Semiconductor structure with improved channel stack and method for fabrication thereof

Information

  • Patent Grant
  • 8525271
  • Patent Number
    8,525,271
  • Date Filed
    Thursday, March 3, 2011
    13 years ago
  • Date Issued
    Tuesday, September 3, 2013
    11 years ago
Abstract
A method for fabricating a semiconductor structure with a channel stack includes forming a screening layer under a gate of a PMOS transistor element and a NMOS transistor element, forming a threshold voltage control layer on the screening layer, and forming an epitaxial channel layer on the threshold control layer. At least a portion of the epitaxial channel layers for the PMOS transistor element and the NMOS transistor element are formed as a common blanket layer. The screening layer for the PMOS transistor element may include antimony as a dopant material that may be inserted into the structure prior to or after formation of the epitaxial channel layer.
Description
TECHNICAL FIELD

The present disclosure relates in general to semiconductor devices and manufacturing processes and more particularly to a semiconductor structure with an improved channel stack and method for fabrication thereof.


BACKGROUND

Field effect transistors are typically manufactured on a semiconductor substrate that is doped to contain mobile electric charge carriers. When incorporated into a semiconductor substrate lattice as a result of an activation process, dopant atoms can be either electron donors or acceptors. An activated donor atom donates weakly bound valence electrons to the material, creating excess negative charge carriers. These weakly bound electrons can move about in the semiconductor substrate lattice relatively freely, facilitating conduction in the presence of an electric field applied by a gate terminal. Similarly, an activated acceptor produces a mobile positive charge carrier known as a hole. Semiconductors doped with donor impurities are called n-type, while those doped with acceptor impurities are known as p-type. Common n-type donor atoms used in conjunction with silicon semiconductor substrates include arsenic, phosphorus, and antimony.


The dopant implant or in-situ dopant growth parameters used for semiconductor substrate doping of the doped layers beneath the gate are key to optimum performance of the FET device with respect to important parameters, such as threshold voltage or channel mobility. However, limitations in implant tools, required thermal processing conditions, and variations in materials or process can easily result in unwanted diffusion of dopant materials away from the initial implanted position, decreasing performance or even preventing reliable transistor operation. This is particularly true when co-dopant implant processes are used, since different dopant types have different solid diffusion constants and respond differently to process conditions.


Cost effective electronic manufacturing requires transistor structures and manufacturing processes that are reliable at nanometer scales, and that do not require expensive or unavailable tools or process control conditions. While it is difficult to balance the many variables that control transistor electrical performance, finding suitable transistor dopant structures and manufacturing technique that result in acceptable electrical characteristics such as charge carrier mobility and threshold voltage levels are a key aspect of such commercially useful transistors.


SUMMARY

From the foregoing, it may be appreciated by those of skill in the art that a need has arisen for a technique to fabricate improved transistor devices that provides threshold voltage control and improved operational performance by creating a number of precisely doped layers beneath an undoped (intrinsic) channel layer that can be epitaxially grown on the doped layers. These doped layers and/or intrinsic channel layer can be formed as blanket layers that extend across multiple transistors, and can be later modified by shallow trench isolation or the like to separate transistors into blocks or individual elements. In accordance with the following disclosure, there is provided a doped semiconductor structure with an improved channel stack and method for fabrication thereof that substantially eliminates or greatly reduces disadvantages and problems associated with conventional transistor device design.


According to an embodiment of the disclosure, a method for fabricating a semiconductor structure with a channel stack is provided that includes forming a screening layer under a gate of a transistor element, forming a threshold voltage control layer on the screening layer of the transistor element, and forming an epitaxial channel layer on the threshold control layer of the transistor element. The screening layer for the PMOS transistor element includes antimony as a dopant material that may be inserted into the structure prior to or after formation of the epitaxial channel layer. As disclosed in greater detail in the specification, the concentration and type of single dopant or co-dopants atoms selected, the dopant implant or in-situ growth conditions, and the particular doping profiles, anneal profiles and transistor structure are all selected to maintain a device that is more reliable than conventional transistors.


Embodiments of the present disclosure may enjoy some, all, or none of these advantages. Other technical advantages may be readily apparent to one skilled in the art from the following figures, description, and claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure, reference is made to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals represent like parts, in which:



FIGS. 1A to 1K illustrate a fabrication process for a semiconductor structure with a channel stack using a blanket channel and shallow trench isolation last approach;



FIGS. 2A to 2I illustrate a fabrication process for a semiconductor structure with a channel stack using a blanket channel and shallow trench isolation first approach;



FIGS. 3A to 3I illustrate a fabrication process for a semiconductor structure with a channel stack using a multiple blanket epitaxial layer and shallow trench isolation last approach;



FIG. 4 illustrates a vertical doping profile of arsenic and antimony used in the screening layer of a transistor element;



FIG. 5 illustrates a comparison graph of Id-off and Id-on for arsenic and antimony;



FIG. 6 illustrates a comparison graph of Id-off and Id-on for antimony in the screening layer of a transistor element at different dopant concentrations and various thicknesses of the epitaxial channel layer;



FIG. 7 shows a comparison graph of Id-off and Id-on for antimony used in the screening layer of a transistor element at different dopant concentrations implanted after epitaxial growth of the channel layer;



FIG. 8 shows a simulated doping profile where antimony and arsenic are implanted to establish the screening layer and the threshold voltage control layer;



FIG. 9 shows a simulated doping profile where antimony and arsenic are implanted prior to epitaxial channel layer formation at various anneal temperatures;



FIG. 10 shows a similar doping profile of FIG. 9 where the anneal temperature is a constant 900° C. but with various anneal times;



FIG. 11 shows a simulated doping profile with the same conditions of FIG. 9 but with a higher energy arsenic implant of 10 keV at an anneal temperature of 800° C.;



FIG. 12 is a similar doping profile of FIG. 11 but with an arsenic implant energy higher than the antimony implant energy;



FIG. 13 shows a simulated doping profile where antimony is implanted before deposition of the epitaxial channel layer followed by a second antimony implant after deposition of the epitaxial channel layer;



FIG. 14 shows a similar doping profile of FIG. 13 but with the second antimony implant being at a lower energy.





DETAILED DESCRIPTION

Several approaches may be utilized to build a transistor element with a channel stack having a screening layer to screen the charges on the gate, a threshold voltage control layer to adjust the threshold voltage for the transistor element, and an intrinsic channel for high mobility and reduced random dopant fluctuation performance. Each approach has various advantages and disadvantages. In general, two tradeoffs are considered when building transistor elements on a semiconductor die, the number of steps in the process (relating to manufacturing costs) and channel formation (relating to transistor performance). The fewer masking steps and total steps required to build a design translates into a lower cost to build. Forming the channel later in the thermal cycle of the manufacturing process facilitates controlling the channel doping profile and avoiding unwanted contaminants from diffusing into the channel from other parts of the transistor design.



FIGS. 1A to 1K show a blanket channel and shallow trench isolation last approach for forming a structure 100 having transistor elements with the three layer channel stack to optimize overall transistor performance. The process begins in FIG. 1A with a P+ substrate 101 and a P− silicon epitaxy layer 102 formed thereon and used for structure 100. Initial patterning is performed by forming a photoresist mask 104 and etching away desired portions of the photoresist mask 104 to expose an area 106 for a first transistor element, in this instance a NMOS transistor. In FIG. 1B, ion implantation is performed to create a p-well region 108. Another ion implantation is performed to create a screening layer 110. Another ion implantation is performed to create a threshold voltage control layer 112. Alternatively, threshold voltage control layer 112 may be formed through diffusion from screening layer 110.


In FIG. 1C, photoresist layer 104 is removed and a new photoresist layer 114 is patterned to expose an area 116 for a second transistor element, in this instance a PMOS transistor. In FIG. 1D, ion implantation is performed to create a n-well region 118. Another ion implantation is performed to create a screening layer 120. Another ion implantation is performed to create a threshold voltage control layer 122. Alternatively, threshold voltage control layer 122 may be formed through diffusion from screening layer 120.


In FIG. 1E, photoresist layer 114 is removed and an epitaxial layer 124 of intrinsic silicon is grown across PMOS transistor 116 and NMOS transistor 106. Epitaxial layer 124 becomes the channel for each of PMOS transistor 116 and NMOS transistor 106. In FIG. 1F, the initial steps for isolating PMOS transistor 106 from NMOS transistor 116 are performed by depositing a pad oxide layer 126 on epitaxial layer 124, depositing a nitride layer 128 on pad oxide layer 126, and patterning a photoresist mask 130 to leave an exposed area 132 for a shallow trench isolation region.


In FIG. 1G, portions of nitride isolation layer 128, pad oxide layer 126, epitaxial layer 124, threshold voltage control layers 112 and 122, screening layers 110 and 120, n-well region 118, p-well region 108, and silicon epitaxy layer 102 and substrate 101 are etched away in area 132 to leave a trench. In FIG. 1H, photoresist mask 130 is removed and a liner 134 is grown over structure 100 and into the trench.


In FIG. 1I, the trench is filled with oxide to establish shallow trench isolation region 136. A re-flow anneal is performed to minimize voids in structure 100 and a curing anneal is performed to densify and harden structure 100 and create desired stress therein. A planarization process is then performed down to nitride isolation layer 128. In FIG. 1J, nitride isolation layer 128 and pad oxide layer 126 are etched away. In FIG. 1K, PMOS transistor 116 and NMOS transistor 106 are completed using conventional gate stack 138 and 140 formation with spacers 142, source/drain formations (144, 146, 148, and 150), and silicide formation 152.



FIGS. 2A to 2I show a blanket channel and shallow trench isolation first approach for forming a structure 200 having transistor elements with the three layer channel stack to optimize overall transistor performance. The process begins in FIG. 2A with a P+ substrate 201 and a P− silicon epitaxy layer 202 formed thereon and used for structure 200. The initial steps for isolating transistor elements is performed by depositing a pad oxide layer 226 on structure 200, depositing a nitride layer 228 on pad oxide layer 226, and patterning a photoresist mask 230 to leave an exposed area 232 for a shallow trench isolation region. Portions of nitride isolation layer 228, pad oxide layer 226, silicon epitaxy layer 202, and substrate 201 are etched away in area 232 to leave a trench. In FIG. 2B, photoresist mask 230 is removed and a liner 234 is grown over structure 200 and into the trench.


In FIG. 2C, the trench is filled with oxide to establish shallow trench isolation region 236. A re-flow anneal is performed to minimize voids in structure 200 and a curing anneal is performed to densify and harden structure 200 and create desired stress therein. A planarization process is then performed down to nitride isolation layer 228. In FIG. 2D, nitride isolation layer 228 and pad oxide layer 226 are etched away. Initial patterning is performed by forming a photoresist mask 204 and etching away desired portions of the photoresist mask 204 to expose an area 206 for a first transistor element, in this instance a NMOS transistor.


In FIG. 2E, ion implantation is performed to create a p-well region 208. Another ion implantation is performed to create a screening layer 210. Another ion implantation is performed to create a threshold voltage control layer 212. Alternatively, threshold voltage control layer 212 may be formed through diffusion from screening layer 210.


In FIG. 2F, photoresist layer 204 is removed and a new photoresist layer 214 is patterned to expose an area 216 for a second transistor element, in this instance a PMOS transistor. In FIG. 2G, ion implantation is performed to create a n-well region 218. Another ion implantation is performed to create a screening layer 220. Another ion implantation is performed to create a threshold voltage control layer 222. Alternatively, threshold voltage control layer 222 may be formed through diffusion from screening layer 220.


In FIG. 2H, photoresist layer 216 is removed and an epitaxial layer 224 of intrinsic silicon is grown across PMOS transistor 216 and NMOS transistor 206. The portion of epitaxial layer 224 formed over shallow trench isolation region 236 is then removed. Alternatively, individual epitaxial layers 224 may be separately grown for PMOS transistor 216 and NMOS transistor 206. In this manner, different thicknesses of epitaxial layers 224 may be formed between different transistor elements. In addition, a combination of a blanket epitaxial channel growth across all transistor elements (with removal over shallow trench isolation regions 236) with one thickness followed by selective additional growth to epitaxial layer 224 only for those transistor elements desired to have a thicker epitaxial layer 224 as compared to other transistor elements in structure 200 may optionally be performed to form transistor elements with different thicknesses in their respective epitaxial layer 224. As an example, a particular transistor element may have its channel layer start with an epitaxial growth of 25 nm in order to end up with a channel layer thickness of 10 nm after the fabrication process. Another transistor element may have its channel layer start with an epitaxial growth of greater thickness in order to achieve a greater final thickness after the completion of the fabrication process.


In FIG. 2I, PMOS transistor 216 and NMOS transistor 206 are completed using conventional gate stack 238 and 240 formation with spacers 242, source/drain formations (244, 246, 248, and 250), and silicide formation 252.



FIGS. 3A to 3I show a multiple blanket epitaxial layer and shallow trench isolation last approach for forming a structure 300 having transistor elements with the three layer channel stack to optimize overall transistor performance. The process begins in FIG. 3A with a P+ substrate 301 and a P− silicon epitaxy layer 302 formed thereon and used for structure 300. Initial patterning is performed by forming a photoresist mask 304 and etching away desired portions of the photoresist mask 304 to expose an area 306 for a first transistor element, in this instance a NMOS transistor. Optionally, a blanket screening layer (not shown) may be epitaxially grown or deposited on structure 300 prior to patterning of photoresist mask 304. In FIG. 3B, ion implantation is performed to create a p-well region 308. Another ion implantation is performed to create a screening layer 310, either in p-well region 308 or in the portion of the optional blanket epitaxial layer associated with NMOS transistor element 306.


In FIG. 3C, photoresist layer 304 is removed and a new photoresist layer 314 is patterned to expose an area 316 for a second transistor element, in this instance a PMOS transistor. In FIG. 3D, ion implantation is performed to create a n-well region 318. Another ion implantation is performed to create a screening layer 320, either in n-well region 318 or in the portion of the optional blanket epitaxial layer associated with PMOS transistor element 316.


In FIG. 3E, photoresist layer 316 is removed and an epitaxial layer 323 of intrinsic silicon is grown across PMOS transistor 316 and NMOS transistor 306. Epitaxial layer 323 will become separate threshold voltage control layers 322 and 312 respectively for each of PMOS transistor 316 and NMOS transistor 306. A new photoresist layer 305 is patterned to expose NMOS transistor 306. In FIG. 3F, the exposed portion of epitaxial layer 323 is subjected to ion implantation to create threshold voltage control layer 312 for NMOS transistor 306.


In FIG. 3G, photoresist layer 305 is removed and a new photoresist layer 325 is patterned to expose PMOS transistor element 316. In FIG. 3H, the exposed portion of epitaxial layer 323 is subjected to ion implantation to create threshold voltage control layer 322 for PMOS transistor 316.


In FIG. 3I, photoresist layer 325 is removed and an epitaxial layer 324 of intrinsic silicon is grown across PMOS transistor element 116 and NMOS transistor element 106. Epitaxial layer 324 becomes the channel for each of PMOS transistor 316 and NMOS transistor 306. Isolation and further processing may be performed as shown and described above with respect to FIGS. 1F to 1K.


Though not shown, a shallow trench isolation first process may be performed on P+ substrate 301 and P− silicon epitaxy layer 302 similar to that shown and described above with respect to FIGS. 2A to 2D. Blanket epitaxial layers may then be formed as described above to subsequently establish the screening layers, threshold voltage control layers, and channel layers for PMOS transistor element 116 and NMOS transistor element 106. An extra step is required to remove any epitaxial layer formed on the isolation regions.


Formation of the screening layer and the threshold voltage control layer may be performed in different ways in each of the processes provided above. The screening layer may be formed through ion implantation into the p-well region, through in-situ deposition or growth of doped material, or through intrinsic silicon epitaxial growth followed by ion implantation. The threshold voltage control layer may be formed through in-situ deposition or growth of doped material or through intrinsic silicon epitaxial growth followed by ion implantation. The channel layer is formed through intrinsic silicon epitaxial growth.


Materials used for the screening layers for the PMOS transistor elements in each fabrication process may include arsenic, phosphorous, and/or antimony. When arsenic is used for the PMOS transistor elements, ion implantation of the arsenic is performed prior to epitaxial growth of the channel layer (and also prior to epitaxial growth of the threshold voltage control layer where this process step is performed). To prevent diffusion of screening layer material, a material that has a lower diffusion characteristic may be used. For a PMOS transistor element, antimony diffuses less than arsenic in the thermal cycles of the fabrication process. The use of antimony solves a problem of diffusion of the material in the screening layer into the epitaxial channel layer.



FIG. 4 shows a vertical doping profile 700 of arsenic and antimony. Because antimony has lower diffusion than arsenic, the screen doping profile is sharper with antimony as compared to arsenic at the same doping energy and dopant concentration. This sharper doping profile of antimony causes higher leakage currents (Id-off) than would be achieved with arsenic as the screen implant for the same epitaxial channel layer thickness. FIG. 5 shows a comparison graph 800 of Id-off and Id-on for arsenic and antimony. Arsenic provides a lower leakage current than antimony. Leakage current for antimony gets worse at higher implant energies. However, an improvement in leakage current is achieved by adding arsenic into the antimony implant.


Another manner in which the leakage current for antimony can be reduced is to decrease the thickness or otherwise have a smaller thickness for the epitaxial channel layer of the PMOS transistor element as compared to the NMOS transistor element. FIG. 6 shows a comparison graph 900 of Id-off and Id-on for antimony at different dopant concentrations and various thicknesses of the epitaxial channel layer. In general, as the thickness of the epitaxial channel layer varies from thinnest to thickest, the leakage current using the antimony implant increases from a relative lower level to a relative higher level. Thus, a reduction in epitaxial channel layer thickness causes a reduction in leakage current for a transistor element using an antimony screen implant.


Reduction in epitaxial channel layer thickness, though achievable, may be costly to implement into the fabrication process. Though techniques have been discussed above that provide an ability to obtain differing epitaxial channel layer thicknesses, such techniques still result in additional steps being performed in the fabrication process. A technique to avoid reducing the thickness of the epitaxial channel layer for an antimony screen implant is to implant the antimony screen after the epitaxial channel layer for the PMOS transistor element is grown. The reduced straggle and diffusion of antimony compared to arsenic makes it possible to achieve an acceptable doping profile using this implant after epi technique. This technique can be integrated into a full CMOS process and the processes discussed above by implanting or otherwise forming the screening layer for the NMOS transistor element before epitaxial growth of the channel layer, forming the channel layer through intrinsic silicon epitaxial growth, and then implanting the screening layer for the PMOS transistor element through the epitaxial channel layer. FIG. 7 shows a comparison graph 1000 of Id-off and Id-on for antimony at different dopant concentrations implanted after epitaxial growth of the channel layer. As can be seen, a reduction in leakage current is obtained through this process as compared to arsenic implanted before formation of the epitaxial channel layer. With sufficiently high implant energy, the antimony peak can be located from 10 to 30 nm below the surface of the epitaxial channel layer when antimony is implanted after epitaxial channel layer formation. Better results were obtained when using a dopant concentration of 2e13 atoms/cm2 or less than with higher dopant concentrations for antimony implanted through the epitaxial channel layer.


Another alternative process is to use a dual implant with antimony and a faster diffusing n-type dopant such as arsenic, both done before the deposition or other formation of the epitaxial channel layer. Diffusion of the arsenic into the threshold voltage control layer will increase the threshold voltage and decrease the leakage current as compared to antimony only. The arsenic implant energy would typically be the same as or less than the antimony implant energy. The dopant concentration of the arsenic may be chosen to give a doping profile peak concentration the same as or less than that of the antimony dopant concentration. Though disclosed as an antimony screening layer and an arsenic threshold voltage control layer, it may be desirable to have an arsenic screening layer and an antimony threshold voltage control layer.


It may be useful to perform an anneal step, following the antimony implant to improve the activation of the antimony dopant. This anneal step would typically be in the range of 950° C. to 1050° C. with a duration from several milliseconds to several seconds. It may also be useful to perform an anneal step following the arsenic implant before formation of the epitaxial channel layer. This anneal step would typically be in the range of 800° C. to 1000° C. with a duration from several milliseconds to several seconds.



FIG. 8 shows a simulated doping profile where antimony is implanted at an energy of 20 keV with a dopant concentration of 1.5e13 atoms/cm2, arsenic is implanted at an energy of 1 keV with a dopant concentration of 5e12 atoms/cm2, and an anneal is performed at a temperature of 800° C. for a duration of one second. The dashed line shows the combined arsenic—antimony implant. FIG. 9 shows a simulated doping profile where antimony is implanted at an energy of 10 keV with a doping concentration of 1.5e13 atoms/cm2 to establish the screening layer, arsenic is implanted at an energy of 4 keV with a doping concentration of 5e12 atoms/cm2 to establish the threshold voltage control layer, and a constant anneal time of one second for anneal temperatures from 800° C. to 1000° C. FIG. 10 shows a similar doping profile where the anneal temperature is a constant 900° C. but with various anneal times. FIG. 11 shows a simulated doping profile with the same conditions of FIG. 9 but with a higher energy arsenic implant of 10 keV at an anneal temperature of 800° C. FIG. 12 is a similar doping profile but with an arsenic implant energy of 20 keV, higher than the antimony implant energy of 10 keV. The dashed lines show the profile for the combined implant.


The antimony profile is essentially unchanged by the anneals. The arsenic anneal has the effect of reducing arsenic diffusion into the subsequently formed epitaxial channel layer. Higher anneal temperatures and longer anneal durations are more effective in suppressing arsenic diffusion into the epitaxial channel layer while lower anneal temperatures and shorter anneal durations allow more diffusion. Thus, the anneal temperature and time can be used to set the threshold voltage by controlling the diffusion of arsenic. This arsenic anneal step can be done in conjunction with the antimony anneal step or as a single anneal without an antimony anneal. The epitaxial channel layer may then be deposited after the anneal.


Another alternative process is to implant or otherwise form the screening layer with antimony prior to formation of the epitaxial channel layer and then implant antimony following formation of the epitaxial channel layer. This process can be performed to adjust the threshold voltage of the PMOS transistor element. FIGURE shows a simulated doping profile where antimony is implanted with an energy of 20 keV at a doping concentration of 1.5e13 atoms/cm2 before deposition of the epitaxial channel layer followed by an antimony implant with an energy of 30 keV at a doping concentration of 1.0e13 atoms/cm2 after deposition of a 20 nm epitaxial channel layer. FIG. 14 shows a similar doping profile but with the second antimony implant being at an energy of 20 keV. It may be possible to implant arsenic after the formation of the epitaxial channel layer instead of antimony, though the sharp doping profile of antimony is better for this technique.


The epitaxial thickness of 20 nm used in FIGS. 8 through 14 is for illustrative purposes. The thickness of the epitaxial layer may be more or less than 20 nm, as required for device performance in a particular case.


Although the present disclosure has been described in detail with reference to a particular embodiment, it should be understood that various other changes, substitutions, and alterations may be made hereto without departing from the spirit and scope of the appended claims. For example, though not shown, a body tap to the well regions of the transistor elements may be formed in order to provide further control of threshold voltage. Although the present disclosure includes a description with reference to a specific ordering of processes, other process sequencing may be followed and other incidental process steps may be performed to achieve the end result discussed herein. Moreover, process steps shown in one set of figures may also be incorporated into another set of figures as desired.


Numerous other changes, substitutions, variations, alterations, and modifications may be ascertained by those skilled in the art and it is intended that the present disclosure encompass all such changes, substitutions, variations, alterations, and modifications as falling within the spirit and scope of the appended claims. Moreover, the present disclosure is not intended to be limited in any way by any statement in the specification that is not otherwise reflected in the appended claims.

Claims
  • 1. A method for fabricating a transistor structure with a channel stack, the transistor structure having a semiconductor substrate with a plurality of pre-formed doped wells formed therein, comprising: in a first region having a first doped well providing a foundation for a PMOS transistor element: ion implanting in the semiconductor substrate a first doped screening layer in contact with the first doped well, the first doped screening layer including antimony;ion implanting in the semiconductor substrate a first doped threshold voltage control layer in contact with the first doped screening layer;in a second region having a second doped well providing a foundation for an NMOS transistor element: ion implanting in the semiconductor substrate a second doped screening layer in contact with the second well;ion implanting in the semiconductor substrate a second doped threshold voltage control layer in contact with the second doped screening layer;forming a third layer on the semiconductor substrate, separate from and on top of the first and second doped threshold voltage control layers, by way of multiple blanket undoped epitaxial growth to establish an intrinsic channel for each of the PMOS and NMOS transistor elements;wherein the third layer of the PMOS transistor element is formed with a different channel thickness than the third layer of the NMOS transistor element.
  • 2. The method of claim 1, wherein ion implanting the first doped threshold voltage control layer includes implanting arsenic.
  • 3. The method of claim 1, wherein the first doped screening layer is doped with antimony and arsenic.
  • 4. The method of claim 1, further comprising: forming an isolation region separating the PMOS transistor element and the NMOS transistor element after forming the third layer.
  • 5. The method of claim 1, further comprising: forming a fourth layer by way of a blanket undoped epitaxial growth on the third layer for only one of the PMOS and NMOS transistor elements so that one of the PMOS and NMOS transistor elements has an overall channel thickness greater than the other one of the PMOS and NMOS transistor elements.
  • 6. The method of claim 1, further comprising: forming one or more additional PMOS transistor elements in a same manner as the PMOS transistor element;forming a fourth layer by way of a blanket undoped epitaxial growth on the third layer for only the one or more additional PMOS transistor elements so that the one or more additional PMOS transistor elements has an overall channel thickness greater than that of the PMOS transistor element.
  • 7. The method of claim 1, further comprising: forming one or more additional NMOS transistor elements in a same manner as the NMOS transistor element;forming a fourth layer by way of a blanket undoped epitaxial growth on the third layer for only the one or more additional NMOS transistor elements so that the one or more additional NMOS transistor elements has an overall channel thickness greater than that of the NMOS transistor element.
  • 8. The method of claim 1, wherein the first doped screening layer is doped with one or more of antimony, phosphorous, and arsenic.
US Referenced Citations (509)
Number Name Date Kind
3958266 Athanas May 1976 A
4000504 Berger Dec 1976 A
4021835 Etoh et al. May 1977 A
4242691 Kotani et al. Dec 1980 A
4276095 Beilstein, Jr. et al. Jun 1981 A
4315781 Henderson Feb 1982 A
4518926 Swanson May 1985 A
4559091 Allen et al. Dec 1985 A
4578128 Mundt et al. Mar 1986 A
4617066 Vasudev Oct 1986 A
4662061 Malhi May 1987 A
4761384 Neppl et al. Aug 1988 A
4780748 Cunningham et al. Oct 1988 A
4819043 Yazawa et al. Apr 1989 A
4885477 Bird et al. Dec 1989 A
4908681 Nishida et al. Mar 1990 A
4945254 Robbins Jul 1990 A
4956311 Liou et al. Sep 1990 A
5034337 Mosher et al. Jul 1991 A
5144378 Hikosaka Sep 1992 A
5156989 Williams et al. Oct 1992 A
5156990 Mitchell Oct 1992 A
5166765 Lee et al. Nov 1992 A
5208473 Komori et al. May 1993 A
5294821 Iwamatsu Mar 1994 A
5298763 Shen et al. Mar 1994 A
5369288 Usuki Nov 1994 A
5373186 Schubert et al. Dec 1994 A
5384476 Nishizawa et al. Jan 1995 A
5426279 Dasgupta Jun 1995 A
5426328 Yilmaz et al. Jun 1995 A
5444008 Han et al. Aug 1995 A
5552332 Tseng et al. Sep 1996 A
5559368 Hu et al. Sep 1996 A
5608253 Liu et al. Mar 1997 A
5622880 Burr et al. Apr 1997 A
5624863 Helm et al. Apr 1997 A
5625568 Edwards et al. Apr 1997 A
5641980 Yamaguchi et al. Jun 1997 A
5663583 Matloubian et al. Sep 1997 A
5712501 Davies et al. Jan 1998 A
5719422 Burr et al. Feb 1998 A
5726488 Watanabe et al. Mar 1998 A
5726562 Mizuno Mar 1998 A
5731626 Eaglesham et al. Mar 1998 A
5736419 Naem Apr 1998 A
5753555 Hada May 1998 A
5754826 Gamal et al. May 1998 A
5756365 Kakumu May 1998 A
5763921 Okumura et al. Jun 1998 A
5780899 Hu et al. Jul 1998 A
5847419 Imai et al. Dec 1998 A
5856003 Chiu Jan 1999 A
5861334 Rho Jan 1999 A
5877049 Liu et al. Mar 1999 A
5885876 Dennen Mar 1999 A
5889315 Farrenkopf et al. Mar 1999 A
5895954 Yasumura et al. Apr 1999 A
5899714 Farrenkopf et al. May 1999 A
5918129 Fulford, Jr. et al. Jun 1999 A
5923067 Voldman Jul 1999 A
5923987 Burr Jul 1999 A
5936868 Hall Aug 1999 A
5946214 Heavlin et al. Aug 1999 A
5985705 Seliskar Nov 1999 A
5989963 Luning et al. Nov 1999 A
6001695 Wu Dec 1999 A
6020227 Bulucea Feb 2000 A
6043139 Eaglesham et al. Mar 2000 A
6060345 Hause et al. May 2000 A
6060364 Maszara et al. May 2000 A
6066533 Yu May 2000 A
6072217 Burr Jun 2000 A
6087210 Sohn Jul 2000 A
6087691 Hamamoto Jul 2000 A
6088518 Hsu Jul 2000 A
6091286 Blauschild Jul 2000 A
6096611 Wu Aug 2000 A
6103562 Son et al. Aug 2000 A
6121153 Kikkawa Sep 2000 A
6147383 Kuroda Nov 2000 A
6153920 Gossmann et al. Nov 2000 A
6157073 Lehongres Dec 2000 A
6175582 Naito et al. Jan 2001 B1
6184112 Maszara et al. Feb 2001 B1
6190979 Radens et al. Feb 2001 B1
6194259 Nayak et al. Feb 2001 B1
6198157 Ishida et al. Mar 2001 B1
6218892 Soumyanath et al. Apr 2001 B1
6218895 De et al. Apr 2001 B1
6221724 Yu et al. Apr 2001 B1
6229188 Aoki et al. May 2001 B1
6232164 Tsai et al. May 2001 B1
6235597 Miles May 2001 B1
6245618 An et al. Jun 2001 B1
6268640 Park et al. Jul 2001 B1
6271070 Kotani et al. Aug 2001 B2
6271551 Schmitz et al. Aug 2001 B1
6288429 Iwata et al. Sep 2001 B1
6297132 Zhang et al. Oct 2001 B1
6300177 Sundaresan et al. Oct 2001 B1
6313489 Letavic et al. Nov 2001 B1
6319799 Ouyang et al. Nov 2001 B1
6320222 Forbes et al. Nov 2001 B1
6323525 Noguchi et al. Nov 2001 B1
6326666 Bernstein et al. Dec 2001 B1
6335233 Cho et al. Jan 2002 B1
6358806 Puchner Mar 2002 B1
6380019 Yu et al. Apr 2002 B1
6391752 Colinge et al. May 2002 B1
6426260 Hshieh Jul 2002 B1
6426279 Huster et al. Jul 2002 B1
6432754 Assaderaghi et al. Aug 2002 B1
6444550 Hao et al. Sep 2002 B1
6444551 Ku et al. Sep 2002 B1
6449749 Stine Sep 2002 B1
6461920 Shirahata Oct 2002 B1
6461928 Rodder Oct 2002 B2
6472278 Marshall et al. Oct 2002 B1
6482714 Hieda et al. Nov 2002 B1
6489224 Burr Dec 2002 B1
6492232 Tang et al. Dec 2002 B1
6500739 Wang et al. Dec 2002 B1
6503801 Rouse et al. Jan 2003 B1
6503805 Wang et al. Jan 2003 B2
6506640 Ishida et al. Jan 2003 B1
6518623 Oda et al. Feb 2003 B1
6521470 Lin et al. Feb 2003 B1
6534373 Yu Mar 2003 B1
6541328 Whang et al. Apr 2003 B2
6541829 Nishinohara et al. Apr 2003 B2
6548842 Bulucea et al. Apr 2003 B1
6551885 Yu Apr 2003 B1
6552377 Yu Apr 2003 B1
6573129 Hoke et al. Jun 2003 B2
6576535 Drobny et al. Jun 2003 B2
6600200 Lustig et al. Jul 2003 B1
6620671 Wang et al. Sep 2003 B1
6624488 Kim Sep 2003 B1
6627473 Oikawa et al. Sep 2003 B1
6630710 Augusto Oct 2003 B1
6660605 Liu Dec 2003 B1
6662350 Fried et al. Dec 2003 B2
6667200 Sohn et al. Dec 2003 B2
6670260 Yu et al. Dec 2003 B1
6693333 Yu Feb 2004 B1
6730568 Sohn May 2004 B2
6737724 Hieda et al. May 2004 B2
6743291 Ang et al. Jun 2004 B2
6743684 Liu Jun 2004 B2
6751519 Satya et al. Jun 2004 B1
6753230 Sohn et al. Jun 2004 B2
6760900 Rategh et al. Jul 2004 B2
6770944 Nishinohara et al. Aug 2004 B2
6787424 Yu Sep 2004 B1
6797553 Adkisson et al. Sep 2004 B2
6797602 Kluth et al. Sep 2004 B1
6797994 Hoke et al. Sep 2004 B1
6808004 Kamm et al. Oct 2004 B2
6808994 Wang Oct 2004 B1
6813750 Usami et al. Nov 2004 B2
6821825 Todd et al. Nov 2004 B2
6821852 Rhodes Nov 2004 B2
6822297 Nandakumar et al. Nov 2004 B2
6831292 Currie et al. Dec 2004 B2
6835639 Rotondaro et al. Dec 2004 B2
6852602 Kanzawa et al. Feb 2005 B2
6852603 Chakravarthi et al. Feb 2005 B2
6881641 Wieczorek et al. Apr 2005 B2
6881987 Sohn Apr 2005 B2
6891439 Jaehne et al. May 2005 B2
6893947 Martinez et al. May 2005 B2
6900519 Cantell et al. May 2005 B2
6901564 Stine et al. May 2005 B2
6916698 Mocuta et al. Jul 2005 B2
6917237 Tschanz et al. Jul 2005 B1
6927463 Iwata et al. Aug 2005 B2
6928128 Sidiropoulos Aug 2005 B1
6930007 Bu et al. Aug 2005 B2
6930360 Yamauchi et al. Aug 2005 B2
6957163 Ando Oct 2005 B2
6963090 Passlack et al. Nov 2005 B2
6995397 Yamashita et al. Feb 2006 B2
7002214 Boyd et al. Feb 2006 B1
7008836 Algotsson et al. Mar 2006 B2
7013359 Li Mar 2006 B1
7015546 Herr et al. Mar 2006 B2
7015741 Tschanz et al. Mar 2006 B2
7022559 Barnak et al. Apr 2006 B2
7036098 Eleyan et al. Apr 2006 B2
7038258 Liu et al. May 2006 B2
7039881 Regan May 2006 B2
7045456 Murto et al. May 2006 B2
7057216 Ouyang et al. Jun 2006 B2
7061058 Chakravarthi et al. Jun 2006 B2
7064039 Liu Jun 2006 B2
7064399 Babcock et al. Jun 2006 B2
7071103 Chan et al. Jul 2006 B2
7078325 Curello et al. Jul 2006 B2
7078776 Nishinohara et al. Jul 2006 B2
7089513 Bard et al. Aug 2006 B2
7089515 Hanafi et al. Aug 2006 B2
7091093 Noda et al. Aug 2006 B1
7105399 Dakshina-Murthy et al. Sep 2006 B1
7109099 Tan et al. Sep 2006 B2
7119381 Passlack Oct 2006 B2
7122411 Mouli Oct 2006 B2
7127687 Signore Oct 2006 B1
7132323 Haensch et al. Nov 2006 B2
7169675 Tan et al. Jan 2007 B2
7170120 Datta et al. Jan 2007 B2
7176137 Perng et al. Feb 2007 B2
7186598 Yamauchi et al. Mar 2007 B2
7189627 Wu et al. Mar 2007 B2
7199430 Babcock et al. Apr 2007 B2
7202517 Dixit et al. Apr 2007 B2
7208354 Bauer Apr 2007 B2
7211871 Cho May 2007 B2
7221021 Wu et al. May 2007 B2
7223646 Miyashita et al. May 2007 B2
7226833 White et al. Jun 2007 B2
7226843 Weber et al. Jun 2007 B2
7230680 Fujisawa et al. Jun 2007 B2
7235822 Li Jun 2007 B2
7256142 Fitzgerald Aug 2007 B2
7256639 Koniaris et al. Aug 2007 B1
7259428 Inaba Aug 2007 B2
7260562 Czajkowski et al. Aug 2007 B2
7294877 Rueckes et al. Nov 2007 B2
7297994 Wieczorek et al. Nov 2007 B2
7301208 Handa et al. Nov 2007 B2
7304350 Misaki Dec 2007 B2
7307471 Gammie et al. Dec 2007 B2
7312500 Miyashita et al. Dec 2007 B2
7323754 Ema et al. Jan 2008 B2
7332439 Lindert et al. Feb 2008 B2
7348629 Chu et al. Mar 2008 B2
7354833 Liaw Apr 2008 B2
7380225 Joshi et al. May 2008 B2
7398497 Sato et al. Jul 2008 B2
7402207 Besser et al. Jul 2008 B1
7402872 Murthy et al. Jul 2008 B2
7416605 Zollner et al. Aug 2008 B2
7427788 Li et al. Sep 2008 B2
7442971 Wirbeleit et al. Oct 2008 B2
7449733 Inaba et al. Nov 2008 B2
7462908 Bol et al. Dec 2008 B2
7469164 Du-Nour Dec 2008 B2
7470593 Rouh et al. Dec 2008 B2
7485536 Jin et al. Feb 2009 B2
7487474 Ciplickas et al. Feb 2009 B2
7491988 Tolchinsky et al. Feb 2009 B2
7494861 Chu et al. Feb 2009 B2
7496862 Chang et al. Feb 2009 B2
7496867 Turner et al. Feb 2009 B2
7498637 Yamaoka et al. Mar 2009 B2
7501324 Babcock et al. Mar 2009 B2
7503020 Allen et al. Mar 2009 B2
7507999 Kusumoto et al. Mar 2009 B2
7514766 Yoshida Apr 2009 B2
7521323 Surdeanu et al. Apr 2009 B2
7531393 Doyle et al. May 2009 B2
7531836 Liu et al. May 2009 B2
7538364 Twynam May 2009 B2
7538412 Schulze et al. May 2009 B2
7562233 Sheng et al. Jul 2009 B1
7564105 Chi et al. Jul 2009 B2
7566600 Mouli Jul 2009 B2
7569456 Ko et al. Aug 2009 B2
7586322 Xu et al. Sep 2009 B1
7592241 Takao Sep 2009 B2
7595243 Bulucea et al. Sep 2009 B1
7598142 Ranade et al. Oct 2009 B2
7604399 Twerdochlib et al. Oct 2009 B2
7605041 Ema et al. Oct 2009 B2
7605060 Meunier-Beillard et al. Oct 2009 B2
7605429 Bernstein et al. Oct 2009 B2
7608496 Chu Oct 2009 B2
7615802 Elpelt et al. Nov 2009 B2
7622341 Chudzik et al. Nov 2009 B2
7638380 Pearce Dec 2009 B2
7642140 Bae et al. Jan 2010 B2
7644377 Saxe et al. Jan 2010 B1
7645665 Kubo et al. Jan 2010 B2
7651920 Siprak Jan 2010 B2
7655523 Babcock et al. Feb 2010 B2
7673273 Madurawe et al. Mar 2010 B2
7675126 Cho Mar 2010 B2
7675317 Perisetty Mar 2010 B2
7678638 Chu et al. Mar 2010 B2
7681628 Joshi et al. Mar 2010 B2
7682887 Dokumaci et al. Mar 2010 B2
7683442 Burr et al. Mar 2010 B1
7696000 Liu et al. Apr 2010 B2
7704822 Jeong Apr 2010 B2
7704844 Zhu et al. Apr 2010 B2
7709828 Braithwaite et al. May 2010 B2
7723750 Zhu et al. May 2010 B2
7737472 Kondo et al. Jun 2010 B2
7741138 Cho Jun 2010 B2
7741200 Cho et al. Jun 2010 B2
7745270 Shah et al. Jun 2010 B2
7750374 Capasso et al. Jul 2010 B2
7750381 Hokazono et al. Jul 2010 B2
7750405 Nowak Jul 2010 B2
7750682 Bernstein et al. Jul 2010 B2
7755144 Li et al. Jul 2010 B2
7755146 Helm et al. Jul 2010 B2
7759206 Luo et al. Jul 2010 B2
7759714 Itoh et al. Jul 2010 B2
7761820 Berger et al. Jul 2010 B2
7795677 Bangsaruntip et al. Sep 2010 B2
7808045 Kawahara et al. Oct 2010 B2
7808410 Kim et al. Oct 2010 B2
7811873 Mochizuki Oct 2010 B2
7811881 Cheng et al. Oct 2010 B2
7818702 Mandelman et al. Oct 2010 B2
7821066 Lebby et al. Oct 2010 B2
7829402 Matocha et al. Nov 2010 B2
7831873 Trimberger et al. Nov 2010 B1
7846822 Seebauer et al. Dec 2010 B2
7855118 Hoentschel et al. Dec 2010 B2
7859013 Chen et al. Dec 2010 B2
7863163 Bauer Jan 2011 B2
7867835 Lee et al. Jan 2011 B2
7883977 Babcock et al. Feb 2011 B2
7888205 Herner et al. Feb 2011 B2
7888747 Hokazono Feb 2011 B2
7895546 Lahner et al. Feb 2011 B2
7897495 Ye et al. Mar 2011 B2
7906413 Cardone et al. Mar 2011 B2
7906813 Kato Mar 2011 B2
7910419 Fenouillet-Beranger et al. Mar 2011 B2
7919791 Flynn et al. Apr 2011 B2
7926018 Moroz et al. Apr 2011 B2
7935984 Nakano May 2011 B2
7941776 Majumder et al. May 2011 B2
7945800 Gomm et al. May 2011 B2
7947971 Majhi et al. May 2011 B2
7948008 Liu et al. May 2011 B2
7952147 Ueno et al. May 2011 B2
7960232 King et al. Jun 2011 B2
7960238 Kohli et al. Jun 2011 B2
7968400 Cai Jun 2011 B2
7968411 Williford Jun 2011 B2
7968440 Seebauer Jun 2011 B2
7968459 Bedell et al. Jun 2011 B2
7989900 Haensch et al. Aug 2011 B2
7994573 Pan Aug 2011 B2
8004024 Furukawa et al. Aug 2011 B2
8012827 Yu et al. Sep 2011 B2
8029620 Kim et al. Oct 2011 B2
8039332 Bernard et al. Oct 2011 B2
8046598 Lee Oct 2011 B2
8048791 Hargrove et al. Nov 2011 B2
8048810 Tsai et al. Nov 2011 B2
8051340 Cranford, Jr. et al. Nov 2011 B2
8053340 Colombeau et al. Nov 2011 B2
8063466 Kurita Nov 2011 B2
8067279 Sadra et al. Nov 2011 B2
8067280 Wang et al. Nov 2011 B2
8067302 Li Nov 2011 B2
8076719 Zeng et al. Dec 2011 B2
8097529 Krull et al. Jan 2012 B2
8103983 Agarwal et al. Jan 2012 B2
8105891 Yeh et al. Jan 2012 B2
8106424 Schruefer Jan 2012 B2
8106481 Rao Jan 2012 B2
8110487 Griebenow et al. Feb 2012 B2
8114761 Mandrekar et al. Feb 2012 B2
8119482 Bhalla et al. Feb 2012 B2
8120069 Hynecek Feb 2012 B2
8125035 Nandakumar et al. Feb 2012 B2
8129246 Babcock et al. Mar 2012 B2
8129797 Chen et al. Mar 2012 B2
8134159 Hokazono Mar 2012 B2
8143120 Kerr et al. Mar 2012 B2
8143124 Challa et al. Mar 2012 B2
8143678 Kim et al. Mar 2012 B2
8148774 Mori et al. Apr 2012 B2
8163619 Yang et al. Apr 2012 B2
8169002 Chang et al. May 2012 B2
8170857 Joshi et al. May 2012 B2
8173499 Chung et al. May 2012 B2
8173502 Yan et al. May 2012 B2
8176461 Trimberger May 2012 B1
8178430 Kim et al. May 2012 B2
8179530 Levy et al. May 2012 B2
8183096 Wirbeleit May 2012 B2
8183107 Mathur et al. May 2012 B2
8185865 Gupta et al. May 2012 B2
8187959 Pawlak et al. May 2012 B2
8188542 Yoo et al. May 2012 B2
8196545 Kurosawa Jun 2012 B2
8201122 Dewey, III et al. Jun 2012 B2
8214190 Joshi et al. Jul 2012 B2
8217423 Liu et al. Jul 2012 B2
8225255 Ouyang et al. Jul 2012 B2
8227307 Chen et al. Jul 2012 B2
8236661 Dennard et al. Aug 2012 B2
8239803 Kobayashi Aug 2012 B2
8247300 Babcock et al. Aug 2012 B2
8255843 Chen et al. Aug 2012 B2
8258026 Bulucea Sep 2012 B2
8266567 El Yahyaoui et al. Sep 2012 B2
8286180 Foo Oct 2012 B2
8288798 Passlack Oct 2012 B2
8299562 Li et al. Oct 2012 B2
8324059 Guo et al. Dec 2012 B2
20010014495 Yu Aug 2001 A1
20020042184 Nandakumar et al. Apr 2002 A1
20020060338 Zhang May 2002 A1
20030006415 Yokogawa et al. Jan 2003 A1
20030020114 Yu et al. Jan 2003 A1
20030047763 Hieda et al. Mar 2003 A1
20030173626 Burr Sep 2003 A1
20030183856 Wieczorek et al. Oct 2003 A1
20030215992 Sohn et al. Nov 2003 A1
20040075118 Heinemann et al. Apr 2004 A1
20040075143 Bae et al. Apr 2004 A1
20040084731 Matsuda et al. May 2004 A1
20040087090 Grudowski et al. May 2004 A1
20040126947 Sohn Jul 2004 A1
20040175893 Vatus et al. Sep 2004 A1
20040180488 Lee Sep 2004 A1
20050106824 Alberto et al. May 2005 A1
20050116282 Pattanayak et al. Jun 2005 A1
20050250289 Babcock et al. Nov 2005 A1
20050280075 Ema et al. Dec 2005 A1
20060022270 Boyd et al. Feb 2006 A1
20060049464 Rao Mar 2006 A1
20060068555 Zhu et al. Mar 2006 A1
20060068586 Pain Mar 2006 A1
20060071278 Takao Apr 2006 A1
20060154428 Dokumaci Jul 2006 A1
20060197158 Babcock et al. Sep 2006 A1
20060203581 Joshi et al. Sep 2006 A1
20060220114 Miyashita et al. Oct 2006 A1
20060223248 Venugopal et al. Oct 2006 A1
20070040222 Van Camp et al. Feb 2007 A1
20070117326 Tan et al. May 2007 A1
20070158790 Rao Jul 2007 A1
20070212861 Chidambarrao et al. Sep 2007 A1
20070238253 Tucker Oct 2007 A1
20080067589 Ito et al. Mar 2008 A1
20080108208 Arevalo et al. May 2008 A1
20080150007 Brennan et al. Jun 2008 A1
20080169493 Lee et al. Jul 2008 A1
20080169516 Chung Jul 2008 A1
20080197439 Goerlach et al. Aug 2008 A1
20080227250 Ranade et al. Sep 2008 A1
20080237661 Ranade et al. Oct 2008 A1
20080258198 Bojarczuk et al. Oct 2008 A1
20080272409 Sonkusale et al. Nov 2008 A1
20090057746 Sugll et al. Mar 2009 A1
20090075445 Kavalieros et al. Mar 2009 A1
20090108350 Cai et al. Apr 2009 A1
20090108352 Majumdar et al. Apr 2009 A1
20090130805 Babcock et al. May 2009 A1
20090134468 Tsuchiya et al. May 2009 A1
20090224319 Kohli Sep 2009 A1
20090302388 Cai et al. Dec 2009 A1
20090309140 Khamankar et al. Dec 2009 A1
20090311837 Kapoor Dec 2009 A1
20090321849 Miyamura et al. Dec 2009 A1
20100012988 Yang et al. Jan 2010 A1
20100038724 Anderson et al. Feb 2010 A1
20100047972 Clark et al. Feb 2010 A1
20100100856 Mittal Apr 2010 A1
20100148153 Hudait et al. Jun 2010 A1
20100149854 Vora Jun 2010 A1
20100187641 Zhu et al. Jul 2010 A1
20100207182 Paschal Aug 2010 A1
20100270600 Inukai et al. Oct 2010 A1
20110059588 Kang Mar 2011 A1
20110073961 Dennard et al. Mar 2011 A1
20110074498 Thompson et al. Mar 2011 A1
20110079860 Verhulst Apr 2011 A1
20110079861 Shifren et al. Apr 2011 A1
20110095811 Chi et al. Apr 2011 A1
20110111553 Babcock et al. May 2011 A1
20110121266 Majhi et al. May 2011 A1
20110147828 Murthy et al. Jun 2011 A1
20110169082 Zhu et al. Jul 2011 A1
20110175168 Wang et al. Jul 2011 A1
20110175170 Wang et al. Jul 2011 A1
20110180880 Chudzik et al. Jul 2011 A1
20110193164 Zhu Aug 2011 A1
20110212590 Wu et al. Sep 2011 A1
20110230039 Mowry et al. Sep 2011 A1
20110242921 Tran et al. Oct 2011 A1
20110248352 Shifren et al. Oct 2011 A1
20110294278 Eguchi et al. Dec 2011 A1
20110309447 Arghavani et al. Dec 2011 A1
20120021594 Gurtej et al. Jan 2012 A1
20120034745 Colombeau et al. Feb 2012 A1
20120056275 Cai et al. Mar 2012 A1
20120065920 Nagumo et al. Mar 2012 A1
20120108050 Chen et al. May 2012 A1
20120112207 Cheng et al. May 2012 A1
20120132998 Kwon et al. May 2012 A1
20120138953 Cai et al. Jun 2012 A1
20120146155 Hoentschel et al. Jun 2012 A1
20120164802 Babcock et al. Jun 2012 A1
20120167025 Gillespie et al. Jun 2012 A1
20120187491 Zhu et al. Jul 2012 A1
20120190177 Kim et al. Jul 2012 A1
20120223363 Kronholz et al. Sep 2012 A1
20120223389 Gregory et al. Sep 2012 A1
Foreign Referenced Citations (13)
Number Date Country
0274278 Jul 1988 EP
0312237 Apr 1989 EP
0531621 Mar 1993 EP
0683515 Nov 1995 EP
0889502 Jan 1999 EP
1450394 Aug 2004 EP
59193066 Nov 1984 JP
4186774 Jul 1992 JP
8153873 Jun 1996 JP
8288508 Nov 1996 JP
2004087671 Mar 2004 JP
794094 Jan 2008 KR
WO 2011062788 May 2011 WO
Non-Patent Literature Citations (34)
Entry
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, PCT/US2012/027053, 12 pages dated May 23, 2012.
Noda, et al., “A 0.1-μDelta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy”, IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809-814, Apr. 1998.
Abiko, et al. “A Channel Engineering Combined with Channel Epitaxy Optimization and TED Suppression for 0.15 μm n-n Gate CMOS Technology”, 1995 Symposium on VLSI Technology Digest of Technical Papers, pp. 23-24, 1995.
Hokazono, et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113, 2008.
Hokazono, et al., “Steep Channel Profiles in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, IEDM09-676 Symposium, pp. 29.11-29.14, 2009.
Thompson, et al., “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3' 1998, pp. 1-19.
Chau, et al. “A 50nm Depleted-Substrate CMOS Transistor (DST)”, Electron Device Meeting 2001, IEDM Technical Digest, IEEE International, pp. 29.1.1-29.1.4, 2001.
Ohguro, et al., “An 0.18-μm CMOS for Mixed Digital and Analog Applications with Zero-Volt-Vth Epitaxial-Channel MOSFET's”, IEEE Transactions on Electron Devices, vol. 46, No. 7, pp. 1378-1383, Jul. 1999.
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, Mat. Res. Soc. Symp. vol. 610, 2000.
Scholz, R et al., “Carbon-Induced Undersaturation of Silicon Self-Interstitials”, Appl. Phys. Lett. 72(2), pp. 200-202, Jan. 1998.
Scholz, RF et al., “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394, Jan. 1999.
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in IonImplanted Silicon”, J. Appl. Phys. 81(9), pp. 6031-6050, May 1997.
Wann, C. et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, IEDM 96, pp. 113-116, 1996.
Werner, p. et al., “Carbon Diffusion in Silicon”, Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467, Oct. 1998.
Yan, Ran-Hong et al., “Scaling the Si MOSFET: From Bulk to Soi to Bulk”, IEEE Transactions on Electron Devices, vol. 39, No. 7, Jul. 1992.
Komaragiri, R. et al., “Depletion-Free Poly Gate Electrode Architecture for Sub 100 Nanometer CMOS Devices with High-K Gate Dielectrics”, IEEE IEDM Tech Dig., San Francisco CA, 833-836, Dec. 13-15, 2004.
Samsudin, K et al., “Integrating Intrinsic Parameter Fluctuation Description into BSIMSOI to Forecast sub-15nm UTB SOI based 6T SRAM Operation”, Solid-State Electronics (50), pp. 86-93, 2006.
Wong, H et al., “Nanoscale CMOS”, Proceedings of the IEEE, Vo. 87, No. 4, pp. 537-570, Apr. 1999.
Ducroquet, F et al. “Fully Depleted Silicon-On-Insulator nMOSFETs with Tensile Strained High Carbon Content Si1-y Cy , Channel”, ECS 210th Meeting, Abstract 1033, 2006.
Ernst, T et al., “Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, ECS Trans. 2006, vol. 3, Issue 7, pp. 947-961.
Goesele, U et al., Diffusion Engineering by Carbon in Silicon, Mat. Res. Soc. Symp. vol. 610, 2000.
Holland, OW and Thomas, DK “A Method to Improve Activation of Implanted Dopants in SiC”, Oak Ridge National Laboratory, Oak Ridge, TN, 2001.
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, IEDM 96, pp. 459-462, 1996.
Lavéant, P. “Incorporation, Diffusion and Agglomeration of Carbon in Silicon”, Solid State Phenomena, vols. 82-84, pp. 189-194, 2002.
Pinacho, Ret al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588, Aug. 2002.
Banerjee, et al. “Compensating Non-Optical Effects using Electrically-Driven Optical Proximity Correction”, Proc. of SPIE vol. 7275 7275OE, 2009.
Cheng, et al. “Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications”, Electron Devices Meeting (IEDM), Dec. 2009.
Cheng, et al. “Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Feturing Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain”, Symposium on VLSI Technology Digest of Technical Papers, pps. 212-213, 2009.
Drennan, et al. “Implications of Proximity Effects for Analog Design”, Custom Integrated Circuits Conference, pp. 169-176, Sep. 2006.
Hook, et al. “Lateral Ion Implant Straggle and Mask Proximity Effect”, IEEE Transactions on Electron Devices, vol. 50, No. 9, pp. 1946-1951, Sep. 2003.
Hori, et al., “A 0.1 μm CMOS with a Step Channel Profile Formed by Ultra High Vacuum CVD and In-Situ Doped Ions”, Proceedsing of the International Electron Devices Meeting, New York, IEEE, US, pp. 909-911, Dec. 5, 1993.
Matshuashi, et al. “High-Performance Double-Layer Epitaxial-Channel Pmosfet Compatible with a Single Gate CMOSFET”, Symposium on VLSI Technology Digest of Technical Papers, pp. 36-37, 1996.
Shao, et al., “Boron Diffusion in Silicon: the Anomalies and Control by Point Defect Engineering”, Materials Science and Engineering R: Reports, vol. 42, No. 3-4, pp. 65-114, Nov. 1, 2003, Nov. 2012.
Sheu, et al. “Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs”, IEEE Transactions on Electron Devices, vol. 53, No. 11, pp. 2792-2798, Nov. 2006.
Related Publications (1)
Number Date Country
20120223389 A1 Sep 2012 US