With regard to the interposer substrate 10, the thermoplastic resin 11 is adhered to the circuit side surface of the semiconductor chip 1 and to the portion in the vicinity of the center of the side (the underside) of the semiconductor chip 1 that is opposite the circuit side. Further, the surface of the thermoplastic resin 11 opposing the side surface of the semiconductor chip 1 and the portion of the underside of semiconductor chip 1 with the exception of the portion in the vicinity of the center (the adhesion surface) is the non-adhesion surface 11a. The area of adhesion between the thermoplastic resin 11 and the semiconductor chip 1 at the portion in the vicinity of the center of the underside of semiconductor chip 1 preferably is made not more than half the total area of the underside surface of semiconductor chip 1.
It should be noted that the clearance between the side surface of the semiconductor chip 1 and the interposer substrate 10 in
Further, in a case when the semiconductor package 5 is mounted on the substrate 20 and the substrate 20 is made to curve, the gap 4 or filling member between the side surface of the semiconductor chip 1 and the interposer substrate 10 moves at least to the underside of the semiconductor chip 1 so that a state is attained in which the non-adhesion surface 11a of the interposer substrate 10 departs from the underside surface of the semiconductor chip 1 in a manner similar to that of the first and second exemplary embodiments [see
Further, the arrangement in which the end portions of the interposer substrate 10 of the fourth exemplary embodiment are folded onto circuit side of the semiconductor chip 1 can also be applied to each of the semiconductor packages in the three-dimensional semiconductor packages of the first and second exemplary embodiments (see 5, 112A, 112B in
In accordance with the fourth exemplary embodiment, even in a case when curving is performed after the semiconductor package 5 is secondarily mounted on the substrate 20, stress does not develop at the joints of the second conductor 3 mounted on the substrate 20 and in the semiconductor chip 1 owing to effects similar to those of the first and second exemplary embodiments. This makes it possible to provide a highly reliable semiconductor package structure free of faulty connections.
A semiconductor package according to a fifth exemplary embodiment of the present invention will be described with reference to the drawings.
In the semiconductor packages (5 in
With regard to the interposer substrates 10, the central portions of the substrates are placed on the side surface of the semiconductor chip 1 and the end portions are folded onto the circuit side and underside of the semiconductor chip 1. The two interposer substrates 10 are arranged on the circumference of the semiconductor chip 1 with left-right symmetry. However, the wiring patterns of the two interposer substrates 10 need not necessarily be the same. The end portions of the two interposer substrates 10 are spaced away from each other (see area R enclosed by the dashed line in
It should be noted that the clearance between the side surface of the semiconductor chip 1 and the interposer substrate 10 in
Further, in a case where the semiconductor package 5 is mounted on the substrate 20 and the substrate 20 is made to curve, the gap 4 or filling member between the side surface of the semiconductor chip 1 and the interposer substrate 10 moves at least to the underside of the semiconductor chip 1 so that a state is attained in which the non-adhesion surface 11a of the interposer substrate 10 departs from the underside surface of the semiconductor chip 1 in a manner similar to that of the first and second exemplary embodiments [see
Further, the arrangement using the plurality of interposer substrates 10 of the fifth exemplary embodiment can also be applied to each of the semiconductor packages in the three-dimensional semiconductor packages of the first and second exemplary embodiments (see 5, 112A, 112B in
In accordance with the fifth exemplary embodiment, even in a case when curving is performed after the semiconductor package 5 is secondarily mounted on the substrate 20, stress does not develop at the joints of the second conductor 3 mounted on the substrate 20 and in the semiconductor chip 1 owing to effects similar to those of the first and second exemplary embodiments. This makes it possible to provide a highly reliable semiconductor package structure free of faulty connections.
Further, in accordance with the fifth exemplary embodiment, the top and bottom surfaces of the semiconductor chip 1 are partially covered with the interposer substrates 10. This is effective in terms of heat dissipation. This is particularly effective in semiconductor chips for power amplifiers and CPUs, which exhibit high heat build-up.
It should be noted that with regard to the three-dimensional semiconductor packages of each of the exemplary embodiments, the lowermost semiconductor package mounted on a substrate is the semiconductor package of the present invention. However, the semiconductor package mounted thereon may be the semiconductor package of the present invention or the semiconductor packages according to the first and second examples of the conventional art.
Further, the invention has been described assuming that the substrate is a rigid substrate. However, as long as the substrate is one that is curved after the semiconductor package is mounted thereon, it may be a flexible substrate, in which case it is unnecessary to curve the substrate by heating it. For example, by mounting the semiconductor device of the present invention in a housing having a curved shape, the interposer substrate and gap provided in the semiconductor package follow up and are deformed (move) in accordance with the curved shape of the housing, and stress that acts upon the conductors such as solder bumps can be mitigated and absorbed. In a case when the filling member is disposed in the gap, a material capable of being deformed without application of heat can be selected as the filling member, thereby making it possible to eliminate a heating step.
As many apparently widely different exemplary embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific exemplary embodiments thereof except as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-157137 | Jun 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/060770 | 5/28/2007 | WO | 00 | 12/8/2008 |