SHORT INTERFERING NUCLEIC ACID (siNA) MOLECULES AND USES THEREOF FOR CORONAVIRUS DISEASES

Abstract
The present invention is in the field of pharmaceutical compounds and preparations and method of their use in the treatment of disease. Described are short interfering nucleic acid (siNA) molecules comprising modified nucleotides, compositions containing the same, and uses thereof for treating or preventing coronavirus infections. In particular, the present invention is in the field of siNA molecules effective against a broad spectrum of coronaviruses, and especially the β-coronaviruses, including SARS-CoV-2, the causative agent of COVID-19.
Description
FIELD OF THE INVENTION

The present invention is in the field of pharmaceutical compounds and preparations and method of their use in the treatment of disease. Described are short interfering nucleic acid (siNA) molecules comprising modified nucleotides, compositions containing the same, and uses thereof for treating or preventing coronavirus infections. In particular, the present invention is in the field of siNA molecules effective against a broad spectrum of coronaviruses, and especially the β-coronaviruses, including SARS-CoV-2, the causative agent of COVID-19.


BACKGROUND

The following discussion is merely provided to aid the reader in understanding the disclosure and is not admitted to describe or constitute prior art thereto.


Coronavirus disease 2019 (COVID-19) (also referred to as novel coronavirus pneumonia or 2019-nCoV acute respiratory disease) is an infectious disease caused by the virus severe respiratory syndrome coronavirus 2 (SARS-CoV-2) (also referred to as novel coronavirus 2019, or 2019-nCoV). The disease was first identified in December 2019 and spread globally, causing a pandemic. Symptoms of COVID-19 include fever, cough, shortness of breath, fatigue, headache, loss of smell, nasal congestion, sore throat, coughing up sputum, pain in muscles or joints, chills, nausea, vomiting, and diarrhea. In severe cases, symptoms can include difficulty waking, confusion, blueish face or lips, coughing up blood, decreased white blood cell count, and kidney failure. Complications can include pneumonia, viral sepsis, acute respiratory distress syndrome, and kidney failure.


COVID-19 is especially threatening to public health. The virus is highly contagious, and studies currently indicate that it can be spread by asymptomatic carriers or by those who are pre-symptomatic. Likewise, the early stage of the disease is slow-progressing enough that carriers do not often realize they are infected, leading them to expose numerous others to the virus. The combination of COVID-19's ease of transmission, its high rate of hospitalization of victims, and its death rate make the virus a substantial public health risk, especially for countries without a healthcare system equipped to provide supportive care to pandemic-level numbers of patients. There is not yet a vaccine or specific antiviral treatment for COVID-19 and accordingly, there is a pressing need for treatments or cures.


SARS-CoV-2 is not the only coronavirus that causes disease. It is a β-coronavirus, a genus of coronaviruses that includes other human pathogens, including SARS-CoV (the causative agent of SARS), MERS-CoV (the causative agent of MERS), and HCoV-OC43 (a causative agent of the common cold). The infectivity of these viruses, and the severity of the diseases they cause, varies widely. B-coronaviruses can also manifest as zoonotic infections, spread to and from humans and animals. Additionally, non-human species such as camels, bats, tigers, non-human primates, and rabbits can be susceptible to β-coronaviruses. Accordingly, there is a pressing need for treatments or cures to multiple coronaviruses.


RNA interference (RNAi) is a biological response to double-stranded RNA that mediates resistance to both endogenous parasitic and exogenous pathogenic nucleic acids, and regulates the expression of protein-coding genes. The short interfering nucleic acids (siNA), such as siRNA, have been developed for RNAi therapy to treat a variety of diseases. For instance, RNAi therapy has been proposed for the treatment of metabolic diseases, neurodegenerative diseases, cancer, and pathogenic infections (See e.g., Rondindone, Biotechniques, 2018, 40(4S), doi.org/10.2144/000112163, Boudreau and Davidson, Curr Top Dev Biol, 2006, 75:73-92, Chalbatani et al., Int J Nanomedicine, 2019, 14:3111-3128, Arbuthnot, Drug News Perspect, 2010, 23(6):341-50, and Chernikov et. al., Front. Pharmacol., 2019, doi.org/10.3389/fphar.2019.00444, each of which are incorporated by reference in their entirety).


The present disclosure provides siNA molecules useful against coronaviruses, and especially SARS-CoV-2, the causative agent of COVID-19. Accordingly, the present disclosure fulfills the need in the art for compounds that can be safely and effectively treat or prevent coronavirus infections in humans.


SUMMARY OF THE INVENTION

Disclosed herein are short interfering nucleic acid (siNA) molecules, which can be used to treat and/or prevent viral disease and infections, such as diseases (e.g., COVID-19) or infections caused by coronavirus like SARS-CoV-2. In some embodiments, the siNA can be a double-stranded siNA (ds-siNA).


In one aspect, the present disclosure provides siNA that comprise (a) a sense strand comprising a first nucleotide sequence, wherein the first nucleotide sequence is 15 to 30 nucleotides in length and comprises a nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to of any one of SEQ ID NOs: 1-1203 and 2411-3392; and (b) an antisense strand comprising a second nucleotide sequence, wherein the second nucleotide sequence is 15 to 30 nucleotides in length and comprises a nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the first nucleotide sequence.


In another aspect, the present disclosure provides siNA that comprise a sense strand comprises (a) a first nucleotide sequence, wherein the first nucleotide sequence is identical to an RNA corresponding to 15 to 30 nucleotides within positions 190-216, 233-279, 288-324, 455-477, 626-651, 704-723, 3352-3378, 5384-5403, 6406-6483, 7532-7551, 9588-9606, 10484-10509, 11609-11630, 11834-11853, 12023-12045, 12212-12234, 12401-12420, 12839-12867, 12885-12924, 12966-12990, 13151-13176, 13363-13386, 13388-13416, 13458-13416, 13458-13520, 13762-13790, 14290-14312, 14404-14429, 14500-14531, 14623-14642, 14650-14687, 14698-14717, 14722-14748, 14750-14777, 14821-14846, 14854-14873, 14875-14903, 14962-14990, 14992-15020, 15055-15140, 15172-15200, 15310-15332, 15346-15367, 15496-15518, 15622-15644, 15838-15869, 15886-15905, 15985-16010, 16057-16079, 16186-16205, 16430-16448, 16822-16865, 16954-16976, 17008-17042, 17080-17111, 17137-17156, 17269-17289, 17530-17549, 17563-17582, 17680-17699, 17746-17765, 17857-17876, 17956-17975, 18100-18122, 18196-18218, 19618-19639, 19783-19802, 19831-19850, 20107-20130, 20776-20795, 21502-21524, 24302-24325, 24446-24465, 24620-24651, 24662-24684, 25034-25057, 25104-25128, 25364-25387, 25502-25530, 26191-26227, 26232-26267, 26269-26330, 26332-26394, 26450-26481, 26574-26600, 27003-27064, 27093-27111, 27183-27212, 27382-27407, 27511-27533, 27771-27818, 28270-28296, 28397-28434, 28513-28546, 28673-28692, 28706-28726, 28744-28794, 28799-28827, 28946-28972, 28976-29034, 29144-29172, 29174-29196, 29228-29259, 29285-29305, 29342-29394, 29444-29463, 29543-29566, 29598-29630, 29652-29687, 29689-29731, 29733-29757, or 29770-29828 of SEQ ID NO: 2407 and (b) an antisense strand.


In another aspect, the present disclosure provides siNA that comprise an antisense strand comprising (a) a second nucleotide sequence, wherein the second nucleotide sequence is complementary to an RNA corresponding to 15 to 30 nucleotides within positions 190-216, 233-279, 288-324, 455-477, 626-651, 704-723, 3352-3378, 5384-5403, 6406-6483, 7532-7551, 9588-9606, 10484-10509, 11609-11630, 11834-11853, 12023-12045, 12212-12234, 12401-12420, 12839-12867, 12885-12924, 12966-12990, 13151-13176, 13363-13386, 13388-13416, 13458-13416, 13458-13520, 13762-13790, 14290-14312, 14404-14429, 14500-14531, 14623-14642, 14650-14687, 14698-14717, 14722-14748, 14750-14777, 14821-14846, 14854-14873, 14875-14903, 14962-14990, 14992-15020, 15055-15140, 15172-15200, 15310-15332, 15346-15367, 15496-15518, 15622-15644, 15838-15869, 15886-15905, 15985-16010, 16057-16079, 16186-16205, 16430-16448, 16822-16865, 16954-16976, 17008-17042, 17080-17111, 17137-17156, 17269-17289, 17530-17549, 17563-17582, 17680-17699, 17746-17765, 17857-17876, 17956-17975, 18100-18122, 18196-18218, 19618-19639, 19783-19802, 19831-19850, 20107-20130, 20776-20795, 21502-21524, 24302-24325, 24446-24465, 24620-24651, 24662-24684, 25034-25057, 25104-25128, 25364-25387, 25502-25530, 26191-26227, 26232-26267, 26269-26330, 26332-26394, 26450-26481, 26574-26600, 27003-27064, 27093-27111, 27183-27212, 27382-27407, 27511-27533, 27771-27818, 28270-28296, 28397-28434, 28513-28546, 28673-28692, 28706-28726, 28744-28794, 28799-28827, 28946-28972, 28976-29034, 29144-29172, 29174-29196, 29228-29259, 29285-29305, 29342-29394, 29444-29463, 29543-29566, 29598-29630, 29652-29687, 29689-29731, 29733-29757, or 29770-29828 of SEQ ID NO: 2407 and (b) a sense strand.


In another aspect, the present disclosure provides siNA that comprise (a) a sense strand comprising a nucleotide sequence identical to an RNA corresponding to any one of SEQ ID NOs: 1-1203 and 2411-3392 and (b) an antisense strand.


In another aspect, the present disclosure provides siNA that comprise (a) an antisense strand comprising a nucleotide sequence identical to an RNA corresponding to any one of SEQ ID NOs: 1204-2406 and 3393-4374 and (b) a sense strand.


In some embodiments, the sense strand can comprise 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and the nucleotide at position 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end is a 2′-fluoro nucleotide; and the antisense strand can comprise 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide.


In some embodiments, the sense strand can comprise 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and the antisense strand can comprise 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and the nucleotide at position 2, 5, 6, 8, 10, 14, 16, 17, and/or 18 from the 5′ end is a 2′-fluoro nucleotide.


In some embodiments, the sense strand can comprise 16, 17, 18, 19, 20, 21, 22, 23, or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide. In some embodiments, 70%, 75%, 80%, 85%, 90%, 95% or 100% of the nucleotides in the sense strand can be modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide.


In some embodiments, (i) at least 2, 3, 4, 5, or 6 modified nucleotides of the sense strand are 2′-fluoro nucleotides; (ii) no more than 10, 9, 8, 7, 6, 5, 4, 3, or 2 modified nucleotides of the sense strand are 2′-fluoro nucleotides; (iii) at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 modified nucleotides of the sense strand sequence are 2′-O-methyl nucleotides; and/or (iv) no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 modified nucleotides of the sense strand are 2′-O-methyl nucleotides.


In some embodiments, the antisense strand can comprise 16, 17, 18, 19, 20, 21, 22, 23, or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide. In some embodiments, 70%, 75%, 80%, 85%, 90%, 95% or 100% of the nucleotides in the antisense strand are modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide.


In some embodiments, (i) at least 2, 3, 4, 5, or 6 modified nucleotides of the antisense strand are 2′-fluoro nucleotides; (ii) no more than 10, 9, 8, 7, 6, 5, 4, 3, or 2 modified nucleotides of the antisense strand are 2′-fluoro nucleotides; (iii) at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 modified nucleotides of the antisense strand sequence are 2′-O-methyl nucleotides; and/or (iv) no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 modified nucleotides of the antisense strand are 2′-O-methyl nucleotides.


In some embodiments, the sense strand and/or the antisense strand can comprise one or more phosphorothioate internucleoside linkage(s). In some embodiments, the siNA can further comprise a phosphorylation blocker and/or a 5′-stabilized end cap.


In some embodiments, the sense strand can further comprise a TT sequence adjacent to the first nucleotide sequence.


In some embodiments, at least one end of the siNA can be a blunt end. In some embodiments, at least one end of the siNA can comprise an overhang, wherein the overhang comprises at least one nucleotide. In some embodiments, both ends of the siNA can comprise an overhang, wherein the overhang comprises at least one nucleotide.


In some embodiments, the sense strand can further comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more phosphorothioate internucleotide linkages. In some embodiments, the antisense strand can further comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more phosphorothioate internucleotide linkages.


In some embodiments, the sense strand and/or the antisense strand can comprise one or more modified nucleotides. In some embodiments, the modified nucleotides are independently selected from 2′-O-methyl nucleotides and 2′-fluoro nucleotides. In some embodiments, at least one 2′-fluoro nucleotide or 2′-O-methyl nucleotide is a 2′-fluoro or 2′-O-methyl nucleotide mimic of Formula (V):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H, Q1 and Q2 are independently S or O, R5 is —OCD3, —F, or —OCH3, and R6 and R7 are independently H or D.


In some embodiments, the sense strand and/or antisense strand comprises at least one modified nucleotide selected from




embedded image


where R is H or alkyl (or AmNA(N-Me)) when R is alkyl);




embedded image


wherein B is a nucleobase.


In some embodiments, the siNA can further comprise a phosphorylation blocker and/or a 5′-stabilized end cap. In some embodiments, the phosphorylation blocker has the structure of Formula (IV):




embedded image


wherein R1 is a nucleobase, R4 is —O—R30 or —NR31R32, R30 is C1-C8 substituted or unsubstituted alkyl; and


R31 and R32 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring. In some embodiments, R4 is —OCH3 or —N(CH2CH2)2O. In some embodiments, the phosphorylation blocker is attached to the 5′ end of the sense strand. In some embodiments, the phosphorylation blocker is attached to the 5′ end of the sense strand via one or more linkers independently selected from a phosphodiester linker, phosphorothioate linker, and phosphorodithioate linker.


In some embodiments, the 5′-stabilized end cap is a 5′ vinylphosphonate. In some embodiments, the 5′ vinylphosphonate is selected from a 5′-(E)-vinyl phosphonate or 5′-(Z)-vinyl phosphonate. In some embodiments, the 5′-vinylphosphonate is a deuterated vinyl phosphonate. In some embodiments, the deuterated vinylphosphonate is a mono-deuterated vinylphosphonate or a di-deuterated vinylphosphonate


In some embodiments, the 5′-stabilized end cap has the structure of Formula (Ia):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H; R2 is




embedded image


—CH═CD-Z, —CD=CH—Z, —CD=CD-Z, —(CR21R22)n—Z or —(C2-C6 alkenylene)-Z and R20 is hydrogen, or R2 and R20 together form a 3- to 7-membered carbocyclic ring substituted with —(CR21R22)n—Z or —(C2-C6 alkenylene)-Z; n is 1, 2, 3, or 4;


Z is —ONR23R24, —OP(O)OH(CH2)mCO2R23, —OP(S)OH(CH2)mCO2R23, —P(O)(OH)2, —P(O)(OH)(OCH3), —P(O)(OH)(OCD3), —SO2(CH2)mP(O)(OH)2, —SO2NR23R25, —NR23R24, or —NR23SO2R25; R21 and R22 either are independently hydrogen or C1-C6 alkyl, or R21 and R22 together form an oxo group; R23 is hydrogen or C1-C6 alkyl, R24 is —SO2R25 or —C(O)R25, or R23 and R24 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring; R25 is C1-C6 alkyl; and m is 1, 2, 3, or 4. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, the 5′-stabilized end cap has the structure of Formula (Ib):




embedded image


wherein


R1 is a nucleobase, aryl, heteroaryl, or H,


R2 is



embedded image


—CH═CD-Z, —CD=CH—Z, —CD=CD-Z, —(CR21R22)n—Z, or —(C2-C6 alkenylene)-Z and R20 is hydrogen; or


R2 and R20 together form a 3- to 7-membered carbocyclic ring substituted with —(CR21R22)n—Z or —(C2-C6 alkenylene)-Z;


n is 1, 2, 3, or 4;


Z is —ONR23R24, —OP(O)OH(CH2)mCO2R23, —OP(S)OH(CH2)mCO2R23, —P(O)(OH)2, —P(O)(OH)(OCH3), —P(O)(OH)(OCD3), —SO2(CH2)mP(O)(OH)2, —SO2NR23R25, —NR23R24,


R21 and R22 are independently hydrogen or C1-C6 alkyl; R21 and R22 together form an oxo group;


R23 is hydrogen or C1-C6 alkyl;


R24 is —SO2R25 or —C(O)R25; or


R23 and R24 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring;


R25 is C1-C6 alkyl; and


m is 1, 2, 3, or 4.


In some embodiments, the 5′-stabilized end cap is selected from the group consisting of Formula (1) to Formula (15), Formula (9X) to Formula (12X), and Formula (9Y) to Formula (12Y):




embedded image


embedded image


embedded image


embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H.


In some embodiments, the 5′-stabilized end cap is selected from the group consisting of Formulas (1A)-(15A), Formulas (9B)-(12B), Formulas (9AX)-(12AX), Formulas (9AY)-(12AY), Formulas (9BX)-(12BX), and Formulas (9BY)-(12BY):




embedded image


embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the 5′-stabilized end cap can be attached to the 5′ end of the antisense strand. In some embodiments, the 5′-stabilized end cap can be attached to the 5′ end of the antisense strand via one or more linkers independently selected from a phosphodiester linker, phosphorothioate linker, phosphoramidite (HEG) linker, triethylene glycol (TEG) linker, or phosphorodithioate linker.


In some embodiments, the sense strand consists of 21 nucleotides. In some embodiments, 2′-O-methyl nucleotides are at positions 18-21 from the 5′ end of the sense strand.


In some embodiments, the antisense strand consists of 23 nucleotides. In some embodiments, 2′-O-methyl nucleotides are at positions 18-23 from the 5′ end of the antisense strand.


In another aspect, the present disclosure provides, a siNA selected from ds-siNA-005; ds-siNA-006; ds-siNA-007; ds-siNA-008; ds-siNA-009; ds-siNA-010; ds-siNA-011; ds-siNA-012; ds-siNA-013; ds-siNA-014; ds-siNA-015; ds-siNA-016; ds-siNA-017; ds-siNA-018; ds-siNA-019; ds-siNA-020; ds-siNA-021; ds-siNA-022; ds-siNA-023; ds-siNA-024; ds-siNA-025; ds-siNA-026; ds-siNA-027; ds-siNA-028; ds-siNA-029; ds-siNA-030; ds-siNA-031; ds-siNA-032; ds-siNA-033; ds-siNA-034; ds-siNA-035; ds-siNA-036; ds-siNA-037; ds-siNA-038; ds-siNA-039; ds-siNA-040; ds-siNA-041; ds-siNA-042; ds-siNA-043; ds-siNA-044; ds-siNA-045; ds-siNA-046; ds-siNA-047; ds-siNA-048; ds-siNA-049; ds-siNA-050; ds-siNA-051; ds-siNA-052; ds-siNA-053; ds-siNA-054; ds-siNA-055; ds-siNA-056; ds-siNA-057; ds-siNA-058; ds-siNA-059; ds-siNA-060; ds-siNA-061; ds-siNA-062; ds-siNA-063; ds-siNA-064; ds-siNA-065; ds-siNA-066; ds-siNA-067; ds-siNA-068; ds-siNA-069; ds-siNA-070; ds-siNA-071; ds-siNA-072; ds-siNA-073; ds-siNA-074; ds-siNA-075; ds-siNA-076; ds-siNA-077; ds-siNA-078; ds-siNA-079; ds-siNA-080; ds-siNA-081; ds-siNA-082; ds-siNA-083; ds-siNA-084; ds-siNA-085; ds-siNA-086; ds-siNA-087; ds-siNA-088; ds-siNA-089; ds-siNA-090; ds-siNA-091; ds-siNA-092; ds-siNA-093; ds-siNA-094; ds-siNA-095; ds-siNA-096; ds-siNA-097; ds-siNA-098; ds-siNA-099; ds-siNA-100; ds-siNA-101; ds-siNA-102; ds-siNA-103; ds-siNA-104; ds-siNA-105; ds-siNA-106; ds-siNA-107; ds-siNA-108; ds-siNA-109; ds-siNA-110; ds-siNA-111; ds-siNA-112; ds-siNA-113; ds-siNA-114; ds-siNA-115; ds-siNA-116; ds-siNA-117; ds-siNA-118; ds-siNA-119; ds-siNA-120; ds-siNA-121; ds-siNA-122; ds-siNA-123; ds-siNA-124; ds-siNA-125; ds-siNA-126; ds-siNA-127; ds-siNA-128; ds-siNA-129; ds-siNA-130; ds-siNA-131; ds-siNA-132; ds-siNA-133; ds-siNA-134; ds-siNA-135; ds-siNA-136; ds-siNA-137; ds-siNA-138; ds-siNA-139; ds-siNA-140; ds-siNA-141; ds-siNA-142; ds-siNA-143; ds-siNA-144; ds-siNA-145; ds-siNA-146; ds-siNA-147; ds-siNA-148; ds-siNA-149; ds-siNA-150; ds-siNA-151; ds-siNA-152; ds-siNA-153; ds-siNA-154; ds-siNA-155; ds-siNA-156; ds-siNA-157; ds-siNA-158; ds-siNA-159; ds-siNA-160; ds-siNA-161; ds-siNA-162; ds-siNA-163; ds-siNA-164; ds-siNA-165; ds-siNA-166; ds-siNA-167; ds-siNA-168; ds-siNA-169; ds-siNA-170; ds-siNA-171; ds-siNA-172; ds-siNA-173; ds-siNA-174; ds-siNA-175; ds-siNA-176; ds-siNA-177; ds-siNA-178; ds-siNA-179; ds-siNA-180; ds-siNA-181; ds-siNA-182; ds-siNA-183; ds-siNA-184; ds-siNA-185; ds-siNA-186; ds-siNA-187; ds-siNA-188; ds-siNA-189; ds-siNA-190; ds-siNA-191; ds-siNA-192; ds-siNA-193; ds-siNA-194; ds-siNA-195; ds-siNA-196; ds-siNA-197; ds-siNA-198; ds-siNA-199; ds-siNA-200; ds-siNA-201; ds-siNA-202; ds-siNA-203; ds-siNA-204; ds-siNA-205; ds-siNA-206; ds-siNA-207; ds-siNA-208; ds-siNA-209; ds-siNA-210; ds-siNA-211; ds-siNA-212; ds-siNA-213; ds-siNA-214; ds-siNA-215; ds-siNA-216; ds-siNA-217; ds-siNA-218; ds-siNA-219; ds-siNA-220; ds-siNA-221; and ds-siNA-222.


In some embodiments, the siNA is selected from ds-siNA-196 (sense and antisense respectively comprising SEQ ID NOs: 4578 and 4800), ds-siNA-197 (sense and antisense respectively comprising SEQ ID NOs: 4579 and 4801), ds-siNA-198 (sense and antisense respectively comprising SEQ ID NOs: 4580 and 4802), ds-siNA-199 (sense and antisense respectively comprising SEQ ID NOs: 4581 and 4803), ds-siNA-217 (sense and antisense respectively comprising SEQ ID NOs: 4599 and 4821), ds-siNA-218 (sense and antisense respectively comprising SEQ ID NOs: 4600 and 4822), ds-siNA-219 (sense and antisense respectively comprising SEQ ID NOs: 4601 and 4823), ds-siNA-220 (sense and antisense respectively comprising SEQ ID NOs: 4602 and 4824), ds-siNA-221 (sense and antisense respectively comprising SEQ ID NOs: 4603 and 4825), and ds-siNA-222 (sense and antisense respectively comprising SEQ ID NOs: 4604 and 4826).


In some embodiments, the siNA is selected from ds-siNA-196 (sense and antisense respectively comprising SEQ ID NOs: 4578 and 4800), ds-siNA-197 (sense and antisense respectively comprising SEQ ID NOs: 4579 and 4801), ds-siNA-198 (sense and antisense respectively comprising SEQ ID NOs: 4580 and 4802), and ds-siNA-199 (sense and antisense respectively comprising SEQ ID NOs: 4581 and 4803).


In some embodiments, the siNA is selected from, ds-siNA-217 (sense and antisense respectively comprising SEQ ID NOs: 4599 and 4821), ds-siNA-218 (sense and antisense respectively comprising SEQ ID NOs: 4600 and 4822), ds-siNA-219 (sense and antisense respectively comprising SEQ ID NOs: 4601 and 4823), ds-siNA-220 (sense and antisense respectively comprising SEQ ID NOs: 4602 and 4824), ds-siNA-221 (sense and antisense respectively comprising SEQ ID NOs: 4603 and 4825), and ds-siNA-222 (sense and antisense respectively comprising SEQ ID NOs: 4604 and 4826).


In another aspect, the present disclosure provides pharmaceutical compositions comprising at least one siNA according to any one of the embodiments described herein and a pharmaceutically acceptable carrier or diluent.


In some embodiments, the pharmaceutical composition can comprise two or more siNA according to any of the embodiments described herein.


In another aspect, the present disclosure provides methods for treating a disease in a subject in need thereof, comprising administering the subject a pharmaceutical composition according to any of the embodiments described herein.


In another aspect, the present disclosure provides uses of a ds-siRNA according to any of the embodiments described herein in the manufacture of a medicament for treating a disease.


In another aspect, the present disclosure provides methods for treating a disease in a subject in need thereof, comprising administering the subject a siNA according to any of the embodiments described herein. In some embodiments, wherein the disease is a viral disease. In some embodiments, the viral disease is caused by an RNA virus. In some embodiments, the RNA virus is a single-stranded RNA virus (ssRNA virus). In some embodiments, the ssRNA virus is a positive-sense single-stranded RNA virus ((+)ssRNA virus). In some embodiments, the (+)ssRNA virus is a coronavirus. In some embodiments, the coronavirus is a β-coronavirus. In some embodiments, the β-coronavirus is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (also known by the provisional name 2019 novel coronavirus, or 2019-nCoV), human coronavirus OC43 (hCoV-OC43), Middle East respiratory syndrome-related coronavirus (MERS-CoV, also known by the provisional name 2012 novel coronavirus, or 2012-nCoV), or severe acute respiratory syndrome-related coronavirus (SARS-CoV, also known as SARS-CoV-1). In some embodiments, the β-coronavirus is SARS-CoV-2. In some embodiments, the (3-coronavirus is SARS-CoV. In some embodiments, the β-coronavirus is MERS-CoV. In some embodiments, the β-coronavirus is hCoV-OC43.


In some embodiments, the disease is a respiratory disease. In some embodiments, the respiratory disease is viral pneumonia. In some embodiments, the respiratory disease is an acute respiratory infection. In some embodiments, the respiratory disease is a cold. In some embodiments, the respiratory disease is severe acute respiratory syndrome (SARS). In some embodiments, the respiratory disease is Middle East respiratory syndrome (MERS). In some embodiments, the disease is coronavirus disease 2019 (COVID-19). In some embodiments, the respiratory disease causes one or more symptoms selected from coughing, sore throat, runny nose, sneezing, headache, fever, shortness of breath, myalgia, abdominal pain, fatigue, difficulty breathing, persistent chest pain or pressure, difficulty waking, loss of smell and taste, muscle or joint pain, chills, nausea or vomiting, nasal congestion, diarrhea, haemoptysis, conjunctival congestion, sputum production, chest tightness, and palpitations. In some embodiments, the respiratory disease can cause complications selected from sinusitis, otitis media, pneumonia, acute respiratory distress syndrome, disseminated intravascular coagulation, pericarditis, and kidney failure. In some embodiments, the respiratory disease is idiopathic.


In another aspect, the present disclosure provides methods of treating a β-coronavirus-caused disease in a subject in need thereof, comprising administering the subject a siNA comprising a sense strand that is 15 to 30 nucleotides in length, wherein the sense strand is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to a sequence within a region of either two, three, or four of SEQ ID NOs: 2407, 2408, 2409, and 2410. In some embodiments, the sense strand is identical to an RNA sequence corresponding to a region of each of SEQ ID NOs: 2407, 2408, 2409, and 2410. In some embodiments, the sense strand is selected from the group consisting of sequences corresponding to SEQ ID NOs: 1-1203 and 2411-3392.


In another aspect, the present disclosure provides methods of treating a β-coronavirus-caused disease in a subject in need thereof, comprising administering the subject a siNA comprising antisense strand that is 15 to 30 nucleotides in length, wherein the antisense strand is complementary to a sequence within a region of either two, three, or four of SEQ ID NOs: 2407, 2408, 2409, and 2410. In some embodiments, the second nucleotide sequence is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to an RNA sequence corresponding to a region of each of SEQ ID NOs: 2407, 2408, 2409, and 2410. In some embodiments, the antisense strand comprises a sequence corresponding to one of SEQ ID NOs: 1204-2406 and 3393-4374.


In another aspect, the present disclosure provides methods of treating a β-coronavirus-caused disease in a subject in need thereof, comprising administering the subject a siNA comprising a sense strand that is 15 to 30 nucleotides in length, wherein the sense strand is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to a sequence within a region of either two, three, or four of the genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (hCoV-OC43), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and severe acute respiratory syndrome-related coronavirus (SARS-CoV). In some embodiments, the sense strand is identical to a sequence within a region of each of the genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (hCoV-OC43), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and severe acute respiratory syndrome-related coronavirus (SARS-CoV).


In another aspect, the present disclosure provides methods of treating a β-coronavirus-caused disease in a subject in need thereof, comprising administering the subject a siNA comprising an antisense strand that is 15 to 30 nucleotides in length, wherein the antisense strand is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to a sequence within a region of either two, three, or four of the genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (hCoV-OC43), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and severe acute respiratory syndrome-related coronavirus (SARS-CoV). In some embodiments, the second nucleotide sequence is complementary to a sequence within a region of each of the genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (hCoV-OC43), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and severe acute respiratory syndrome-related coronavirus (SARS-CoV).


A method of treating a β-coronavirus-caused disease in a subject in need thereof, comprising administering the subject a siNA selected from ds-siNA-005; ds-siNA-006; ds-siNA-007; ds-siNA-008; ds-siNA-009; ds-siNA-010; ds-siNA-011; ds-siNA-012; ds-siNA-013; ds-siNA-014; ds-siNA-015; ds-siNA-016; ds-siNA-017; ds-siNA-018; ds-siNA-019; ds-siNA-020; ds-siNA-021; ds-siNA-022; ds-siNA-023; ds-siNA-024; ds-siNA-025; ds-siNA-026; ds-siNA-027; ds-siNA-028; ds-siNA-029; ds-siNA-030; ds-siNA-031; ds-siNA-032; ds-siNA-033; ds-siNA-034; ds-siNA-035; ds-siNA-036; ds-siNA-037; ds-siNA-038; ds-siNA-039; ds-siNA-040; ds-siNA-041; ds-siNA-042; ds-siNA-043; ds-siNA-044; ds-siNA-045; ds-siNA-046; ds-siNA-047; ds-siNA-048; ds-siNA-049; ds-siNA-050; ds-siNA-051; ds-siNA-052; ds-siNA-053; ds-siNA-054; ds-siNA-055; ds-siNA-056; ds-siNA-057; ds-siNA-058; ds-siNA-059; ds-siNA-060; ds-siNA-061; ds-siNA-062; ds-siNA-063; ds-siNA-064; ds-siNA-065; ds-siNA-066; ds-siNA-067; ds-siNA-068; ds-siNA-069; ds-siNA-070; ds-siNA-071; ds-siNA-072; ds-siNA-073; ds-siNA-074; ds-siNA-075; ds-siNA-076; ds-siNA-077; ds-siNA-078; ds-siNA-079; ds-siNA-080; ds-siNA-081; ds-siNA-082; ds-siNA-083; ds-siNA-084; ds-siNA-085; ds-siNA-086; ds-siNA-087; ds-siNA-088; ds-siNA-089; ds-siNA-090; ds-siNA-091; ds-siNA-092; ds-siNA-093; ds-siNA-094; ds-siNA-095; ds-siNA-096; ds-siNA-097; ds-siNA-098; ds-siNA-099; ds-siNA-100; ds-siNA-101; ds-siNA-102; ds-siNA-103; ds-siNA-104; ds-siNA-105; ds-siNA-106; ds-siNA-107; ds-siNA-108; ds-siNA-109; ds-siNA-110; ds-siNA-111; ds-siNA-112; ds-siNA-113; ds-siNA-114; ds-siNA-115; ds-siNA-116; ds-siNA-117; ds-siNA-118; ds-siNA-119; ds-siNA-120; ds-siNA-121; ds-siNA-122; ds-siNA-123; ds-siNA-124; ds-siNA-125; ds-siNA-126; ds-siNA-127; ds-siNA-128; ds-siNA-129; ds-siNA-130; ds-siNA-131; ds-siNA-132; ds-siNA-133; ds-siNA-134; ds-siNA-135; ds-siNA-136; ds-siNA-137; ds-siNA-138; ds-siNA-139; ds-siNA-140; ds-siNA-141; ds-siNA-142; ds-siNA-143; ds-siNA-144; ds-siNA-145; ds-siNA-146; ds-siNA-147; ds-siNA-148; ds-siNA-149; ds-siNA-150; ds-siNA-151; ds-siNA-152; ds-siNA-153; ds-siNA-154; ds-siNA-155; ds-siNA-156; ds-siNA-157; ds-siNA-158; ds-siNA-159; ds-siNA-160; ds-siNA-161; ds-siNA-162; ds-siNA-163; ds-siNA-164; ds-siNA-165; ds-siNA-166; ds-siNA-167; ds-siNA-168; ds-siNA-169; ds-siNA-170; ds-siNA-171; ds-siNA-172; ds-siNA-173; ds-siNA-174; ds-siNA-175; ds-siNA-176; ds-siNA-177; ds-siNA-178; ds-siNA-179; ds-siNA-180; ds-siNA-181; ds-siNA-182; ds-siNA-183; ds-siNA-184; ds-siNA-185; ds-siNA-186; ds-siNA-187; ds-siNA-188; ds-siNA-189; ds-siNA-190; ds-siNA-191; ds-siNA-192; ds-siNA-193; ds-siNA-194; ds-siNA-195; ds-siNA-196; ds-siNA-197; ds-siNA-198; ds-siNA-199; ds-siNA-200; ds-siNA-201; ds-siNA-202; ds-siNA-203; ds-siNA-204; ds-siNA-205; ds-siNA-206; ds-siNA-207; ds-siNA-208; ds-siNA-209; ds-siNA-210; ds-siNA-211; ds-siNA-212; ds-siNA-213; ds-siNA-214; ds-siNA-215; ds-siNA-216; ds-siNA-217; ds-siNA-218; ds-siNA-219; ds-siNA-220; ds-siNA-221; and ds-siNA-222. In some embodiments, the siNA is selected from ds-siNA-196 (sense and antisense respectively comprising SEQ ID NOs: 4578 and 4800), ds-siNA-197 (sense and antisense respectively comprising SEQ ID NOs: 4579 and 4801), ds-siNA-198 (sense and antisense respectively comprising SEQ ID NOs: 4580 and 4802), ds-siNA-199 (sense and antisense respectively comprising SEQ ID NOs: 4581 and 4803), ds-siNA-217 (sense and antisense respectively comprising SEQ ID NOs: 4599 and 4821), ds-siNA-218 (sense and antisense respectively comprising SEQ ID NOs: 4600 and 4822), ds-siNA-219 (sense and antisense respectively comprising SEQ ID NOs: 4601 and 4823), ds-siNA-220 (sense and antisense respectively comprising SEQ ID NOs: 4602 and 4824), ds-siNA-221 (sense and antisense respectively comprising SEQ ID NOs: 4603 and 4825), and ds-siNA-222 (sense and antisense respectively comprising SEQ ID NOs: 4604 and 4826). In some embodiments, the siNA is selected from ds-siNA-196 (sense and antisense respectively comprising SEQ ID NOs: 4578 and 4800), ds-siNA-197 (sense and antisense respectively comprising SEQ ID NOs: 4579 and 4801), ds-siNA-198 (sense and antisense respectively comprising SEQ ID NOs: 4580 and 4802), and ds-siNA-199 (sense and antisense respectively comprising SEQ ID NOs: 4581 and 4803). In some embodiments, the siNA is selected from, ds-siNA-217 (sense and antisense respectively comprising SEQ ID NOs: 4599 and 4821), ds-siNA-218 (sense and antisense respectively comprising SEQ ID NOs: 4600 and 4822), ds-siNA-219 (sense and antisense respectively comprising SEQ ID NOs: 4601 and 4823), ds-siNA-220 (sense and antisense respectively comprising SEQ ID NOs: 4602 and 4824), ds-siNA-221 (sense and antisense respectively comprising SEQ ID NOs: 4603 and 4825), and ds-siNA-222 (sense and antisense respectively comprising SEQ ID NOs: 4604 and 4826). In some embodiments, the (3-coronavirus can be SARS-CoV-2. In some embodiments, the β-coronavirus-caused disease can be COVID-19.


In some embodiments of the disclosed methods and uses, the subject is a mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a cat. In some embodiments, the subject is a camel.


In some embodiments of the disclosed methods and uses, the siNA is administered intravenously, subcutaneously, or via inhalation.


In some embodiments of the disclosed methods and uses, the subject has been treated with one or more additional coronavirus treatment agents. In some embodiments of the disclosed methods, the subject is concurrently treated with one or more additional coronavirus treatment agents.


The foregoing general description and following detailed description are exemplary and explanatory and are intended to provide further explanation of the disclosure as claimed. Other objects, advantages, and novel features will be readily apparent to those skilled in the art from the following brief description of the drawings and detailed description of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 (FIG. 1) shows the coronaviridae family and its four genera (top panel) and the full length genome of NCBI 407 (bottom panel), which encodes 28 proteins across multiple open reading frames (ORF s).



FIG. 2 (FIG. 2) shows the percent identity between multiple coronavirus, including sudden acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human coronavirus OC43 (top panel), and an alignment of the highly similar region of the genomes encodings non-structural protein 8 (nsp8) to non-structural protein (nsp15) (bottom panel).



FIG. 3 (FIG. 3) shows details of nsp8-nsp15.



FIG. 4 (FIG. 4) shows an exemplary siNA molecule.



FIG. 5 (FIG. 5) shows an exemplary siNA molecule.



FIGS. 6A-6I (FIGS. 6A-6I) show exemplary double-stranded siNA molecules.





DETAILED DESCRIPTION

Disclosed herein are short interfering nucleic acid (siNA) molecules. In some embodiments, the siNA is a double-stranded siNA (ds-siNA). In some embodiments, the ds-siNA comprises a sense strand and an antisense strand. In some embodiments, the ds-siNA comprises (a) a sense strand comprising a first nucleotide sequence, wherein the first nucleotide sequence is 15 to 30 nucleotides in length; and (b) an antisense strand comprising a second nucleotide sequence, wherein the second nucleotide sequence is 15 to 30 nucleotides in length and comprises a nucleotide sequence that is the reverse complement of the first nucleotide sequence.


Further disclosed herein are pharmaceutical compositions comprising the ds-siNA according to any one of the embodiments described herein and a pharmaceutically acceptable carrier or diluent. In some embodiments the disclosed compositions may comprise two or more ds-siNA according to any of the embodiments described herein.


Further disclosed herein is a method for treating a disease in a subject in need thereof, comprising administering the subject one or more siNA or pharmaceutical compositions of any of the embodiments described herein. In some embodiments, the disease is a viral infection, such as a coronavirus infection (e.g., COVID-19).


Further disclosed herein is the use of one or more ds-siRNA according to any of the embodiments described herein in the manufacture of a medicament for treating a disease, such as a viral infection or, more specifically, a coronavirus infection (e.g., COVID-19).


Further disclosed herein is a method for treating a disease in a subject in need thereof, comprising administering the subject one or more ds-siNA or pharmaceutical compositions of any of the embodiments described herein.


Further disclosed herein is a method of treating a β-coronavirus-caused disease (e.g., COVID-19) in a subject in need thereof, comprising administering the subject one or more ds-siNA according to any of the embodiments described herein.


As described in more detail below, the disclose siNA molecules may comprise modified nucleotides. The modified nucleotides may be selected from 2′-O-methyl nucleotides and 2′-fluoro nucleotides. The siNA molecules described herein may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more phosphorothioate internucleoside linkages. The siNA molecules described herein may comprise at least one phosphorylation blocker. The siNA molecules described herein may comprise a 5′-stabilized end cap. The siNA molecules described herein may comprise one or more blunt ends. The siNA molecules described herein may comprise one or more overhangs.


Further, the disclosed siNA molecules may comprise (a) a phosphorylation blocker; and (b) a siNA. The siNA may comprise at least 5 nucleotides. The nucleotides may be modified nucleotides, non-modified nucleotides, or any combination thereof. The nucleotides may be ribonucleotides, deoxyribonucleotides, or any combination thereof. The siNA may be single-stranded. Alternatively, the siNA is double-stranded. The double-stranded siNA may comprise one or more blunt ends. The double-stranded siNA may comprise one or more overhangs. The double-stranded siNA may comprise a blunt end and an overhang.


Further, the disclosed siNA molecules may comprise (a) a conjugated moiety; and (b) a siNA. The siNA may comprise at least 5 nucleotides. The nucleotides may be modified nucleotides, non-modified nucleotides, or any combination thereof. The nucleotides may be ribonucleotides, deoxyribonucleotides, or any combination thereof. The siNA may be single-stranded. Alternatively, the siNA is double-stranded. The double-stranded siNA may comprise one or more blunt ends. The double-stranded siNA may comprise one or more overhangs. The double-stranded siNA may comprise a blunt end and an overhang.


Further, the disclosed siNA molecules may comprise (a) a 5′-stabilized end cap; and (b) a siNA. The siNA may comprise at least 5 nucleotides. The nucleotides may be modified nucleotides, non-modified nucleotides, or any combination thereof. The nucleotides may be ribonucleotides, deoxyribonucleotides, or any combination thereof. The siNA may be single-stranded. Alternatively, the siNA is double-stranded. The double-stranded siNA may comprise one or more blunt ends. The double-stranded siNA may comprise one or more overhangs. The double-stranded siNA may comprise a blunt end and an overhang.


Further, the disclosed siNA molecules may comprise (a) at least one phosphorylation blocker, conjugated moiety, or 5′-stabilized end cap; and (b) a siNA. The siNA may comprise at least 5 nucleotides. The nucleotides may be modified nucleotides, non-modified nucleotides, or any combination thereof. The nucleotides may be ribonucleotides, deoxyribonucleotides, or any combination thereof. The siNA may be single-stranded. Alternatively, the siNA is double-stranded. The double-stranded siNA may comprise one or more blunt ends. The double-stranded siNA may comprise one or more overhangs. The double-stranded siNA may comprise a blunt end and an overhang.


Exemplary siNA, which may be used to treat and/or prevent coronavirus infections (e.g., COVID-19) are also described herein.


Definitions

It is to be understood that methods are not limited to the particular embodiments described, and as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. The scope of the present technology will be limited only by the appended claims.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


As used in the specification and claims, the singular form “a,” “an” and “the” include singular and plural references unless the context clearly dictates otherwise.


As used herein, the term “comprising” is intended to mean that the compositions and methods include the recited elements, but not excluding others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the composition or method. “Consisting of” shall mean excluding more than trace elements of other ingredients for claimed compositions and substantial method steps. Embodiments defined by each of these transition terms are within the scope of this disclosure. Accordingly, it is intended that the methods and compositions can include additional steps and components (comprising) or alternatively including steps and compositions of no significance (consisting essentially of) or alternatively, intending only the stated method steps or compositions (consisting of).


As used herein, “about” means plus or minus 10% as well as the specified number. For example, “about 10” should be understood as both “10” and “9-11.”


As used herein, “optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.


The terms “individual,” “subject,” and “patient” are used interchangeably herein, and refer to any individual mammal, e.g., bovine, canine, feline, equine, simian, porcine, camelid, bat, or human, being treated according to the disclosed methods or uses. In preferred embodiments, the subject is a human.


As used herein, the phrases “effective amount,” “therapeutically effective amount,” and “therapeutic level” mean the siNA dosage or concentration in a subject that provides the specific pharmacological effect for which the siNA is administered in a subject in need of such treatment, i.e. to treat or prevent a coronavirus infection (e.g., MERS, SARS, or COVID-19). It is emphasized that a therapeutically effective amount or therapeutic level of an siNA will not always be effective in treating the infections described herein, even though such dosage is deemed to be a therapeutically effective amount by those of skill in the art. For convenience only, exemplary dosages, drug delivery amounts, therapeutically effective amounts, and therapeutic levels are provided below. Those skilled in the art can adjust such amounts in accordance with standard practices as needed to treat a specific subject and/or condition. The therapeutically effective amount may vary based on the route of administration and dosage form, the age and weight of the subject, and/or the subject's condition, including the type and severity of the coronavirus infection.


The terms “treatment” or “treating” as used herein with reference to a coronavirus infections refer to reducing or eliminating viral load and/or improving or ameliorating one or more symptoms of an infection such as cough, shortness of breath, body aches, chills, and/or fever.


The terms “prevent” or “preventing” as used herein with reference to a coronavirus infections refer to precluding an infection from developing in a subject exposed to a coronavirus and/or avoiding the development of one or more symptoms of an infection such as cough, shortness of breath, body aches, chills, and/or fever. “Prevention” may occur when the viral load is never allowed to exceed beyond a threshold level at which point the subject begins to feel sick or exhibit symptoms. “Prevention” may also, in some embodiments, refer to the prevention of a subsequent infection once an initial infection has been treated or cured.


As used herein, the term “pharmaceutical composition” refers to the combination of an active agent with a carrier, inert or active, making the composition especially suitable for diagnostic or therapeutic use in vivo or ex vivo.


As used herein, the term “pharmaceutically acceptable carrier” refers to any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions (e.g., such as an oil/water or water/oil emulsions), and various types of wetting agents. The compositions also can include stabilizers and preservatives. For examples of carriers, stabilizers and adjuvants, see, for example, Martin, Remington's Pharmaceutical Sciences, 15th Ed., Mack Publ. Co., Easton, Pa. [1975].


The phrases “parenteral administration” and “administered parenterally” as used herein means modes of administration other than enteral and topical administration, usually by injection, and includes, without limitation, intravenous, intramuscular, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradermal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrasternal injection and infusion.


The phrases “systemic administration,” “administered systemically,” “peripheral administration” and “administered peripherally” as used herein mean the administration of a compound, drug or other material other than directly into the central nervous system, such that it enters the patient's system and, thus, is subject to metabolism and other like processes, for example, subcutaneous administration.


As used herein, the term “nucleobase” refers to a nitrogen-containing biological compound that forms a nucleoside. Examples of nucleobases include, but are not limited to, thymine, uracil, adenine, cytosine, guanine, aryl, heteroaryl, and an analogue or derivative thereof.


The target gene may be any gene in a cell or virus. Here, “target gene” and “target sequence” are used synonymously.


For the purposes of the present disclosure, a DNA sequence that replaces all the U residues of an RNA sequence with T residues is “identical” to the RNA sequence, and vice versa. Accordingly, a sequence that is “identical to an RNA corresponding to” a DNA sequence constitutes the DNA sequence with all T replaced by U. The presence of modified nucleotides or 2′-deoxynucleotides in a sequence does not make a sequence not “identical to an RNA” but rather a modified RNA.


As used herein, “modified nucleotide” includes any nucleic acid or nucleic acid analogue residue that contains a modification or substitution in the chemical structure of an unmodified nucleotide base, sugar (including, but not limited to, 2′-substitution), or phosphate (including, but not limited to, alternate internucleotide linkers, such as phosphorothioates or the substitution of bridging oxygens in phosphate linkers with bridging sulfurs), or a combination thereof. Non-limiting examples of modified nucleotides are shown herein.


As used herein, the term “d2vd3 nucleotide” refers to a nucleotide comprising a 5′-stabilized end cap of Formula (10):




embedded image


Throughout the description, where compositions are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are compositions of the present disclosure that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the present disclosure that consist essentially of, or consist of, the recited processing steps.


As a general matter, compositions specifying a percentage are by weight unless otherwise specified. Further, if a variable is not accompanied by a definition, then the previous definition of the variable controls.


Coronaviruses and Coronavirus Infections

The siNA molecules and compositions described herein may be administered to a subject to treat a disease. Further disclosed herein are uses of any of the siNA molecules or compositions disclosed herein in the manufacture of a medicament for treating a disease.


In some embodiments of the disclosed method and uses, the disease being treated is a viral disease. In some embodiments, the viral disease is caused by an RNA virus. In some embodiments, the RNA virus is a single-stranded RNA virus (ssRNA virus). In some embodiments, the ssRNA virus is a positive-sense single-stranded RNA virus ((+)ssRNA virus). In some embodiments, the (+)ssRNA virus is a coronavirus.


Coronaviruses are a family of viruses (i.e., the coronaviridae family) that cause respiratory infections in mammals and that comprise a genome that is roughly 30 kilobases in length. The coronaviridae family is divided into four genera and the genome encodes 28 proteins across multiple open reading frames, including 16 non-structural proteins (nsp) that are post-translationally cleaved from a polyprotein (see FIG. 1).


The coronaviridae family includes both α-coronaviruses or β-coronaviruses, which both mainly infect bats, but can also infect other mammals like humans, camels, and rabbits. β-coronaviruses have, to date, been of greater clinical importance, having caused epidemics including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and COVID-19. Other disease-causing β-coronaviruses include OC44, and HKU1. Non-limiting examples of disease-causing α-coronaviruses include, but are not limited to, 229E and NL63.


In some embodiments, the coronavirus is a β-coronaviruses. In some embodiments, the β-coronaviruses is selected from the group consisting of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (also known by the provisional name 2019 novel coronavirus, or 2019-nCoV), human coronavirus OC43 (hCoV-OC43), Middle East respiratory syndrome-related coronavirus (MERS-CoV, also known by the provisional name 2012 novel coronavirus, or 2012-nCoV), and severe acute respiratory syndrome-related coronavirus (SARS-CoV, also known as SARS-CoV-1). In some embodiments, the β-coronaviruses is SARS-CoV-2, the causative agent of COVID-19.


As shown in FIGS. 2 and 3, several disease-causing coronaviruses share a high degree of homology in the regions of the genome encoding non-structural proteins (nsp), and more specifically, in the region encoding nsp8-nsp15. Indeed, there is roughly 65% identity across the roughly 7 kB sequence of β-coronaviruses from about nucleotide 12900 to about nucleotide 19900 of 2019-nCoV, and some subsections of the genomic span of nsp8 to nsp15 may comprise 95% or more identity. All of the genes in this region encode non-structural proteins associated with replication. Accordingly, this segment of the genome is suitable for targeting with an siNA that can provide a broad spectrum treatment for multiple different types of coronavirus, such as MERS-CoV, SARS-CoV-1, and SARS-CoV-2.


Without wishing to be bound by theory, upon entry into a cell, any of the ds-siNA molecules disclosed herein may interact with proteins in the cell to form a RNA-Induced Silencing Complex (RISC). Once the ds-siNA is part of the RISC, the ds-siNA may be unwound to form a single-stranded siNA (ss-siNA). The ss-siNA may comprise the antisense strand of the ds-siNA. The antisense strand may bind to a complementary messenger RNA (mRNA), which results in silencing of the gene that encodes the mRNA.


In some embodiments, the target gene is a viral gene. In some embodiments, the viral gene is from an RNA virus. In some embodiments, the RNA virus is a single-stranded RNA virus (ssRNA virus). In some embodiments, the ssRNA virus is a positive-sense single-stranded RNA virus ((+)ssRNA virus). In some embodiments, the (+)ssRNA virus is a coronavirus. In some embodiments, the coronavirus is a β-coronavirus. In some embodiments, the β-coronavirus is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (also known by the provisional name 2019 novel coronavirus, or 2019-nCoV), human coronavirus OC43 (hCoV-OC43), Middle East respiratory syndrome-related coronavirus (MERS-CoV, also known by the provisional name 2012 novel coronavirus, or 2012-nCoV), severe acute respiratory syndrome-related coronavirus (SARS-CoV, also known as SARS-CoV-1). In some embodiments, the β-coronavirus is SARS-CoV-2.


In some embodiments, the target gene is selected from genome of SARS-CoV-2. In some embodiments, SARS-CoV-2 has a genome sequence shown in the nucleotide sequence of SEQ ID NO: 2407, which corresponds to the nucleotide sequence of GenBank Accession No. NC_045512.2, which is incorporated by reference in its entirety.


In some embodiments, the target gene is selected from genome of SARS-CoV. In some embodiments, SARS-CoV has a genome sequence shown in the nucleotide sequence of SEQ ID NO: 2408, which corresponds to the nucleotide sequence of GenBank Accession No. NC_004718.3, which is incorporated by reference in its entirety.


In some embodiments, the target gene is selected from the genome of MERS-CoV. In some embodiments, MERS-CoV has a genome sequence shown in the nucleotide sequence of SEQ ID NO: 2409, which corresponds to the nucleotide sequence of GenBank Accession No. NC_019843.3, which is incorporated by reference in its entirety.


In some embodiments, the target gene is selected from the genome of hCoV-OC43. In some embodiments, hCoV-OC43 has a genome sequence shown in the nucleotide sequence of SEQ ID NO: 2410, which corresponds to the nucleotide sequence of GenBank Accession No. NC_006213.1, which is incorporated by reference in its entirety.


Short Interfering Nucleic Acid (siNA) Molecules


As indicated above, the present disclosure provides siNA molecules comprising modified nucleotides. Any of the siNA molecules described herein may be double-stranded siNA (ds-siNA) molecules. The terms “siNA molecules” and “ds-siNA molecules” may be used interchangeably. In some embodiments, the ds-siNA molecules comprise a sense strand and an antisense strand.


The disclosed siNA molecules may comprise (a) at least one phosphorylation blocker, conjugated moiety, or 5′-stabilized end cap; and (b) a short interfering nucleic acid (siNA). In some embodiments, the phosphorylation blocker is a phosphorylation blocker disclosed herein. In some embodiments, the 5′-stabilized end cap is a 5′-stabilized end cap disclosed herein. The siNA may comprise any of the first nucleotide, second nucleotide, sense strand, or antisense strand sequences disclosed herein. The siNA may comprise 5 to 100, 5 to 90, 10 to 100, 10 to 90, 10 to 80, 10 to 70, 10 to 60, 10 to 50, 10 to 30, 10 to 25, 15 to 100, 15 to 90, 15 to 80, 15 to 70, 15 to 60, 15 to 50, 15 to 30, or 15 to 25 nucleotides. The siNA may comprise at least 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 nucleotides. The siNA may comprise less than or equal to 50, 45, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, or 19 nucleotides. The nucleotides may be modified nucleotides. The siNA may be single stranded. The siNA may be double stranded. The siNA may comprise (a) a sense strand comprising 15 to 30, 15 to 25, 15 to 24, 15 to 23, 15 to 22, 15 to 21, 17 to 30, 17 to 25, 17 to 24, 17 to 23, 17 to 22, 17 to 21, 18 to 30, 18 to 25, 18 to 24, 18 to 23, 18 to 22, 18 to 21, 19 to 30, 19 to 25, 19 to 24, 19 to 23, 19 to 22, 19 to 21, 20 to 25, 20 to 24, 20 to 23, 21 to 25, 21 to 24, or 21 to 23 nucleotides; and (b) an antisense strand comprising 15 to 30, 15 to 25, 15 to 24, 15 to 23, 15 to 22, 15 to 21, 17 to 30, 17 to 25, 17 to 24, 17 to 23, 17 to 22, 17 to 21, 18 to 30, 18 to 25, 18 to 24, 18 to 23, 18 to 22, 18 to 21, 19 to 30, 19 to 25, 19 to 24, 19 to 23, 19 to 22, 19 to 21, 20 to 25, 20 to 24, 20 to 23, 21 to 25, 21 to 24, or 21 to 23 nucleotides. The siNA may comprise (a) a sense strand comprising about 15, 16, 17, 18, 19, 20, 21, 22, or 23 nucleotides; and (b) an antisense strand comprising about 15, 16, 17, 18, 19, 20, 21, 22, or 23 nucleotides. The siNA may comprise (a) a sense strand comprising about 19 nucleotides; and (b) an antisense strand comprising about 21 nucleotides. The siNA may comprise (a) a sense strand comprising about 21 nucleotides; and (b) an antisense strand comprising about 23 nucleotides.


In some embodiments, any of the siNA molecules disclosed herein further comprise one or more linkers independently selected from a phosphodiester (PO) linker, phosphorothioate (PS) linker, phosphorodithioate linker, and PS-mimic linker. In some embodiments, the PS-mimic linker is a sulfur linker. In some embodiments, the linkers are internucleotide linkers. Alternatively, or additionally, the linkers connect a nucleotide of the siNA molecule to at least one phosphorylation blocker, conjugated moiety, or 5′-stabilized end cap. In some embodiments, the linkers connect a conjugated moiety to a phosphorylation blocker or 5′-stabilized end cap.


Table 1 details sequences of the present disclosure useful for sense and antisense strands, disclosed in SEQ ID NOs: 1-2406 and 3393-4374. Table 2 details representative genome sequences of four pathogenic β-coronaviruses, disclosed in SEQ ID NOs: 2407-2410. It is understood that RNA sequences corresponding to these sequences constitute identical sequences with all T replaced with U.


In some embodiments, the target gene a sequence 15 to 30, 15 to 25, 15 to 23, 17 to 23, 19 to 23, or 19 to 21 nucleotides in length, and preferably 19 or 21 nucleotides in length, within a region of either two, three, or four of SEQ ID NOs: 2407, 2408, 2409, and 2410. In some embodiments, the first nucleotide sequence is identical to an RNA sequence corresponding to a region of each of SEQ ID NOs: 2407, 2408, 2409, and 2410. In some embodiments, the target gene a sequence 15 to 30, 15 to 25, 15 to 23, 17 to 23, 19 to 23, or 19 to 21 nucleotides in length, and preferably 19 or 21 nucleotides in length, within a region of either two, three, or four of the genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (hCoV-OC43), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and severe acute respiratory syndrome-related coronavirus (SARS-CoV). In some embodiments, the first nucleotide sequence is identical to an RNA sequence corresponding to a region of each of two, three, or four of the genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (hCoV-OC43), Middle East respiratory syndrome-related coronavirus (MERS-CoV), and severe acute respiratory syndrome-related coronavirus (SARS-CoV). In some embodiments, the first nucleotide sequence is identical to the target gene. In some embodiments, the second nucleotide sequence is complementary to the target gene.


In some embodiments, the second nucleotide sequence is complementary to a sequence within a region of either two, three, or four of SEQ ID NOs: 2407, 2408, 2409, and 2410. In some embodiments, the second nucleotide sequence is complementary to an RNA sequence corresponding to a region of each of SEQ ID NOs: 2407, 2408, 2409, and 2410. In some embodiments, the second nucleotide sequence comprises a sequence corresponding to one of SEQ ID NOs: 1204-2406 and 3393-4374.


In some embodiments, the second nucleotide is complementary to a nucleotide region within SEQ ID NO: 2407, 2408, 2409, or 2410. In some embodiments, the second nucleotide sequence is complementary to 15 to 30, 15 to 25, 15 to 23, 15 to 22, 15 to 21, 17 to 25, 17 to 23, 17 to 22, 17 to 21, or 19 to 21 nucleotides, and preferably 19 to 21 nucleotides, and more preferably 19 or 21 nucleotides, within positions 190-216, 233-279, 288-324, 455-477, 626-651, 704-723, 3352-3378, 5384-5403, 6406-6483, 7532-7551, 9588-9606, 10484-10509, 11609-11630, 11834-11853, 12023-12045, 12212-12234, 12401-12420, 12839-12867, 12885-12924, 12966-12990, 13151-13176, 13363-13386, 13388-13416, 13458-13416, 13458-13520, 13762-13790, 14290-14312, 14404-14429, 14500-14531, 14623-14642, 14650-14687, 14698-14717, 14722-14748, 14750-14777, 14821-14846, 14854-14873, 14875-14903, 14962-14990, 14992-15020, 15055-15140, 15172-15200, 15310-15332, 15346-15367, 15496-15518, 15622-15644, 15838-15869, 15886-15905, 15985-16010, 16057-16079, 16186-16205, 16430-16448, 16822-16865, 16954-16976, 17008-17042, 17080-17111, 17137-17156, 17269-17289, 17530-17549, 17563-17582, 17680-17699, 17746-17765, 17857-17876, 17956-17975, 18100-18122, 18196-18218, 19618-19639, 19783-19802, 19831-19850, 20107-20130, 20776-20795, 21502-21524, 24302-24325, 24446-24465, 24620-24651, 24662-24684, 25034-25057, 25104-25128, 25364-25387, 25502-25530, 26191-26227, 26232-26267, 26269-26330, 26332-26394, 26450-26481, 26574-26600, 27003-27064, 27093-27111, 27183-27212, 27382-27407, 27511-27533, 27771-27818, 28270-28296, 28397-28434, 28513-28546, 28673-28692, 28706-28726, 28744-28794, 28799-28827, 28946-28972, 28976-29034, 29144-29172, 29174-29196, 29228-29259, 29285-29305, 29342-29394, 29444-29463, 29543-29566, 29598-29630, 29652-29687, 29689-29731, 29733-29757, or 29770-29828 of SEQ ID NO: 2407. In some embodiments, the second nucleotide sequence is complementary to any one of SEQ ID NOs: 1-1203 and 2411-3392. In some embodiments, the second nucleotide sequence is identical to an RNA corresponding to any one of SEQ ID NOs: 1204-2406 and 3393-4374.


In some embodiments, the first nucleotide sequence is identical to a nucleotide region within SEQ ID NOs: 2407, 2408, 2409, or 2410, with the exception that the thymines (Ts) in SEQ ID NOs: 2407, 2408, 2409, or 2410 are replaced with uracil (U). In some embodiments, the first nucleotide sequence is identical to 15 to 30, 15 to 25, 15 to 23, 15 to 22, 15 to 21, 17 to 25, 17 to 23, 17 to 22, 17 to 21, or 19 to 21 nucleotides, and preferably 19 to 21 nucleotides, and more preferably 19 or 21 nucleotides, within positions 190-216, 233-279, 288-324, 455-477, 626-651, 704-723, 3352-3378, 5384-5403, 6406-6483, 7532-7551, 9588-9606, 10484-10509, 11609-11630, 11834-11853, 12023-12045, 12212-12234, 12401-12420, 12839-12867, 12885-12924, 12966-12990, 13151-13176, 13363-13386, 13388-13416, 13458-13416, 13458-13520, 13762-13790, 14290-14312, 14404-14429, 14500-14531, 14623-14642, 14650-14687, 14698-14717, 14722-14748, 14750-14777, 14821-14846, 14854-14873, 14875-14903, 14962-14990, 14992-15020, 15055-15140, 15172-15200, 15310-15332, 15346-15367, 15496-15518, 15622-15644, 15838-15869, 15886-15905, 15985-16010, 16057-16079, 16186-16205, 16430-16448, 16822-16865, 16954-16976, 17008-17042, 17080-17111, 17137-17156, 17269-17289, 17530-17549, 17563-17582, 17680-17699, 17746-17765, 17857-17876, 17956-17975, 18100-18122, 18196-18218, 19618-19639, 19783-19802, 19831-19850, 20107-20130, 20776-20795, 21502-21524, 24302-24325, 24446-24465, 24620-24651, 24662-24684, 25034-25057, 25104-25128, 25364-25387, 25502-25530, 26191-26227, 26232-26267, 26269-26330, 26332-26394, 26450-26481, 26574-26600, 27003-27064, 27093-27111, 27183-27212, 27382-27407, 27511-27533, 27771-27818, 28270-28296, 28397-28434, 28513-28546, 28673-28692, 28706-28726, 28744-28794, 28799-28827, 28946-28972, 28976-29034, 29144-29172, 29174-29196, 29228-29259, 29285-29305, 29342-29394, 29444-29463, 29543-29566, 29598-29630, 29652-29687, 29689-29731, 29733-29757, or 29770-29828 of SEQ ID NO: 2407. In some embodiments, the first nucleotide sequence is identical to an RNA corresponding to any one of SEQ ID NOs: 1-1203 and 2411-3392. In some embodiments, the first nucleotide sequence is complementary to any one of SEQ ID NOs: 1204-2406 and 3393-4374.


An exemplary siNA molecule of the present disclosure is shown in FIG. 4. As shown in FIG. 4, an exemplary siNA molecule can comprise a sense strand (101) and an antisense strand (102). The sense strand (101) may comprise a first oligonucleotide sequence (103). The first oligonucleotide sequence (103) may comprise one or more phosphorothioate internucleoside linkages (109). The phosphorothioate internucleoside linkage (109) may be between the nucleotides at the 5′ or 3′ terminal end of the first oligonucleotide sequence (103). The phosphorothioate internucleoside linkage (109) may be between the first three nucleotides from the 5′ end of the first oligonucleotide sequence (103). The first oligonucleotide sequence (103) may comprise one or more 2′-fluoro nucleotides (110). The first oligonucleotide sequence (103) may comprise one or more 2′-O-methyl nucleotides (111). The first oligonucleotide sequence (103) may comprise 15 or more modified nucleotides independently selected from 2′-fluoro nucleotides (110) and 2′-O-methyl nucleotides (111). The sense strand (101) may further comprise a phosphorylation blocker (105). The sense strand (101) may further comprise an optional conjugated moiety (106). The antisense strand (102) may comprise a second oligonucleotide sequence (104). The second oligonucleotide sequence (104) may comprise one or more phophorothioate internucleoside linkages (109). The phosphorothioate internucleoside linkage (109) may be between the nucleotides at the 5′ or 3′ terminal end of the second oligonucleotide sequence (104). The phosphorothioate internucleoside linkage (109) may be between the first three nucleotides from the 5′ end of the second oligonucleotide sequence (104). The phosphorothioate internucleoside linkage (109) may be between the first three nucleotides from the 3′ end of the second oligonucleotide sequence (104). The second oligonucleotide sequence (104) may comprise one or more 2′-fluoro nucleotides (110). The second oligonucleotide sequence (104) may comprise one or more 2′-O-methyl nucleotides (111). The second oligonucleotide sequence (104) may comprise 15 or more modified nucleotides independently selected from 2′-fluoro nucleotides (110) and 2′-O-methyl nucleotides (111). The antisense strand (102) may further comprise a 5′-stabilized end cap (107). The siNA may further comprise one or more blunt ends. Alternatively, or additionally, one end of the siNA may comprise an overhang (108). The overhang (108) may be part of the sense strand (101). The overhang (108) may be part of the antisense strand (102). The overhang (108) may be distinct from the first nucleotide sequence (103). The overhang (108) may be distinct from the second nucleotide sequence (104). The overhang (108) may be part of the first nucleotide sequence (103). The overhang (108) may be part of the second nucleotide sequence (104). The overhang (108) may comprise 1 or more nucleotides. The overhang (108) may comprise 1 or more deoxyribonucleotides. The overhang (108) may comprise 1 or more modified nucleotides. The overhang (108) may comprise 1 or more modified ribonucleotides. The sense strand (101) may be shorter than the antisense strand (102). The sense strand (101) may be the same length as the antisense strand (102). The sense strand (101) may be longer than the antisense strand (102).


Another exemplary siNA molecule of the present disclosure is shown in FIG. 5. As shown in FIG. 5, an exemplary siNA molecule can comprise a sense strand (201) and an antisense strand (202). The sense strand (201) may comprise a first oligonucleotide sequence (203). The first oligonucleotide sequence (203) may comprise one or more phophorothioate internucleoside linkages (209). The phosphorothioate internucleoside linkage (209) may be between the nucleotides at the 5′ or 3′ terminal end of the first oligonucleotide sequence (203). The phosphorothioate internucleoside linkage (209) may be between the first three nucleotides from the 5′ end of the first oligonucleotide sequence (203). The first oligonucleotide sequence (203) may comprise one or more 2′-fluoro nucleotides (210). The first oligonucleotide sequence (203) may comprise one or more 2′-O-methyl nucleotides (211). The first oligonucleotide sequence (203) may comprise 15 or more modified nucleotides independently selected from 2′-fluoro nucleotides (210) and 2′-O-methyl nucleotides (211). The sense strand (201) may further comprise a phosphorylation blocker (205). The sense strand (201) may further comprise an optional conjugated moiety (206). The antisense strand (202) may comprise a second oligonucleotide sequence (204). The second oligonucleotide sequence (204) may comprise one or more phophorothioate internucleoside linkages (209). The phosphorothioate internucleoside linkage (209) may be between the nucleotides at the 5′ or 3′ terminal end of the second oligonucleotide sequence (204). The phosphorothioate internucleoside linkage (209) may be between the first three nucleotides from the 5′ end of the second oligonucleotide sequence (204). The phosphorothioate internucleoside linkage (209) may be between the first three nucleotides from the 3′ end of the second oligonucleotide sequence (204). The second oligonucleotide sequence (204) may comprise one or more 2′-fluoro nucleotides (210). The second oligonucleotide sequence (204) may comprise one or more 2′-O-methyl nucleotides (211). The second oligonucleotide sequence (204) may comprise 15 or more modified nucleotides independently selected from 2′-fluoro nucleotides (210) and 2′-O-methyl nucleotides (211). The antisense strand (202) may further comprise a 5′-stabilized end cap (207). The siNA may further comprise one or more overhangs (208). The overhang (208) may be part of the sense strand (201). The overhang (208) may be part of the antisense strand. (202). The overhang (208) may be distinct from the first nucleotide sequence (203). The overhang (208) may be distinct from the second nucleotide sequence (204). The overhang (208) may be part of the first nucleotide sequence (203). The overhang (208) may be part of the second nucleotide sequence (204). The overhang (208) may be adjacent to the 3′ end of the first nucleotide sequence (203). The overhang (208) may be adjacent to the 5′ end of the first nucleotide sequence (203). The overhang (208) may be adjacent to the 3′ end of the second nucleotide sequence (204). The overhang (208) may be adjacent to the 5′ end of the second nucleotide sequence (204). The overhang (208) may comprise 1 or more nucleotides. The overhang (208) may comprise 1 or more deoxyribonucleotides. The overhang (208) may comprise a TT sequence. The overhang (208) may comprise 1 or more modified nucleotides. The overhang (208) may comprise 1 or more modified nucleotides disclosed herein (e.g., 2-fluoro nucleotide, 2′-O-methyl nucleotide, 2′-fluoro nucleotide mimic, 2′-O-methyl nucleotide mimic, or a nucleotide comprising a modified nucleobase). The overhang (208) may comprise 1 or more modified ribonucleotides. The sense strand (201) may be shorter than the antisense strand (202). The sense strand (201) may be the same length as the antisense strand (202). The sense strand (201) may be longer than the antisense strand (202).



FIGS. 6A-6I depict exemplary ds-siNA modification patterns. As shown in FIGS. 6A-6G, an exemplary ds-siNA molecule may have the following formula:











5′-An1Bn2An3Bn4An5Bn6An7Bn8An9-3′







3′-Cq1Aq2Bq3Aq4Bq5Aq6Bq7Aq8Bq9Aq10Bq11Aq12-5′







wherein:


the top strand is a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence comprises 15 to 30 nucleotides;


the bottom strand is an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence comprises 15 to 30 nucleotides;


each A is independently a 2′-O-methyl nucleotide or a nucleotide comprising a 5′ stabilized end cap or phosphorylation blocker;


B is a 2′-fluoro nucleotide;


C represents overhanging nucleotides and is a 2′-O-methyl nucleotide;


n1=1-4 nucleotides in length;


each n2, n6, n8, q3, q5, q7, q9, q11, and q12 is independently 0-1 nucleotides in length;


each n3 and n4 is independently 1-3 nucleotides in length;


n5 is 1-10 nucleotides in length;


n7 is 0-4 nucleotides in length;


each n9, q1, and q2 is independently 0-2 nucleotides in length;


q4 is 0-3 nucleotides in length;


q6 is 0-5 nucleotides in length;


q8 is 2-7 nucleotides in length; and


q10 is 2-11 nucleotides in length.


The ds-siNA may further comprise a conjugated moiety. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2 and positions 2 and 3 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the antisense strand. The ds-siNA may further comprise a 5′-stabilizing end cap. The 5′-stabilizing end cap may be a vinyl phosphonate. The 5′-stabilizing end cap may be attached to the 5′ end of the antisense strand. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker. An exemplary ds-siNA molecule may have the following formula:











5′-A2-4B1A1-3B2-3A2-10B0-1A0-4B0-1A0-2-3′







3′-C2A0-2B0-1A0-3B0-1A0-5B0-1A2-7B1A2-11B1A1-5′







wherein:


the top strand is a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence comprises 15 to 30 nucleotides;


the bottom strand is an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence comprises 15 to 30 nucleotides;


each A is independently a 2′-O-methyl nucleotide or a nucleotide comprising a 5′ stabilized end cap or phosphorylation blocker;


B is a 2′-fluoro nucleotide;


C represents overhanging nucleotides and is a 2′-O-methyl nucleotide.


The ds-siNA may further comprise a conjugated moiety. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2 and positions 2 and 3 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the antisense strand. The ds-siNA may further comprise a 5′-stabilizing end cap. The 5′-stabilizing end cap may be a vinyl phosphonate. The vinyl phosphonate may be a deuterated vinyl phosphonate. The deuterated vinyl phosphonate may be a mono-deuterated vinyl phosphonate. The deuterated vinyl phosphonate may be a mono-di-deuterated vinyl phosphonate. The 5′-stabilizing end cap may be attached to the 5′ end of the antisense strand. The 5′-stabilizing end cap may be attached to the 3′ end of the antisense strand. The 5′-stabilizing end cap may be attached to the 5′ end of the sense strand. The 5′-stabilizing end cap may be attached to the 3′ end of the sense strand. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker.


The exemplary ds-siNA shown in FIGS. 6A-6I comprise (i) a sense strand comprising 19-21 nucleotides; and (ii) an antisense strand comprising 21-23 nucleotides. The ds-siNA may further comprise (iii) an optional conjugated moiety, wherein the conjugated moiety is attached to the 3′ end of the antisense strand and, in some embodiments, no ps would be needed at the 3′-end of the sense strand if it is conjugated to a moiety and such conjugation my also result in removal of the 5′ overhang on the sense strand. The ds-siNA may comprise a 2-nucleotide overhang consisting of nucleotides at positions 20 and 21 from the 5′ end of the antisense strand. The ds-siNA may comprise a 2-nucleotide overhang consisting of nucleotides at positions 22 and 23 from the 5′ end of the antisense strand. The ds-siNA may further comprise 1, 2, 3, 4, 5, 6 or more phosphorothioate (ps) internucleoside linkages. At least one phosphorothioate internucleoside linkage may be between the nucleotides at positions 1 and 2 or positions 2 and 3 from the 5′ end of the sense strand. At least one phosphorothioate internucleoside linkage may be between the nucleotides at positions 1 and 2 or positions 2 and 3 from the 5′ end of the antisense strand. At least one phosphorothioate internucleoside linkage may be between the nucleotides at positions 19 and 20, positions 20 and 21, positions 21 and 22, or positions 22 and 23 from the 5′ end of the antisense strand. As shown in FIGS. 6A-6G, 4-6 nucleotides in the sense strand may be 2′-fluoro nucleotides. As shown in FIGS. 6A-6G, 2-5 nucleotides in the antisense strand may be 2′-fluoro nucleotides. As shown in FIGS. 6A-6G, 13-15 nucleotides in the sense strand may be 2′-O-methyl nucleotides. As shown in FIGS. 6A-6G, 14-19 nucleotides in the antisense strand may be 2′-O-methyl nucleotides. As shown in FIGS. 6A-6G, the ds-siNA does not contain a base pair between 2′-fluoro nucleotides on the sense and antisense strands. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker.


As shown in FIG. 6A, a ds-siNA may comprise (a) a sense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 3, 7-9, 12, and 17 from the 5′ end of the sense strand, and wherein 2′-O-methyl nucleotides are at positions 1, 2, 4-6, 10, 11, 13-16, and 18-21 from the 5′ end of the sense strand; (b) an antisense strand consisting of 21 nucleotides, wherein nucleotides at positions 2 and 14 from the 5′ end of the antisense strand are 2′-fluoro nucleotides; and wherein nucleotides at positions 1, 3-13, and 15-21 are 2′-O-methyl nucleotides. The ds-siNA may further comprise a conjugated moiety attached to the 3′ end of the sense strand. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the antisense strand. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a 2′-fluoro nucleotide mimic. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-O-methyl nucleotide on the sense or antisense strand is a 2′-O-methyl nucleotide mimic.


As shown in FIG. 6B, a ds-siNA may comprise (a) a sense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 3, 7, 8, 12, and 17 from the 5′ end of the sense strand, and wherein 2′-O-methyl nucleotides are at positions 1, 2, 4-6, 9-11, 13-16, and 18-21 from the 5′ end of the sense strand; (b) an antisense strand consisting of 21 nucleotides, wherein nucleotides at positions 2 and 14 from the 5′ end of the antisense strand are 2′-fluoro nucleotides; and wherein nucleotides at positions 1, 3-13, and 15-21 are 2′-O-methyl nucleotides. The ds-siNA may further comprise a conjugated moiety attached to the 3′ end of the sense strand. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the antisense strand. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a 2′-fluoro nucleotide mimic. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-O-methyl nucleotide on the sense or antisense strand is a 2′-O-methyl nucleotide mimic.


As shown in FIG. 6C, a ds-siNA may comprise (a) a sense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 3, 7-9, 12, and 17 from the 5′ end of the sense strand, and wherein 2′-O-methyl nucleotides are at positions 1, 2, 4-6, 10, 11, 13-16, and 18-21 from the 5′ end of the sense strand; (b) an antisense strand consisting of 21 nucleotides, wherein the nucleotides in the antisense strand comprise an alternating 1:3 modification pattern, and wherein 1 nucleotide is a 2′-fluoro nucleotide and 3 nucleotides are 2′-O-methyl nucleotides. The ds-siNA may further comprise a conjugated moiety attached to the 3′ end of the sense strand. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; and positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the antisense strand. The ds-siNA may comprise 2-5 alternating 1:3 modification patterns on the antisense strand. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a 2′-fluoro nucleotide mimic. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the antisense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-O-methyl nucleotide on the sense or antisense strand is a 2′-O-methyl nucleotide mimic.


As shown in FIG. 6D, a ds-siNA may comprise (a) a sense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 5 and 7-9 from the 5′ end of the sense strand, and wherein 2′-O-methyl nucleotides are at positions 1-4, 6, and 10-21 from the 5′ end of the sense strand; (b) an antisense strand consisting of 21 nucleotides, wherein the nucleotides in the antisense strand comprise an alternating 1:3 modification pattern, and wherein 1 nucleotide is a 2′-fluoro nucleotide and 3 nucleotides are 2′-O-methyl nucleotides. The ds-siNA may further comprise a conjugated moiety attached to the 3′ end of the sense strand. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the antisense strand. The ds-siNA may comprise 2-5 alternating 1:3 modification patterns on the antisense strand. The alternating 1:3 modification pattern may start at the nucleotide at any of positions 2, 6, 10, 14, and/or 18 from the 5′ end of the antisense strand. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a 2′-fluoro nucleotide mimic. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the antisense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-O-methyl nucleotide on the sense or antisense strand is a 2′-O-methyl nucleotide mimic.


As shown in FIG. 6E, a ds-siNA may comprise (a) a sense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 5 and 7-9 from the 5′ end of the sense strand, and wherein 2′-O-methyl nucleotides are at positions 1-4, 6, and 10-21 from the 5′ end of the sense strand; (b) an antisense strand consisting of 21 nucleotides, wherein nucleotides at positions 2, 5, 8, 14, and 17 from the 5′ end of the antisense strand are 2′-fluoro nucleotides; and wherein nucleotides at positions 1, 3-13, and 15-21 are 2′-O-methyl nucleotides. The ds-siNA may further comprise a conjugated moiety attached to the 3′ end of the sense strand. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the antisense strand. The ds-siNA may comprise 2-5 alternating 1:2 modification patterns on the antisense strand. The alternating 1:2 modification pattern may start at the nucleotide at any of positions 2, 5, 8, 14, and/or 17 from the 5′ end of the antisense strand. In some embodiments, the ds-siNA comprises (a) a sense strand consisting of 19 nucleotides, wherein 2′-fluoro nucleotides are at positions 5 and 7-9 from the 5′ end of the sense strand, and wherein 2′-O-methyl nucleotides are at positions 1-4, 6, and 10-19 from the 5′ end of the sense strand; (b) an antisense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 2, 5, 8, 14, and 17 from the 5′ end of the antisense strand, and wherein 2′-O-methyl nucleotides are at positions 1, 3, 4, 6, 7, 9-13, 15, 16, and 18-21 from the 5′ end of the sense strand. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a 2′-fluoro nucleotide mimic. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the antisense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-O-methyl nucleotide on the sense or antisense strand is a 2′-O-methyl nucleotide mimic.


As shown in FIG. 6F, a ds-siNA may comprise (a) a sense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 5 and 7-9 from the 5′ end of the sense strand, and wherein 2′-O-methyl nucleotides are at positions 1-4, 6, and 10-21 from the 5′ end of the sense strand; (b) an antisense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand, and wherein 2′-O-methyl nucleotides are at positions 1, 3-5, 7-13, 15, and 17-21 from the 5′ end of the antisense strand. The ds-siNA may further comprise a conjugated moiety attached to the 3′ end of the sense strand. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 19 and 20; and positions 20 and 21 from the 5′ end of the antisense strand. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a f4P nucleotide. In some embodiments, at least 1, 2, 3, or 4 of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a f4P nucleotide. In some embodiments, at least one of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a f4P nucleotide. In some embodiments, at least two of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a f4P nucleotide. In some embodiments, less than or equal to 3 of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a f4P nucleotide. In some embodiments, less than or equal to 2 of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a f4P nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 2 from the 5′ end of the antisense strand is a f4P nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 6 from the 5′ end of the antisense strand is a f4P nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 14 from the 5′ end of the antisense strand is a f4P nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 16 from the 5′ end of the antisense strand is a f4P nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a f2P nucleotide. In some embodiments, at least 1, 2, 3, or 4 of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a f2P nucleotide. In some embodiments, at least one of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a f2P nucleotide. In some embodiments, at least two of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a f2P nucleotide. In some embodiments, less than or equal to 3 of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a f2P nucleotide. In some embodiments, less than or equal to 2 of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a f2P nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 2 from the 5′ end of the antisense strand is a f2P nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 6 from the 5′ end of the antisense strand is a f2P nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 14 from the 5′ end of the antisense strand is a f2P nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 16 from the 5′ end of the antisense strand is a f2P nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a fX nucleotide. In some embodiments, at least 1, 2, 3, or 4 of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a fX nucleotide. In some embodiments, at least one of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a fX nucleotide. In some embodiments, at least two of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a fX nucleotide. In some embodiments, less than or equal to 3 of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a fX nucleotide. In some embodiments, less than or equal to 2 of the 2′-fluoro-nucleotides at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand is a fX nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 2 from the 5′ end of the antisense strand is a fX nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 6 from the 5′ end of the antisense strand is a fX nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 14 from the 5′ end of the antisense strand is a fX nucleotide. In some embodiments, the 2′-fluoro-nucleotide at position 16 from the 5′ end of the antisense strand is a fX nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a 2′-fluoro nucleotide mimic. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the antisense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-O-methyl nucleotide on the sense or antisense strand is a 2′-O-methyl nucleotide mimic.


As shown in FIG. 6G, a ds-siNA may comprise (a) a sense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 5, 9-11, 14, and 19 from the 5′ end of the sense strand, and wherein 2′-O-methyl nucleotides are at positions 1-4, 6-8, 12, 13, 15-18, 20, and 21 from the 5′ end of the sense strand; and (b) an antisense strand consisting of 23 nucleotides, wherein 2′-flouro nucleotides are at positions 2 and 14 from the 5′ end of the antisense strand, and wherein 2′-O-methyl nucleotides are at positions 1, 3-13, and 15-23 from the 5′ end of the antisense strand. The ds-siNA may further comprise a conjugated moiety attached to the 3′ end of the sense strand. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; and positions 20 and 21 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 21 and 22; and positions 22 and 23 from the 5′ end of the antisense strand. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a 2′-fluoro nucleotide mimic. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the antisense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-O-methyl nucleotide on the sense or antisense strand is a 2′-O-methyl nucleotide mimic.


As shown in FIG. 6H, a ds-siNA may comprise (a) a sense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 7 and 9-11 from the 5′ end of the sense strand, and wherein 2′-O-methyl nucleotides are at positions 1-6, 8, and 12-21 from the 5′ end of the sense strand; and (b) an antisense strand consisting of 23 nucleotides, wherein 2′-flouro nucleotides are at positions 2, 6, 14, and 16 from the 5′ end of the antisense strand, and wherein 2′-O-methyl nucleotides are at positions 1, 3-5, 7-13, 15, and 17-23 from the 5′ end of the antisense strand. The ds-siNA may further comprise a conjugated moiety attached to the 3′ end of the sense strand. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; and positions 20 and 21 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 21 and 22; and positions 22 and 23 from the 5′ end of the antisense strand. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a 2′-fluoro nucleotide mimic. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the antisense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-O-methyl nucleotide on the sense or antisense strand is a 2′-O-methyl nucleotide mimic.


As shown in FIG. 6I, a ds-siNA may comprise (a) a sense strand consisting of 21 nucleotides, wherein 2′-fluoro nucleotides are at positions 7 and 9-11 from the 5′ end of the sense strand, and wherein 2′-O-methyl nucleotides are at positions 1-6, 8, and 12-21 from the 5′ end of the sense strand; and (b) an antisense strand consisting of 23 nucleotides, wherein 2′-flouro nucleotides are at positions 2, 5, 8, 14, 17, and 20 from the 5′ end of the antisense strand, and wherein 2′-O-methyl nucleotides are at positions 1, 3, 4, 6, 9-13, 15, 16, 18, 19, and 21-23 from the 5′ end of the antisense strand. The ds-siNA may further comprise a conjugated moiety attached to the 3′ end of the sense strand. The ds-siNA may further comprise (i) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; and positions 20 and 21 from the 5′ end of the sense strand; and (ii) phosphorothioate internucleoside linkages between the nucleotides at positions 1 and 2; positions 2 and 3; positions 21 and 22; and positions 22 and 23 from the 5′ end of the antisense strand. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a 5′ stabilizing end cap. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is further modified to contain a phosphorylation blocker. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 5′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the sense strand is a d2vd3 nucleotide. In some embodiments, the 2′-O-methyl nucleotide at position 1 from the 3′ end of the antisense strand is a d2vd3 nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand or antisense strand is a 2′-fluoro nucleotide mimic. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the sense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-fluoro nucleotides on the antisense strand is a f4P, f2P, or fX nucleotide. In some embodiments, at least 1, 2, 3, 4 or more 2′-O-methyl nucleotide on the sense or antisense strand is a 2′-O-methyl nucleotide mimic.


In some embodiments, the nucleotides in the antisense strand may comprise an alternating 1:2 modification pattern, wherein 1 nucleotide is a 2′-fluoro nucleotide and 2 nucleotides are 2′-O-methyl nucleotides. In some embodiments, the nucleotides in the antisense strand may comprise an alternating 1:1 modification pattern (i.e., an alternating pattern), wherein 1 nucleotide is a 2′-fluoro nucleotide and 1 nucleotide is a 2′-O-methyl nucleotide in an alternating fashion. These alternating modification patterns may start at any nucleotide of the antisense strand.


Any of the siNAs disclosed herein may comprise a sense strand and an antisense strand. The sense strand may comprise a first nucleotide sequence that is 15 to 30 nucleotides in length. The antisense strand may comprise a second nucleotide sequence that is 15 to 30 nucleotides in length.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of this disclosure may comprise: (a) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and the nucleotide at position 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide; and (b) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of the disclosure may comprise: (a) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and the nucleotide at position 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide; and (b) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of the disclosure may comprise: (a) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and the nucleotide at position 7 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide; and (b) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of the disclosure may comprise: (a) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and the nucleotide at position 7, 9, 10, and/or 11 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide; and (b) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of the disclosure may comprise: (a) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and (b) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and the nucleotide at position 2, 5, 6, 8, 10, 14, 16, 17, and/or 18 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of the disclosure may comprise: (a) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and (b) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and the nucleotide at position 2 of the second nucleotide sequence is a 2′-fluoro nucleotide.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of the disclosure may comprise: (a) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (i) is 15 to 30 nucleotides in length; (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and (iii) comprises 1 or more phosphorothioate internucleoside linkage; and (b) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (i) is 15 to 30 nucleotides in length; (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and (iii) comprises 1 or more phosphorothioate internucleoside linkage.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of the disclosure may comprise: (a) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and (b) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide, wherein the ds-siNA may further comprise a phosphorylation blocker and/or a 5′-stabilized end cap.


A double-stranded short interfering nucleic acid (ds-siNA) molecule comprises: (I) a sense strand comprising (A) a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and (B) a phosphorylation blocker; and (II) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (a) is 15 to 30 nucleotides in length; and (b) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of the disclosure may comprise: (I) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (a) is 15 to 30 nucleotides in length; and (b) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and (II) an antisense strand comprising (A) a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and (B) a 5′-stabilized end cap.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of the disclosure may comprise: (I) a sense strand comprising (A) a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and (B) a phosphorylation blocker; and (II) an antisense strand comprising (A) a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence: (i) is 15 to 30 nucleotides in length; and (ii) comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and (B) a 5′-stabilized end cap.


A double-stranded short interfering nucleic acid (ds-siNA) molecule of the disclosure may comprise: (a) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence comprises a nucleotide sequence of any one of the sequences disclosed in Table 1; and (b) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence comprises a nucleotide sequence of any one of the sequences disclosed in Table 1.


A double-stranded short interfering nucleic acid (ds-siNA) molecule comprises: (a) a sense strand comprising a first nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to a target gene, wherein the first nucleotide sequence comprises a nucleotide sequence as shown in Table 2; and (b) an antisense strand comprising a second nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the RNA corresponding to the target gene, wherein the second nucleotide sequence comprises a nucleotide sequence as shown in Table 2.


Further disclosed herein are compositions comprising two or more of the siNA molecules described herein. Further disclosed herein are compositions comprising any of the siNA molecule described and a pharmaceutically acceptable carrier or diluent. Further disclosed herein are compositions comprising two or more of the siNA molecules described herein for use as a medicament. Further disclosed herein are compositions comprising any of the siNA molecule described and a pharmaceutically acceptable carrier or diluent for use as a medicament.


Further disclosed herein are methods of treating an infection (e.g., COVID-19) in a subject in need thereof, the method comprising administering to the subject any of the siNA molecules described herein. Further disclosed herein are uses of any of the siNA molecules described herein in the manufacture of a medicament for treating an infection (e.g., COVID-19).


A. siNA Sense Strand


Any of the siNA molecules or oligomers described herein may comprise a sense strand. The sense strand may comprise a first nucleotide sequence. The first nucleotide sequence may be 15 to 30, 15 to 25, 15 to 23, 17 to 23, 19 to 23, or 19 to 21 nucleotides in length. In some embodiments, the first nucleotide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some embodiments, the first nucleotide sequence is at least 19 nucleotides in length. In some embodiments, the first nucleotide sequence is at least 21 nucleotides in length.


In some embodiments, the sense strand is the same length as the first nucleotide sequence. In some embodiments, the sense strand is longer than the first nucleotide sequence. In some embodiments, the sense strand may further comprise 1, 2, 3, 4, or 5 or more nucleotides than the first nucleotide sequence. In some embodiments, the sense strand may further comprise a deoxyribonucleic acid (DNA). In some embodiments, the DNA is thymine (T). In some embodiments, the sense strand may further comprise a TT sequence. In some embodiments, the TT sequence is adjacent to the first nucleotide sequence. In some embodiments, the sense strand may further comprise one or more modified nucleotides that are adjacent to the first nucleotide sequence. In some embodiments, the one or more modified nucleotides are independently selected from any of the modified nucleotides disclosed herein (e.g., 2′-fluoro nucleotide, 2′-O-methyl nucleotide, 2′-fluoro nucleotide mimic, 2′-O-methyl nucleotide mimic, or a nucleotide comprising a modified nucleobase).


In some embodiments, at least one end of the ds-siNA may be a blunt end. In some embodiments, at least one end of the ds-siNA may comprise an overhang, wherein the overhang comprises at least one nucleotide. In some embodiments, both ends of the ds-siNA may comprise an overhang, wherein the overhang comprises at least one nucleotide.


In some embodiments, the first nucleotide sequence comprises 15, 16, 17, 18, 19, 20, 21, 22, 23, or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide. In some embodiments, 70%, 75%, 80%, 85%, 90%, 95% or 100% of the nucleotides in the first nucleotide sequence are modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide. In some embodiments, 100% of the nucleotides in the first nucleotide sequence are modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide. In some embodiments, the 2′-O-methyl nucleotide is a 2′-O-methyl nucleotide mimic. In some embodiments, the 2′-fluoro nucleotide is a 2′-fluoro nucleotide mimic.


In some embodiments, between about 15 to 30, 15 to 25, 15 to 24, 15 to 23, 15 to 22, 15 to 21, 17 to 30, 17 to 25, 17 to 24, 17 to 23, 17 to 22, 17 to 21, 18 to 30, 18 to 25, 18 to 24, 18 to 23, 18 to 22, 18 to 21, 19 to 30, 19 to 25, 19 to 24, 19 to 23, 19 to 22, 19 to 21, 20 to 25, 20 to 24, 20 to 23, 21 to 25, 21 to 24, or 21 to 23 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, between about 2 to 20 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, between about 5 to 25 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, between about 10 to 25 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, between about 12 to 25 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 12 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 13 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 14 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 15 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 16 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 17 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 18 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 19 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 21 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 20 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 19 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 18 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 17 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 16 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 15 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 14 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 13 modified nucleotides of the first nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least one modified nucleotide of the first nucleotide sequence is a 2′-O-methyl pyrimidine. In some embodiments, at least 5, 6, 7, 8, 9, or 10 modified nucleotides of the first nucleotide sequence are 2′-O-methyl pyrimidines. In some embodiments, at least one modified nucleotide of the first nucleotide sequence is a 2′-O-methyl purine. In some embodiments, at least 5, 6, 7, 8, 9, or 10 modified nucleotides of the first nucleotide sequence are 2′-O-methyl purines. In some embodiments, the 2′-O-methyl nucleotide is a 2′-O-methyl nucleotide mimic.


In some embodiments, between 2 to 15 modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, between 2 to 10 modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, between 2 to 6 modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 1 to 6, 1 to 5, 1 to 4, or 1 to 3 modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 1, 2, 3, 4, 5, or 6 modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 1 modified nucleotide of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, at least 2 modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 3 modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 4 modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 5 modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 6 modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 10, 9, 8, 7, 6, 5, 4, 3 or fewer modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 10 or fewer modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 7 or fewer modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 6 or fewer modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 5 or fewer modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 4 or fewer modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 3 or fewer modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 2 or fewer modified nucleotides of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least one modified nucleotide of the first nucleotide sequence is a 2′-fluoro pyrimidine. In some embodiments, 1, 2, 3, 4, 5, or 6 modified nucleotides of the first nucleotide sequence are 2′-fluoro pyrimidines. In some embodiments, at least one modified nucleotide of the first nucleotide sequence is a 2′-fluoro purine. In some embodiments, 1, 2, 3, 4, 5, or 6 modified nucleotides of the first nucleotide sequence are 2′-fluoro purines. In some embodiments, the 2′-fluoro nucleotide is a 2′-fluoro nucleotide mimic.


In some embodiments, the nucleotide at position 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, at least two nucleotides at positions 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least three nucleotides at positions 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least four nucleotides at positions 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least five nucleotides at positions 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, the nucleotides at positions 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, the nucleotide at position 3 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 7 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 8 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 9 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 12 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 17 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the 2′-fluoro nucleotide is a 2′-fluoro nucleotide mimic.


In some embodiments, at least 1, 2, 3, 4, 5, 6, or 7 nucleotides at position 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at positions 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, at least two nucleotides at positions 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least three nucleotides at positions 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, the nucleotides at positions 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end of the first nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, the nucleotide at position 3 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 5 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 7 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 8 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 9 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 10 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 11 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 12 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 14 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 17 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 19 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 3, 7, 8, 9, 12, and/or 17 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 3, 7, 8, and/or 17 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 3, 7, 8, 9, 12, and/or 17 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 5, 7, 8, and/or 9 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 5, 9, 10, 11, 12, and/or 19 from the 5′ end of the first nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the 2′-fluoro nucleotide is a 2′-fluoro nucleotide mimic. The 2′-fluoro nucleotide mimic can be selected from




embedded image


In some embodiments, the 2′-fluoro nucleotide or 2′-O-methyl nucleotide is a 2′-fluoro or 2′-O-methyl nucleotide mimic. In some embodiments, the 2′-fluoro or 2′-O-methyl nucleotide mimic is a nucleotide mimic of Formula (V):




embedded image


wherein R1 is a independently nucleobase, aryl, heteroaryl, or H, Q1 and Q2 are independently S or O, R5 is independently —OCD3, —F, or —OCH3, and R6 and R7 are independently H, D, or CD3. In some embodiments, the nucleobase is selected from cytosine, guanine, adenine, uracil, aryl, heteroaryl, and an analogue or derivative thereof.


In some embodiments, the 2′-fluoro or 2′-O-methyl nucleotide mimic is a nucleotide mimic of Formula (16)-Formula (20):




embedded image


wherein R1 is independently a nucleobase and R2 is F or —OCH3. In some embodiments, the nucleobase is selected from cytosine, guanine, adenine, uracil, aryl, heteroaryl, and an analogue or derivative thereof.


In some embodiments, the first nucleotide sequence comprises, consists of, or consists essentially of ribonucleic acids (RNAs). In some embodiments, the first nucleotide sequence comprises, consists of, or consists essentially of modified RNAs. In some embodiments, the modified RNAs are selected from a 2′-O-methyl RNA and 2′-fluoro RNA. In some embodiments, 15, 16, 17, 18, 19, 20, 21, 22, or 23 modified nucleotides of the first nucleotide sequence are independently selected from 2′-O-methyl RNA and 2′-fluoro RNA.


In some embodiments, the sense strand may further comprise one or more internucleoside linkages independently selected from a phosphodiester (PO) internucleoside linkage, phosphorothioate (PS) internucleoside linkage, phosphorodithioate internucleoside linkage, and PS-mimic internucleoside linkage. In some embodiments, the PS-mimic internucleoside linkage is a sulfo internucleotide linkage.


In some embodiments, the sense strand may further comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 or more phosphorothioate internucleoside linkages. In some embodiments, the sense strand comprises 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, or 3 or fewer phosphorothioate internucleoside linkages. In some embodiments, the sense strand comprises 2 to 10, 2 to 8, 2 to 6, 1 to 5, 1 to 4, 1 to 3, or 1 to 2 phosphorothioate internucleoside linkages. In some embodiments, the sense strand comprises 1 to 2 phosphorothioate internucleoside linkages. In some embodiments, the sense strand comprises 2 to 4 phosphorothioate internucleoside linkages. In some embodiments, at least one phosphorothioate internucleoside linkage is between the nucleotides at positions 1 and 2 from the 5′ end of the first nucleotide sequence. In some embodiments, at least one phosphorothioate internucleoside linkage is between the nucleotides at positions 2 and 3 from the 5′ end of the first nucleotide sequence. In some embodiments, the sense strand comprises two phosphorothioate internucleoside linkages between the nucleotides at positions 1 to 3 from the 5′ end of the first nucleotide sequence.


In some embodiments, any of the sense strands disclosed herein may comprise a 5′ end cap monomer. In some embodiments, any of the first nucleotide sequences disclosed herein may comprise a 5′ end cap monomer.


B. siNA Antisense Strand


Any of the siNA molecules described herein may comprise an antisense strand. The antisense strand may comprise a second nucleotide sequence. The second nucleotide sequence may be 15 to 30, 15 to 25, 15 to 23, 17 to 23, 19 to 23, or 19 to 21 nucleotides in length. In some embodiments, the second nucleotide sequence is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In some embodiments, the second nucleotide sequence is at least 19 nucleotides in length. In some embodiments, the second nucleotide sequence is at least 21 nucleotides in length.


In some embodiments, the antisense strand is the same length as the second nucleotide sequence. In some embodiments, the antisense strand is longer than the second nucleotide sequence. In some embodiments, the antisense strand may further comprise 1, 2, 3, 4, or 5 or more nucleotides than the second nucleotide sequence. In some embodiments, the antisense strand is the same length as the sense strand. In some embodiments, the antisense strand is longer than the sense strand. In some embodiments, the antisense strand may further comprise 1, 2, 3, 4, or 5 or more nucleotides than the sense strand. In some embodiments, the antisense strand may further comprise a deoxyribonucleic acid (DNA). In some embodiments, the DNA is thymine (T). In some embodiments, the antisense strand may further comprise a TT sequence. In some embodiments, the antisense strand may further comprise one or more modified nucleotides that are adjacent to the second nucleotide sequence. In some embodiments, the one or more modified nucleotides are independently selected from any of the modified nucleotides disclosed herein (e.g., 2′-fluoro nucleotide, 2′-O-methyl nucleotide, 2′-fluoro nucleotide mimic, 2′-O-methyl nucleotide mimic, or a nucleotide comprising a modified nucleobase).


In some embodiments, the second nucleotide sequence comprises 15, 16, 17, 18, 19, 20, 21, 22, 23, or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide. In some embodiments, 70%, 75%, 80%, 85%, 90%, 95% or 100% of the nucleotides in the second nucleotide sequence are modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide. In some embodiments, 100% of the nucleotides in the second nucleotide sequence are modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide.


In some embodiments, between about 15 to 30, 15 to 25, 15 to 24, 15 to 23, 15 to 22, 15 to 21, 17 to 30, 17 to 25, 17 to 24, 17 to 23, 17 to 22, 17 to 21, 18 to 30, 18 to 25, 18 to 24, 18 to 23, 18 to 22, 18 to 21, 19 to 30, 19 to 25, 19 to 24, 19 to 23, 19 to 22, 19 to 21, 20 to 25, 20 to 24, 20 to 23, 21 to 25, 21 to 24, or 21 to 23 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, between about 2 to 20 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, between about 5 to 25 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, between about 10 to 25 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, between about 12 to 25 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 12 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 13 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 14 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 15 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 16 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 17 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 18 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least about 19 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 21 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 20 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 19 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 18 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 17 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 16 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 15 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 14 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, less than or equal to 13 modified nucleotides of the second nucleotide sequence are 2′-O-methyl nucleotides. In some embodiments, at least one modified nucleotide of the second nucleotide sequence is a 2′-O-methyl pyrimidine. In some embodiments, at least 5, 6, 7, 8, 9, or 10 modified nucleotides of the second nucleotide sequence are 2′-O-methyl pyrimidines. In some embodiments, at least one modified nucleotide of the second nucleotide sequence is a 2′-O-methyl purine. In some embodiments, at least 5, 6, 7, 8, 9, or 10 modified nucleotides of the second nucleotide sequence are 2′-O-methyl purines. In some embodiments, the 2′-O-methyl nucleotide is a 2′-O-methyl nucleotide mimic.


In some embodiments, between 2 to 15 modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, between 2 to 10 modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, between 2 to 6 modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 1 to 6, 1 to 5, 1 to 4, or 1 to 3 modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 1, 2, 3, 4, 5, or 6 modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 1 modified nucleotide of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, at least 2 modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 3 modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 4 modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least 5 modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 10, 9, 8, 7, 6, 5, 4, 3 or fewer modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 10 or fewer modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 7 or fewer modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 6 or fewer modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 5 or fewer modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 4 or fewer modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 3 or fewer modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, 2 or fewer modified nucleotides of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least one modified nucleotide of the second nucleotide sequence is a 2′-fluoro pyrimidine. In some embodiments, 1, 2, 3, 4, 5, or 6 modified nucleotides of the second nucleotide sequence are 2′-fluoro pyrimidines. In some embodiments, at least one modified nucleotide of the second nucleotide sequence is a 2′-fluoro purine. In some embodiments, 1, 2, 3, 4, 5, or 6 modified nucleotides of the second nucleotide sequence are 2′-fluoro purines. In some embodiments, the 2′-fluoro nucleotide is a 2′-fluoro nucleotide mimic. The 2′-fluoro nucleotide mimic can be selected from




embedded image


In some embodiments, the 2′-fluoro nucleotide or 2′-O-methyl nucleotide is a 2′-fluoro or 2′-O-methyl nucleotide mimic. In some embodiments, the 2′-fluoro or 2′-O-methyl nucleotide mimic is a nucleotide mimic of Formula (V):




embedded image


wherein R1 is independently a nucleobase, aryl, heteroaryl, or H, Q1 and Q2 are independently S or O, R5 is independently —OCD3, —F, or —OCH3, and R6 and R7 are independently H, D, or CD3. In some embodiments, the nucleobase is selected from cytosine, guanine, adenine, uracil, aryl, heteroaryl, and an analogue or derivative thereof.


In some embodiments, the 2′-fluoro or 2′-O-methyl nucleotide mimic is a nucleotide mimic of Formula (16)-Formula (20):




embedded image


wherein R1 is a nucleobase and R2 is independently F or —OCH3. In some embodiments, the nucleobase is selected from cytosine, guanine, adenine, uracil, aryl, heteroaryl, and an analogue or derivative thereof.


In some embodiments, at least 1, 2, 3, 4, 5, 6, 7, 8, or 9 nucleotides at position 2, 5, 6, 8, 10, 14, 16, 17, and/or 18 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 2, 5, 6, 8, 10, 14, 16, 17, and/or 18 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, at least two nucleotides at positions 2, 5, 6, 8, 10, 14, 16, 17, and/or 18 from the 5′ end of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least three nucleotides at positions 2, 5, 6, 8, 10, 14, 16, 17, and/or 18 from the 5′ end of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least four nucleotides at positions 2, 5, 6, 8, 10, 14, 16, 17, and/or 18 from the 5′ end of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, at least five nucleotides at positions 2, 5, 6, 8, 10, 14, 16, 17, and/or 18 from the 5′ end of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, the nucleotides at positions 2 and/or 14 from the 5′ end of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, the nucleotides at positions 2, 6, and/or 16 from the 5′ end of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, the nucleotides at positions 2, 6, 14, and/or 16 from the 5′ end of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, the nucleotides at positions 2, 6, 10, 14, and/or 18 from the 5′ end of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, the nucleotides at positions 2, 5, 8, 14, and/or 17 from the 5′ end of the second nucleotide sequence are 2′-fluoro nucleotides. In some embodiments, the nucleotide at position 2 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 5 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 6 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 8 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 10 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 14 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 16 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 17 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the nucleotide at position 18 from the 5′ end of the second nucleotide sequence is a 2′-fluoro nucleotide. In some embodiments, the 2′-fluoro nucleotide is a 2′-fluoro nucleotide mimic. The 2′-fluoro nucleotide mimic can be selected from




embedded image


In some embodiments, the nucleotides in the second nucleotide sequence are arranged in an alternating 1:3 modification pattern, wherein 1 nucleotide is a 2′-fluoro nucleotide and 3 nucleotides are 2′-O-methyl nucleotides, and wherein the alternating 1:3 modification pattern occurs at least 2 times. In some embodiments, the alternating 1:3 modification pattern occurs 2-5 times. In some embodiments, at least two of the alternating 1:3 modification pattern occur consecutively. In some embodiments, at least two of the alternating 1:3 modification pattern occurs nonconsecutively. In some embodiments, at least 1, 2, 3, 4, or 5 alternating 1:3 modification pattern begins at nucleotide position 2, 6, 10, 14, and/or 18 from the 5′ end of the antisense strand. In some embodiments, at least one alternating 1:3 modification pattern begins at nucleotide position 2 from the 5′ end of the antisense strand. In some embodiments, wherein at least one alternating 1:3 modification pattern begins at nucleotide position 6 from the 5′ end of the antisense strand. In some embodiments, at least one alternating 1:3 modification pattern begins at nucleotide position 10 from the 5′ end of the antisense strand. In some embodiments, at least one alternating 1:3 modification pattern begins at nucleotide position 14 from the 5′ end of the antisense strand. In some embodiments, at least one alternating 1:3 modification pattern begins at nucleotide position 18 from the 5′ end of the antisense strand. In some embodiments, the 2′-fluoro nucleotide is a 2′-fluoro nucleotide mimic. The 2′-fluoro nucleotide mimic can be selected from




embedded image


In some embodiments, the nucleotides in the second nucleotide sequence are arranged in an alternating 1:2 modification pattern, wherein 1 nucleotide is a 2′-fluoro nucleotide and 2 nucleotides are 2′-O-methyl nucleotides, and wherein the alternating 1:2 modification pattern occurs at least 2 times. In some embodiments, the alternating 1:2 modification pattern occurs 2-5 times. In some embodiments, at least two of the alternating 1:2 modification pattern occurs consecutively. In some embodiments, at least two of the alternating 1:2 modification pattern occurs nonconsecutively. In some embodiments, at least 1, 2, 3, 4, or 5 alternating 1:2 modification pattern begins at nucleotide position 2, 5, 8, 14, and/or 17 from the 5′ end of the antisense strand. In some embodiments, at least one alternating 1:2 modification pattern begins at nucleotide position 2 from the 5′ end of the antisense strand. In some embodiments, at least one alternating 1:2 modification pattern begins at nucleotide position 5 from the 5′ end of the antisense strand. In some embodiments, at least one alternating 1:2 modification pattern begins at nucleotide position 8 from the 5′ end of the antisense strand. In some embodiments, at least one alternating 1:2 modification pattern begins at nucleotide position 14 from the 5′ end of the antisense strand. In some embodiments, at least one alternating 1:2 modification pattern begins at nucleotide position 17 from the 5′ end of the antisense strand. In some embodiments, the 2′-fluoro nucleotide is a 2′-fluoro nucleotide mimic. The 2′-fluoro nucleotide mimic can be selected from




embedded image


In some embodiments, the second nucleotide sequence comprises, consists of, or consists essentially of ribonucleic acids (RNAs). In some embodiments, the second nucleotide sequence comprises, consists of, or consists essentially of modified RNAs. In some embodiments, the modified RNAs are selected from a 2′-O-methyl RNA and 2′-fluoro RNA. In some embodiments, 15, 16, 17, 18, 19, 20, 21, 22, or 23 modified nucleotides of the second nucleotide sequence are independently selected from 2′-O-methyl RNA and 2′-fluoro RNA. In some embodiments, the 2′-fluoro nucleotide is a 2′-fluoro nucleotide mimic. The 2′-fluoro nucleotide mimic can be selected from




embedded image


In some embodiments, the sense strand may further comprise one or more internucleotide linkages independently selected from a phosphodiester (PO) internucleoside linkage, phosphorothioate (PS) internucleoside linkage, phosphorodithioate internucleoside linkage, and PS-mimic internucleoside linkage. In some embodiments, the PS-mimic internucleoside linkage is a sulfo internucleotide linkage.


In some embodiments, the antisense strand may further comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 or more phosphorothioate internucleoside linkages. In some embodiments, the antisense strand comprises 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, or 3 or fewer phosphorothioate internucleoside linkages. In some embodiments, the antisense strand comprises 2 to 10, 2 to 8, 2 to 6, 1 to 5, 1 to 4, 1 to 3, or 1 to 2 phosphorothioate internucleoside linkages. In some embodiments, the antisense strand comprises 2 to 10, 2 to 8, 2 to 6, 1 to 5, 1 to 4, 1 to 3, or 1 to 2 phosphorothioate internucleoside linkages. In some embodiments, the antisense strand comprises 2 to 8 phosphorothioate internucleoside linkages. In some embodiments, the antisense strand comprises 3 to 8 phosphorothioate internucleoside linkages. In some embodiments, the antisense strand comprises 4 to 8 phosphorothioate internucleoside linkages. In some embodiments, at least one phosphorothioate internucleoside linkage is between the nucleotides at positions 1 and 2 from the 5′ end of the second nucleotide sequence. In some embodiments, at least one phosphorothioate internucleoside linkage is between the nucleotides at positions 2 and 3 from the 5′ end of the second nucleotide sequence.


In some embodiments, at least one phosphorothioate internucleoside linkage is between the nucleotides at positions 1 and 2 from the 3′ end of the second nucleotide sequence. In some embodiments, at least one phosphorothioate internucleoside linkage is between the nucleotides at positions 2 and 3 from the 3′ end of the second nucleotide sequence. In some embodiments, the antisense strand comprises two phosphorothioate internucleoside linkages between the nucleotides at positions 1 to 3 from the 5′ end of the first nucleotide sequence. In some embodiments, the antisense strand comprises two phosphorothioate internucleoside linkages between the nucleotides at positions 1 to 3 from the 3′ end of the first nucleotide sequence. In some embodiments, the antisense strand comprises (a) two phosphorothioate internucleoside linkages between the nucleotides at positions 1 to 3 from the 5′ end of the first nucleotide sequence; and (b) two phosphorothioate internucleoside linkages between the nucleotides at positions 1 to 3 from the 3′ end of the first nucleotide sequence.


In some embodiments, at least one end of the ds-siNA is a blunt end. In some embodiments, at least one end of the ds-siNA comprises an overhang, wherein the overhang comprises at least one nucleotide. In some embodiments, both ends of the ds-siNA comprise an overhang, wherein the overhang comprises at least one nucleotide. In some embodiments, the overhang comprises 1 to 5 nucleotides, 1 to 4 nucleotides, 1 to 3 nucleotides, or 1 to 2 nucleotides. In some embodiments, the overhang consists of 1 to 2 nucleotides.


In some embodiments, any of the antisense strands disclosed herein may comprise a 5′ end cap monomer. In some embodiments, any of the second nucleotide sequences disclosed herein may comprise a 5′ end cap monomer.


Modified Nucleotides

Further disclosed herein are siNA molecules comprising one or more modified nucleotides. In some embodiments, any of the siNAs disclosed herein comprise one or more modified nucleotides. In some embodiments, any of the sense strands disclosed herein comprise one or more modified nucleotides. In some embodiments, any of the first nucleotide sequences disclosed herein comprise one or more modified nucleotides. In some embodiments, any of the antisense strands disclosed herein comprise one or more modified nucleotides. In some embodiments, any of the second nucleotide sequences disclosed herein comprise one or more modified nucleotides. In some embodiments, the one or more modified nucleotides is adjacent to the first nucleotide sequence. In some embodiments, at least one modified nucleotide is adjacent to the 5′ end of the first nucleotide sequence. In some embodiments, at least one modified nucleotide is adjacent to the 3′ end of the first nucleotide sequence. In some embodiments, at least one modified nucleotide is adjacent to the 5′ end of the first nucleotide sequence and at least one modified nucleotide is adjacent to the 3′ end of the first nucleotide sequence. In some embodiments, the one or more modified nucleotides is adjacent to the second nucleotide sequence. In some embodiments, at least one modified nucleotide is adjacent to the 5′ end of the second nucleotide sequence. In some embodiments, at least one modified nucleotide is adjacent to the 3′ end of the second nucleotide sequence. In some embodiments, at least one modified nucleotide is adjacent to the 5′ end of the second nucleotide sequence and at least one modified nucleotide is adjacent to the 3′ end of the second nucleotide sequence. In some embodiments, a 2′-O-methyl nucleotide in any of sense strands or first nucleotide sequences disclosed herein is replaced with a modified nucleotide. In some embodiments, a 2′-O-methyl nucleotide in any of antisense strands or second nucleotide sequences disclosed herein is replaced with a modified nucleotide.


In some embodiments, any of the siNA molecules, siNAs, sense strands, first nucleotide sequences, antisense strands, and second nucleotide sequences disclosed herein comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 or more modified nucleotides. In some embodiments, 1%, 2%, 3%, 4%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% of the nucleotides in the siNA molecule, siNA, sense strand, first nucleotide sequence, antisense strand, or second nucleotide sequence are modified nucleotides.


In some embodiments, a modified nucleotide is selected from the group consisting of 2′-fluoro nucleotide, 2′-O-methyl nucleotide, 2′-fluoro nucleotide mimic, 2′-O-methyl nucleotide mimic, a locked nucleic acid, and a nucleotide comprising a modified nucleobase.


In some embodiments, any of the siRNAs disclosed herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more 2′-fluoro or 2′-O-methyl nucleotide mimics. In some embodiments, any of the sense strands disclosed herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more 2′-fluoro or 2′-O-methyl nucleotide mimics. In some embodiments, any of the first nucleotide sequences disclosed herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more 2′-fluoro or 2′-O-methyl nucleotide mimics. In some embodiments, any of the antisense strand disclosed herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more 2′-fluoro or 2′-O-methyl nucleotide mimics. In some embodiments, any of the second nucleotide sequences disclosed herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more 2′-fluoro or 2′-O-methyl nucleotide mimics. In some embodiments, the 2′-fluoro or 2′-O-methyl nucleotide mimic is a nucleotide mimic of Formula (16)-Formula (20):




embedded image


wherein R1 is a nucleobase and R1 is independently F or —OCH3. In some embodiments, the nucleobase is selected from cytosine, guanine, adenine, uracil, aryl, heteroaryl, and an analogue or derivative thereof.


In some embodiments, the siNA molecules disclosed herein comprise at least one 2′-fluoro nucleotide, at least one 2′-O-methyl nucleotide, and at least one 2′-fluoro or 2′-O-methyl nucleotide mimic. In some embodiments, the at least one 2′-fluoro or 2′-O-methyl nucleotide mimic is adjacent to the first nucleotide sequence. In some embodiments, the at least one 2′-fluoro or 2′-O-methyl nucleotide mimic is adjacent to the 5′ end of first nucleotide sequence. In some embodiments, the at least one 2′-fluoro or 2′-O-methyl nucleotide mimic is adjacent to the 3′ end of first nucleotide sequence. In some embodiments, the at least one 2′-fluoro or 2′-O-methyl nucleotide mimic is adjacent to the second nucleotide sequence. In some embodiments, the at least one 2′-fluoro or 2′-O-methyl nucleotide mimic is adjacent to the 5′ end of second nucleotide sequence. In some embodiments, the at least one 2′-fluoro or 2′-O-methyl nucleotide mimic is adjacent to the 3′ end of second nucleotide sequence. In some embodiments, the first nucleotide sequence does not comprise a 2′-fluoro nucleotide mimic. In some embodiments, the first nucleotide sequence does not comprise a 2′-O-methyl nucleotide mimic. In some embodiments, the second nucleotide sequence does not comprise a 2′-fluoro nucleotide mimic. In some embodiments, the second nucleotide sequence does not comprise a 2′-O-methyl nucleotide mimic.


In some embodiments, any of the siRNAs disclosed herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more locked nucleic acids. In some embodiments, any of the sense strands disclosed herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more locked nucleic acids. In some embodiments, any of the first nucleotide sequences disclosed herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more locked nucleic acids. In some embodiments, any of the antisense strand disclosed herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more locked nucleic acids. In some embodiments, any of the second nucleotide sequences disclosed herein comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more locked nucleic acids. In some embodiments, the locked nucleic acid is selected from




embedded image


where R is H or alkyl (or AmNA(N-Me)) when R is alkyl);




embedded image


wherein B is a nucleobase. In some embodiments, any of the siRNAs, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise at least modified nucleotide that is




embedded image


In some embodiments, any of the siRNAs, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise at least modified nucleotide that is




embedded image


In some embodiments, any of the siRNAs, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise at least modified nucleotide that is




embedded image


where R is H or alkyl (or AmNA(N-Me)) when R is alkyl). In some embodiments, any of the siRNAs, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise at least modified nucleotide that is




embedded image


In some embodiments, any of the siRNAs, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise at least modified nucleotide that is




embedded image


wherein B is a nucleobase.


Phosphorylation Blocker

Further disclosed herein are siNA molecules comprising a phosphorylation blocker. In some embodiments, a 2′-O-methyl nucleotide in any of sense strands or first nucleotide sequences disclosed herein is replaced with a nucleotide containing a phosphorylation blocker. In some embodiments, a 2′-O-methyl nucleotide in any of antisense strands or second nucleotide sequences disclosed herein is replaced with a nucleotide containing a phosphorylation blocker. In some embodiments, a 2′-O-methyl nucleotide in any of sense strands or first nucleotide sequences disclosed herein is further modified to contain a phosphorylation blocker. In some embodiments, a 2′-O-methyl nucleotide in any of antisense strands or second nucleotide sequences disclosed herein is further modified to contain a phosphorylation blocker.


In some embodiments, any of the siNA molecules disclosed herein comprise a phosphorylation blocker of Formula (IV):




embedded image


wherein R1 is a nucleobase, R4 is —O—R30 or —NR31R32, R30 is C1-C8 substituted or unsubstituted alkyl; and R31 and R32 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring.


In some embodiments, any of the siNA molecules disclosed herein comprise a phosphorylation blocker of Formula (IV):




embedded image


wherein R1 is a nucleobase, and R4 is —OCH3 or —N(CH2CH2)2O.


In some embodiments, a siNA molecule comprises (a) a phosphorylation blocker of Formula (IV):




embedded image


wherein R1 is a nucleobase, R4 is —O—R30 or —NR31R32, R30 is C1-C8 substituted or unsubstituted alkyl; and R31 and R32 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring; and (b) a siNA, wherein the phosphorylation blocker is conjugated to the siNA.


In some embodiments, a siNA molecule comprises (a) a phosphorylation blocker of Formula (IV):




embedded image


wherein R1 is a nucleobase, and R4 is —OCH3 or —N(CH2CH2)2O; and (b) siNA, wherein the phosphorylation blocker is conjugated to the siNA.


In some embodiments, the phosphorylation blocker is attached to the 3′ end of the sense strand or first nucleotide sequence. In some embodiments, the phosphorylation blocker is attached to the 3′ end of the sense strand or first nucleotide sequence via 1, 2, 3, 4, or 5 or more linkers. In some embodiments, the phosphorylation blocker is attached to the 5′ end of the sense strand or first nucleotide sequence. In some embodiments, the phosphorylation blocker is attached to the 5′ end of the sense strand or first nucleotide sequence via 1, 2, 3, 4, or 5 or more linkers. In some embodiments, the phosphorylation blocker is attached to the 3′ end of the antisense strand or second nucleotide sequence. In some embodiments, the phosphorylation blocker is attached to the 3′ end of the antisense strand or second nucleotide sequence via 1, 2, 3, 4, or 5 or more linkers. In some embodiments, the phosphorylation blocker is attached to the 5′ end of the antisense strand or second nucleotide sequence. In some embodiments, the phosphorylation blocker is attached to the 5′ end of the antisense strand or second nucleotide sequence via 1, 2, 3, 4, or 5 or more linkers. In some embodiments, the one or more linkers are independently selected from the group consisting of a phosphodiester linker, phosphorothioate linker, and phosphorodithioate linker.


5′-Stabilized End Cap

Further disclosed herein are siNA molecules comprising a 5′-stabilized end cap. As used herein the terms “5′-stabilized end cap” and “5′ end cap” are used interchangeably. In some embodiments, a 2′-O-methyl nucleotide in any of sense strands or first nucleotide sequences disclosed herein is replaced with a nucleotide containing a 5′-stabilized end cap. In some embodiments, a 2′-O-methyl nucleotide in any of antisense strands or second nucleotide sequences disclosed herein is replaced with a nucleotide containing a 5′-stabilized end cap. In some embodiments, a 2′-O-methyl nucleotide in any of sense strands or first nucleotide sequences disclosed herein is further modified to contain a 5′-stabilized end cap. In some embodiments, a 2′-O-methyl nucleotide in any of antisense strands or second nucleotide sequences disclosed herein is further modified to contain a 5′-stabilized end cap.


In some embodiments, the 5′-stabilized end cap is a 5′ phosphate mimic. In some embodiments, the 5′-stabilized end cap is a modified 5′ phosphate mimic. In some embodiments, the modified 5′ phosphate is a chemically modified 5′ phosphate. In some embodiments, the 5′-stabilized end cap is a 5′-vinyl phosphonate. In some embodiments, the 5′-vinyl phosphonate is a 5′-(E)-vinyl phosphonate or 5′-(Z)-vinyl phosphonate. In some embodiments, the 5′-vinylphosphonate is a deuterated vinyl phosphonate. In some embodiments, the deuterated vinyl phosphonate is a mono-deuterated vinyl phosphonate. In some embodiments, the deuterated vinyl phosphonate is a di-deuterated vinyl phosphonate. In some embodiments, the 5′-stabilized end cap is a phosphate mimic. Examples of phosphate mimics are disclosed in Parmar et al., 2018, J Med Chem, 61(3):734-744, International Publication Nos. WO2018/045317 and WO2018/044350, and U.S. Pat. No. 10,087,210, each of which is incorporated by reference in its entirety.


In some embodiments, any of the siNA molecules, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise a 5′-stabilized end cap of Formula (Ia):




embedded image


wherein R1 is H, a nucleobase, aryl, or heteroaryl; R2 is




embedded image


—CH═CD-Z, —CD=CH—Z, —CD=CD-Z, —(CR21R22)n—Z, or —(C2-C6 alkenylene)-Z and R20 is H; or R2 and R20 together form a 3- to 7-membered carbocyclic ring substituted with —(CR21R22)n—Z or —(C2-C6 alkenylene)-Z; n is 1, 2, 3, or 4; Z is —ONR23R24, —OP(O)OH(CH2)mCO2R23, —OP(S)OH(CH2)mCO2R23, —P(O)(OH)2, —P(O)(OH)(OCH3), —P(O)(OH)(OCD3), —SO2(CH2)mP(O)(OH)2, —SO2NR23R25, —NR23R24, —NR23 SO2R25; either R21 and R22 are independently hydrogen or C1-C6 alkyl, or R21 and R22 together form an oxo group; R23 is hydrogen or C1-C6 alkyl; R24 is —SO2R25 or —C(O)R25; or R23 and R24 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring; R25 is C1-C6 alkyl; and m is 1, 2, 3, or 4. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, any of the siNA molecules, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise a 5′-stabilized end cap of Formula (Ib):




embedded image


wherein R1 is H, a nucleobase, aryl, or heteroaryl; R2 is




embedded image


—CH═CD-Z, —CD=CH—Z, —CD=CD-Z, —(CR21R22)n—Z, or —(C2-C6 alkenylene)-Z and R20 is H; or R2 and R20 together form a 3- to 7-membered carbocyclic ring substituted with —(CR21R22)n—Z or —(C2-C6 alkenylene)-Z; n is 1, 2, 3, or 4; Z is —ONR23R24, —OP(O)OH(CH2)mCO2R23, —OP(S)OH(CH2)mCO2R23, —P(O)(OH)2, —P(O)(OH)(OCH3), —P(O)(OH)(OCD3), —SO2(CH2)mP(O)(OH)2, —SO2NR23R25, —NR23R24, —NR23SO2R25; either R21 and R22 are independently hydrogen or C1-C6 alkyl, or R21 and R22 together form an oxo group; R23 is hydrogen or C1-C6 alkyl; R24 is —SO2R25 or —C(O)R25; or R23 and R24 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring; R25 is C1-C6 alkyl; and m is 1, 2, 3, or 4. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, any of the siNA molecules, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise a 5′-stabilized end cap of Formula (Ic):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H,


R2 is



embedded image


—CH═CD-Z, —CD=CH—Z, —CD=CD-Z, —(CR21R22)n—Z, or —(C2-C6 alkenylene)-Z and R20 is hydrogen; or R2 and R20 together form a 3- to 7-membered carbocyclic ring substituted with —(CR21R22)n—Z or —(C2-C6 alkenylene)-Z; n is 1, 2, 3, or 4; Z is —ONR23R24, —OP(O)OH(CH2)mCO2R23, —OP(S)OH(CH2)mCO2R23, —P(O)(OH)2, —P(O)(OH)(OCH3), —P(O)(OH)(OCD3), —SO2(CH2)mP(O)(OH)2, —SO2NR23R25, —NR23R24, or —NR23SO2R25; R21 and R22 either are independently hydrogen or C1-C6 alkyl, or R21 and R22 together form an oxo group; R23 is hydrogen or C1-C6 alkyl; R24 is —SO2R25 or —C(O)R25; or


R23 and R24 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring; R25 is C1-C6 alkyl; and m is 1, 2, 3, or 4. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, any of the siNA molecules, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise a 5′-stabilized end cap of Formula (IIa):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl,


or H, R2 is



embedded image


—CH2SO2NHCH3, or




embedded image


R9 is —SO2CH3 or —COCH3, custom-character is a double or single bond, R10=—CH2PO3H or —NHCH3, R11 is —CH2— or —CO—, and R12 is H and R11 is CH3 or R12 and R11 together form —CH2CH2CH2—. In some embodiments, le is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, any of the siNA molecules, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise a 5′-stabilized end cap of Formula (IIb):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H, R2 is




embedded image


—CH2SO2NHCH3, or




embedded image


R9 is —SO2CH3 or —COCH3, custom-character is a double or single bond, R10=—CH2PO3H or —NHCH3, is —CH2— or —CO—, and R12 is H and R13 is CH3 or R12 and R13 together form —CH2CH2CH2—. In some embodiments, le is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, any of the siNA molecules, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise a 5′-stabilized end cap of Formula (III):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H, L is —CH2—, —CH═CH—, —CO—, or —CH2CH2—, and A is —ONHCOCH3, —ONHSO2CH3, —PO3H, —OP(SOH)CH2CO2H, —SO2CH2PO3H, —SO2NHCH3, —NHSO2CH3, or —N(SO2CH2CH2CH2). In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, any of the siNA molecules, sense strands, first nucleotide sequences, antisense strands, or second nucleotide sequences disclosed herein comprise a 5′-stabilized end cap selected from Examples 5-11, 33-35, 38, 39, 43, and 49-53 5′ end cap monomers.


Further disclosed herein are siNA molecules comprising (a) a 5′-stabilized end cap of Formula (Ia):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H; R2 is




embedded image


—CH═CD-Z, —CD=CH—Z, —CD=CD-Z, —(CR21R22)n—Z, or —(C2-C6 alkenylene)-Z and R20 is H; or R2 and R20 together form a 3- to 7-membered carbocyclic ring substituted with —(CR21R22)n—Z or —(C2-C6 alkenylene)-Z; n is 1, 2, 3, or 4; Z is —ONR23R24, —OP(O)OH(CH2)mCO2R23, —OP(S)OH(CH2)mCO2R23, —P(O)(OH)2, —P(O)(OH)(OCH3), —P(O)(OH)(OCD3), —SO2(CH2)mP(O)(OH)2, —SO2NR23R25, —NR23R24, —NR23SO2R25; either R21 and R22 are independently hydrogen or C1-C6 alkyl, or R21 and R22 together form an oxo group; R23 is hydrogen or C1-C6 alkyl; R24 is —SO2R25 or —C(O)R25; or R23 and R24 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring; R25 is C1-C6 alkyl; and m is 1, 2, 3, or 4; and (b) a short interfering nucleic acid (siNA), wherein the 5′-stabilized end cap is conjugated to the siNA. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


Further disclosed herein are siNA molecules comprising (a) a 5′-stabilized end cap of Formula (Ib):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H; R2 is




embedded image


—CH═CD-Z, —CD=CH—Z, —CD=CD-Z, —(CR21R22)n—Z, or —(C2-C6 alkenylene)-Z and R20 is H; or R2 and R20 together form a 3- to 7-membered carbocyclic ring substituted with —(CR21R22)n—Z or —(C2-C6 alkenylene)-Z; n is 1, 2, 3, or 4; Z is —ONR23R24, —OP(O)OH(CH2)mCO2R23, —OP(S)OH(CH2)mCO2R23, —P(O)(OH)2, —P(O)(OH)(OCH3), —P(O)(OH)(OCD3), —SO2(CH2)mP(O)(OH)2, —SO2NR23R25, —NR23R24, —NR23SO2R25; either R21 and R22 are independently hydrogen or C1-C6 alkyl, or R21 and R22 together form an oxo group; R23 is hydrogen or C1-C6 alkyl; R24 is —SO2R25 or —C(O)R25; or R23 and R24 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring; R25 is C1-C6 alkyl; and m is 1, 2, 3, or 4; and (b) a short interfering nucleic acid (siNA), wherein the 5′-stabilized end cap is conjugated to the siNA. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


Further disclosed herein are siNA molecules comprising (a) a 5′-stabilized end cap of Formula (Ic):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H, R2 is




embedded image


—CH═CD-Z, —CD=CH—Z, —CD=CD-Z, —(CR21R22)n—Z, or —(C2-C6 alkenylene)-Z and R20 is hydrogen; or R2 and R20 together form a 3- to 7-membered carbocyclic ring substituted with —(CR21R22)n—Z or —(C2-C6 alkenylene)-Z; n is 1, 2, 3, or 4; Z is —ONR23R24, —OP(O)OH(CH2)mCO2R23, —OP(S)OH(CH2)mCO2R23, —P(O)(OH)2, —P(O)(OH)(OCH3), —P(O)(OH)(OCD3), —SO2(CH2)mP(O)(OH)2, —SO2NR23R25, NR23R24, or —NR23SO2R25; R21 and R22 either are independently hydrogen or C1-C6 alkyl, or R21 and R22 together form an oxo group; R23 is hydrogen or C1-C6 alkyl; R24 is —SO2R25 or —C(O)R25; or R23 and R24 together with the nitrogen to which they are attached form a substituted or unsubstituted heterocyclic ring; R25 is C1-C6 alkyl; and m is 1, 2, 3, or 4; and (b) a short interfering nucleic acid (siNA), wherein the 5′-stabilized end cap is conjugated to the siNA. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, a siNA molecule comprises (a) a 5′-stabilized end cap of Formula (IIa):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H, R2 is




embedded image


CH2SO2NHCH3, or




embedded image


R9 is —SO2CH3 or —COCH3, wherein custom-character is a double or single bond, R10=—CH2PO3H or —NHCH3, R11 is —CH2— or —CO—, and R12 is H and R13 is CH3 or R12 and R13 together form —CH2CH2CH2—; and (b) a short interfering nucleic acid (siNA), wherein the 5′-stabilized end cap is conjugated to the siNA. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, a siNA molecule comprises (a) a 5′-stabilized end cap of Formula (IIb):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H, R2 is




embedded image


CH2SO2NHCH3, or




embedded image


R9 is —SO2CH3 or —COCH3, wherein custom-character is a double or single bond, R10=—CH2PO3H or —NHCH3, R11 is —CH2— or —CO—, and R12 is H and R13 is CH3 or R12 and R13 together form —CH2CH2CH2—; and (b) a short interfering nucleic acid (siNA), wherein the 5′-stabilized end cap is conjugated to the siNA. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, a siNA molecule comprises (a) a 5′-stabilized end cap of Formula (III):




embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H, L is —CH2—, —CH═CH—, —CO—, or —CH2CH2—, and A is —ONHCOCH3, —ONHSO2CH3, —PO3H, —OP(SOH)CH2CO2H, —SO2CH2PO3H, —SO2NHCH3, —NHSO2CH3, or —N(SO2CH2CH2CH2); and (b) a siNA, wherein the 5′-stabilized end cap is conjugated to the siNA. In some embodiments, 10 is an aryl. In some embodiments, the aryl is phenyl.


In some embodiments, any of the siNA molecules disclosed herein comprise a 5′-stabilized end cap selected from the group consisting of Formula (1) to Formula (15), Formula (9X) to Formula (12X), and Formula (9Y) to Formula (12Y):




embedded image


embedded image


embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, any of the siNA molecules disclosed herein comprise a 5′-stabilized end cap selected from the group consisting of Formulas (1A)-(15A), Formulas (9B)-(12B), Formulas (9AX)-(12AX), Formulas (9AY)-(12AY), Formulas (9BX)-(12BX), and Formulas (9BY)-(12BY):




embedded image


embedded image


embedded image


embedded image


In some embodiments, any of the siNA molecules disclosed herein comprise a 5′-stabilized end cap selected from the group consisting of Formula (21) to Formula (35):




embedded image


embedded image


embedded image


wherein R1 is a nucleobase, aryl, heteroaryl, or H. In some embodiments, R1 is an aryl. In some embodiments, the aryl is a phenyl.


In some embodiments, any of the siNA molecules disclosed herein comprise a 5′-stabilized end cap selected from the group consisting of Formulas (21A)-(35A), Formulas (29B)-(32B), Formulas (29AX)-(32AX), Formulas (29AY)-(32AY), Formulas (29BX)-(32BX), and Formulas (29BY)-(32BY):




embedded image


embedded image


embedded image


embedded image


embedded image


In some embodiments, the 5′-stabilized end cap is attached to the 5′ end of the antisense strand. In some embodiments, the 5′-stabilized end cap is attached to the 5′ end of the antisense strand via 1, 2, 3, 4, or 5 or more linkers. In some embodiments, one or more linkers are independently selected from the group consisting of a phosphodiester (p or po) linker, phosphorothioate (ps) linker, phosphoramidite (HEG) linker, triethylene glycol (TEG) linker, and/or phosphorodithioate linker.


Linkers

In some embodiments, any of the siRNAs, sense strands, first nucleotide sequences, antisense strands, and/or second nucleotide sequences disclosed herein comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 or more internucleoside linkers. In some embodiments, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more internucleoside linkers are independently selected from the group consisting of a phosphodiester (p or po) linker, phosphorothioate (ps) linker, or phosphorodithioate linker.


In some embodiments, any of the siRNAs, sense strands, first nucleotide sequences, antisense strands, and/or second nucleotide sequences disclosed herein further comprise 1, 2, 3, 4 or more linkers that attach a conjugated moiety, phosphorylation blocker, and/or 5′ end cap to the siRNA, sense strand, first nucleotide sequence, antisense strand, and/or second nucleotide sequences. In some embodiments, the 1, 2, 3, 4 or more linkers are independently selected from the group consisting of a phosphodiester (p or po) linker, phosphorothioate (ps) linker, phosphoramidite (HEG) linker, triethylene glycol (TEG) linker, and/or phosphorodithioate linker. In some embodiments, the one or more linkers are independently selected from the group consisting of p-(ps)2, (ps)2-p-TEG-p, (ps)2-p-HEG-p, and (ps)2-p-(HEG-p)2.


Specific Embodiments

The present disclosure provides numerous siNA that can be used to treat or prevent viral infections, specifically coronavirus (e.g., SARS-CoV-2) infections, such as COVID-19. Table 3, below, provides a non-limiting list of siNA that incorporate the nucleic acid sequences, modified nucleotides, phosphorylation blockers, 5′ stabilized end caps, and/or linkers of the foregoing sections. Those of skill in the art will understand that other exemplary siNA can be constructed by combining the sequences disclosed in Table 1 (or fragments of the sequences disclosed in Table 2) with the modified nucleotides, phosphorylation blockers, 5′ stabilized end caps, and/or linkers of the foregoing sections.









TABLE 3







Exemplary siNA












SEQ

SEQ




ID

ID



Name
NO:
Sense Sequence (5′→3′)
NO:
Antisense Sequence (5′→3′)





ds-
4383
rGrCrUrCrCrUrArArUrUrArCrArCrUr
4605
rGrUrUrGrArGrUrGrUrArArUrUrArGr


siNA-

CrArArCTT

GrArGrCTT


001









ds-
4384
rGrGrArUrGrArGrGrArArGrGrCrArAr
4606
rUrArArArUrUrGrCrCrUrUrCrCrUrCr


siNA-

UrUrUrATT

ArUrCrCTT


002









ds-
4385
rCrCrGrCrUrGrGrArGrArGrCrArArCr
4607
rUrGrCrArGrUrUrGrCrUrCrUrCrCrUr


siNA-

UrGrCrATT

GrCrGrGTT


003









ds-
4386
rGrCrUrArUrGrArArArCrGrArUrArUr
4608
rGrCrCrCrArUrArUrCrGrUrUrUrCrAr


siNA-

GrGrGrCTT

UrArGrCTT


004









ds-
4387
fUpsmApsfGmCfAmGfCmAfUmUfA
4609
mCpsfApsmGfGmAfUmGfGmUfAmAf


siNA-

mCfCmAfUmCfCmUfGpsTpsT

UmGfCmUfGmCfUmATpsT


005









ds-
4388
mCpsfApsmAmCmAmCmGmGmAmC
4610
mUpsmApsfCmGmGmUfUfUfCmGmU


siNA-

mGmAmAfAmCmCmGmUmApsTpsT

fCmCmGmUmGfUmUmGTpsT


006









ds-
4389
mCpsmApsfCmGmUmCfCfAfAmCmU
4611
mGpsfCpsmAmAmAmCmUmGmAmG


siNA-

fCmAmGmUmUfUmGmCTpsT

mUmUmGfGmAmCmGmUmGpsTpsT


007









ds-
4390
mUpsmGpsfAmAmCmAfGfCfCmCm
4612
mGpsfApsmAmCmAmCmAmUmAmG


siNA-

UfAmUmGmUmGfUmUmCTpsT

mGmGmCfUmGmUmUmCmApsTpsT


008









ds-
4391
mApsmCpsfGmAmGmCfUfUfGmGm
4613
mGpsfGpsmAmUmCmAmGmUmGmC


siNA-

CfAmCmUmGmAfUmCmCTpsT

mCmAmAfGmCmUmCmGmUpsTpsT


009









ds-
4392
mUpsmCpsfAmUmGmUfGfGfUmAm
4614
mApsfApsmCmCmAmAmCmAmCmU


siNA-

GfUmGmUmUmGfGmUmUTpsT

mAmCmCfAmCmAmUmGmApsTpsT


010









ds-
4393
mApsmCpsfAmAmCmAfUfUfAmUm
4615
mGpsfCpsmAmUmUmGmUmUmGmA


siNA-

CfAmAmCmAmAfUmGmCTpsT

mUmAmAfUmGmUmUmGmUpsTpsT


011









ds-
4394
mApsfApsmAmCmCmUmAmCmAmA
4616
mGpsmGpsfAmAmCmCfAfCfCmUmU


siNA-

mGmGmUfGmGmUmUmCmCpsTpsT

fGmUmAmGmGfUmUmUTpsT


012









ds-
4395
mCpsmGpsfUmUmUmUfUfAfAmAm
4617
mGpsfCpsmAmAmAmCmCmCmGmU


siNA-

CfGmGmGmUmUfUmGmCTpsT

mUmUmAfAmAmAmAmCmGpsTpsT


013









ds-
4396
mGpsfUpsmGmCmCmGmCmAmCmG
4618
mGpsmUpsfCmUmUmAfCfAfCmCmG


siNA-

mGmUmGfUmAmAmGmAmCpsTpsT

fUmGmCmGmGfCmAmCTpsT


014









ds-
4397
TmUpsfGpsmAmCmGmUmGmAmUm
4619
mUpsmApsfCmCmAmCfAfUfAmUmA


siNA-

AmUmAmUfGmUmGmGmUmApsTps

fUmCmAmCmGfUmCmATpsT


015









ds-
4398
mGpsmGpsfAmUmGmUfAfAfAmCm
4620
mGpsfCpsmUmAmUmGmUmAmAmG


siNA-

UfUmAmCmAmUfAmGmCTpsT

mUmUmUfAmCmAmUmCmCpsTpsT


016









ds-
4399
mApsfCpsmCmGmGmGmUmUmUmG
4621
mUpsmCpsfAmAmAmCfUfGfUmCmA


siNA-

mAmCmAfGmUmUmUmGmApsTpsT

fAmAmCmCmCfGmGmUTpsT


017









ds-
4400
mUpsmGpsfUmCmAmAfAfCfCmCm
4622
mApsfApsmAmAmUmUmAmCmCmG


siNA-

GfGmUmAmAmUfUmUmUTpsT

mGmGmUfUmUmGmAmCmApsTpsT


018









ds-
4401
mUpsmApsfAmGmUmAfUfGfCmCm
4623
mUpsfGpsmCmAmCmUmAmAmUmG


siNA-

AfUmUmAmGmUfGmCmATpsT

mGmCmAfUmAmCmUmUmApsTpsT


019









ds-
4402
mUpsmGpsfCmCmAmUfUfAfGmUm
4624
mApsfUpsmUmCmUmUmUmGmCmA


siNA-

GfCmAmAmAmGfAmAmUTpsT

mCmUmAfAmUmGmGmCmApsTpsT


020









ds-
4403
mGpsfCpsmGmAmGmCmUmCmUmA
4625
mUpsmGpsfCmAmAmAfGfAfAmUmA


siNA-

mUmUmCfUmUmUmGmCmApsTpsT

fGmAmGmCmUfCmGmCTpsT


021









ds-
4404
mGpsfApsmCmAmCmCmAmGmCmU
4626
mUpsmCpsfGmCmAmCfCfGfUmAmG


siNA-

mAmCmGfGmUmGmCmGmApsTpsT

fCmUmGmGmUfGmUmCTpsT


022









ds-
4405
mCpsmApsfAmUmAmGfCfCfGmCmC
4627
mCpsfCpsmUmCmUmAmGmUmGmG


siNA-

fAmCmUmAmGfAmGmGTpsT

mCmGmGfCmUmAmUmUmGpsTpsT


023









ds-
4406
mApsmCpsfUmGmCmUfUfAfUmGm
4628
mCpsfApsmCmUmAmUmUmAmGmC


siNA-

CfUmAmAmUmAfGmUmGTpsT

mAmUmAfAmGmCmAmGmUpsTpsT


024









ds-
4407
mApsfCpsmAmUmCmAmGmCmAmU
4629
mApsmUpsfCmAmGmGfAfGfUmAmU


siNA-

mAmCmUfCmCmUmGmAmUpsTpsT

fGmCmUmGmAfUmGmUTpsT


025









ds-
4408
mUpsmApsfGmGmAmGfGfUfAmUm
4630
mUpsfApsmAmUmAmGmCmUmCmA


siNA-

GfAmGmCmUmAfUmUmATpsT

mUmAmCfCmUmCmCmUmApsTpsT


026









ds-
4409
mApsmCpsfUmAmUmGfGfUfGmAm
4631
mApsfCpsmAmAmCmAmGmCmAmU


siNA-

UfGmCmUmGmUfUmGmUTpsT

mCmAmCfCmAmUmAmGmUpsTpsT


027









ds-
4410
mApsfCpsmAmUmAmGmUmGmCmU
4632
mUpsmGpsfCmCmAmCfAfAfGmAmG


siNA-

mCmUmUfGmUmGmGmCmApsTpsT

fCmAmCmUmAfUmGmUTpsT


028









ds-
4411
mUpsfApsmUmAmCmAmCmUmAmU
4633
mUpsmCpsfUmGmCmUfCfGfCmAmU


siNA-

mGmCmGfAmGmCmAmGmApsTpsT

fAmGmUmGmUfAmUmATpsT


029









ds-
4412
mApsmApsfUmUmCmAfAfAfGmUm
4634
mGpsfUpsmUmGmAmAmUmUmCmA


siNA-

GfAmAmUmUmCfAmAmCTpsT

mCmUmUfUmGmAmAmUmUpsTpsT


030









ds-
4413
mApsfGpsmGmAmAmCmAmUmGm
4635
mUpsmApsfGmGmUmCfCfAfGmAmC


siNA-

UmCmUmGfGmAmCmCmUmApsTps

fAmUmGmUmUfCmCmUTpsT


031

T







ds-
4414
mUpsfGpsmAmAmUmAmUmGmAm
4636
mUpsmApsfUmGmAmCfUfAfUmGmU


siNA-

CmAmUmAfGmUmCmAmUmApsTps

fCmAmUmAmUfUmCmATpsT


032

T







ds-
4415
mUpsmUpsfUmGmAmGfCfUfUmUm
4637
mGpsfCpsmUmUmAmGmCmCmCmA


siNA-

GfGmGmCmUmAfAmGmCTpsT

mAmAmGfCmUmCmAmAmApsTpsT


033









ds-
4416
mUpsmApsfAmUmGmAfUfGfAmAm
4638
mUpsfUpsmUmGmCmGmAmCmAmU


siNA-

UfGmUmCmGmCfAmAmATpsT

mUmCmAfUmCmAmUmUmApsTpsT


034









ds-
4417
mGpsmApsfGmUmAmCfGfAfAmCm
4639
mApsfGpsmUmAmCmAmUmAmAmG


siNA-

UfUmAmUmGmUfAmCmUTpsT

mUmUmCfGmUmAmCmUmCpsTpsT


035









ds-
4418
mGpsmGpsfUmAmCmGfUfUfAmAm
4640
mUpsfApsmUmUmAmAmCmUmAmU


siNA-

UfAmGmUmUmAfAmUmATpsT

mUmAmAfCmGmUmAmCmCpsTpsT


036









ds-
4419
mGpsfApsmAmAmAmAmGmAmAm
4641
mApsmApsfUmAmGmCfGfUfAmCmU


siNA-

GmUmAmCfGmCmUmAmUmUpsTps

fUmCmUmUmUfUmUmCTpsT


037

T







ds-
4420
mGpsfCpsmAmAmGmAmAmUmAmC
4642
mGpsmCpsfUmUmUmCfGfUfGmGmU


siNA-

mCmAmCfGmAmAmAmGmCpsTpsT

fAmUmUmCmUfUmGmCTpsT


038









ds-
4421
mApsfCpsmAmAmUmCmGmAmAmG
4643
mCpsmUpsfUmAmCmUfGfCfGmCmU


siNA-

mCmGmCfAmGmUmAmAmGpsTpsT

fUmCmGmAmUfUmGmUTpsT


039









ds-
4422
mUpsmUpsfCmUmGmGfUfCfUmAm
4644
mUpsfApsmGmUmUmCmGmUmUmU


siNA-

AfAmCmGmAmAfCmUmATpsT

mAmGmAfCmCmAmGmAmApsTpsT


040









ds-
4423
mUpsfApsmAmUmAmAmGmAmAm
4645
mCpsmApsfCmGmAmAfCfGfCmUmU


siNA-

AmGmCmGfUmUmCmGmUmGpsTps

fUmCmUmUmAfUmUmATpsT


041

T







ds-
4424
mUpsfGpsmUmAmUmGmCmAmGmC
4646
mUpsmCpsfAmGmGmUfUfUfUmGmC


siNA-

mAmAmAfAmCmCmUmGmApsTpsT

fUmGmCmAmUfAmCmATpsT


042









ds-
4425
mCpsfApsmUmCmUmGmUmUmGmU
4647
mCpsmApsfGmUmAmAfGfUfGmAmC


siNA-

mCmAmCfUmUmAmCmUmGpsTpsT

fAmAmCmAmGfAmUmGTpsT


043









ds-
4426
mUpsmApsfCmCmCmAfAfUfAmAm
4648
mGpsfApsmCmGmCmAmGmUmAmU


siNA-

UfAmCmUmGmCfGmUmCTpsT

mUmAmUfUmGmGmGmUmApsTpsT


044









ds-
4427
mCpsfUpsmUmCmGmGmUmAmGmU
4649
mApsmApsfAmUmUmGfGfCfUmAmC


siNA-

mAmGmCfCmAmAmUmUmUpsTpsT

fUmAmCmCmGfAmAmGTpsT


045









ds-
4428
mCpsmApsfAmAmAmGfGfCfUmUm
4650
mUpsfCpsmUmGmCmGmUmAmGmA


siNA-

CfUmAmCmGmCfAmGmATpsT

mAmGmCfCmUmUmUmUmGpsTpsT


046









ds-
4429
mUpsmGpsfUmCmAmCfUfAfAmGm
4651
mApsfGpsmCmAmGmAmUmUmUmC


siNA-

AfAmAmUmCmUfGmCmUTpsT

mUmUmAfGmUmGmAmCmApsTpsT


047









ds-
4430
mGpsmApsfCmAmAmGfGfAfAmCm
4652
mUpsfUpsmGmUmAmAmUmCmAmG


siNA-

UfGmAmUmUmAfCmAmATpsT

mUmUmCfCmUmUmGmUmCpsTpsT


048









ds-
4431
mCpsmApsfUmGmGmAfAfGfUmCm
4653
mCpsfGpsmAmAmGmGmUmGmUmG


siNA-

AfCmAmCmCmUfUmCmGTpsT

mAmCmUfUmCmCmAmUmGpsTpsT


049









ds-
4432
mCpsfApsmUmUmCmUmGmCmAmC
4654
mUpsmCpsfUmAmCmUfCfUfUmGmU


siNA-

mAmAmGfAmGmUmAmGmApsTpsT

fGmCmAmGmAfAmUmGTpsT


050









ds-
4433
mCpsmApsfCmAmUmAfGfCfAmAm
4655
mGpsfApsmUmUmAmAmAmGmAmU


siNA-

UfCmUmUmUmAfAmUmCTpsT

mUmGmCfUmAmUmGmUmGpsTpsT


051









ds-
4434
mApsfApsmAmUmGmUmGmGmUm
4656
mUpsmGpsfAmAmAmGfAfGfCmCmA


siNA-

GmGmCmUfCmUmUmUmCmApsTps

fCmCmAmCmAfUmUmUTpsT


052

T







ds-
4435
mUpsfUpsmUmAmCmAmCmAmUmU
4657
mApsmApsfGmAmGmCfCfCfUmAmA


siNA-

mAmGmGfGmCmUmCmUmUpsTpsT

fUmGmUmGmUfAmAmATpsT


053









ds-
4436
mUpsmApsmCmGfGmUmUmUfCfGf
4658
mUpsfGpsmCmAmAmCmAmCmGmG


siNA-

UmCmCfGmUmGmUmUfGmCpsmA

mAmCmGfAmAmAmCmCmGmUmAp


054



sTpsT





ds-
4437
mApsfApsmCmUmGmAmGmUmUm
4659
mApsmApsmAmCfAmCmAmCfGfUfC


siNA-

GmGmAmCfGmUmGmUmGmUmUm

mCmAfAmCmUmCmAfGmUpsmU


055

UpsTpsT







ds-
4438
mUpsmGpsmAmAfCmAmGmCfCfCf
4660
mApsfUpsmGmAmAmCmAmCmAmU


siNA-

UmAmUfGmUmGmUmUfCmApsmU

mAmGmGfGmCmUmGmUmUmCmAp


056



sTpsT





ds-
4439
mUpsmApsmUmUfUmAmAmAfAfCf
4661
mApsfUpsmUmGmUmCmAmGmUmA


siNA-

UmUmAfCmUmGmAmCfAmApsmU

mAmGmUfUmUmUmAmAmAmUmA


057



psTpsT





ds-
4440
mUpsfUpsmUmUmCmCmAmCmUmA
4662
mCpsmUpsmCmUfGmAmAmGfAfAfG


siNA-

mCmUmUfCmUmUmCmAmGmAmG

mUmAfGmUmGmGmAfAmApsmA


058

psTpsT







ds-
4441
mUpsfGpsmUmUmAmAmAmAmCmC
4663
mGpsmUpsmGmGfUmAmGmUfGfUf


siNA-

mAmAmCfAmCmUmAmCmCmAmC

UmGmGfUmUmUmUmAfAmCpsmA


059

psTpsT







ds-
4442
mGpsfUpsmAmAmCmAmAmAmCmC
4664
mApsmCpsmCmAfCmCmUmUfGfUfA


siNA-

mUmAmCfAmAmGmGmUmGmGmU

mGmGfUmUmUmGmUfUmApsmC


060

psTpsT







ds-
4443
mUpsmGpsmUmUfGmUmGmUfAfCf
4665
mUpsfApsmCmCmAmGmUmGmUmG


siNA-

AmCmAfCmAmCmUmGfGmUpsmA

mUmGmUfAmCmAmCmAmAmCmAp


061



sTpsT





ds-
4444
mApsmApsmAmGfGmUmUmAfUfGf
4666
mApsfCpsmAmAmCmUmAmCmAmG


siNA-

GmCmUfGmUmAmGmUfUmGpsmU

mCmCmAfUmAmAmCmCmUmUmUp


062



sTpsT





ds-
4445
mUpsfUpsmAmCmAmCmCmGmCmA
4667
mUpsmUpsmAmAfAmCmGmGfGfUfU


siNA-

mAmAmCfCmCmGmUmUmUmAmA

mUmGfCmGmGmUmGfUmApsmA


063

psTpsT







ds-
4446
mGpsmUpsmGmUfAmAmGmUfGfCf
4668
mUpsfApsmAmGmAmCmGmGmGmC


siNA-

AmGmCfCmCmGmUmCfUmUpsmA

mUmGmCfAmCmUmUmAmCmAmCp


064



sTpsT





ds-
4447
mApsmCpsmAmUfGmGmUmAfCfCf
4669
mGpsfUpsmGmAmUmAmUmAmUmG


siNA-

AmCmAfUmAmUmAmUfCmApsmC

mUmGmGfUmAmCmCmAmUmGmUp


065



sTpsT





ds-
4448
mUpsfUpsmAmCmCmGmGmGmUmU
4670
mUpsmCpsmAmAfAmCmUmGfUfCfA


siNA-

mUmGmAfCmAmGmUmUmUmGmA

mAmAfCmCmCmGmGfUmApsmA


066

psTpsT







ds-
4449
mUpsfGpsmAmGmCmAmAmAmGm
4671
mApsmApsmAmAfCmAmCmUfUfCfU


siNA-

AmAmGmAfAmGmUmGmUmUmUm

mUmCfUmUmUmGmCfUmCpsmA


067

UpsTpsT







ds-
4450
mApsfGpsmCmCmAmCmCmAmUmC
4672
mUpsmUpsmGmAfUmUmGmUfUfAfC


siNA-

mGmUmAfAmCmAmAmUmCmAmA

mGmAfUmGmGmUmGfGmCpsmU


068

psTpsT







ds-
4451
mApsmApsmAmUfGmAmAmUfCfUf
4673
mUpsfGpsmGmCmAmUmAmCmUmU


siNA-

UmAmAfGmUmAmUmGfCmCpsmA

mAmAmGfAmUmUmCmAmUmUmU


069



psTpsT





ds-
4452
mApsfUpsmUmCmUmUmUmGmCmA
4674
mUpsmApsmUmGfCmCmAmUfUfAfG


siNA-

mCmUmAfAmUmGmGmCmAmUmA

mUmGfCmAmAmAmGfAmApsmU


070

psTpsT







ds-
4453
mCpsfUpsmAmUmUmCmUmUmUmG
4675
mUpsmGpsmCmCfAmUmUmAfGfUfG


siNA-

mCmAmCfUmAmAmUmGmGmCmA

mCmAfAmAmGmAmAfUmApsmG


071

psTpsT







ds-
4454
mCpsfUpsmAmCmGmGmUmGmCmG
4676
mApsmGpsmAmAfUmAmGmAfGfCfU


siNA-

mAmGmCfUmCmUmAmUmUmCmU

mCmGfCmAmCmCmGfUmApsmG


072

psTpsT







ds-
4455
mApsmUpsmAmGfAmGmCmUfCfGf
4677
mCpsfApsmGmCmUmAmCmGmGmU


siNA-

CmAmCfCmGmUmAmGfCmUpsmG

mGmCmGfAmGmCmUmCmUmAmUp


073



sTpsT





ds-
4456
mUpsmCpsmGmCfAmCmCmGfUfAf
4678
mGpsfApsmGmAmCmAmCmCmAmG


siNA-

GmCmUfGmGmUmGmUfCmUpsmC

mCmUmAfCmGmGmUmGmCmGmAp


074



sTpsT





ds-
4457
mApsmApsmCmUfGmCmUmUfAfUf
4679
mApsfCpsmAmCmUmAmUmUmAmG


siNA-

GmCmUfAmAmUmAmGfUmGpsmU

mCmAmUfAmAmGmCmAmGmUmUp


075



sTpsT





ds-
4458
mUpsfUpsmAmGmUmAmAmGmGm
4680
mGpsmApsmCmUfGmAmGmAfCfUfG


siNA-

UmCmAmGfUmCmUmCmAmGmUm

mAmCfCmUmUmAmCfUmApsmA


076

CpsTpsT







ds-
4459
mApsfCpsmCmUmUmUmUmUmCmA
4681
mGpsmApsmGmUfAmCmAmCfCfUfU


siNA-

mAmAmGfGmUmGmUmAmCmUmC

mUmGfAmAmAmAmAfGmGpsmU


077

psTpsT







ds-
4460
mUpsmGpsmGmUfAmCmUmGfGfUf
4682
mApsfApsmAmUmGmAmCmUmCmU


siNA-

AmAmGfAmGmUmCmAfUmUpsmU

mUmAmCfCmAmGmUmAmCmCmAp


078



sTpsT





ds-
4461
mUpsmCpsmUmGfCmUmAmAfUfCf
4683
mApsfGpsmUmAmGmCmAmGmCmA


siNA-

UmUmGfCmUmGmCmUfAmCpsmU

mAmGmAfUmUmAmGmCmAmGmA


079



psTpsT





ds-
4462
mCpsfGpsmCmUmAmUmUmAmAmC
4684
mGpsmUpsmAmCfGmUmUmAfAfUfA


siNA-

mUmAmUfUmAmAmCmGmUmAmC

mGmUfUmAmAmUmAfGmCpsmG


080

psTpsT







ds-
4463
mUpsmUpsmCmUfUmGmCmUfUfUf
4685
mApsfGpsmAmAmUmAmCmCmAmC


siNA-

CmGmUfGmGmUmAmUfUmCpsmU

mGmAmAfAmGmCmAmAmGmAmA


081



psTpsT





ds-
4464
mCpsmUpsmUmAfCmUmGmCfGfCf
4686
mApsfCpsmAmCmAmAmUmCmGmA


siNA-

UmUmCfGmAmUmUmGfUmGpsmU

mAmGmCfGmCmAmGmUmAmAmGp


082



sTpsT





ds-
4465
mCpsmGpsmCmUfUmCmGmAfUfUf
4687
mApsfGpsmUmAmCmGmCmAmCmA


siNA-

GmUmGfUmGmCmGmUfAmCpsmU

mCmAmAfUmCmGmAmAmGmCmGp


083



sTpsT





ds-
4466
mUpsfApsmAmCmAmAmUmAmUm
4688
mCpsmGpsmUmAfCmUmGmCfUfGfC


siNA-

UmGmCmAfGmCmAmGmUmAmCm

mAmAfUmAmUmUmGfUmUpsmA


084

GpsTpsT







ds-
4467
mUpsfCpsmGmUmUmUmAmGmAmC
4689
mCpsmUpsmGmAfUmCmUmUfCfUfG


siNA-

mCmAmGfAmAmGmAmUmCmAmG

mGmUfCmUmAmAmAfCmGpsmA


085

psTpsT







ds-
4468
mUpsmCpsmAmCfGmAmAmCfGfCf
4690
mGpsfUpsmAmAmUmAmAmGmAmA


siNA-

UmUmUfCmUmUmAmUfUmApsmC

mAmGmCfGmUmUmCmGmUmGmAp


086



sTpsT





ds-
4469
mUpsmApsmAmAfCmGmAmAfCfAf
4691
mApsfApsmUmAmAmUmUmUmUmC


siNA-

UmGmAfAmAmAmUmUfAmUpsmU

mAmUmGfUmUmCmGmUmUmUmA


087



psTpsT





ds-
4470
mApsmApsmUmUfGmAmCmUfUfCf
4692
mApsfApsmGmCmAmCmAmAmAmU


siNA-

UmAmUfUmUmGmUmGfCmUpsmU

mAmGmAfAmGmUmCmAmAmUmU


088



psTpsT





ds-
4471
mCpsmApsmAmUfAmAmUmAfCfUf
4693
mApsfApsmCmCmAmAmGmAmCmG


siNA-

GmCmGfUmCmUmUmGfGmUpsmU

mCmAmGfUmAmUmUmAmUmUmG


089



psTpsT





ds-
4472
mApsmUpsmUmGfGmCmUmAfCfUf
4694
mApsfGpsmCmUmCmUmUmCmGmG


siNA-

AmCmCfGmAmAmGmAfGmCpsmU

mUmAmGfUmAmGmCmCmAmAmUp


090



sTpsT





ds-
4473
mCpsfCpsmUmUmGmAmGmGmAmA
4695
mCpsmGpsmUmGfCmUmAmCfAfAfC


siNA-

mGmUmUfGmUmAmGmCmAmCmG

mUmUfCmCmUmCmAfAmGpsmG


091

psTpsT







ds-
4474
mUpsfGpsmCmUmCmUmCmAmAmG
4696
mGpsmApsmUmUfGmAmAmCfCfAfG


siNA-

mCmUmGfGmUmUmCmAmAmUmC

mCmUfUmGmAmGmAfGmCpsmA


092

psTpsT







ds-
4475
mUpsmGpsmGmUfAmAmAmGfGfCf
4697
mUpsfGpsmUmUmGmUmUmGmUmU


siNA-

CmAmAfCmAmAmCmAfAmCpsmA

mGmGmCfCmUmUmUmAmCmCmAp


093



sTpsT





ds-
4476
mGpsfCpsmCmUmCmAmGmCmAmG
4698
mUpsmApsmAmGfAmAmAmUfCfUfG


siNA-

mCmAmGfAmUmUmUmCmUmUmA

mCmUfGmCmUmGmAfGmGpsmC


094

psTpsT







ds-
4477
mUpsfUpsmUmGmUmAmAmUmCm
4699
mApsmGpsmAmCfAmAmGmGfAfAfC


siNA-

AmGmUmUfCmCmUmUmGmUmCm

mUmGfAmUmUmAmCfAmApsmA


095

UpsTpsT







ds-
4478
mApsmApsmAmUfUmGmGmAfUfGf
4700
mUpsfGpsmGmAmUmCmUmUmUmG


siNA-

AmCmAfAmAmGmAmUfCmCpsmA

mUmCmAfUmCmCmAmAmUmUmUp


096



sTpsT





ds-
4479
psTpsTmCpsfCpsmUmUmUmUmUmAmGmG
4701
mCpsmApsmCmCfAmAmCmAfGfAfG


siNA-

mCmUmCfUmGmUmUmGmGmUmG

mCmCfUmAmAmAmAfAmGpsmG


097









ds-
4480
mCpsmUpsmAmCfUmCmUmUfGfUf
4702
mApsfUpsmUmCmAmUmUmCmUmG


siNA-

GmCmAfGmAmAmUmGfAmApsmU

mCmAmCfAmAmGmAmGmUmAmGp


098



sTpsT





ds-
4481
mUpsfCpsmGmAmUmCmGmUmAmC
4703
mGpsmGpsmCmCfAmCmGmCfGfGfA


siNA-

mUmCmCfGmCmGmUmGmGmCmC

mGmUfAmCmGmAmUfCmGpsmA


099

psTpsT







ds-
4482
mUpsfUpsmUmUmAmCmAmCmAmU
4704
mGpsmApsmAmGfAmGmCmCfCfUfA


siNA-

mUmAmGfGmGmCmUmCmUmUmC

mAmUfGmUmGmUmAfAmApsmA


100

psTpsT







ds-
4483
fUpsmApsfCmGfGmUfUmUfCmGfU
4705
mCpsfApsmAfCmAfCmGfGmAfCmGf


siNA-

mCfCmGfUmGfUmUfGTpsT

AmAfAmCfCmGfUmApsTpsT


101









ds-
4484
mGpsfCpsmAfAmAfCmUfGmAfGmU
4706
fCpsmApsfCmGfUmCfCmAfAmCfUm


siNA-

fUmGfGmAfCmGfUmGpsTpsT

CfAmGfUmUfUmGfCTpsT


102









ds-
4485
fUpsmGpsfAmAfCmAfGmCfCmCfUm
4707
mGpsfApsmAfCmAfCmAfUmAfGmGf


siNA-

AfUmGfUmGfUmUfCTpsT

GmCfUmGfUmUfCmApsTpsT


103









ds-
4486
fApsmCpsfGmAfGmCfUmUfGmGfCm
4708
mGpsfGpsmAfUmCfAmGfUmGfCmCf


siNA-

AfCmUfGmAfUmCfCTpsT

AmAfGmCfUmCfGmUpsTpsT


104









ds-
4487
fUpsmCpsfAmUfGmUfGmGfUmAfG
4709
mApsfApsmCfCmAfAmCfAmCfUmAf


siNA-

mUfGmUfUmGfGmUfUTpsT

CmCfAmCfAmUfGmApsTpsT


105









ds-
4488
fApsmCpsfAmAfCmAfUmUfAmUfCm
4710
mGpsfCpsmAfUmUfGmUfUmGfAmUf


siNA-

AfAmCfAmAfUmGfCTpsT

AmAfUmGfUmUfGmUpsTpsT


106









ds-
4489
mApsfApsmAfCmCfUmAfCmAfAmGf
4711
fGpsmGpsfAmAfCmCfAmCfCmUfUm


siNA-

GmUfGmGfUmUfCmCpsTpsT

GfUmAfGmGfUmUfUTpsT


107









ds-
4490
fCpsmGpsfUmUfUmUfUmAfAmAfC
4712
mGpsfCpsmAfAmAfCmCfCmGfUmUf


siNA-

mGfGmGfUmUfUmGfCTpsT

UmAfAmAfAmAfCmGpsTpsT


108









ds-
4491
mGpsfUpsmGfCmCfGmCfAmCfGmGf
4713
fGpsmUpsfCmUfUmAfCmAfCmCfGm


siNA-

UmGfUmAfAmGfAmCpsTpsT

UfGmCfGmGfCmAfCTpsT


109









ds-
4492
fUpsmApsfCmCfAmCfAmUfAmUfAm
4714
mUpsfGpsmAfCmGfUmGfAmUfAmUf


siNA-

UfCmAfCmGfUmCfATpsT

AmUfGmUfGmGfUmApsTpsT


110









ds-
4493
mGpsfCpsmUfAmUfGmUfAmAfGmU
4715
fGpsmGpsfAmUfGmUfAmAfAmCfUm


siNA-

fUmUfAmCfAmUfCmCpsTpsT

UfAmCfAmUfAmGfCTpsT


111









ds-
4494
mApsfCpsmCfGmGfGmUfUmUfGmA
4716
fUpsmCpsfAmAfAmCfUmGfUmCfAm


siNA-

fCmAfGmUfUmUfGmApsTpsT

AfAmCfCmCfGmGfUTpsT


112









ds-
4495
fUpsmGpsfUmCfAmAfAmCfCmCfGm
4717
mApsfApsmAfAmUfUmAfCmCfGmGf


siNA-

GfUmAfAmUfUmUfUTpsT

GmUfUmUfGmAfCmApsTpsT


113









ds-
4496
fUpsmApsfAmGfUmAfUmGfCmCfA
4718
mUpsfGpsmCfAmCfUmAfAmUfGmGf


siNA-

mUfUmAfGmUfGmCfATpsT

CmAfUmAfCmUfUmApsTpsT


114









ds-
4497
mApsfUpsmUfCmUfUmUfGmCfAmCf
4719
fUpsmGpsfCmCfAmUfUmAfGmUfGm


siNA-

UmAfAmUfGmGfCmApsTpsT

CfAmAfAmGfAmAfUTpsT


115









ds-
4498
mGpsfCpsmGfAmGfCmUfCmUfAmUf
4720
fUpsmGpsfCmAfAmAfGmAfAmUfAm


siNA-

UmCfUmUfUmGfCmApsTpsT

GfAmGfCmUfCmGfCTpsT


116









ds-
4499
mGpsfApsmCfAmCfCmAfGmCfUmAf
4721
fUpsmCpsfGmCfAmCfCmGfUmAfGm


siNA-

CmGfGmUfGmCfGmApsTpsT

CfUmGfGmUfGmUfCTpsT


117









ds-
4500
fCpsmApsfAmUfAmGfCmCfGmCfCm
4722
mCpsfCpsmUfCmUfAmGfUmGfGmCf


siNA-

AfCmUfAmGfAmGfGTpsT

GmGfCmUfAmUfUmGpsTpsT


118









ds-
4501
mCpsfApsmCfUmAfUmUfAmGfCmAf
4723
fApsmCpsfUmGfCmUfUmAfUmGfCm


siNA-

UmAfAmGfCmAfGmUpsTpsT

UfAmAfUmAfGmUfGTpsT


119









ds-
4502
fApsmUpsfCmAfGmGfAmGfUmAfU
4724
mApsfCpsmAfUmCfAmGfCmAfUmAf


siNA-

mGfCmUfGmAfUmGfUTpsT

CmUfCmCfUmGfAmUpsTpsT


120









ds-
4503
mUpsfApsmAfUmAfGmCfUmCfAmU
4725
fUpsmApsfGmGfAmGfGmUfAmUfGm


siNA-

fAmCfCmUfCmCfUmApsTpsT

AfGmCfUmAfUmUfATpsT


121









ds-
4504
fApsmCpsfUmAfUmGfGmUfGmAfU
4726
mApsfCpsmAfAmCfAmGfCmAfUmCf


siNA-

mGfCmUfGmUfUmGfUTpsT

AmCfCmAfUmAfGmUpsTpsT


122









ds-
4505
fUpsmGpsfCmCfAmCfAmAfGmAfGm
4727
mApsfCpsmAfUmAfGmUfGmCfUmCf


siNA-

CfAmCfUmAfUmGfUTpsT

UmUfGmUfGmGfCmApsTpsT


123









ds-
4506
mUpsfApsmUfAmCfAmCfUmAfUmG
4728
fUpsmCpsfUmGfCmUfCmGfCmAfUm


siNA-

fCmGfAmGfCmAfGmApsTpsT

AfGmUfGmUfAmUfATpsT


124









ds-
4507
fApsmApsfUmUfCmAfAmAfGmUfG
4729
mGpsfUpsmUfGmAfAmUfUmCfAmCf


siNA-

mAfAmUfUmCfAmAfCTpsT

UmUfUmGfAmAfUmUpsTpsT


125









ds-
4508
mApsfGpsmGfAmAfCmAfUmGfUmC
4730
fUpsmApsfGmGfUmCfCmAfGmAfCm


siNA-

fUmGfGmAfCmCfUmApsTpsT

AfUmGfUmUfCmCfUTpsT


126









ds-
4509
mUpsfGpsmAfAmUfAmUfGmAfCmA
4731
fUpsmApsfUmGfAmCfUmAfUmGfUm


siNA-

fUmAfGmUfCmAfUmApsTpsT

CfAmUfAmUfUmCfATpsT


127









ds-
4510
fUpsmUpsfUmGfAmGfCmUfUmUfG
4732
mGpsfCpsmUfUmAfGmCfCmCfAmAf


siNA-

mGfGmCfUmAfAmGfCTpsT

AmGfCmUfCmAfAmApsTpsT


128









ds-
4511
mUpsfUpsmUfGmCfGmAfCmAfUmU
4733
fUpsmApsfAmUfGmAfUmGfAmAfUm


siNA-

fCmAfUmCfAmUfUmApsTpsT

GfUmCfGmCfAmAfATpsT


129









ds-
4512
fGpsmApsfGmUfAmCfGmAfAmCfU
4734
mApsfGpsmUfAmCfAmUfAmAfGmUf


siNA-

mUfAmUfGmUfAmCfUTpsT

UmCfGmUfAmCfUmCpsTpsT


130









ds-
4513
fGpsmGpsfUmAfCmGfUmUfAmAfU
4735
mUpsfApsmUfUmAfAmCfUmAfUmUf


siNA-

mAfGmUfUmAfAmUfATpsT

AmAfCmGfUmAfCmCpsTpsT


131









ds-
4514
mGpsfApsmAfAmAfAmGfAmAfGmU
4736
fApsmApsfUmAfGmCfGmUfAmCfUm


siNA-

fAmCfGmCfUmAfUmUpsTpsT

UfCmUfUmUfUmUfCTpsT


132









ds-
4515
mGpsfCpsmAfAmGfAmAfUmAfCmCf
4737
fGpsmCpsfUmUfUmCfGmUfGmGfUm


siNA-

AmCfGmAfAmAfGmCpsTpsT

AfUmUfCmUfUmGfCTpsT


133









ds-
4516
fCpsmUpsfUmAfCmUfGmCfGmCfUm
4738
mApsfCpsmAfAmUfCmGfAmAfGmCf


siNA-

UfCmGfAmUfUmGfUTpsT

GmCfAmGfUmAfAmGpsTpsT


134









ds-
4517
fUpsmUpsfCmUfGmGfUmCfUmAfA
4739
mUpsfApsmGfUmUfCmGfUmUfUmAf


siNA-

mAfCmGfAmAfCmUfATpsT

GmAfCmCfAmGfAmApsTpsT


135









ds-
4518
mUpsfApsmAfUmAfAmGfAmAfAmG
4740
fCpsmApsfCmGfAmAfCmGfCmUfUm


siNA-

fCmGfUmUfCmGfUmGpsTpsT

UfCmUfUmAfUmUfATpsT


136









ds-
4519
fUpsmCpsfAmGfGmUfUmUfUmGfC
4741
mUpsfGpsmUfAmUfGmCfAmGfCmAf


siNA-

mUfGmCfAmUfAmCfATpsT

AmAfAmCfCmUfGmApsTpsT


137









ds-
4520
mCpsfApsmUfCmUfGmUfUmGfUmCf
4742
fCpsmApsfGmUfAmAfGmUfGmAfCm


siNA-

AmCfUmUfAmCfUmGpsTpsT

AfAmCfAmGfAmUfGTpsT


138









ds-
4521
mGpsfApsmCfGmCfAmGfUmAfUmU
4743
fUpsmApsfCmCfCmAfAmUfAmAfUm


siNA-

fAmUfUmGfGmGfUmApsTpsT

AfCmUfGmCfGmUfCTpsT


139









ds-
4522
fApsmApsfAmUfUmGfGmCfUmAfC
4744
mCpsfUpsmUfCmGfGmUfAmGfUmAf


siNA-

mUfAmCfCmGfAmAfGTpsT

GmCfCmAfAmUfUmUpsTpsT


140









ds-
4523
fCpsmApsfAmAfAmGfGmCfUmUfCm
4745
mUpsfCpsmUfGmCfGmUfAmGfAmAf


siNA-

UfAmCfGmCfAmGfATpsT

GmCfCmUfUmUfUmGpsTpsT


141









ds-
4524
fUpsmGpsfUmCfAmCfUmAfAmGfA
4746
mApsfGpsmCfAmGfAmUfUmUfCmUf


siNA-

mAfAmUfCmUfGmCfUTpsT

UmAfGmUfGmAfCmApsTpsT


142









ds-
4525
mUpsfUpsmGfUmAfAmUfCmAfGmU
4747
fGpsmApsfCmAfAmGfGmAfAmCfUm


siNA-

fUmCfCmUfUmGfUmCpsTpsT

GfAmUfUmAfCmAfATpsT


143









ds-
4526
fCpsmApsfUmGfGmAfAmGfUmCfA
4748
mCpsfGpsmAfAmGfGmUfGmUfGmAf


siNA-

mCfAmCfCmUfUmCfGTpsT

CmUfUmCfCmAfUmGpsTpsT


144









ds-
4527
fUpsmCpsfUmAfCmUfCmUfUmGfUm
4749
mCpsfApsmUfUmCfUmGfCmAfCmAf


siNA-

GfCmAfGmAfAmUfGTpsT

AmGfAmGfUmAfGmApsTpsT


145









ds-
4528
fCpsmApsfCmAfUmAfGmCfAmAfUm
4750
mGpsfApsmUfUmAfAmAfGmAfUmUf


siNA-

CfUmUfUmAfAmUfCTpsT

GmCfUmAfUmGfUmGpsTpsT


146









ds-
4529
fUpsmGpsfAmAfAmGfAmGfCmCfA
4751
mApsfApsmAfUmGfUmGfGmUfGmGf


siNA-

mCfCmAfCmAfUmUfUTpsT

CmUfCmUfUmUfCmApsTpsT


147









ds-
4530
fApsmApsfGmAfGmCfCmCfUmAfAm
4752
mUpsfUpsmUfAmCfAmCfAmUfUmAf


siNA-

UfGmUfGmUfAmAfATpsT

GmGfGmCfUmCfUmUpsTpsT


148









ds-
4531
mUpsfGpsmCfAmAfCmAfCmGfGmAf
4753
fUpsmApsfCmGfGmUfUmUfCmGfUm


siNA-

CmGfAmAfAmCfCmGfUmApsTpsT

CfCmGfUmGfUmUfGmCpsfA


149









ds-
4532
fApsmApsfAmCfAmCfAmCfGmUfCm
4754
mApsfApsmCfUmGfAmGfUmUfGmGf


siNA-

CfAmAfCmUfCmAfGmUpsfU

AmCfGmUfGmUfGmUfUmUpsTpsT


150









ds-
4533
mApsfUpsmGfAmAfCmAfCmAfUmA
4755
fUpsmGpsfAmAfCmAfGmCfCmCfUm


siNA-

fGmGfGmCfUmGfUmUfCmApsTpsT

AfUmGfUmGfUmUfCmApsfU


151









ds-
4534
fUpsmApsfUmUfUmAfAmAfAmCfU
4756
mApsfUpsmUfGmUfCmAfGmUfAmAf


siNA-

mUfAmCfUmGfAmCfAmApsfU

GmUfUmUfUmAfAmAfUmApsTpsT


152









ds-
4535
fCpsmUpsfCmUfGmAfAmGfAmAfG
4757
mUpsfUpsmUfUmCfCmAfCmUfAmCf


siNA-

mUfAmGfUmGfGmAfAmApsfA

UmUfCmUfUmCfAmGfAmGpsTpsT


153









ds-
4536
fGpsmUpsfGmGfUmAfGmUfGmUfU
4758
mUpsfGpsmUfUmAfAmAfAmCfCmAf


siNA-

mGfGmUfUmUfUmAfAmCpsfA

AmCfAmCfUmAfCmCfAmCpsTpsT


154









ds-
4537
fApsmCpsfCmAfCmCfUmUfGmUfAm
4759
mGpsfUpsmAfAmCfAmAfAmCfCmUf


siNA-

GfGmUfUmUfGmUfUmApsfC

AmCfAmAfGmGfUmGfGmUpsTpsT


155









ds-
4538
mUpsfApsmCfCmAfGmUfGmUfGmU
4760
fUpsmGpsfUmUfGmUfGmUfAmCfAm


siNA-

fGmUfAmCfAmCfAmAfCmApsTpsT

CfAmCfAmCfUmGfGmUpsfA


156









ds-
4539
mApsfCpsmAfAmCfUmAfCmAfGmCf
4761
fApsmApsfAmGfGmUfUmAfUmGfGm


siNA-

CmAfUmAfAmCfCmUfUmUpsTpsT

CfUmGfUmAfGmUfUmGpsfU


157









ds-
4540
fUpsmUpsfAmAfAmCfGmGfGmUfU
4762
mUpsfUpsmAfCmAfCmCfGmCfAmAf


siNA-

mUfGmCfGmGfUmGfUmApsfA

AmCfCmCfGmUfUmUfAmApsTpsT


158









ds-
4541
mUpsfApsmAfGmAfCmGfGmGfCmU
4763
fGpsmUpsfGmUfAmAfGmUfGmCfAm


siNA-

fGmCfAmCfUmUfAmCfAmCpsTpsT

GfCmCfCmGfUmCfUmUpsfA


159









ds-
4542
fApsmCpsfAmUfGmGfUmAfCmCfAm
4764
mGpsfUpsmGfAmUfAmUfAmUfGmUf


siNA-

CfAmUfAmUfAmUfCmApsfC

GmGfUmAfCmCfAmUfGmUpsTpsT


160









ds-
4543
fUpsmCpsfAmAfAmCfUmGfUmCfAm
4765
mUpsfUpsmAfCmCfGmGfGmUfUmUf


siNA-

AfAmCfCmCfGmGfUmApsfA

GmAfCmAfGmUfUmUfGmApsTpsT


161









ds-
4544
mUpsfGpsmAfGmCfAmAfAmGfAmA
4766
fApsmApsfAmAfCmAfCmUfUmCfUm


siNA-

fGmAfAmGfUmGfUmUfUmUpsTpsT

UfCmUfUmUfGmCfUmCpsfA


162









ds-
4545
fUpsmUpsfGmAfUmUfGmUfUmAfC
4767
mApsfGpsmCfCmAfCmCfAmUfCmGf


siNA-

mGfAmUfGmGfUmGfGmCpsfU

UmAfAmCfAmAfUmCfAmApsTpsT


163









ds-
4546
fApsmApsfAmUfGmAfAmUfCmUfU
4768
mUpsfGpsmGfCmAfUmAfCmUfUmAf


siNA-

mAfAmGfUmAfUmGfCmCpsfA

AmGfAmUfUmCfAmUfUmUpsTpsT


164









ds-
4547
fUpsmApsfUmGfCmCfAmUfUmAfG
4769
mApsfUpsmUfCmUfUmUfGmCfAmCf


siNA-

mUfGmCfAmAfAmGfAmApsfU

UmAfAmUfGmGfCmAfUmApsTpsT


165









ds-
4548
fUpsmGpsfCmCfAmUfUmAfGmUfG
4770
mCpsfUpsmAfUmUfCmUfUmUfGmCf


siNA-

mCfAmAfAmGfAmAfUmApsfG

AmCfUmAfAmUfGmGfCmApsTpsT


166









ds-
4549
fApsmGpsfAmAfUmAfGmAfGmCfU
4771
mCpsfUpsmAfCmGfGmUfGmCfGmAf


siNA-

mCfGmCfAmCfCmGfUmApsfG

GmCfUmCfUmAfUmUfCmUpsTpsT


167









ds-
4550
mCpsfApsmGfCmUfAmCfGmGfUmGf
4772
fApsmUpsfAmGfAmGfCmUfCmGfCm


siNA-

CmGfAmGfCmUfCmUfAmUpsTpsT

AfCmCfGmUfAmGfCmUpsfG


168









ds-
4551
fUpsmCpsfGmCfAmCfCmGfUmAfGm
4773
mGpsfApsmGfAmCfAmCfCmAfGmCf


siNA-

CfUmGfGmUfGmUfCmUpsfC

UmAfCmGfGmUfGmCfGmApsTpsT


169









ds-
4552
fApsmApsfCmUfGmCfUmUfAmUfG
4774
mApsfCpsmAfCmUfAmUfUmAfGmCf


siNA-

mCfUmAfAmUfAmGfUmGpsfU

AmUfAmAfGmCfAmGfUmUpsTpsT


170









ds-
4553
fGpsmApsfCmUfGmAfGmAfCmUfG
4775
mUpsfUpsmAfGmUfAmAfGmGfUmCf


siNA-

mAfCmCfUmUfAmCfUmApsfA

AmGfUmCfUmCfAmGfUmCpsTpsT


171









ds-
4554
fGpsmApsfGmUfAmCfAmCfCmUfUm
4776
mApsfCpsmCfUmUfUmUfUmCfAmAf


siNA-

UfGmAfAmAfAmAfGmGpsfU

AmGfGmUfGmUfAmCfUmCpsTpsT


172









ds-
4555
fUpsmGpsfGmUfAmCfUmGfGmUfA
4777
mApsfApsmAfUmGfAmCfUmCfUmUf


siNA-

mAfGmAfGmUfCmAfUmUpsfU

AmCfCmAfGmUfAmCfCmApsTpsT


173









ds-
4556
fUpsmCpsfUmGfCmUfAmAfUmCfUm
4778
mApsfGpsmUfAmGfCmAfGmCfAmAf


siNA-

UfGmCfUmGfCmUfAmCpsfU

GmAfUmUfAmGfCmAfGmApsTpsT


174









ds-
4557
fGpsmUpsfAmCfGmUfUmAfAmUfA
4779
mCpsfGpsmCfUmAfUmUfAmAfCmUf


siNA-

mGfUmUfAmAfUmAfGmCpsfG

AmUfUmAfAmCfGmUfAmCpsTpsT


175









ds-
4558
fUpsmUpsfCmUfUmGfCmUfUmUfCm
4780
mApsfGpsmAfAmUfAmCfCmAfCmGf


siNA-

GfUmGfGmUfAmUfUmCpsfU

AmAfAmGfCmAfAmGfAmApsTpsT


176









ds-
4559
fCpsmUpsfUmAfCmUfGmCfGmCfUm
4781
mApsfCpsmAfCmAfAmUfCmGfAmAf


siNA-

UfCmGfAmUfUmGfUmGpsfU

GmCfGmCfAmGfUmAfAmGpsTpsT


177









ds-
4560
fCpsmGpsfCmUfUmCfGmAfUmUfGm
4782
mApsfGpsmUfAmCfGmCfAmCfAmCf


siNA-

UfGmUfGmCfGmUfAmCpsfU

AmAfUmCfGmAfAmGfCmGpsTpsT


178









ds-
4561
fCpsmGpsfUmAfCmUfGmCfUmGfCm
4783
mUpsfApsmAfCmAfAmUfAmUfUmGf


siNA-

AfAmUfAmUfUmGfUmUpsfA

CmAfGmCfAmGfUmAfCmGpsTpsT


179









ds-
4562
mUpsfCpsmGfUmUfUmAfGmAfCmCf
4784
fCpsmUpsfGmAfUmCfUmUfCmUfGm


siNA-

AmGfAmAfGmAfUmCfAmGpsTpsT

GfUmCfUmAfAmAfCmGpsfA


180









ds-
4563
mGpsfUpsmAfAmUfAmAfGmAfAmA
4785
fUpsmCpsfAmCfGmAfAmCfGmCfUm


siNA-

fGmCfGmUfUmCfGmUfGmApsTpsT

UfUmCfUmUfAmUfUmApsfC


181









ds-
4564
mApsfApsmUfAmAfUmUfUmUfCmA
4786
fUpsmApsfAmAfCmGfAmAfCmAfUm


siNA-

fUmGfUmUfCmGfUmUfUmApsTpsT

GfAmAfAmAfUmUfAmUpsfU


182









ds-
4565
mApsfApsmGfCmAfCmAfAmAfUmA
4787
fApsmApsfUmUfGmAfCmUfUmCfUm


siNA-

fGmAfAmGfUmCfAmAfUmUpsTpsT

AfUmUfUmGfUmGfCmUpsfU


183









ds-
4566
mApsfApsmCfCmAfAmGfAmCfGmCf
4788
fCpsmApsfAmUfAmAfUmAfCmUfGm


siNA-

AmGfUmAfUmUfAmUfUmGpsTpsT

CfGmUfCmUfUmGfGmUpsfU


184









ds-
4567
fApsmUpsfUmGfGmCfUmAfCmUfA
4789
mApsfGpsmCfUmCfUmUfCmGfGmUf


siNA-

mCfCmGfAmAfGmAfGmCpsfU

AmGfUmAfGmCfCmAfAmUpsTpsT


185









ds-
4568
fCpsmGpsfUmGfCmUfAmCfAmAfCm
4790
mCpsfCpsmUfUmGfAmGfGmAfAmGf


siNA-

UfUmCfCmUfCmAfAmGpsfG

UmUfGmUfAmGfCmAfCmGpsTpsT


186









ds-
4569
fGpsmApsfUmUfGmAfAmCfCmAfG
4791
mUpsfGpsmCfUmCfUmCfAmAfGmCf


siNA-

mCfUmUfGmAfGmAfGmCpsfA

UmGfGmUfUmCfAmAfUmCpsTpsT


187









ds-
4570
fUpsmGpsfGmUfAmAfAmGfGmCfC
4792
mUpsfGpsmUfUmGfUmUfGmUfUmGf


siNA-

mAfAmCfAmAfCmAfAmCpsfA

GmCfCmUfUmUfAmCfCmApsTpsT


188









ds-
4571
mGpsfCpsmCfUmCfAmGfCmAfGmCf
4793
fUpsmApsfAmGfAmAfAmUfCmUfGm


siNA-

AmGfAmUfUmUfCmUfUmApsTpsT

CfUmGfCmUfGmAfGmGpsfC


189









ds-
4572
fApsmGpsfAmCfAmAfGmGfAmAfC
4794
mUpsfUpsmUfGmUfAmAfUmCfAmGf


siNA-

mUfGmAfUmUfAmCfAmApsfA

UmUfCmCfUmUfGmUfCmUpsTpsT


190









ds-
4573
fApsmApsfAmUfUmGfGmAfUmGfA
4795
mUpsfGpsmGfAmUfCmUfUmUfGmUf


siNA-

mCfAmAfAmGfAmUfCmCpsfA

CmAfUmCfCmAfAmUfUmUpsTpsT


191









ds-
4574
fCpsmApsfCmCfAmAfCmAfGmAfGm
4796
mCpsfCpsmUfUmUfUmUfAmGfGmCf


siNA-

CfCmUfAmAfAmAfAmGpsfG

UmCfUmGfUmUfGmGfUmGpsTpsT


192









ds-
4575
mApsfUpsmUfCmAfUmUfCmUfGmCf
4797
fCpsmUpsfAmCfUmCfUmUfGmUfGm


siNA-

AmCfAmAfGmAfGmUfAmGpsTpsT

CfAmGfAmAfUmGfAmApsfU


193









ds-
4576
mUpsfCpsmGfAmUfCmGfUmAfCmUf
4798
fGpsmGpsfCmCfAmCfGmCfGmGfAm


siNA-

CmCfGmCfGmUfGmGfCmCpsTpsT

GfUmAfCmGfAmUfCmGpsfA


194









ds-
4577
mUpsfUpsmUfUmAfCmAfCmAfUmU
4799
fGpsmApsfAmGfAmGfCmCfCmUfAm


siNA-

fAmGfGmGfCmUfCmUfUmCpsTpsT

AfUmGfUmGfUmAfAmApsfA


195









ds-
4578
mApsmGpsmAmCfAmAmGmGfAfAf
4800
vmUpsfUpsmUmGmUmAmAmUmCm


siNA-

CmUmGfAmUmUmAmCfAmApsmA

AmGmUmUfCmCmUmUmGmUmCm


196



UpsTpsT





ds-
4579
fApsmApsfCmUfGmCfUmUfAmUfG
4801
vmApsfCpsmAfCmUfAmUfUmAfGmC


siNA-

mCfUmAfAmUfAmGfUmGpsfU

fAmUfAmAfGmCfAmGfUmUpsTpsT


197









ds-
4580
fUpsmUpsfCmUfUmGfCmUfUmUfCm
4802
vmApsfGpsmAfAmUfAmCfCmAfCmG


siNA-

GfUmGfGmUfAmUfUmCpsfU

fAmAfAmGfCmAfAmGfAmApsTpsT


198









ds-
4581
fCpsmUpsfAmCfUmCfUmUfGmUfGm
4803
vmApsfUpsmUfCmAfUmUfCmUfGmC


siNA-

CfAmGfAmAfUmGfAmApsfU

fAmCfAmAfGmAfGmUfAmGpsTpsT


199









ds-
4582
fUpsmUpsfGmAfAmGfGmUfGmUfC
4804
mCpsfApsmAfAmCfAmGfAmGfAmCf


siNA-

mUfCmUfGmUfUmUfGTpsT

AmCfCmUfUmCfAmApsTpsT


200









ds-
4583
mApsfApsmGfUmCfAmAfCmAfCmCf
4805
fUpsmUpsfGmUfUmAfAmUfGmGfUm


siNA-

AmUfUmAfAmCfAmApsTpsT

GfUmUfGmAfCmUfUTpsT


201









ds-
4584
mUpsfCpsmAfAmCfUmGfUmUfGmCf
4806
fUpsmUpsfAmCfUmUfUmUfGmCfAm


siNA-

AmAfAmAfGmUfAmApsTpsT

AfCmAfGmUfUmGfATpsT


202









ds-
4585
mUpsfCpsmAfUmAfAmCfAmAfAmCf
4807
fApsmUpsfGmCfUmGfGmUfGmUfUm


siNA-

AmCfCmAfGmCfAmUpsTpsT

UfGmUfUmAfUmGfATpsT


203









ds-
4586
mGpsfUpsmAfGmUfUmGfCmAfUmC
4808
fCpsmUpsfUmCfUmGfGmUfGmAfUm


siNA-

fAmCfCmAfGmAfAmGpsTpsT

GfCmAfAmCfUmAfCTpsT


204









ds-
4587
fUpsmGpsfCmUfCmAfCmAfGmCfAm
4809
mGpsfCpsmAfUmAfGmUfGmUfGmCf


siNA-

CfAmCfUmAfUmGfCTpsT

UmGfUmGfAmGfCmApsTpsT


205









ds-
4588
fApsmGpsfAmUfGmCfGmGfUmGfA
4810
mGpsfUpsmAfAmAfCmAfAmUfCmAf


siNA-

mUfUmGfUmUfUmAfCTpsT

CmCfGmCfAmUfCmUpsTpsT


206









ds-
4589
mApsfUpsmCfUmAfCmUfUmUfCmUf
4811
fUpsmGpsfUmGfUmUfUmGfAmGfAm


siNA-

CmAfAmAfCmAfCmApsTpsT

AfAmGfUmAfGmAfUTpsT


207









ds-
4590
fUpsmUpsfUmAfAmUfGmUfUmAfG
4812
mApsfApsmGfCmAfUmCfAmCfUmAf


siNA-

mUfGmAfUmGfCmUfUTpsT

AmCfAmUfUmAfAmApsTpsT


208









ds-
4591
fApsmCpsfUmAfAmAfCmUfUmCfCm
4813
mCpsfGpsmUfAmAfUmAfAmGfGmAf


siNA-

UfUmAfUmUfAmCfGTpsT

AmGfUmUfUmAfGmUpsTpsT


209









ds-
4592
mUpsfUpsmUfGmUfAmAfUmCfAmG
4814
fApsmGpsfAmCfAmAfGmGfAmAfCm


siNA-

fUmUfCmCfUmUfGmUfCmUpsTpsT

UfGmAfUmUfAmCfAmAfATpsT


210









ds-
4593
fCpsmUpsfUmAfCmUfGmCfGmCfUm
4815
mApsfCpsmAfAmUfCmGfAmAfGmCf


siNA-

UfCmGfAmUfUmGfUTpsT

GmCfAmGfUmAfAmGpsTpsT


211









ds-
4594
mApsfCpsmAfCmUfAmUfUmAfGmCf
4816
fApsmApsfCmUfGmCfUmUfAmUfGm


siNA-

AmUfAmAfGmCfAmGfUmUpsTpsT

CfUmAfAmUfAmGfUmGfUTpsT


212









ds-
4595
mApsfGpsmAfAmUfAmCfCmAfCmGf
4817
fUpsmUpsfCmUfUmGfCmUfUmUfCm


siNA-

AmAfAmGfCmAfAmGfAmApsTpsT

GfUmGfGmUfAmUfUmCfUTpsT


213









ds-
4596
mApsfCpsmAfCmAfAmUfCmGfAmAf
4818
fCpsmUpsfUmAfCmUfGmCfGmCfUm


siNA-

GmCfGmCfAmGfUmAfAmGpsTpsT

UfCmGfAmUfUmGfUmGfUTpsT


214









ds-
4597
fCpsmUpsfAmCfUmCfUmUfGmUfGm
4819
mApsfUpsmUfCmAfUmUfCmUfGmCf


siNA-

CfAmGfAmAfUmGfAmAfUTpsT

AmCfAmAfGmAfGmUfAmGpsTpsT


215









ds-
4598
fUpsmUpsfUmCfUmCfAmAfCmUfAm
4820
mApsfGpsmGfAmAfGmUfUmUfAmGf


siNA-

AfAmCfUmUfCmCfUpsTpsT

UmUfGmAfGmAfAmApsTpsT


216









ds-
4599
mApsmGpsmAmCfAmAmGmGfAfAf
4821
vmUpsfUpsmUmGmUmAmAmUmCm


siNA-

CmUmGfAmUmUmAmCfAmAmA

AmGmUmUfCmCmUmUmGmUmCm


217



UpsTpsT





ds-
4600
mApsmGpsmAmCmAmAfGmGfAfAf
4822
vmUpsfUpsmUmGmUfAmAmUmCmA


siNA-

CmUmGmAmUmUmAmCmAmAmA

mGmUmUfCmCfUmUmGmUmCmUps


218



mUpsmU





ds-
4601
mApsmGpsmAmCmAmAfGmGfAfAf
4823
vmUpsfUpsmUmGfUmAmAfUmCmA


siNA-

CmUmGmAmUmUmAmCmAmAmA

mGmUmUfCmCmUfUmGmUfCmUps


219



mUpsmU





ds-
4602
fCpsmUpsfAmCfUmCfUmUfGmUfGm
4824
vmApsfUpsmUfCmAfUmUfCmUfGmC


siNA-

CfAmGfAmAfUmGfAmAfU

fAmCfAmAfGmAfGmUfAmGpsTpsT


220









ds-
4603
mCpsmUpsmAmCmUmCfUmUfGfUf
4825
vmApsfUpsmUmCmAfUmUmCmUmG


siNA-

GmCmAmGmAmAmUmGmAmAmU

mCmAmCfAmAfGmAmGmUmAmGps


221



mUpsmU





ds-
4604
mCpsmUpsmAmCmUmCfUmUfGfUf
4826
vmApsfUpsmUmCfAmUmUfCmUmG


siNA-

GmCmAmGmAmAmUmGmAmAmU

mCmAmCfAmAmGfAmGmUfAmGps


222



mUpsmU





ds-
4827
mApsmGpsmAmCfAmAmGmGfAfAf
4829
vmUpsfUpsmUmGmUmAmAmUmCm


siNA-

CmUmGfAmUmUmAmCfApsmApsm

AmGmUmUfCmCmUmUmGmUmCm


223

A

UpsmUpsmU





ds-
4828
fCpsmUpsfAmCfUmCfUmUfGmUfGm
4830 
vmApsfUpsmUfCmAfUmUfCmUfGmC


siNA-

CfAmGfAmAfUmGfApsmApsfU

fAmCfAmAfGmAfGmUfAmGpsmUps


224



mU





mX = 2′-O-methyl nucleotide;


fX = 2′-fluoro nucleotide;


ps = phosphorothioate linkage;


vX = 5′ vinyl phosphonate nucleotide;


vmX = 5′ vinyl phosphonate, 2′-O-methyl nucleotide






In some embodiments, a siNA of the present disclosure may comprise a sense strand selected from any one of SEQ ID NOs: 4383 to 4604, 4827, and 4828. In some embodiments, a siNA of the present disclosure may comprise an antisense strand selected from any one of SEQ ID NOs: 4605 to 4826, 4829, and 4830. In some embodiments, a siNA of the present disclosure may comprise a sense strand selected from any one of SEQ ID NOs: 4383 to 4604, 4827, and 4828 and an antisense strand selected from any one of SEQ ID NOs: 4605 to 4826, 4829, and 4830. In some embodiments, a siNA of the present disclosure may comprise a sense strand and an antisense strand, respectively, selected from SEQ ID NOs:

















4383 and 4605;



4384 and 4606;



4385 and 4607;



4386 and 4608;



4387 and 4609;



4388 and 4610;



4389 and 4611;



4390 and 4612;



4391 and 4613;



4392 and 4614;



4393 and 4615;



4394 and 4616;



4395 and 4617;



4396 and 4618;



4397 and 4619;



4398 and 4620;



4399 and 4621;



4400 and 4622;



4401 and 4623;



4402 and 4624;



4403 and 4625;



4404 and 4626;



4405 and 4627;



4406 and 4628;



4407 and 4629;



4408 and 4630;



4409 and 4631;



4410 and 4632;



4411 and 4633;



4412 and 4634;



4413 and 4635;



4414 and 4636;



4415 and 4637;



4416 and 4638;



4417 and 4639;



4418 and 4640;



4419 and 4641;



4420 and 4642;



4421 and 4643;



4422 and 4644;



4423 and 4645;



4424 and 4646;



4425 and 4647;



4426 and 4648;



4427 and 4649;



4428 and 4650;



4429 and 4651;



4430 and 4652;



4431 and 4653;



4432 and 4654;



4433 and 4655;



4434 and 4656;



4435 and 4657;



4436 and 4658;



4437 and 4659;



4438 and 4660;



4439 and 4661;



4440 and 4662;



4441 and 4663;



4442 and 4664;



4443 and 4665;



4444 and 4666;



4445 and 4667;



4446 and 4668;



4447 and 4669;



4448 and 4670;



4449 and 4671;



4450 and 4672;



4451 and 4673;



4452 and 4674;



4453 and 4675;



4454 and 4676;



4455 and 4677;



4456 and 4678;



4457 and 4679;



4458 and 4680;



4459 and 4681;



4460 and 4682;



4461 and 4683;



4462 and 4684;



4463 and 4685;



4464 and 4686;



4465 and 4687;



4466 and 4688;



4467 and 4689;



4468 and 4690;



4469 and 4691;



4470 and 4692;



4471 and 4693;



4472 and 4694;



4473 and 4695;



4474 and 4696;



4475 and 4697;



4476 and 4698;



4477 and 4699;



4478 and 4700;



4479 and 4701;



4480 and 4702;



4481 and 4703;



4482 and 4704;



4483 and 4705;



4484 and 4706;



4485 and 4707;



4486 and 4708;



4487 and 4709;



4488 and 4710;



4489 and 4711;



4490 and 4712;



4491 and 4713;



4492 and 4714;



4493 and 4715;



4494 and 4716;



4495 and 4717;



4496 and 4718;



4497 and 4719;



4498 and 4720;



4499 and 4721;



4500 and 4722;



4501 and 4723;



4502 and 4724;



4503 and 4725;



4504 and 4726;



4505 and 4727;



4506 and 4728;



4507 and 4729;



4508 and 4730;



4509 and 4731;



4510 and 4732;



4511 and 4733;



4512 and 4734;



4513 and 4735;



4514 and 4736;



4515 and 4737;



4516 and 4738;



4517 and 4739;



4518 and 4740;



4519 and 4741;



4520 and 4742;



4521 and 4743;



4522 and 4744;



4523 and 4745;



4524 and 4746;



4525 and 4747;



4526 and 4748;



4527 and 4749;



4528 and 4750;



4529 and 4751;



4530 and 4752;



4531 and 4753;



4532 and 4754;



4533 and 4755;



4534 and 4756;



4535 and 4757;



4536 and 4758;



4537 and 4759;



4538 and 4760;



4539 and 4761;



4540 and 4762;



4541 and 4763;



4542 and 4764;



4543 and 4765;



4544 and 4766;



4545 and 4767;



4546 and 4768;



4547 and 4769;



4548 and 4770;



4549 and 4771;



4550 and 4772;



4551 and 4773;



4552 and 4774;



4553 and 4775;



4554 and 4776;



4555 and 4777;



4556 and 4778;



4557 and 4779;



4558 and 4780;



4559 and 4781;



4560 and 4782;



4561 and 4783;



4562 and 4784;



4563 and 4785;



4564 and 4786;



4565 and 4787;



4566 and 4788;



4567 and 4789;



4568 and 4790;



4569 and 4791;



4570 and 4792;



4571 and 4793;



4572 and 4794;



4573 and 4795;



4574 and 4796;



4575 and 4797;



4576 and 4798;



4577 and 4799;



4578 and 4800;



4579 and 4801;



4580 and 4802;



4581 and 4803;



4582 and 4804;



4583 and 4805;



4584 and 4806;



4585 and 4807;



4586 and 4808;



4587 and 4809;



4588 and 4810;



4589 and 4811;



4590 and 4812;



4591 and 4813;



4592 and 4814;



4593 and 4815;



4594 and 4816;



4595 and 4817;



4596 and 4818;



4597 and 4819;



4598 and 4820;



4599 and 4821;



4600 and 4822;



4601 and 4823;



4602 and 4824;



4603 and 4825;



4604 and 4826;



4827 and 4829; &



4828 and 4830.










In some embodiments, the siNA can be selected from ds-siNA-196 (sense and antisense respectively comprising SEQ ID NOs: 4578 and 4800), ds-siNA-197 (sense and antisense respectively comprising SEQ ID NOs: 4579 and 4801), ds-siNA-198 (sense and antisense respectively comprising SEQ ID NOs: 4580 and 4802), ds-siNA-199 (sense and antisense respectively comprising SEQ ID NOs: 4581 and 4803), ds-siNA-217 (sense and antisense respectively comprising SEQ ID NOs: 4599 and 4821), ds-siNA-218 (sense and antisense respectively comprising SEQ ID NOs: 4600 and 4822), ds-siNA-219 (sense and antisense respectively comprising SEQ ID NOs: 4601 and 4823), ds-siNA-220 (sense and antisense respectively comprising SEQ ID NOs: 4602 and 4824), ds-siNA-221 (sense and antisense respectively comprising SEQ ID NOs: 4603 and 4825), and ds-siNA-222 (sense and antisense respectively comprising SEQ ID NOs: 4604 and 4826).


In some embodiments, the siNA can be selected from ds-siNA-196 (sense and antisense respectively comprising SEQ ID NOs: 4578 and 4800), ds-siNA-197 (sense and antisense respectively comprising SEQ ID NOs: 4579 and 4801), ds-siNA-198 (sense and antisense respectively comprising SEQ ID NOs: 4580 and 4802), and ds-siNA-199 (sense and antisense respectively comprising SEQ ID NOs: 4581 and 4803). These siNA comprise a 5′-vinyl phosphonate and are derived from siRNAs that showed high potency in the live virus assay prior to the incorporation of the 5′-vinyl phosphonate. It was determined that the 5′-VP further improved potency for all constructs (see Examples). The most potent siNA were ds-siNA-196 and ds-siNA-199, which were selected for further modification.


In some embodiments, the siNA can be selected from, ds-siNA-217 (sense and antisense respectively comprising SEQ ID NOs: 4599 and 4821), ds-siNA-218 (sense and antisense respectively comprising SEQ ID NOs: 4600 and 4822), ds-siNA-219 (sense and antisense respectively comprising SEQ ID NOs: 4601 and 4823), ds-siNA-220 (sense and antisense respectively comprising SEQ ID NOs: 4602 and 4824), ds-siNA-221 (sense and antisense respectively comprising SEQ ID NOs: 4603 and 4825), and ds-siNA-222 (sense and antisense respectively comprising SEQ ID NOs: 4604 and 4826). These siNA are further modified forms of ds-siNA-196 and ds-siNA-199, which have different 2′-fluoro contents (three variants for each one of the parent siRNAs). All of these siNA also showed high potency across screening assays (see Examples).


Additionally, analogs of the specific embodiments (ds-siNA-001 to ds-siNA-224) can be prepared by altering or adjusting the modified nucleotides, phosphorylation blockers, 5′-stabilized end caps, and/or linkers as disclosed herein. For example, ds-siNA-223 is an analog of ds-siNA-196 in which an additional ps and mUmU overhang have been incorporated in place of dTdT. Similarly, ds-siNA-224 is an analog of ds-siNA-199 in which an additional ps and mUmU overhang have been incorporated in place of dTdT. Those skilled in the art will understand that other analogs can be similarly constructed.


Any of the foregoing specific embodiments can be incorporated into a pharmaceutical compositions, either alone or in combination with 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more additional siNA disclosed herein. Any of the foregoing specific embodiments can be used to treat or prevent viral infections, such as coronavirus infections (e.g., COVID-19) pursuant to the methods and uses disclosed herein.


Pharmaceutical Compositions

The present disclosure also encompasses pharmaceutical compositions comprising siNAs of the present disclosure. One embodiment is a pharmaceutical composition comprising one or more siNA of the present disclosure, and a pharmaceutically acceptable diluent or carrier.


In some embodiments, the pharmaceutical compositions comprising any of the siNA molecules, sense strands, antisense strands, first nucleotide sequences, or second nucleotide sequences described herein. The compositions may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 or more siNA molecules described herein. The compositions may comprise a first nucleotide sequence (i.e., a sense strand) comprising a nucleotide sequence of any one SEQ ID NOs: 1-1203, 2411-3392, 4383-4604, 4827, and 4828. In some embodiments, the composition comprises a second nucleotide sequence (i.e., antisense strand) comprising a nucleotide sequence of any one of SEQ ID NOs: 1204-2406, 3393-4374, 4605-4826, 4829, and 4830. In some embodiments, the composition comprises a sense strand comprising a nucleotide sequence of any one of SEQ ID NOs: 1-1203, 2411-3392, 4383-4604, 4827, and 4828. In some embodiments, the composition comprises an antisense strand comprising a nucleotide sequence of any one of SEQ ID NOs: 1204-2406, 3393-4374, 4605-4826, 4829, and 4830.


Alternatively or additionally, the pharmaceutical compositions may comprise (a) a phosphorylation blocker; and (b) a siNA. In some embodiments, the phosphorylation blocker is any of the phosphorylation blockers disclosed herein. In some embodiments, the siNA is any of the siNAs disclosed herein. In some embodiments, the siNA comprises any of the sense strands, antisense strands, first nucleotide sequences, or second nucleotide sequences described herein.


In some embodiments, the siNA comprises any of the sense strands, antisense strands, first nucleotide sequences, or second nucleotide sequences described herein. In some embodiments, the siNA comprises one or more modified nucleotides. In some embodiments, the one or more modified nucleotides are independently selected from a 2′-fluoro nucleotide and a 2′-O-methyl nucleotide. In some embodiments, the 2′-fluoro nucleotide or the 2′-O-methyl nucleotide is independently selected from any of the 2′-fluoro or 2′-O-methyl nucleotide mimics disclosed herein. In some embodiments, the siNA comprises a nucleotide sequence comprising any of the modification patterns disclosed herein. In some embodiments, the composition comprises (a) a conjugated moiety; and (b) a short interfering nucleic acid (siNA). In some embodiments, the siNA is any of the siNAs disclosed herein. In some embodiments, the siNA comprises any of the sense strands, antisense strands, first nucleotide sequences, or second nucleotide sequences described herein.


In some embodiments, the siNA comprises any of the sense strands, antisense strands, first nucleotide sequences, or second nucleotide sequences described herein. In some embodiments, the siNA comprises one or more modified nucleotides. In some embodiments, the one or more modified nucleotides are independently selected from a 2′-fluoro nucleotide and a 2′-O-methyl nucleotide. In some embodiments, the 2′-fluoro nucleotide or the 2′-O-methyl nucleotide is independently selected from any of the 2′-fluoro or 2′-O-methyl nucleotide mimics disclosed herein. In some embodiments, the siNA comprises a nucleotide sequence comprising any of the modification patterns disclosed herein.


In some embodiments, the pharmaceutical composition comprises (a) a 5′-stabilized end cap; and (b) a siNA. In some embodiments, the 5′-stabilized end cap is any of the 5-stabilized end caps disclosed herein. In some embodiments, the siNA is any of the siNAs disclosed herein. In some embodiments, the siNA comprises any of the sense strands, antisense strands, first nucleotide sequences, or second nucleotide sequences described herein. In some embodiments, the siNA comprises one or more modified nucleotides. In some embodiments, the one or more modified nucleotides are independently selected from a 2′-fluoro nucleotide and a 2′-O-methyl nucleotide. In some embodiments, the 2′-fluoro nucleotide or the 2′-O-methyl nucleotide is independently selected from any of the 2′-fluoro or 2′-O-methyl nucleotide mimics disclosed herein. In some embodiments, the siNA comprises a nucleotide sequence comprising any of the modification patterns disclosed herein.


In some embodiments, the pharmaceutical composition comprises (a) at least one phosphorylation blocker, conjugated moiety, or 5′-stabilized end cap; and (b) a short interfering nucleic acid (siNA). In some embodiments, the phosphorylation blocker is any of the phosphorylation blockers disclosed herein. In some embodiments, the 5′-stabilized end cap is any of the 5-stabilized end caps disclosed herein. In some embodiments, the siNA is any of the siNAs disclosed herein. In some embodiments, the siNA comprises any of the sense strands, antisense strands, first nucleotide sequences, or second nucleotide sequences described herein. In some embodiments, the siNA comprises one or more modified nucleotides. In some embodiments, the one or more modified nucleotides are independently selected from a 2′-fluoro nucleotide and a 2′-O-methyl nucleotide. In some embodiments, the 2′-fluoro nucleotide or the 2′-O-methyl nucleotide is independently selected from any of the 2′-fluoro or 2′-O-methyl nucleotide mimics disclosed herein. In some embodiments, the siNA comprises a nucleotide sequence comprising any of the modification patterns disclosed herein.


In some embodiments, the pharmaceutical composition containing the siNA of the present disclosure is formulated for systemic administration via parenteral delivery. Parenteral administration includes intravenous, intra-arterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; also subdermal administration, e.g., via an implanted device. In a preferred embodiment, the pharmaceutical composition containing the siNA of the present disclosure is formulated for subcutaneous (SC) or intravenous (IV) delivery. Formulations for parenteral administration may include sterile aqueous solutions, which may also contain buffers, diluents and other pharmaceutically acceptable additives as understood by the skilled artisan. For intravenous use, the total concentration of solutes may be controlled to render the preparation isotonic.


The pharmaceutical compositions containing the siNA of the present disclosure are useful for treating a disease or disorder, e.g., associated with the expression or activity of a coronavirus gene, more specifically a non-structural protein, such as nsp8, nsp9, nsp10, nsp11, nsp12, nsp13, nsp14, or nsp15.


In some embodiments, the pharmaceutical composition comprises a siNA of the present disclosure that is complementary or hybridizes to a viral target RNA sequence (e.g., a non-structural protein of coronavirus), and a pharmaceutically acceptable diluent or carrier. When the pharmaceutical composition comprises two or more siNAs, the siNAs may be present in varying amounts. For example, in some embodiments, the weight ratio of first siNA to second siNA is 1:4 to 4:1, e.g., 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, or 4:1. In some embodiments, the molar ratio of first siNA to second siNA is 1:4 to 4:1, e.g., 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, or 4:1.


In some embodiments, the pharmaceutical composition comprises an amount of one or more of the siNA molecules described herein formulated with one or more pharmaceutically acceptable carriers (additives) and/or diluents. The pharmaceutical compositions may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) parenteral administration, for example, by subcutaneous, intramuscular, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; (2) topical application, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin; (3) intravaginally or intrarectally, for example, as a pessary, cream or foam; (4) sublingually; (5) ocularly; (6) transdermally; or (7) nasally.


Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.


Examples of pharmaceutically-acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.


Formulations of the present disclosure include those suitable for nasal, topical (including buccal and sublingual), rectal, vaginal and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound (e.g., siNA molecule) which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 0.1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.


In some embodiments, a formulation of the present disclosure comprises an excipient selected from the group consisting of cyclodextrins, celluloses, liposomes, micelle forming agents, e.g., bile acids, and polymeric carriers, e.g., polyesters and polyanhydrides; and a compound (e.g., siNA molecule) of the present disclosure.


Methods of preparing these formulations or compositions include the step of bringing into association a compound (e.g., siNA molecule) of the present disclosure with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a compound (e.g., siNA molecule) of the present disclosure with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.


Formulations of the disclosure suitable for a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, each containing a predetermined amount of a compound (e.g., siNA molecule) of the present disclosure as an active ingredient. A compound (e.g., siNA molecule) of the present disclosure may also be administered as a bolus, electuary, or paste.


In dosage forms of the disclosure, the active ingredient may be mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds and surfactants, such as poloxamer and sodium lauryl sulfate; (7) wetting agents, such as, for example, cetyl alcohol, glycerol monostearate, and non-ionic surfactants; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, zinc stearate, sodium stearate, stearic acid, and mixtures thereof; (10) coloring agents; and (11) controlled release agents such as crospovidone or ethyl cellulose.


The disclosed dosage forms may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.


Liquid dosage forms of the compounds (e.g., siNA molecules) of the disclosure include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (I particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.


Besides inert diluents, the compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.


Suspensions, in addition to the active compounds (e.g., siNA molecules), may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.


Formulations of the pharmaceutical compositions of the disclosure for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more compounds (e.g., siNA molecules) of the disclosure with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active compound (e.g., siNA molecule).


Formulations of the present disclosure which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.


Dosage forms for the topical or transdermal administration of a compound (e.g., siNA molecule) of this disclosure include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active compound (e.g., siNA molecule) may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants which may be required.


The ointments, pastes, creams and gels may contain, in addition to an active compound (e.g., siNA molecule) of this disclosure, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.


Powders and sprays can contain, in addition to a compound (e.g., siNA molecule) of this disclosure, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.


Transdermal patches have the added advantage of providing controlled delivery of a compound (e.g., siNA molecule) of the present disclosure to the body. Such dosage forms can be made by dissolving or dispersing the compound (e.g., siNA molecule) in the proper medium. Absorption enhancers can also be used to increase the flux of the compound (e.g., siNA molecule) across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the compound (e.g., siNA molecule) in a polymer matrix or gel.


Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.


Pharmaceutical compositions of this disclosure suitable for parenteral administration comprise one or more compounds (e.g., siNA molecules) of the disclosure in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain sugars, alcohols, antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.


Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the disclosure include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.


These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms upon the subject compounds may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.


In some cases, in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally-administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.


Injectable depot forms are made by forming microencapsule matrices of the subject compounds (e.g., siNA molecules) in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue.


When the compounds (e.g., siNA molecules) of the present disclosure are administered as pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99% (more preferably, 10 to 30%) of active ingredient in combination with a pharmaceutically acceptable carrier.


Methods of Treatment and Administration

The siNA molecules of the present disclosure may be used to treat or prevent a disease in a subject in need thereof. In some embodiments, a method of treating or preventing a disease in a subject in need thereof comprises administering to the subject any of the siNA molecules disclosed herein. In some embodiments, a method of treating or preventing a disease in a subject in need thereof comprises administering to the subject any of the compositions disclosed herein.


In some embodiments of the disclosed methods and uses, the disease is a respiratory disease. In some embodiments, the respiratory disease is a viral infection. In some embodiments, the respiratory disease is viral pneumonia. In some embodiments, the respiratory disease is an acute respiratory infection. In some embodiments, the respiratory disease is a cold. In some embodiments, the respiratory disease is severe acute respiratory syndrome (SARS). In some embodiments, the respiratory disease is Middle East respiratory syndrome (MERS). In some embodiments, the disease is coronavirus disease 2019 (e.g., COVID-19). In some embodiments, the respiratory disease can include one or more symptoms selected from coughing, sore throat, runny nose, sneezing, headache, fever, shortness of breath, myalgia, abdominal pain, fatigue, difficulty breathing, persistent chest pain or pressure, difficulty waking, loss of smell and taste, muscle or joint pain, chills, nausea or vomiting, nasal congestion, diarrhea, haemoptysis, conjunctival congestion, sputum production, chest tightness, and palpitations. In some embodiments, the respiratory disease can include complications selected from sinusitis, otitis media, pneumonia, acute respiratory distress syndrome, disseminated intravascular coagulation, pericarditis, and kidney failure. In some embodiments, the respiratory disease is idiopathic.


In some embodiments, the subject is a mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a cat. In some embodiments, the subject is a camel. In preferred embodiments in which the subject is a human, the subject may be at least 40 years old, at least 45 years old, at least 50 years old, at least 55 years old, at least 60 years old, at least 65 years old, at least 70 years old, at least 75 years old, or at least 80 years old or older. In some embodiments, the subject is a pediatric subject (i.e., less than 18 years old).


The preparations (e.g., siNA molecules or pharmaceutical compositions thereof) of the present disclosure may be given parenterally, topically, or rectally or administered in the form of an inhalant. They are, of course, given in forms suitable for each administration route. For example, they are administered in tablets or capsule form, administration by injection, infusion, or inhalation; topical by lotion or ointment; rectal by suppositories. Injection, infusion, or inhalation are preferred.


These compounds may be administered to humans and other animals for therapy or as a prophylactic by any suitable route of administration, including nasally (as by, for example, a spray), rectally, intravaginally, parenterally, intracisternally and topically, as by powders, ointments or drops, including buccally and sublingually. In some embodiments, the compounds or compositions are inhaled, as by, for example, an inhaler, a nebulizer, or in an aerosolized form.


Regardless of the route of administration selected, the compounds (e.g., siNA molecules) of the present disclosure, which may be used in a suitable hydrated form, and/or the pharmaceutical compositions of the present disclosure, are formulated into pharmaceutically-acceptable dosage forms by conventional methods known to those of skill in the art.


In some embodiments, the present disclosure provides methods of treating or preventing a coronavirus infection, comprising administering to a subject in need thereof a therapeutically effective amount of one or more of the siNAs or a pharmaceutical composition as disclosed herein. In some embodiments, the coronavirus infection is selected from the group consisting of Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), and COVID-19. In some embodiments, the subject has been treated with one or more additional coronavirus treatment agents. In some embodiments, the subject is concurrently treated with one or more additional coronavirus treatment agents.


Actual dosage levels of the active ingredients (e.g., siNA molecules) in the pharmaceutical compositions of this disclosure may be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.


The selected dosage level will depend upon a variety of factors including the activity of the particular compound (e.g., siNA molecule) of the present disclosure employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion or metabolism of the particular compound being employed, the rate and extent of absorption, the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular compound employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.


A physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the compounds (e.g., siNA molecules) of the disclosure employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.


In general, a suitable daily dose of a compound (e.g., siNA molecule) of the disclosure is the amount of the compound that is the lowest dose effective to produce a therapeutic effect. Such an effective dose generally depends upon the factors described above. Preferably, the compounds are administered at about 0.01 mg/kg to about 200 mg/kg, more preferably at about 0.1 mg/kg to about 100 mg/kg, even more preferably at about 0.5 mg/kg to about 50 mg/kg. In some embodiments, the compound is administered at a dose equal to or greater than 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, or 1 mg/kg. In some embodiments, the compound is administered at a dose equal to or less than 200, 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, 20, or 15 mg/kg. In some embodiments, the total daily dose of the compound is equal to or greater than 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, or 100 mg.


If desired, the effective daily dose of the active compound (e.g., siNA) may be administered as two, three, four, five, six, seven, eight, nine, ten or more doses or sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms. In some embodiments, the compound is administered at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 times. Preferred dosing is one administration per day. In some embodiments, the compound is administered at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 21 times a week. In some embodiments, the compound is administered at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 21 times a month. In some embodiments, the compound is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 21 days. In some embodiments, the compound is administered every 3 days. In some embodiments, the compound is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 weeks. In some embodiments, the compound is administered every month. In some embodiments, the compound is administered once every 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 months. In some embodiments, the compound is administered at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, or 53 times over a period of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 days. In some embodiments, the compound is administered at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, or 53 times over a period of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, or 53 weeks. In some embodiments, the compound is administered at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, or 53 times over a period of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, or 53 months. In some embodiments, the compound is administered at least once a week for a period of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 weeks. In some embodiments, the compound is administered at least once a week for a period of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 months. In some embodiments, the compound is administered at least twice a week fora period of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 weeks. In some embodiments, the compound is administered at least twice a week for a period of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 months. In some embodiments, the compound is administered at least once every two weeks for a period of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 weeks. In some embodiments, the compound is administered at least once every two weeks for a period of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 months. In some embodiments, the compound is administered at least once every four weeks fora period of at least 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 weeks. In some embodiments, the compound is administered at least once every four weeks for a period of at least 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, or 70 months.


In some embodiments, any one of the siNAs or compositions disclosed herein is administered in a particle or viral vector. In some embodiments, the viral vector is a vector of adenovirus, adeno-associated virus (AAV), alphavirus, flavivirus, herpes simplex virus, lentivirus, measles virus, picornavirus, poxvirus, retrovirus, or rhabdovirus. In some embodiments, the viral vector is a recombinant viral vector. In some embodiments, the viral vector is selected from AAVrh.74, AAVrh.10, AAVrh.20, AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7, AAV-8, AAV-9, AAV-10, AAV-11, AAV-12 and AAV-13.


The subject of the described methods may be a mammal, and it includes humans and non-human mammals. In some embodiments, the subject is a human, such as an adult human.


The disclosed siNA can be administered alone or in combination with one or more additional coronavirus treatment agents and/or antiviral agents. The additional coronavirus treatment agent and/or antiviral may be a small molecule (e.g., a nucleoside analog or a protease inhibitor) or a biologic (e.g., an antibody or peptide). Examples of suitable coronavirus treatment agents include, but are not limited to, remdesivir, favipiravir, molnupiravir, dexamethasone, bamlanivimab, casirivimab, imdevimab, convalescent plasma, and interferons. Examples of suitable antiviral agents include, but are not limited to, baloxavir marboxil, oseltamivir, anamivir, vidarabine, acyclovir, ganciclovir, zidovudine, didanosine, zalcitabine, lamivudine, saquinavir, ritonavir, indinavir, nelfinavir, ribavirin, amantadine, rimantadine, remdesivir, favipiravir, and molnupiravir.


When the compounds (e.g., siNA molecules) described herein are co-administered with another, the effective amount may be less than when the compound is used alone.


Examples
Example 1: siNA Synthesis

This example describes an exemplary method for synthesizing ds-siNAs, such as the siNAs disclosed in Table 6 (as identified by the ds-siNA ID).


The 2′-OMe phosphoramidite 5′-O-DMT-deoxy Adenosine (NH-Bz), 3′-O-(2-cyanoethyl-N,N-diisopropyl phosphoramidite, 5′-O-DMT-deoxy Guanosine (NH-ibu), 3′-O-(2-cyanoethyl-N,N-diisopropyl phosphoramidite, 5′-O-DMT-deoxy Cytosine (NH-Bz), 3′-O-(2-cyanoethyl-N,N-diisopropyl phosphoramidite, 5′-O-DMT-Uridine 3′-O-(2-cyanoethyl-N,N-diisopropyl phosphoramidite and solid supports were purchased from Chemgenes Corp. MA.




embedded image


The 2′-F-5′-O-DMT-(NH-Bz) Adenosine-3′-O-(2-cyanoethyl-N,N-diisopropyl phosphoramidite, 2′-F-5′-O-DMT-(NH-ibu)-Guanosine, 3′-O-(2-cyanoethyl-N,N-diisopropyl phosphoramidite, 5′-O-DMT-(NH-Bz)-Cytosine, 2′-F-3′-O-(2-cyanoethyl-N,N-diisopropyl phosphoramidite, 5′-O-DMT-Uridine, 2′-F-3′-O-(2-cyanoethyl-N,N-diisopropyl phosphoramidite and solid supports were purchased from Thermo Fischer Milwaukee Wis., USA.




embedded image


All the monomers were dried in vacuum desiccator with desiccants (P2O5, RT 24 h). The solid supports (CPG) attached to the nucleosides and universal supports was obtained from LGC and Chemgenes. The chemicals and solvents for post synthesis workflow were purchased from commercially available sources like VWR/Sigma and used without any purification or treatment. Solvent (Acetonitrile) and solutions (amidite and activator) were stored over molecular sieves during synthesis.


The oligonucleotides were synthesized on a DNA/RNA Synthesizers (Expedite 8909 or ABI-394) using standard oligonucleotide phosphoramidite chemistry starting from the 3′ residue of the oligonucleotide preloaded on CPG support. An extended coupling of 0.1M solution of phosphoramidite in CH3CN in the presence of 5-(ethylthio)-1H-tetrazole activator to a solid bound oligonucleotide followed by standard capping, oxidation and deprotection afforded modified oligonucleotides. The 0.1M 12, THF:Pyridine; Water-7:2:1 was used as oxidizing agent while DDTT ((dimethylamino-methylidene) amino)-3H-1,2,4-dithiazaoline-3-thione was used as the sulfur-transfer agent for the synthesis of oligoribonucleotide phosphorothioates. The stepwise coupling efficiency of all modified phosphoramidites was more than 98%.













Reagents
Detailed Description







Deblock Solution
3% Dichloroacetic acid (DCA) in



Dichloromethane (DCM)


Amidite Concentration
0.1M in Anhydrous Acetonitrile


Activator
0.25M Ethyl-thio-Tetrazole (ETT)


Cap-A solution
Acetic anhydride in Pyridine/THF


Cap-B Solution
16% 1-Methylimidazole in THF


Oxidizing Solution
0.02M I2, THF:Pyridine; Water-7:2:1


Sulfurizing Solution
0.2M DDTT in Pyridine/Acetonitrile 1:1









Cleavage and Deprotection


Deprotection and cleavage from the solid support was achieved with mixture of ammonia methylamine (1:1, AMA) for 15 min at 65° C., when the universal linker was used, the deprotection was left for 90 min at 65° C. or solid supports were heated with aqueous ammonia (28%) solution at 55° C. for 16 h to deprotect the base labile protecting groups.


Quantitation of Crude SiNA or Raw Analysis


Samples were dissolved in deionized water (1.0 mL) and quantitated as follows: Blanking was first performed with water alone (2 ul) on Nanodrop then Oligo sample reading obtained at 260 nm. The crude material is dried down and stored at −20° C.


Crude HPLC/LC-MS analysis


The 0.1 OD of the crude samples were analyzed for crude HPLC and LC-MS analysis. After Confirming the crude LC-MS data then purification step was performed.


HPLC Purification


The unconjugated oligonucleotides were purified by anion-exchange HPLC. The buffers were 20 mM sodium phosphate in 10% CH3CN, pH 8.5 (buffer A) and 20 mM sodium phosphate in 10% CH3CN, 1.0 M NaBr, pH 8.5 (buffer B). Fractions containing full-length oligonucleotides were pooled.


Desalting of Purified SiNA


The purified dry siNA was then desalted using Sephadex G-25 M (Amersham Biosciences). The cartridge was conditioned with 10 mL of deionized water thrice. Finally, the purified siNA dissolved thoroughly in 2.5 mL RNAse free water was applied to the cartridge with very slow drop wise elution. The salt free siNA was eluted with 3.5 ml deionized water directly into a screw cap vial.


IEX HPLC and Electrospray LC/MS Analysis


Approximately 0.10 OD of siNA is dissolved in water and then pipetted in special vials for IEX-HPLC and LC/MS analysis. Analytical HPLC and ES LC-MS established the integrity of the compounds.


Duplex Preparation


Single strand oligonucleotides (Sense and Antisense strands) were annealed (1:1 by molar equivalents, heat 90° C. for 3 min followed by room temperature, 20 min) to give the duplex ds-siNA. The final compounds were analyzed on size exclusion chromatography (SEC).


Example 2: Synthesis of 5′ End Cap Monomer



embedded image


embedded image


Example 2 Monomer Synthesis Scheme

Preparation of (2): To a solution of 1 (15 g, 57.90 mmol) in DMF (150 mL) were added AcSK (11.24 g, 98.43 mmol) and TBAI (1.07 g, 2.89 mmol), and the mixture was stirred at 25° C. for 12 h. Upon completion as monitored by LCMS, the mixture was diluted with H2O (10 mL) and extracted with EA (200 mL*3). The combined organic layers were washed with brine (200 mL*3), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to give 2 (14.5 g, 96.52% yield, 98% purity) as a colorless oil. ESI-LCMS: 254.28 [M+H]+; 1H NMR (400 MHz, CDCl3) δ=4.78-4.65 (m, 2H), 3.19 (d, J=14.1 Hz, 2H), 2.38 (s, 3H), 1.32 (t, J=6.7 Hz, 12H); 31P NMR (162 MHz, CDCl3) δ=20.59.


Preparation of (3): To a solution of 2 (14.5 g, 57.02 mmol) in CH3CN (50 mL) and MeOH (25 mL) was added NaOH (3 M, 28.51 mL), and the mixture was stirred at 25° C. for 12 h under Ar. Upon completion as monitored by TLC, the reaction mixture was concentrated under reduced pressure to remove CH3CN and CH3OH. The residue was diluted with water (50 mL) and adjust pH=7 by 6M HCl, and the mixture was extracted with EA (50 mL*3). The combined organic layers were washed with brine (50 mL*3), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to give 3 (12.1 g, crude) as a colorless oil.


Preparation of (4): To a solution of 3 (12.1 g, 57.01 mmol) in CH3CN (25 mL) and MeOH (25 mL) was added A (14.77 g, 57.01 mmol) dropwise at 25° C., and the mixture was stirred at 25° C. under Ar for 12 h. Upon completion as monitored by LCMS, the reaction mixture was concentrated under reduced pressure to give 4 (19.5 g, 78.85% yield) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ=4.80-4.66 (m, 4H), 2.93 (d, J=11.3 Hz, 4H), 1.31 (dd, J=3.9, 6.1 Hz, 24H); 31P NMR (162 MHz, CDCl3) δ=22.18.


Preparation of (5): To a solution of 4 (19.5 g, 49.95 mmol) in MeOH (100 mL) and H2O (100 mL) was added Oxone (61.41 g, 99.89 mmol) at 25° C. in portions, and the mixture was stirred at 25° C. for 12 h under Ar. Upon completion as monitored by LCMS, the reaction mixture was filtered, and the filtrate was concentrated under reduced pressure to remove MeOH. The residue was extracted with EA (50 mL*3). The combined organic layers were washed with brine (50 mL*3), dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to give a residue. The crude product was triturated with i-Pr2O and n-Hexane (1:2, 100 mL) at 25° C. for 30 min to give 5 (15.6 g, 73.94% yield,) as a white solid. 1H NMR (400 MHz, CDCl3) δ=4.92-4.76 (m, 4H), 4.09 (d, J=16.1 Hz, 4H), 1.37 (dd, J=3.5, 6.3 Hz, 24H); 31P NMR (162 MHz, CDCl3) δ=10.17.


Preparation of (7): To a mixture of 5 (6.84 g, 16.20 mmol) in THF (20 mL) was added LiBr (937.67 mg, 10.80 mmol) until dissolved, followed by DIEA (1.40 g, 10.80 mmol, 1.88 mL) under argon at 15° C. The mixture was stirred at 15° C. for 15 min. 6 (4 g, 10.80 mmol) were added. The mixture was stirred at 15° C. for 3 h. Upon completion as monitored by LCMS, the reaction mixture was quenched by addition of H2O (40 mL) and extracted with EA (40 mL*3). The combined organic layers were washed with brine (100 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by flash reverse-phase chromatography (120 g C-18 Column, Eluent of 0˜60% ACN/H2O gradient @ 80 mL/min) to give 7 (5.7 g, 61.95% yield) as a colorless oil. ESI-LCMS: 611.2 [M+H]+, 1H NMR (400 MHz, CDCl3); δ=9.26 (s, 1H), 7.50 (d, J=8.1 Hz, 1H), 7.01 (s, 2H), 5.95 (d, J=2.7 Hz, 1H), 5.80 (dd, J=2.1, 8.2 Hz, 1H), 4.89-4.72 (m, 2H), 4.66 (d, J=7.2 Hz, 1H), 4.09-4.04 (m, 1H), 3.77 (dd, J=2.7, 4.9 Hz, 1H), 3.62 (d, J=3.1 Hz, 1H), 3.58 (d, J=3.1 Hz, 1H), 3.52 (s, 3H), 1.36 (td, J=1.7, 6.1 Hz, 12H), 0.92 (s, 9H), 0.12 (s, 6H); 31P NMR (162 MHz, CDCl3) δ=9.02


Preparation of (8): To a mixture of 7 (5.4 g, 8.84 mmol) in THF (80 mL) was added Pd/C (5.4 g, 10% purity) under N2. The suspension was degassed under vacuum and purged with H2 several times. The mixture was stirred under H2 (15 psi) at 20° C. for 1 hr. Upon completion as monitored by LCMS, the reaction mixture was filtered, and the filtrate was concentrated to give 8 (5.12 g, 94.5% yield) as a white solid. ESI-LCMS: 613.3 [M+H]+; H NMR (400 MHz, CD3CN) δ=9.31 (s, 1H), 7.37 (d, J=8.0 Hz, 1H), 5.80-5.69 (m, 2H), 4.87-4.75 (m, 2H), 4.11-4.00 (m, 1H), 3.93-3.85 (m, 1H), 3.80-3.74 (m, 1H), 3.66-3.60 (m, 1H), 3.57-3.52 (m, 1H), 3.49 (s, 3H), 3.46-3.38 (m, 1H), 2.35-2.24 (m, 1H), 2.16-2.03 (m, 1H), 1.89-1.80 (m, 1H), 1.37-1.34 (m, 12H), 0.90 (s, 9H), 0.09 (s, 6H); 31P NMR (162 MHz, CD3CN) δ=9.41.


Preparation of (9): To a solution of 8 (4.4 g, 7.18 mmol) in THF (7.2 mL) was added TBAF (1 M, 7.18 mL), and the mixture was stirred at 20° C. for 1 hr. Upon completion as monitored by LCMS, the reaction mixture was diluted with H2O (50 mL) and extracted with EA (50 mL*4). The combined organic layers were washed with brine (50 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 40 g SepaFlash® Silica Flash Column, Eluent of 0˜5%, MeOH/DCM gradient @ 40 mL/min) to give 9 (3.2 g, 88.50% yield) as a white solid. ESI-LCMS: 499.2 [M+H]+1; 1H NMR (400 MHz, CD3CN) δ=9.21 (s, 1H), 7.36 (d, J=8.3 Hz, 1H), 5.81-5.72 (m, 2H), 4.88-4.74 (m, 2H), 3.99-3.87 (m, 2H), 3.84 (dd, 5.4 Hz, 1H), 3.66-3.47 (m, 7H), 2.98 (s, 1H), 2.44-2.15 (m, 2H), 1.36 (d, J=6.0 Hz, 12H); 31P NMR (162 MHz, CD3CN) δ=9.48.


Preparation of (Example 2 monomer): To a mixture of 9 (3.4 g, 6.82 mmol, 1 eq) and 4 A MS (3.4 g) in MeCN (50 mL) was added P1 (2.67 g, 8.87 mmol, 2.82 mL, 1.3 eq) at 0° C., followed by addition of 1H-imidazole-4,5-dicarbonitrile (886.05 mg, 7.50 mmol) at 0° C. The mixture was stirred at 20° C. for 2 h. Upon completion as monitored by LCMS, the reaction mixture was quenched by addition of saturated aq. NaHCO3 (50 mL) and diluted with DCM (100 mL). The organic layer was washed with saturated aq. NaHCO3 (50 mL*2), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC: column: YMC-Triart Prep C18 250*50 mm*10 um; mobile phase: [water (10 mM NH4HCO3)-ACN]; B %: 15% to give a impure product. The impure product was further purified by a flash silica gel column (0% to 5% i-PrOH in DCM with 0.5% TEA) to give Example 2 monomer (2.1 g, 43.18% yield) as a white solid. ESI-LCMS: 721.2 [M+Na]+; H NMR (400 MHz, CD3CN) δ=9.29 (s, 1H), 7.45 (d, J=8.1 Hz, 1H), 5.81 (d, J=4.2 Hz, 1H), 5.65 (d, J=8.1 Hz, 1H), 4.79-4.67 (m, 2H), 4.26-4.05 (m, 2H), 4.00-3.94 (m, 1H), 3.89-3.63 (m, 6H), 3.53-3.33 (m, 5H), 2.77-2.61 (m, 2H), 2.31-2.21 (m, 1H), 2.16-2.07 (m, 1H), 1.33-1.28 (m, 12H), 1.22-1.16 (m, 1H), 1.22-1.16 (m, 11H); 31P NMR (162 MHz, CD3CN) δ=149.89, 149.78, 10.07, 10.02.


Example 3: Synthesis of 5′ End Cap Monomer



embedded image


embedded image


Example 3 Monomer Synthesis Scheme

Preparation of (2): To a solution of 1 (5 g, 13.42 mmol) in DMF (50 mL) were added PPh3 (4.58 g, 17.45 mmol) and 2-hydroxyisoindoline-1,3-dione (2.85 g, 17.45 mmol), followed by a solution of DIAD (4.07 g, 20.13 mmol, 3.91 mL) in DMF (10 mL) dropwise at 15° C. The resulting solution was stirred at 15° C. for 18 hr. The reaction mixture was then diluted with DCM (50 mL), washed with H2O (60 mL*3) and brine (30 mL), dried over Na2SO4, filtered and evaporated to give a residue. The residue was then triturated with EtOH (55 mL) for 30 min, and the collected white powder was washed with EtOH (10 mL*2) and dried to give 2 (12.2 g, 85.16% yield) as a white powder (the reaction was set up in two batches and combined) ESI-LCMS: 518.1 [M+H]+.


Preparation of (3): 2 (6 g, 11.59 mmol) was suspended in MeOH (50 mL), and then NH2NH2.H2O (3.48 g, 34.74 mmol, 3.38 mL, 50% purity) was added dropwise at 20° C. The reaction mixture was stirred at 20° C. for 4 hr. Upon completion, the reaction mixture was diluted with EA (20 mL) and washed with NaHCO3 (10 mL*2) and brine (10 mL). The combined organic layers were then dried over Na2SO4, filtered and evaporated to give 3 (8.3 g, 92.5% yield) as a white powder. (The reaction was set up in two batches and combined). ESI-LCMS: 388.0 [M+H]+, 1H NMR (400 MHz, DMSO-d6) δ=11.39 (br s, 1H), 7.72 (d, J=8.1 Hz, 1H), 6.24-6.09 (m, 2H), 5.80 (d, J=4.9 Hz, 1H), 5.67 (d, J=8.1 Hz, 1H), 4.26 (t, J=4.9 Hz, 1H), 4.03-3.89 (m, 1H), 3.87-3.66 (m, 3H), 3.33 (s, 3H), 0.88 (s, 9H), 0.09 (d, J=1.3 Hz, 6H)


Preparation of (4): To a solution of 3 (7 g, 18.06 mmol) and Py (1.43 g, 18.06 mmol, 1.46 mL) in DCM (130 mL) was added a solution of MSCl (2.48 g, 21.68 mmol, 1.68 mL) in DCM (50 mL) dropwise at −78° C. under N2. The reaction mixture was allowed to warm to 15° C. in 30 min and stirred at 15° C. for 3 h. The reaction mixture was quenched by addition of ice-water (70 mL) at 0° C., and then extracted with DCM (50 mL*3). The combined organic layers were washed with saturated aq. NaHCO3 (50 mL) and brine (30 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 30 g SepaFlash® Silica Flash Column, Eluent of 0˜20% i-PrOH/DCM gradient @ 30 mL/min to give 4 (6.9 g, 77.94% yield) as a white solid. ESI-LCMS: 466.1 [M+H]+, 1H NMR (400 MHz, DMSO-d6) δ=11.41 (br s, 1H), 10.15 (s, 1H), 7.69 (d, J=8.1 Hz, 1H), 5.80 (d, J=4.4 Hz, 1H), 5.65 (d, J=8.1 Hz, 1H), 4.24 (t, J=5.2 Hz, 1H), 4.16-3.98 (m, 3H), 3.87 (t, J=4.8 Hz, 1H), 3.00 (s, 3H), 2.07 (s, 3H), 0.88 (s, 9H), 0.10 (d, J=1.5 Hz, 6H)


Preparation of (5): To a solution of 4 (6.9 g, 14.82 mmol) in THF (70 mL) was added TBAF (1 M, 16.30 mL) at 15° C. The reaction mixture was stirred at 15° C. for 18 hr, and then evaporated to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 24 g SepaFlash® Silica Flash Column, Eluent of 0˜9% MeOH/Ethyl acetate gradient @ 30 mL/min) to give 5 (1.8 g, 50.8% yield) as a white solid. ESI-LCMS: 352.0 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ=11.40 (s, 1H), 10.13 (s, 1H), 7.66 (d, J=8.1 Hz, 1H), 5.83 (d, J=4.9 Hz, 1H), 5.65 (dd, J=1.8, 8.1 Hz, 1H), 5.36 (d, J=6.2 Hz, 1H), 4.13-4.00 (m, 4H), 3.82 (t, J=5.1 Hz, 1H), 3.36 (s, 3H), 3.00 (s, 3H)


Preparation of (Example 3 monomer): To a mixture of 5 (3 g, 8.54 mmol) and DIEA (2.21 g, 17.08 mmol, 2.97 mL) in ACN (90 mL) was added P2 (3.03 g, 12.81 mmol) dropwise at 15° C. The reaction mixture was stirred at 15° C. for 5 h. Upon completion, the reaction mixture was diluted with EA (40 mL) and quenched with 5% NaHCO3 (20 mL). The organic layer was washed with brine (30 mL), dried over Na2SO4, filtered and evaporated to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 12 g SepaFlash® Silica Flash Column, Eluent of 0˜15% i-PrOH/(DCM with 2% TEA) gradient @ 20 mL/min) to Example 3 monomer (2.1 g, 43.93% yield) as a white solid. ESI-LCMS: 552.3 [M+H]+; 1H NMR (400 MHz, CD3CN) δ=8.78 (br s, 1H), 7.57 (dd, J=4.6, 8.2 Hz, 1H), 5.97-5.80 (m, 1H), 5.67 (d, J=8.3 Hz, 1H), 4.46-4.11 (m, 4H), 3.95-3.58 (m, 5H), 3.44 (d, J=16.3 Hz, 3H), 3.02 (d, J=7.5 Hz, 3H), 2.73-2.59 (m, 2H), 1.23-1.15 (m, 12H); 31P NMR (162 MHz, CD3CN) δ=150.30, 150.10


Example 4: Synthesis of 5′ End Cap Monomer



embedded image


Example 4 Monomer Synthesis Scheme

Preparation of (2): To the solution of 1 (5 g, 12.90 mmol) and TEA (1.57 g, 15.48 mmol, 2.16 mL) in DCM (50 mL) was added P-4 (2.24 g, 15.48 mmol, 1.67 mL) in DCM (10 mL) dropwise at 15° C. under N2. The reaction mixture was stirred at 15° C. for 3 h. Upon completion as monitored by LCMS and TLC (PE:EtOAc=0:1), the reaction mixture was concentrated to dryness, diluted with H2O (20 mL), and extracted with EA (50 mL*3). The combined organic layers were washed with brine (30 mL*3), dried over anhydrous Na2SO4, filtered, and the filtrate was concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 40 g SepaFlash® Silica Flash Column, Eluent of 0˜95% Ethyl acetate/Petroleum ether gradient @ 60 mL/min) to give 2 (5.3 g, 71.3% yield) as a white solid. ESI-LCMS: 496.1 [M+H]+; H NMR (400 MHz, CDCl3) δ=0.10 (d, J=4.02 Hz, 6H) 0.91 (s, 9H) 3.42-3.54 (m, 3H) 3.65-3.70 (m, 1H) 3.76-3.89 (m, 6H) 4.00 (dd, J=10.92, 2.89 Hz, 1H) 4.08-4.13 (m, 1H) 4.15-4.23 (m, 2H) 5.73 (dd, J=8.28, 2.01 Hz, 1H) 5.84 (d, J=2.76 Hz, 1H) 6.86 (d, J=15.81 Hz, 1H) 7.72 (d, J=8.03 Hz, 1H) 9.10 (s, 1H); 31P NMR (162 MHz, CD3CN) δ=9.65


Preparation of (3): To a solution of 2 (8.3 g, 16.75 mmol) in THF (50 mL) were added TBAF (1 M, 16.75 mL) and CH3COOH (1.01 g, 16.75 mmol, 957.95 uL). The mixture was stirred at 20° C. for 12 hr. Upon completion as monitored by LCMS, the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography (SiO2, PE: EA=0˜100%; MeOH/EA=0˜10%) to give 3 (5 g, 77.51% yield) as a white solid. ESI-LCMS: 382.1 [M+H]+; 1H NMR (400 MHz, CDCl3) δ=3.35 (s, 3H) 3.65 (br d, J=2.76 Hz, 3H) 3.68 (d, J=2.76 Hz, 3H) 3.77 (t, J=5.08 Hz, 1H) 3.84-4.10 (m, 4H) 5.33 (br d, J=5.52 Hz, 1H) 5.62 (d, J=7.77 Hz, 1H) 5.83 (d, J=4.94 Hz, 1H) 7.69 (d, J=7.71 Hz, 1H) 9.08 (d, J=16.81 Hz, 1H) 11.39 (br s, 1H); 31P NMR (162 MHz, CD3CN) δ=15.41


Preparation of (Example 4 monomer): To a solution of 3 (2 g, 5.25 mmol) and DIPEA (2.03 g, 15.74 mmol, 2.74 mL, 3 eq) in MeCN (21 mL) and pyridine (7 mL) was added P2 (1.86 g, 7.87 mmol) dropwise at 20° C., and the mixture was stirred at 20° C. for 3 hr. Upon completion as monitored by LCMS, the reaction mixture was diluted with water (20 mL) and extracted with EA (50 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous Na2SO4, filtered, and the filtrate was concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 25 g SepaFlash® Silica Flash Column, Eluent of 0˜45% (Ethyl acetate:EtOH=4:1)/Petroleum ether gradient) to give Example 4 monomer (1.2 g, 38.2% yield) as a white solid. ESI-LCMS: 604.1 [M+H]+; 1H NMR (400 MHz, CD3CN) δ=1.12-1.24 (m, 12H) 2.61-2.77 (m, 2H) 3.43 (d, J=17.64 Hz, 3H) 3.59-3.69 (m, 2H) 3.71-3.78 (m, 6H) 3.79-4.14 (m, 5H) 4.16-4.28 (m, 1H) 4.29-4.42 (m, 1H) 5.59-5.72 (m, 1H) 5.89 (t, J=4.53 Hz, 1H) 7.48 (br d, J=12.76 Hz, 1H) 7.62-7.74 (m, 1H) 9.26 (br s, 1H); 31P NMR (162 MHz, CD3CN) δ=150.57, 149.96, 9.87


Example 5: Synthesis of 5′ End Cap Monomer



text missing or illegible when filed


text missing or illegible when filed


Example 5 Monomer Synthesis Scheme

Preparation of (2): To a solution of 1 (30 g, 101.07 mmol, 87% purity) in CH3CN (1.2 L) and Py (60 mL) were added 12 (33.35 g, 131.40 mmol, 26.47 mL) and PPh3 (37.11 g, 141.50 mmol) in one portion at 10° C. The reaction was stirred at 25° C. for 48 h. Upon completion, the mixture was diluted with saturated aq.Na2S2O3 (300 mL) and saturated aq.NaHCO3 (300 mL), concentrated to remove CH3CN, and extracted with EtOAc (300 mL*3). The combined organic layers were washed with brine (300 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 330 g SepaFlash® Silica Flash Column, Eluent of 0˜60% Methanol/Dichloromethane gradient @ 100 mL/min) to give 2 (28.2 g, 72% yield) as a brown solid. ESI-LCMS: 369.1 [M+H]+; H NMR (400 MHz, DMSO-d6) δ=11.43 (s, 1H), 7.68 (d, J=8.1 Hz, 1H), 5.86 (d, J=5.5 Hz, 1H), 5.69 (d, J=8.1 Hz, 1H), 5.46 (d, J=6.0 Hz, 1H), 4.08-3.96 (m, 2H), 3.90-3.81 (m, 1H), 3.60-3.51 (m, 1H), 3.40 (dd, J=6.9, 10.6 Hz, 1H), 3.34 (s, 3H).


Preparation of (3): To the solution of 2 (12 g, 32.6 mmol) in DCM (150 mL) were added AgNO3 (11.07 g, 65.20 mmol), 2,4,6-trimethylpyridine (11.85 g, 97.79 mmol, 12.92 mL), and DMTCl (22.09 g, 65.20 mmol) at 10° C., and the reaction mixture was stirred at 10° C. for 16 hr. Upon completion, the mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by flash silica gel chromatography (ISCO®; 120 g SepaFlash® Silica Flash Column, Eluent of 0˜50% Ethyl acetate/Petroleum ether gradient @ 60 mL/min) to give 3 (17 g, 70.78% yield) as a yellow solid. ESI-LCMS: 693.1 [M+Na]+1; H NMR (400 MHz, DMSO-d6) δ=11.46 (s, 1H), 7.60 (d, J=8.4 Hz, 1H), 7.49 (d, J=7.2 Hz, 2H), 7.40-7.30 (m, 6H), 7.29-7.23 (m, 1H), 6.93 (d, J=8.8 Hz, 4H), 5.97 (d, J=6.0 Hz, 1H), 5.69 (d, J=8.0 Hz, 1H), 4.05-4.02 (m, 1H), 3.75 (d, J=1.2 Hz, 6H), 3.57 (t, J=5.6 Hz, 1H), 3.27 (s, 4H), 3.06 (t, J=10.4 Hz, 1H), 2.98-2.89 (m, 1H).


Preparation of (4): To a solution of 3 (17 g, 25.35 mmol) in DMF (200 mL) was added AcSK (11.58 g, 101.42 mmol) at 25° C., and the reaction was stirred at 60° C. for 2 hr. The mixture was diluted with H2O (600 mL) and extracted with EtOAc (300 mL*4). The combined organic layers were washed with brine (300 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to give 4 (15.6 g, crude) as a brown solid, which was used directly without further purification. ESI-LCMS: 641.3 [M+H]+.


Preparation of (5): To a solution of 4 (15.6 g, 25.21 mmol) in CH3CN (200 mL) were added DTT (11.67 g, 75.64 mmol, 11.22 mL) and LiOH.H2O (1.06 g, 25.21 mmol) at 10° C. under Ar. The reaction was stirred at 10° C. for 1 hr. The mixture was concentrated under reduced pressure to remove CH3CN, and the residue was diluted with H2O (400 mL) and extracted with EtOAc (200 mL*3). The combined organic layers were washed with brine (300 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 220 g SepaFlash® Silica Flash Column, Eluent of 0˜60% Ethyl acetate/Petroleum ether gradient @ 100 mL/min) to give 5 (8.6 g, 56.78% yield) as a white solid. ESI-LCMS: 599.3 [M+Na]+; 1H NMR (400 MHz, DMSO-d6) δ=8.79 (s, 1H), 7.61 (d, J=8.0 Hz, 1H), 7.56-7.46 (m, 2H), 7.45-7.37 (m, 4H), 7.36-7.27 (m, 3H), 6.85 (dd, J=2.8, 8.8 Hz, 4H), 5.85 (d, J=1.3 Hz, 1H), 5.68 (dd, J=2.0, 8.2 Hz, 1H), 4.33-4.29 (m, 1H), 3.91 (dd, J=4.8, 8.2 Hz, 1H), 3.81 (d, J=1.6 Hz, 6H), 3.33 (s, 3H), 2.85-2.80 (m, 1H), 2.67-2.55 (m, 2H), 1.11 (t, J=8.8 Hz, 1H).


Preparation of (Example 5 monomer): To a solution of 5 (6 g, 10.40 mmol) in DCM (120 mL) were added P1 (4.08 g, 13.53 mmol, 4.30 mL) and DCI (1.35 g, 11.45 mmol) in one portion at 10° C. under Ar. The reaction was stirred at 10° C. for 2 hr. The reaction mixture was diluted with saturated aq.NaHCO3 (50 mL) and extracted with DCM (20 mL*3). The combined organic layers were washed with brine (30 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: YMC-Triart Prep C18 250*50 mm*10 um; mobile phase: [water (10 mM NH4HCO3)-ACN]; B %: 35%-81%, 20 min) to give Example 5 monomer (3.54 g, 43.36% yield) as a yellow solid. ESI-LCMS: 776.4 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ=7.65-7.38 (m, 7H), 7.37-7.22 (m, 3H), 6.90 (d, J=8.4 Hz, 4H), 5.92 (s, 1H), 5.66 (t, J=8.2 Hz, 1H), 4.13 (d, J=4.0 Hz, 1H), 4.00-3.88 (m, 1H), 3.87-3.59 (m, 10H), 3.33 (d, J=5.8 Hz, 3H), 3.12-2.94 (m, 1H), 2.78-2.60 (m, 3H), 2.55-2.48 (m, 1H), 1.36-0.98 (m, 12H); 31P NMR (162 MHz, DMSO-d6) δ=162.69.


Example 6: Synthesis of 5′ End Cap Monomer



embedded image


Example 6 Monomer Synthesis Scheme

Preparation of (2): To a solution of 1 (22.6 g, 45.23 mmol) in DCM (500 mL) and H2O (125 mL) were added TEMPO (6.40 g, 40.71 mmol) and DIB (29.14 g, 90.47 mmol) at 0° C. The mixture was stirred at 20° C. for 20 h. Upon completion as monitored by LCMS, saturated aq. NaHCO3 was added to the mixture to adjust pH >8. The mixture was diluted with H2O (200 mL) and washed with DCM (100 mL*3). The aqueous layer was collected, adjusted to pH<5 by HCl (4M), and extracted with DCM (200 mL*3). The combined organic layers were washed with brine (300 mL), dried over Na2SO4, filtered, and concentrated under reduced pressure to give 2 (17.5 g, 68.55% yield) as a yellow solid. ESI-LCMS: 514.2 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ=11.27 (s, 1H), 8.86 (s, 1H), 8.78 (s, 1H), 8.06 (d, J=7.5 Hz, 2H), 7.68-7.62 (m, 1H), 7.59-7.52 (m, 2H), 6.28 (d, J=6.8 Hz, 1H), 4.82-4.76 (m, 1H), 4.54 (dd, J=4.1, 6.7 Hz, 1H), 4.48 (d, J=1.8 Hz, 1H), 3.32 (s, 3H), 0.94 (s, 9H), 0.18 (d, J=4.8 Hz, 6H).


Preparation of (3): To a solution of 2 (9.3 g, 18.11 mmol) in MeOH (20 mL) was added SOCl2 (3.23 g, 27.16 mmol, 1.97 mL) dropwise at 0° C. The mixture was stirred at 20° C. for 0.5 hr. Upon completion as monitored by LCMS, the reaction mixture was quenched by addition of saturated aq. NaHCO3 (80 mL) and concentrated under reduced pressure to remove MeOH. The aqueous layer was extracted with DCM (80 mL*3). The combined organic layers were washed with brine (200 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 120 g SepaFlash® Silica Flash Column, Eluent of 0˜5%, MeOH/DCM gradient @ 85 mL/min) to give 3 (5.8 g, 60% yield) as a yellow solid. ESI-LCMS: 528.3 [M+H]+, 1H NMR (400 MHz, DMSO-d6) δ=11.28 (s, 1H), 8.79 (d, J=7.3 Hz, 2H), 8.06 (d, J=7.5 Hz, 2H), 7.68-7.62 (m, 1H), 7.60-7.53 (m, 2H), 6.28 (d, J=6.6 Hz, 1H), 4.87 (dd, J=2.4, 4.0 Hz, 1H), 4.61 (dd, J=4.3, 6.5 Hz, 1H), 4.57 (d, J=2.2 Hz, 1H), 3.75 (s, 3H), 3.32 (s, 3H), 0.94 (s, 9H), 0.17 (d, J=2.2 Hz, 6H).


Preparation of (4): To a mixture of 3 (5.7 g, 10.80 mmol) in CD3OD (120 mL) was added NaBD4 (1.63 g, 43.21 mmol) in portions at 0° C., and the mixture was stirred at 20° C. for 1 hr. Upon completion as monitored by LCMS, the reaction mixture was neutralized by AcOH (˜10 mL) and concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 40 g SepaFlash® Silica Flash Column, Eluent of 0˜5%, MeOH/DCM gradient @ 40 mL/min) to give 4 (4.15 g, 7.61 mmol, 70.45% yield) as a yellow solid. ESI-LCMS: 502.2 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ=11.23 (s, 1H), 8.76 (s, 2H), 8.04 (d, J=7.3 Hz, 2H), 7.69-7.62 (m, 1H), 7.60-7.52 (m, 2H), 6.14 (d, J=6.0 Hz, 1H), 5.18 (s, 1H), 4.60-4.51 (m, 2H), 3.98 (d, J=3.0 Hz, 1H), 3.32 (s, 3H), 0.92 (s, 9H), 0.13 (d, J=1.5 Hz, 6H).


Preparation of (5): To a solution of 4 (4.85 g, 9.67 mmol) in pyridine (50 mL) was added DMTrCl (5.90 g, 17.40 mmol) at 25° C. and the mixture was stirred for 2 hr. Upon completion as monitored by LCMS, the reaction mixture was concentrated under reduced pressure to remove pyridine. The residue was diluted with EtOAc (150 mL) and washed with H2O (50 mL*3), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 80 g SepaFlash® Silica Flash Column, Eluent of 0˜70%, EA/PE gradient @ 60 mL/min) to give 5 (6.6 g, 84.06% yield) as a yellow solid. ESI-LCMS: 804.3[M+H]+, 1H NMR (400 MHz, DMSO-d6) δ=11.22 (s, 1H), 8.68 (d, J=11.0 Hz, 2H), 8.03 (d, J=7.3 Hz, 2H), 7.68-7.60 (m, 1H), 7.58-7.49 (m, 2H), 7.37-7.30 (m, 2H), 7.27-7.16 (m, 7H), 6.88-6.79 (m, 4H), 6.17 (d, J=4.2 Hz, 1H), 4.72 (t, J=5.0 Hz, 1H), 4.60 (t, J=4.5 Hz, 1H), 4.03-3.98 (m, 1H), 3.71 (s, 6H), 0.83 (s, 9H), 0.12-0.03 (m, 6H).


Preparation of (6): To a solution of 5 (6.6 g, 8.21 mmol) in THF (16 mL) was added TBAF (1 M, 8.21 mL,), and the mixture was stirred at 20° C. for 2 hr. Upon completion as monitored by LCMS, the reaction mixture was diluted with EA (150 mL) and washed with H2O (50 mL*3). The organic layer was washed with brine (150 mL), dried over Na2SO4, filtered and concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 80 g SepaFlash® Silica Flash Column, Eluent of 10-100%, EA/PE gradient @ 30 mL/min) to give 6 (5.4 g, 94.4% yield) as a yellow solid. ESI-LCMS: 690.3 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ=11.24 (s, 1H), 8.69 (s, 1H), 8.62 (s, 1H), 8.05 (d, J=7.3 Hz, 2H), 7.69-7.62 (m, 1H), 7.60-7.52 (m, 2H), 7.40-7.33 (m, 2H), 7.30-7.18 (m, 7H), 6.84 (dd, J=5.9, 8.9 Hz, 4H), 6.19 (d, J=4.8 Hz, 1H), 5.36 (d, J=6.0 Hz, 1H), 4.59-4.52 (m, 1H), 4.48 (q, J=5.1 Hz, 1H), 4.11 (d, J=4.8 Hz, 1H), 3.72 (d, J=1.0 Hz, 6H), 3.40 (s, 3H).


Preparation of (Example 6 monomer): To a solution of 6 (8.0 g, 11.60 mmol) in MeCN (150 mL) was added P-1 (4.54 g, 15.08 mmol, 4.79 mL) at 0° C., followed by DCI (1.51 g, 12.76 mmol) in one portion. The mixture was warmed to 20° C. and stirred for 2 h. Upon completion as monitored by LCMS, the reaction mixture was quenched by addition of saturated aq. NaHCO3 (50 mL) and diluted with DCM (250 mL). The organic layer was washed with saturated aq.NaHCO3 (50 mL*2), dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by a flash silica gel column (0% to 60% EA in PE contain 0.5% TEA) to give Example 6 monomer (5.75 g, 55.37% yield, 99.4% purity) as a white solid. ESI-LCMS: 890.4 [M+H]+; 1H NMR (400 MHz, CD3CN) δ=9.55 (s, 1H), 8.63-8.51 (m, 1H), 8.34-8.24 (m, 1H), 7.98 (br d, J=7.5 Hz, 2H), 7.65-7.55 (m, 1H), 7.53-7.46 (m, 2H), 7.44-7.37 (m, 2H), 7.32-7.17 (m, 7H), 6.84-6.77 (m, 4H), 6.14 (d, J=4.3 Hz, 1H), 4.84-4.73 (m, 1H), 4.72-4.65 (m, 1H), 4.34-4.27 (m, 1H), 3.91-3.61 (m, 9H), 3.50-3.43 (m, 3H), 2.72-2.61 (m, 1H), 2.50 (t, J=6.0 Hz, 1H), 1.21-1.15 (m, 10H), 1.09 (d, J=6.8 Hz, 2H); 31P NMR (162 MHz, CD3CN) δ =150.01, 149.65


Example 7: Synthesis of 5′ End Cap Monomer



embedded image


embedded image


Example 7 Monomer Synthesis Scheme

Preparation of (2): To a solution of 1 (10 g, 27.22 mmol) in CH3CN (200 mL) and H2O (50 mL) were added TEMPO (3.85 g, 24.50 mmol) and DIB (17.54 g, 54.44 mmol). The mixture was stirred at 25° C. for 12 h. Upon completion as monitored by LCMS, the reaction mixture was concentrated under reduced pressure to give a residue. The residue was triturated with EtOAc (600 mL) for 30 min. The resulting suspension was filtered and the collected solid was washed with EtOAc (300 mL*2) to give 2 (20.09 g, 91.5% yield) as a white solid. ESI-LCMS: 382.0 [M+H]+.


Preparation of (3): To a solution of 2 (6 g, 15.73 mmol) in MeOH (100 mL) was added SOCl2 (2.81 g, 23.60 mmol, 1.71 mL) dropwise at 0° C. The mixture was stirred at 25° C. for 12 h. Upon completion as monitored by LCMS, the reaction mixture was quenched by addition of NaHCO3 (4 g) and stirred at 25° C. for 30 min. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give 3 (18.8 g, 95.6% yield) as a white solid. The crude product was used for the next step without further purification. (The reaction was set up in parallel 3 batches and combined). ESI-LCMS: 396.1 [M+H]+; 1H NMR (400 MHz, DMSO-d6) δ=12.26-11.57 (m, 2H), 8.42-8.06 (m, 1H), 6.14-5.68 (m, 2H), 4.56 (s, 2H), 4.33 (dd, J=4.0, 7.3 Hz, 1H), 3.77 (m, 3H), 3.30 (s, 3H), 2.81-2.69 (m, 1H), 1.11 (s, 6H)


Preparation of (4 & 5): To a mixture of 3 (10.1 g, 25.55 mmol) in CD3OD (120 mL) was added NaBD4 (3.29 g, 86.86 mmol, 3.4 eq) in portions at 0° C. The mixture was stirred at 25° C. for 1 h. Upon completion as monitored by LCMS, the reaction mixture was neutralized with AcOH (˜15 mL) and concentrated under reduced pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 120 g SepaFlash® Silica Flash Column, Eluent of 0˜7.4%, MeOH/DCM gradient @ 80 mL/min) to give 4 (2.98 g, 6.88 mmol, 27% yield) as a yellow solid. ESI-LCMS: 370.1[M+H]+ and 5 (10.9 g, crude) as a yellow solid. ESI-LCMS: 300.1[M+H]+; 1H NMR (400 MHz, CD3OD) δ=7.85 (s, 1H), 5.87 (d, J=6.0 Hz, 1H), 4.46-4.39 (m, 1H), 4.34 (t, J=5.4 Hz, 1H), 4.08 (d, J=3.1 Hz, 1H), 3.49-3.38 (m, 4H)


Preparation of 6: To a solution of 4 (1.9 g, 4.58 mmol, 85.7% purity) in pyridine (19 mL) was added DMTrCl (2.02 g, 5.96 mmol). The mixture was stirred at 25° C. for 2 h under N2. Upon completion as monitored by LCMS, the reaction mixture was quenched by MeOH (10 mL) and concentrated under reduce pressure to give a residue. The residue was diluted with H2O (10 mL*3) and extracted with EA (20 mL*3). The combined organic layers were washed with brine (20 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduce pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 25 g SepaFlash® Silica Flash Column, Eluent of 0˜77%, PE: (EA with 10% EtOH): 1% TEA@ 35 mL/min) to give 6 (2.6 g, 81.71% yield, 96.71% purity) as a white foam. ESI-LCMS: 672.2 [M+H]+; 1H NMR (400 MHz, CDCl3) δ=12.02 (s, 1H), 7.96 (s, 1H), 7.83 (s, 1H), 7.51 (d, J=7.4 Hz, 2H), 7.37 (d, J=8.6 Hz, 4H), 7.25-7.17 (m, 2H), 6.80 (t, J=8.4 Hz, 4H), 5.88 (d, J=6.3 Hz, 1H), 4.69 (t, J=5.7 Hz, 1H), 4.64 (s, 1H), 4.54 (s, 1H), 4.19 (d, J=2.9 Hz, 1H), 3.77 (d, J=4.5 Hz, 6H), 3.60-3.38 (m, 3H), 2.81 (s, 1H), 1.81 (td, J=6.9, 13.7 Hz, 1H), 0.97 (d, J=6.8 Hz, 3H), 0.80 (d, J=6.9 Hz, 3H)


Preparation of Example 7 monomer: To a solution of 6 (8.4 g, 12.5 mmol) in MeCN (80 mL) was added P-1 (4.9 g, 16.26 mmol, 5.16 mL) at 0° C., followed by addition of DCI (1.624 g, 13.76 mmol) in one portion at 0° C. under Ar. The mixture was stirred at 25° C. for 2 h. Upon completion as monitored by LCMS, the reaction mixture was quenched with saturated aq.NaHCO3 (20 mL) and extracted with DCM (50 mL*2). The combined organic layers were dried over anhydrous Na2SO4, filtered and concentrated under reduce pressure to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 40 g SepaFlash® Silica Flash Column, Eluent of 0˜52% PE: EA (10% EtOH): 5% TEA, @ 80 mL/min) to give Example 7 monomer (3.4 g, 72.1% yield,) as a white foam. ESI-LCMS: 872.4 [M+H]+; 1H NMR (400 MHz, CD3CN) δ=12.46-11.07 (m, 1H), 9.29 (s, 1H), 7.84 (d, J=14.6 Hz, 1H), 7.42 (t, J=6.9 Hz, 2H), 7.34-7.17 (m, 7H), 6.85-6.77 (m, 4H), 5.95-5.77 (m, 1H), 4.56-4.40 (m, 2H), 4.24 (dd, J=4.0, 13.3 Hz, 1H), 3.72 (d, J=2.0 Hz, 7H), 3.66-3.53 (m, 3H), 3.42 (d, J=11.8 Hz, 3H), 2.69-2.61 (m, 1H), 2.60-2.42 (m, 2H), 1.16-1.00 (m, 18H); 31P NMR (162 MHz, CD3CN) δ=149.975, 149.9


Example 8: Synthesis of 5′ End Cap Monomer



embedded image


embedded image


Example 8 Monomer Synthesis Scheme

Preparation of (2): To a solution of 1 (40 g, 58.16 mmol) in DMF (60 mL) were added imidazole (11.88 g, 174.48 mmol), NaI (13.08 g, 87.24 mmol), and TBSCl (17.52 g, 116.32 mmol) at 20° C. in one portion. The reaction mixture was stirred at 20° C. for 12 h. Upon completion, the mixture was diluted with EA (200 mL). The organic layer was washed with brine/water (80 mL/80 mL*4), dried over Na2SO4, filtered and evaporated to give 2 (50.8 g, crude) as yellow solid. ESI-LCMS: 802.3 [M+H]+


Preparation of (3): To a solution of 2 (8.4 g, 10.47 mmol) in DCM (120 mL) were added Et3SiH (3.06 g, 26.3 mmol, 4.2 mL) and TFA (1.29 g, 0.84 mL) dropwise at 0° C. The reaction mixture was stirred at 20° C. for 2 h. The reaction mixture was washed with saturated aq.NaHCO3 (15 mL) and brine (80 mL). The organic layer was dried over Na2SO4, filtered and evaporated. The residue was purified by flash silica gel chromatography (ISCO®; 80 g SepaFlash® Silica Flash Column, Eluent of 0˜83% EA/PE gradient @ 80 mL/min) to give 3 (2.92 g, 55.8% yield,) as a white solid. ESI-LCMS: 500.2 [M+H]+; 1H NMR (400 MHz, CDCl3) δ=8.79 (s, 1H), 8.14 (s, 1H), 8.02 (d, J=7.6 Hz, 2H), 7.64-7.58 (m, 1H), 7.56-7.49 (m, 2H), 5.98-5.93 (m, 1H), 4.63-4.56 (m, 2H), 4.23 (s, 1H), 3.98 (dd, J=1.5, 13.1 Hz, 1H), 3.75 (dd, J=1.5, 13.1 Hz, 1H), 3.28 (s, 3H), 2.06-1.99 (m, 1H), 1.00-0.90 (m, 9H), 0.15 (d, J=7.0 Hz, 6H).


Preparation of (4): 3 (6 g, 12.01 mmol) and tert-butyl N-methylsulfonylcarbamate (3.52 g, 18.01 mmol) were co-evaporated with toluene (50 mL), dissolved in dry THF (100 mL), and cooled to 0° C. PPh3 (9.45 g, 36.03 mmol,) was then added, followed by dropwise addition of DIAD (7.28 g, 36.03 mmol, 7.00 mL) in dry THF (30 mL). The reaction mixture was stirred at 20° C. for 18 h. Upon completion, the reaction mixture was then diluted with DCM (100 mL) and washed with water (70 mL) and brine (70 mL), dried over Na2SO4, filtered and evaporated to give a residue. The residue was purified by flash silica gel chromatography (ISCO®; 80 g SepaFlash® Silica Flash Column, Eluent of 0˜100% Ethyl acetate/Petroleum ether gradient @ 60 mL/min) followed by reverse-phase HPLC (0.1% NH3.H2O condition, eluent at 74%) to give 4 (2.88 g, 25% yield) as a white solid. ESI-LCMS: 677.1 [M+H]+; 1H NMR (400 MHz, CDCl3) δ=9.24 (s, 1H), 8.84 (s, 1H), 8.36 (s, 1H), 8.05 (br d, J=7.3 Hz, 2H), 7.66-7.42 (m, 4H), 6.16 (d, J=5.0 Hz, 1H), 4.52 (br t, J=4.5 Hz, 1H), 4.25-4.10 (m, 1H), 3.97 (br dd, J=8.0, 14.8 Hz, 1H), 3.48 (s, 3H), 3.27 (s, 3H), 1.54 (s, 9H), 0.95 (s, 9H), 0.14 (d, J=0.8 Hz, 6H).


Preparation of (5): To a solution of 4 (2.8 g, 4.14 mmol) in THF (20 mL) was added TBAF (4 M, 1.03 mL) and the mixture was stirred at 20° C. for 12 h. The reaction mixture was then evaporated. The residue was purified by flash silica gel chromatography (ISCO®; 12 g SepaFlash® Silica Flash Column, Eluent of 0˜6% MeOH/ethyl acetate gradient @ 20 mL/min) to give 5 (2.1 g, 83.92% yield) as a white solid. ESI-LCMS: 563.1[M+H]+; 1H NMR (400 MHz, CDCl3) δ=8.85-8.77 (m, 1H), 8.38 (s, 1H), 8.11-7.99 (m, 2H), 7.64-7.50 (m, 4H), 6.19 (d, J=2.8 Hz, 1H), 4.36-4.33 (m, 1H), 4.29 (br d, J=4.3 Hz, 1H), 4.22-4.02 (m, 2H), 3.65-3.59 (m, 3H), 3.28 (s, 3H), 1.54 (s, 9H).


Preparation of (6): To a solution of 5 (2.1 g, 3.73 mmol) in DCM (20 mL) was added TFA (7.70 g, 67.53 mmol, 5 mL) at 0° C. The reaction mixture was stirred at 20° C. for 24 h. Upon completion, the reaction was quenched with saturated aq. NaHCO3 to reach pH 7. The organic layer was dried over Na2SO4, filtered, and evaporated at low pressure. The residue was purified by flash silica gel chromatography (ISCO®; 12 g SepaFlash® Silica Flash Column, Eluent of 0˜7% DCM/MeOH gradient @ 20 mL/min) to give 1.6 g (impure, 75% LCMS purity), followed by prep-HPLC [FA condition, column: Boston Uni C18 40*150*5 um; mobile phase: [water (0.225% FA)-ACN]; B %: 8%-38%, 7.7 min.] to give 6 (1.04 g, 63.7% yield) as a white solid. ESI-LCMS: 485.0 [M+Na]+; 1H NMR (400 MHz, DMSO-d6) δ=11.27-11.21 (m, 1H), 8.77 (s, 1H), 8.74 (s, 1H), 8.05 (d, J=7.3 Hz, 2H), 7.68-7.62 (m, 1H), 7.59-7.53 (m, 2H), 7.39 (t, J=6.3 Hz, 1H), 6.16 (d, J=6.0 Hz, 1H), 5.48 (d, J=5.5 Hz, 1H), 4.55 (t, J=5.5 Hz, 1H), 4.43-4.37 (m, 1H), 4.08-4.02 (m, 1H), 3.41-3.36 (m, 1H), 3.35 (s, 3H), 3.31-3.22 (m, 1H), 2.91 (s, 3H).


Preparation of (Example 8 monomer): To a solution of 6 (1 g, 2.16 mmol) in DCM (30 mL) was added P1 (977.58 mg, 3.24 mmol, 1.03 mL), followed by DCI (306.43 mg, 2.59 mmol) at 0° C. in one portion under Ar atmosphere. The mixture was degassed and purged with Ar for 3 times, warmed to 20° C., and stirred for 2 hr under Ar atmosphere. Upon completion as monitored by LCMS and TLC (PE:EtOAc=4:1), the reaction mixture was diluted with sat.aq. NaHCO3 (30 mL) and extracted with DCM (50 mL*2). The combined organic layers were dried over anhydrous Na2SO4, filtered, and the filtrate was concentrated under reduced pressure to give a residue. The crude product was purified by reversed-phase HPLC (40 g C18 column: neutral condition, Eluent of 0˜57% of 0.3% NH4HCO3 in H2O/CH3CN ether gradient @ 35 mL/min) to give Example 8 monomer (0.49 g, 33.7% yield) as a white solid. ESI-LCMS: 663.1[M+H]+; 1H NMR (400 MHz, CD3CN) δ=1.19-1.29 (m, 12H) 2.71 (q, J=5.77 Hz, 2H) 2.94 (d, J=6.27 Hz, 3H) 3.35 (d, J=15.56 Hz, 3H) 3.40-3.52 (m, 2H) 3.61-3.97 (m, 4H) 4.23-4.45 (m, 1H) 4.55-4.74 (m, 2H) 6.02 (dd, J=10.67, 6.40 Hz, 1H) 7.25 (br s, 1H) 7.47-7.57 (m, 2H) 7.59-7.68 (m, 1H) 8.01 (d, J=7.78 Hz, 2H) 8.28 (s, 1H) 8.66 (s, 1H) 9.69 (br s, 1H); 31P NMR (162 MHz, CD3CN) δ=150.92, 149.78.


Example 9: Synthesis of 5′-stabilized End Cap Modified Oligonucleotides

This example provides an exemplary method for synthesizing the siNAs comprising a 5′-stabilized end caps disclosed herein. The 5′-stabilized end cap and/or deuterated phosphoramidites were dissolved in anhydrous acetonitrile and oligonucleotide synthesis was performed on a Expedite 8909 Synthesizer using standard phosphoramidite chemistry. An extended coupling (12 minutes) of 0.12 M solution of phosphoramidite in anhydrous CH3CN in the presence of Benzyl-thio-tetrazole (BTT) activator to a solid bound oligonucleotide followed by standard capping, oxidation and sulfurization produced modified oligonucleotides. The 0.02 M 12, THE: Pyridine; Water 7:2:1 was used as an oxidizing agent, while DDTT (dimethylamino-methylidene) amino)-3H-1,2,4-dithiazaoline-3-thione was used as the sulfur-transfer agent for the synthesis of oligoribonucleotide with a phosphorothioate backbone. The stepwise coupling efficiency of all modified phosphoramidites was achieved around 98%. After synthesis the solid support was heated with aqueous ammonia (28%) solution at 45° C. for 16 h or 0.05 M K2CO3 in methanol was used to deprotect the base labile protecting groups. The crude oligonucleotides were precipitated with isopropanol and centrifuged (Eppendorf 5810R, 3000 g, 4° C., 15 min) to obtain a pellet. The crude product was then purified using ion exchange chromatography (TSK gel column, 20 mM NaH2PO4, 10% CH3CN, 1 M NaBr, gradient 20-60% B over 20 column volumes) and fractions were analyzed by ion change chromatography on an HPLC. Pure fractions were pooled and desalted by Sephadex G-25 column and evaporated to dryness. The purity and molecular weight were determined by HPLC analysis and ESI-MS analysis. Single strand RNA oligonucleotides (sense and antisense strand) were annealed (1:1 by molar equivalents) at 90° C. for 3 min followed by RT 40 min) to produce the duplexes.


Example 10: SARS-CoV-2-Nanoluc Antiviral Assay in Human ACE-2 Expressing A549 Cells

The assay has been modified from Xie X et al., 2020, Nature Communications, doi.org/10.1038/s41467-020-19055-7.


A549 cells stably expressing human ACE2 were grown in culture medium consisting of high-glucose DMEM supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, 1% HEPES and 10 μg/mL Blasticidin S. Cells were grown at 37° C. with 5% CO2. All culture medium and antibiotics were purchased from ThermoFisher Scientific (Waltham, Mass.). SARS-CoV-2-Nluc virus was generated through inserting the nanoluciferase gene into the ORF7 gene of the infectious cDNA clone SARS-CoV-2 virus (strain 2019-nCoV/USA_WA1/2020). For SARS-CoV-2-Nluc antiviral assay, A549-hACE2 cells (12,000 cells per well in 50 ul phenol-red free medium containing 2% FBS) were plated into white opaque 96-well plate (purchased from Corning, Corning, N.Y.). On the next day, 50 ul SARS-CoV-2-Nluc virus (MOI 0.08) was added to the cells, and incubated at 37° C. with 5% CO2 for 3 hours. Oligonucleotides were diluted in Opti-MEM medium and mixed with equal volume of diluted transfection reagent RNAiMaX (0.2 ul/well) (ThermoFisher). The transfection mixture was incubated at room temperature for 10 mins and then added to cell plate at 3 hr post infection (20 ul/well). 48 hr post infection, 60 μL Nano luciferase substrate (Promega<Madison, Wis.) were added to each well. Luciferase signals were measured using a Synergy™ Neo2 microplate reader (BioTek, Winooski, Vt.). Antiviral % inhibition was calculated as follows: [(Oligonucleotide treated cells infected sample)−(no oligonucleotide infected control)]/[(Uninfected control)−(no oligonucleotide infected control)]*100; Using GraphPad (San Diego, Calif.) prism software version 8.3.1, the antiviral dose-response plot was generated as a sigmoidal fit, log(inhibitor) vs response-variable slope (four parameters) model and the EC50 was calculated which is the predicted oligonucleotide concentration corresponding to a 50% inhibition of the viral cytopathic effect.


Results for siNA assessed with this assay are shown in Table 4 at the end of the specification in column labeled “SARS-CoV-2 nanoluc hACE-2 A549 assay”.


Example 11: Three Concentration Reporter Plasmid Luciferase and Cytotoxicity Assay in COS-7 Cells

COS-7 monkey fibroblast cells (ATCC, CRL-1651) were seeded into 96-well culture plates at 15.0×104 cells/well and cultured in Dulbecco's Modified Eagle's Medium (DMEM; Hyclone, SH30022) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, F4135) and 1% Penicillin-Streptomycin (P/S; Corning, 30-002-CI) at 37° C. and 5% CO2. After 6 hrs of incubation, cells were transiently transfected with psiCHECK2-SARS-CoV-2 plasmid (custom-synthesized by Genscript) at 50 ng/well using 0.3 μL of Lipofectamine 3000 transfection reagent (1:1 reagent/psi-CHECK2-SARS-CoV-2 DNA ratio; Invitrogen) in Opti-MEM (Invitrogen, 11058-021) according to the manufacturer's protocol. After overnight incubation, the medium was removed and replaced with 100 ul fresh growth media. Test siRNAs along with appropriate controls (Ambion siRNAs, ThermoFisher) were diluted to final concentration of 1, 10 or 100 nM in Opti-MEM (Invitrogen, 11058-021). Cells were then transfected with test siRNAs in duplicates using 0.3 ul/well RNAiMAX transfection reagent (1:1 ratio; Invitrogen) according to the manufacturer's protocol. After approximately 48 hrs, the culture plates were equilibrated to RT, 100 μL of Dual-Luciferase Reporter Assay reagent (Promega, E6120) were added to each well according to manufacturer's protocol. Luminescence was measured on an Envision plate reader (Perkin Elmer). The results were then quantified by calculating the ratio of renilla to firefly luciferase expression for each of the duplicates and reported as percent inhibition of luciferase activity relative to no-drug control (mock transfection with psiCHECK2-SARS-CoV-2 plasmid). The assay was repeated with a different set of plates and cytotoxicity of test siRNAs was assessed 48 hrs post treatment of COS-7 cells. The cells were lysed and assayed with Cell-Titer Glo reagent (Promega) according to the manufacturer's protocol.


Results for siNA assessed with this assay are shown in Table 4 at the end of the specification in column labeled “pSiCHECK-2 reporter assay Cos-7 at least 50% inhibition”. The data was reported as % viability relative to no-drug control (mock transfection with psiCHECK2-SARS-CoV-2 plasmid).


Example 12: Reporter Plasmid Luciferase and Cytotoxicity Assay in Cos7 Cells

COS-7 monkey fibroblast cells (ATCC, CRL-1651) were seeded into 96-well culture plates at 15.0×104 cells/well and cultured in Dulbecco's Modified Eagle's Medium (DMEM; Hyclone, SH30022) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich, F4135) and 1% Penicillin-Streptomycin (P/S; Corning, 30-002-CI) at 37° C. and 5% CO2. After 6 hrs of incubation, cells were transiently transfected with psiCHECK2-SARS-CoV-2 plasmid (custom-synthesized by Genscript) at 50 ng/well using 0.3 μL of Lipofectamine 3000 transfection reagent (1:1 reagent/psi-CHECK2-SARS-CoV-2 DNA ratio; Invitrogen) in Opti-MEM (Invitrogen, 11058-021) according to the manufacturer's protocol. After overnight incubation, the medium was removed and replaced with 100 ul fresh growth media. Test siRNAs along with appropriate controls (Ambion siRNAs, ThermoFisher) were serially diluted in Opti-MEM (Invitrogen, 11058-021). Cells were then transfected with test siRNAs in duplicates using 0.3 ul/well RNAiMAX transfection reagent (1:1 ratio; Invitrogen) according to the manufacturer's protocol. After approximately 48 hrs, the culture plates were equilibrated to RT, 100 μL of Dual-Luciferase Reporter Assay reagent (Promega, E6120) were added to each well according to manufacturer's protocol. Luminescence was measured on an Envision plate reader (Perkin Elmer). The results were then quantified by calculating the ratio of renilla to firefly luciferase expression for each of the duplicates and reported as percent inhibition of luciferase activity relative to no-drug control (mock transfection with psiCHECK2-SARS-CoV-2 plasmid) and dose-response curves were fitted by non-linear regression with variable slope (four parameters). Statistical analysis was performed in GraphPad Prism 8.3.1 (San Diego, Calif.) and the EC50 was calculated which is the predicted oligonucleotide concentration corresponding to a 50% inhibition of the luciferase activity. The assay was repeated with a different set of plates and cytotoxicity of test siRNAs was assessed 48 hrs post treatment of COS-7 cells. The cells were lysed and assayed with Cell-Titer Glo reagent (Promega) according to the manufacturer's protocol.


Results for siNA assessed with this assay are shown in Table 4 at the end of the specification in column labeled “pSiCHECK-2 reporter assay Cos-7”. The data was reported as % viability relative to no-drug control (mock transfection with psiCHECK2-SARS-CoV-2 plasmid) and dose-response curves were fitted by non-linear regression with variable slope (four parameters) using GraphPad prism software version 8.3.1.


All patents and publications mentioned in the specification are indicative of the levels of those of ordinary skill in the art to which the disclosure pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.


Further, one skilled in the art readily appreciates that the present disclosure is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. Modifications therein and other uses will occur to those skilled in the art. These modifications are encompassed within the spirit of the disclosure and are defined by the scope of the claims, which set forth non-limiting embodiments of the disclosure.









TABLE 1







Oligonucleotide Target Sequences
















SEQ
Target
SEQ
Target reverse



Start on
End on
ID
forward sequence
ID
complement sequence


Alias
target
target
NO
(sense strand)
NO
(antisense strand)










19-Mer Target Sequences













NC_045512.2_19mer_win1_00190
190
208
1
CTGCTTACGGTTTCGTCCG
1204
CGGACGAAACCGTAAGCAG





NC_045512.2_19mer_win1_00191
191
209
2
TGCTTACGGTTTCGTCCGT
1205
ACGGACGAAACCGTAAGCA





NC_045512.2_19mer_win1_00192
192
210
3
GCTTACGGTTTCGTCCGTG
1206
CACGGACGAAACCGTAAGC





NC_045512.2_19mer_win1_00193
193
211
4
CTTACGGTTTCGTCCGTGT
1207
ACACGGACGAAACCGTAAG





NC_045512.2_19mer_win1_00194
194
212
5
TTACGGTTTCGTCCGTGTT
1208
AACACGGACGAAACCGTAA





NC_045512.2_19mer_win1_00195
195
213
6
TACGGTTTCGTCCGTGTTG
1209
CAACACGGACGAAACCGTA





NC_045512.2_19mer_win1_00196
196
214
7
ACGGTTTCGTCCGTGTTGC
1210
GCAACACGGACGAAACCGT





NC_045512.2_19mer_win1_00197
197
215
8
CGGTTTCGTCCGTGTTGCA
1211
TGCAACACGGACGAAACCG





NC_045512.2_19mer_win1_00198
198
216
9
GGTTTCGTCCGTGTTGCAG
1212
CTGCAACACGGACGAAACC





NC_045512.2_19mer_win1_00233
233
251
10
CTAGGTTTCGTCCGGGTGT
1213
ACACCCGGACGAAACCTAG





NC_045512.2_19mer_win1_00234
234
252
11
TAGGTTTCGTCCGGGTGTG
1214
CACACCCGGACGAAACCTA





NC_045512.2_19mer_win1_00235
235
253
12
AGGTTTCGTCCGGGTGTGA
1215
TCACACCCGGACGAAACCT





NC_045512.2_19mer_win1_00236
236
254
13
GGTTTCGTCCGGGTGTGAC
1216
GTCACACCCGGACGAAACC





NC_045512.2_19mer_win1_00237
237
255
14
GTTTCGTCCGGGTGTGACC
1217
GGTCACACCCGGACGAAAC





NC_045512.2_19mer_win1_00238
238
256
15
TTTCGTCCGGGTGTGACCG
1218
CGGTCACACCCGGACGAAA





NC_045512.2_19mer_win1_00239
239
257
16
TTCGTCCGGGTGTGACCGA
1219
TCGGTCACACCCGGACGAA





NC_045512.2_19mer_win1_00240
240
258
17
TCGTCCGGGTGTGACCGAA
1220
TTCGGTCACACCCGGACGA





NC_045512.2_19mer_win1_00241
241
259
18
CGTCCGGGTGTGACCGAAA
1221
TTTCGGTCACACCCGGACG





NC_045512.2_19mer_win1_00242
242
260
19
GTCCGGGTGTGACCGAAAG
1222
CTTTCGGTCACACCCGGAC





NC_045512.2_19mer_win1_00243
243
261
20
TCCGGGTGTGACCGAAAGG
1223
CCTTTCGGTCACACCCGGA





NC_045512.2_19mer_win1_00244
244
262
21
CCGGGTGTGACCGAAAGGT
1224
ACCTTTCGGTCACACCCGG





NC_045512.2_19mer_win1_00245
245
263
22
CGGGTGTGACCGAAAGGTA
1225
TACCTTTCGGTCACACCCG





NC_045512.2_19mer_win1_00246
246
264
23
GGGTGTGACCGAAAGGTAA
1226
TTACCTTTCGGTCACACCC





NC_045512.2_19mer_win1_00247
247
265
24
GGTGTGACCGAAAGGTAAG
1227
CTTACCTTTCGGTCACACC





NC_045512.2_19mer_win1_00248
248
266
25
GTGTGACCGAAAGGTAAGA
1228
TCTTACCTTTCGGTCACAC





NC_045512.2_19mer_win1_00249
249
267
26
TGTGACCGAAAGGTAAGAT
1229
ATCTTACCTTTCGGTCACA





NC_045512.2_19mer_win1_00250
250
268
27
GTGACCGAAAGGTAAGATG
1230
CATCTTACCTTTCGGTCAC





NC_045512.2_19mer_win1_00251
251
269
28
TGACCGAAAGGTAAGATGG
1231
CCATCTTACCTTTCGGTCA





NC_045512.2_19mer_win1_00252
252
270
29
GACCGAAAGGTAAGATGGA
1232
TCCATCTTACCTTTCGGTC





NC_045512.2_19mer_win1_00253
253
271
30
ACCGAAAGGTAAGATGGAG
1233
CTCCATCTTACCTTTCGGT





NC_045512.2_19mer_win1_00254
254
272
31
CCGAAAGGTAAGATGGAGA
1234
TCTCCATCTTACCTTTCGG





NC_045512.2_19mer_win1_00255
255
273
32
CGAAAGGTAAGATGGAGAG
1235
CTCTCCATCTTACCTTTCG





NC_045512.2_19mer_win1_00256
256
274
33
GAAAGGTAAGATGGAGAGC
1236
GCTCTCCATCTTACCTTTC





NC_045512.2_19mer_win1_00257
257
275
34
AAAGGTAAGATGGAGAGCC
1237
GGCTCTCCATCTTACCTTT





NC_045512.2_19mer_win1_00258
258
276
35
AAGGTAAGATGGAGAGCCT
1238
AGGCTCTCCATCTTACCTT





NC_045512.2_19mer_win1_00259
259
277
36
AGGTAAGATGGAGAGCCTT
1239
AAGGCTCTCCATCTTACCT





NC_045512.2_19mer_win1_00260
260
278
37
GGTAAGATGGAGAGCCTTG
1240
CAAGGCTCTCCATCTTACC





NC_045512.2_19mer_win1_00261
261
279
38
GTAAGATGGAGAGCCTTGT
1241
ACAAGGCTCTCCATCTTAC





NC_045512.2_19mer_win1_00288
288
306
39
TCAACGAGAAAACACACGT
1242
ACGTGTGTTTTCTCGTTGA





NC_045512.2_19mer_win1_00289
289
307
40
CAACGAGAAAACACACGTC
1243
GACGTGTGTTTTCTCGTTG





NC_045512.2_19mer_win1_00290
290
308
41
AACGAGAAAACACACGTCC
1244
GGACGTGTGTTTTCTCGTT





NC_045512.2_19mer_win1_00291
291
309
42
ACGAGAAAACACACGTCCA
1245
TGGACGTGTGTTTTCTCGT





NC_045512.2_19mer_win1_00292
292
310
43
CGAGAAAACACACGTCCAA
1246
TTGGACGTGTGTTTTCTCG





NC_045512.2_19mer_win1_00293
293
311
44
GAGAAAACACACGTCCAAC
1247
GTTGGACGTGTGTTTTCTC





NC_045512.2_19mer_win1_00294
294
312
45
AGAAAACACACGTCCAACT
1248
AGTTGGACGTGTGTTTTCT





NC_045512.2_19mer_win1_00295
295
313
46
GAAAACACACGTCCAACTC
1249
GAGTTGGACGTGTGTTTTC





NC_045512.2_19mer_win1_00296
296
314
47
AAAACACACGTCCAACTCA
1250
TGAGTTGGACGTGTGTTTT





NC_045512.2_19mer_win1_00297
297
315
48
AAACACACGTCCAACTCAG
1251
CTGAGTTGGACGTGTGTTT





NC_045512.2_19mer_win1_00298
298
316
49
AACACACGTCCAACTCAGT
1252
ACTGAGTTGGACGTGTGTT





NC_045512.2_19mer_win1_00299
299
317
50
ACACACGTCCAACTCAGTT
1253
AACTGAGTTGGACGTGTGT





NC_045512.2_19mer_win1_00300
300
318
51
CACACGTCCAACTCAGTTT
1254
AAACTGAGTTGGACGTGTG





NC_045512.2_19mer_win1_00301
301
319
52
ACACGTCCAACTCAGTTTG
1255
CAAACTGAGTTGGACGTGT





NC_045512.2_19mer_win1_00302
302
320
53
CACGTCCAACTCAGTTTGC
1256
GCAAACTGAGTTGGACGTG





NC_045512.2_19mer_win1_00303
303
321
54
ACGTCCAACTCAGTTTGCC
1257
GGCAAACTGAGTTGGACGT





NC_045512.2_19mer_win1_00304
304
322
55
CGTCCAACTCAGTTTGCCT
1258
AGGCAAACTGAGTTGGACG





NC_045512.2_19mer_win1_00305
305
323
56
GTCCAACTCAGTTTGCCTG
1259
CAGGCAAACTGAGTTGGAC





NC_045512.2_19mer_win1_00306
306
324
57
TCCAACTCAGTTTGCCTGT
1260
ACAGGCAAACTGAGTTGGA





NC_045512.2_19mer_win1_00455
455
473
58
CTTGAACAGCCCTATGTGT
1261
ACACATAGGGCTGTTCAAG





NC_045512.2_19mer_win1_00456
456
474
59
TTGAACAGCCCTATGTGTT
1262
AACACATAGGGCTGTTCAA





NC_045512.2_19mer_win1_00457
457
475
60
TGAACAGCCCTATGTGTTC
1263
GAACACATAGGGCTGTTCA





NC_045512.2_19mer_win1_00458
458
476
61
GAACAGCCCTATGTGTTCA
1264
TGAACACATAGGGCTGTTC





NC_045512.2_19mer_win1_00459
459
477
62
AACAGCCCTATGTGTTCAT
1265
ATGAACACATAGGGCTGTT





NC_045512.2_19mer_win1_00626
626
644
63
GTTCTTCTTCGTAAGAACG
1266
CGTTCTTACGAAGAAGAAC





NC_045512.2_19mer_win1_00627
627
645
64
TTCTTCTTCGTAAGAACGG
1267
CCGTTCTTACGAAGAAGAA





NC_045512.2_19mer_win1_00628
628
646
65
TCTTCTTCGTAAGAACGGT
1268
ACCGTTCTTACGAAGAAGA





NC_045512.2_19mer_win1_00629
629
647
66
CTTCTTCGTAAGAACGGTA
1269
TACCGTTCTTACGAAGAAG





NC_045512.2_19mer_win1_00630
630
648
67
TTCTTCGTAAGAACGGTAA
1270
TTACCGTTCTTACGAAGAA





NC_045512.2_19mer_win1_00631
631
649
68
TCTTCGTAAGAACGGTAAT
1271
ATTACCGTTCTTACGAAGA





NC_045512.2_19mer_win1_00632
632
650
69
CTTCGTAAGAACGGTAATA
1272
TATTACCGTTCTTACGAAG





NC_045512.2_19mer_win1_00633
633
651
70
TTCGTAAGAACGGTAATAA
1273
TTATTACCGTTCTTACGAA





NC_045512.2_19mer_win1_00704
704
722
71
GACGAGCTTGGCACTGATC
1274
GATCAGTGCCAAGCTCGTC





NC_045512.2_19mer_win1_00705
705
723
72
ACGAGCTTGGCACTGATCC
1275
GGATCAGTGCCAAGCTCGT





NC_045512.2_19mer_win1_03352
3352
3370
73
TGGTTATTTAAAACTTACT
1276
AGTAAGTTTTAAATAACCA





NC_045512.2_19mer_win1_03353
3353
3371
74
GGTTATTTAAAACTTACTG
1277
CAGTAAGTTTTAAATAACC





NC_045512.2_19mer_win1_03354
3354
3372
75
GTTATTTAAAACTTACTGA
1278
TCAGTAAGTTTTAAATAAC





NC_045512.2_19mer_win1_03355
3355
3373
76
TTATTTAAAACTTACTGAC
1279
GTCAGTAAGTTTTAAATAA





NC_045512.2_19mer_win1_03356
3356
3374
77
TATTTAAAACTTACTGACA
1280
TGTCAGTAAGTTTTAAATA





NC_045512.2_19mer_win1_03357
3357
3375
78
ATTTAAAACTTACTGACAA
1281
TTGTCAGTAAGTTTTAAAT





NC_045512.2_19mer_win1_03358
3358
3376
79
TTTAAAACTTACTGACAAT
1282
ATTGTCAGTAAGTTTTAAA





NC_045512.2_19mer_win1_03359
3359
3377
80
TTAAAACTTACTGACAATG
1283
CATTGTCAGTAAGTTTTAA





NC_045512.2_19mer_win1_03360
3360
3378
81
TAAAACTTACTGACAATGT
1284
ACATTGTCAGTAAGTTTTA





NC_045512.2_19mer_win1_05384
5384
5402
82
GCTGCTAACTTTTGTGCAC
1285
GTGCACAAAAGTTAGCAGC





NC_045512.2_19mer_win1_05385
5385
5403
83
CTGCTAACTTTTGTGCACT
1286
AGTGCACAAAAGTTAGCAG





NC_045512.2_19mer_win1_06406
6406
6424
84
CTCTGAAGAAGTAGTGGAA
1287
TTCCACTACTTCTTCAGAG





NC_045512.2_19mer_win1_06407
6407
6425
85
TCTGAAGAAGTAGTGGAAA
1288
TTTCCACTACTTCTTCAGA





NC_045512.2_19mer_win1_06408
6408
6426
86
CTGAAGAAGTAGTGGAAAA
1289
TTTTCCACTACTTCTTCAG





NC_045512.2_19mer_win1_06409
6409
6427
87
TGAAGAAGTAGTGGAAAAT
1290
ATTTTCCACTACTTCTTCA





NC_045512.2_19mer_win1_06410
6410
6428
88
GAAGAAGTAGTGGAAAATC
1291
GATTTTCCACTACTTCTTC





NC_045512.2_19mer_win1_06411
6411
6429
89
AAGAAGTAGTGGAAAATCC
1292
GGATTTTCCACTACTTCTT





NC_045512.2_19mer_win1_06412
6412
6430
90
AGAAGTAGTGGAAAATCCT
1293
AGGATTTTCCACTACTTCT





NC_045512.2_19mer_win1_06413
6413
6431
91
GAAGTAGTGGAAAATCCTA
1294
TAGGATTTTCCACTACTTC





NC_045512.2_19mer_win1_06414
6414
6432
92
AAGTAGTGGAAAATCCTAC
1295
GTAGGATTTTCCACTACTT





NC_045512.2_19mer_win1_06415
6415
6433
93
AGTAGTGGAAAATCCTACC
1296
GGTAGGATTTTCCACTACT





NC_045512.2_19mer_win1_06461
6461
6479
94
GTGAAAACTACCGAAGTTG
1297
CAACTTCGGTAGTTTTCAC





NC_045512.2_19mer_win1_06462
6462
6480
95
TGAAAACTACCGAAGTTGT
1298
ACAACTTCGGTAGTTTTCA





NC_045512.2_19mer_win1_06463
6463
6481
96
GAAAACTACCGAAGTTGTA
1299
TACAACTTCGGTAGTTTTC





NC_045512.2_19mer_win1_06464
6464
6482
97
AAAACTACCGAAGTTGTAG
1300
CTACAACTTCGGTAGTTTT





NC_045512.2_19mer_win1_06465
6465
6483
98
AAACTACCGAAGTTGTAGG
1301
CCTACAACTTCGGTAGTTT





NC_045512.2_19mer_win1_07532
7532
7550
99
TGTACAACTATTGTTAATG
1302
CATTAACAATAGTTGTACA





NC_045512.2_19mer_win1_07533
7533
7551
100
GTACAACTATTGTTAATGG
1303
CCATTAACAATAGTTGTAC





NC_045512.2_19mer_win1_09588
9588
9606
101
TTTACTTGTACTTGACATT
1304
AATGTCAAGTACAAGTAAA





NC_045512.2_19mer_win1_10484
10484
10502
102
TCATGTGGTAGTGTTGGTT
1305
AACCAACACTACCACATGA





NC_045512.2_19mer_win1_10485
10485
10503
103
CATGTGGTAGTGTTGGTTT
1306
AAACCAACACTACCACATG





NC_045512.2_19mer_win1_10486
10486
10504
104
ATGTGGTAGTGTTGGTTTT
1307
AAAACCAACACTACCACAT





NC_045512.2_19mer_win1_10487
10487
10505
105
TGTGGTAGTGTTGGTTTTA
1308
TAAAACCAACACTACCACA





NC_045512.2_19mer_win1_10488
10488
10506
106
GTGGTAGTGTTGGTTTTAA
1309
TTAAAACCAACACTACCAC





NC_045512.2_19mer_win1_10489
10489
10507
107
TGGTAGTGTTGGTTTTAAC
1310
GTTAAAACCAACACTACCA





NC_045512.2_19mer_win1_10490
10490
10508
108
GGTAGTGTTGGTTTTAACA
1311
TGTTAAAACCAACACTACC





NC_045512.2_19mer_win1_10491
10491
10509
109
GTAGTGTTGGTTTTAACAT
1312
ATGTTAAAACCAACACTAC





NC_045512.2_19mer_win1_11609
11609
11627
110
GTTTATTGTTTCTTAGGCT
1313
AGCCTAAGAAACAATAAAC





NC_045512.2_19mer_win1_11610
11610
11628
111
TTTATTGTTTCTTAGGCTA
1314
TAGCCTAAGAAACAATAAA





NC_045512.2_19mer_win1_11611
11611
11629
112
TTATTGTTTCTTAGGCTAT
1315
ATAGCCTAAGAAACAATAA





NC_045512.2_19mer_win1_11612
11612
11630
113
TATTGTTTCTTAGGCTATT
1316
AATAGCCTAAGAAACAATA





NC_045512.2_19mer_win1_11834
11834
11852
114
ACTGTACAGTCTAAAATGT
1317
ACATTTTAGACTGTACAGT





NC_045512.2_19mer_win1_11835
11835
11853
115
CTGTACAGTCTAAAATGTC
1318
GACATTTTAGACTGTACAG





NC_045512.2_19mer_win1_12023
12023
12041
116
TCCATGCAGGGTGCTGTAG
1319
CTACAGCACCCTGCATGGA





NC_045512.2_19mer_win1_12024
12024
12042
117
CCATGCAGGGTGCTGTAGA
1320
TCTACAGCACCCTGCATGG





NC_045512.2_19mer_win1_12025
12025
12043
118
CATGCAGGGTGCTGTAGAC
1321
GTCTACAGCACCCTGCATG





NC_045512.2_19mer_win1_12026
12026
12044
119
ATGCAGGGTGCTGTAGACA
1322
TGTCTACAGCACCCTGCAT





NC_045512.2_19mer_win1_12027
12027
12045
120
TGCAGGGTGCTGTAGACAT
1323
ATGTCTACAGCACCCTGCA





NC_045512.2_19mer_win1_12212
12212
12230
121
TCTTTGAATGTGGCTAAAT
1324
ATTTAGCCACATTCAAAGA





NC_045512.2_19mer_win1_12213
12213
12231
122
CTTTGAATGTGGCTAAATC
1325
GATTTAGCCACATTCAAAG





NC_045512.2_19mer_win1_12214
12214
12232
123
TTTGAATGTGGCTAAATCT
1326
AGATTTAGCCACATTCAAA





NC_045512.2_19mer_win1_12215
12215
12233
124
TTGAATGTGGCTAAATCTG
1327
CAGATTTAGCCACATTCAA





NC_045512.2_19mer_win1_12216
12216
12234
125
TGAATGTGGCTAAATCTGA
1328
TCAGATTTAGCCACATTCA





NC_045512.2_19mer_win1_12401
12401
12419
126
AACAACATTATCAACAATG
1329
CATTGTTGATAATGTTGTT





NC_045512.2_19mer_win1_12402
12402
12420
127
ACAACATTATCAACAATGC
1330
GCATTGTTGATAATGTTGT





NC_045512.2_19mer_win1_12839
12839
12857
128
AAATGGGCTAGATTCCCTA
1331
TAGGGAATCTAGCCCATTT





NC_045512.2_19mer_win1_12840
12840
12858
129
AATGGGCTAGATTCCCTAA
1332
TTAGGGAATCTAGCCCATT





NC_045512.2_19mer_win1_12841
12841
12859
130
ATGGGCTAGATTCCCTAAG
1333
CTTAGGGAATCTAGCCCAT





NC_045512.2_19mer_win1_12842
12842
12860
131
TGGGCTAGATTCCCTAAGA
1334
TCTTAGGGAATCTAGCCCA





NC_045512.2_19mer_win1_12843
12843
12861
132
GGGCTAGATTCCCTAAGAG
1335
CTCTTAGGGAATCTAGCCC





NC_045512.2_19mer_win1_12844
12844
12862
133
GGCTAGATTCCCTAAGAGT
1336
ACTCTTAGGGAATCTAGCC





NC_045512.2_19mer_win1_12845
12845
12863
134
GCTAGATTCCCTAAGAGTG
1337
CACTCTTAGGGAATCTAGC





NC_045512.2_19mer_win1_12846
12846
12864
135
CTAGATTCCCTAAGAGTGA
1338
TCACTCTTAGGGAATCTAG





NC_045512.2_19mer_win1_12847
12847
12865
136
TAGATTCCCTAAGAGTGAT
1339
ATCACTCTTAGGGAATCTA





NC_045512.2_19mer_win1_12848
12848
12866
137
AGATTCCCTAAGAGTGATG
1340
CATCACTCTTAGGGAATCT





NC_045512.2_19mer_win1_12849
12849
12867
138
GATTCCCTAAGAGTGATGG
1341
CCATCACTCTTAGGGAATC





NC_045512.2_19mer_win1_12885
12885
12903
139
CAGAACTGGAACCACCTTG
1342
CAAGGTGGTTCCAGTTCTG





NC_045512.2_19mer_win1_12886
12886
12904
140
AGAACTGGAACCACCTTGT
1343
ACAAGGTGGTTCCAGTTCT





NC_045512.2_19mer_win1_12887
12887
12905
141
GAACTGGAACCACCTTGTA
1344
TACAAGGTGGTTCCAGTTC





NC_045512.2_19mer_win1_12888
12888
12906
142
AACTGGAACCACCTTGTAG
1345
CTACAAGGTGGTTCCAGTT





NC_045512.2_19mer_win1_12889
12889
12907
143
ACTGGAACCACCTTGTAGG
1346
CCTACAAGGTGGTTCCAGT





NC_045512.2_19mer_win1_12890
12890
12908
144
CTGGAACCACCTTGTAGGT
1347
ACCTACAAGGTGGTTCCAG





NC_045512.2_19mer_win1_12891
12891
12909
145
TGGAACCACCTTGTAGGTT
1348
AACCTACAAGGTGGTTCCA





NC_045512.2_19mer_win1_12892
12892
12910
146
GGAACCACCTTGTAGGTTT
1349
AAACCTACAAGGTGGTTCC





NC_045512.2_19mer_win1_12893
12893
12911
147
GAACCACCTTGTAGGTTTG
1350
CAAACCTACAAGGTGGTTC





NC_045512.2_19mer_win1_12894
12894
12912
148
AACCACCTTGTAGGTTTGT
1351
ACAAACCTACAAGGTGGTT





NC_045512.2_19mer_win1_12895
12895
12913
149
ACCACCTTGTAGGTTTGTT
1352
AACAAACCTACAAGGTGGT





NC_045512.2_19mer_win1_12896
12896
12914
150
CCACCTTGTAGGTTTGTTA
1353
TAACAAACCTACAAGGTGG





NC_045512.2_19mer_win1_12897
12897
12915
151
CACCTTGTAGGTTTGTTAC
1354
GTAACAAACCTACAAGGTG





NC_045512.2_19mer_win1_12898
12898
12916
152
ACCTTGTAGGTTTGTTACA
1355
TGTAACAAACCTACAAGGT





NC_045512.2_19mer_win1_12899
12899
12917
153
CCTTGTAGGTTTGTTACAG
1356
CTGTAACAAACCTACAAGG





NC_045512.2_19mer_win1_12900
12900
12918
154
CTTGTAGGTTTGTTACAGA
1357
TCTGTAACAAACCTACAAG





NC_045512.2_19mer_win1_12901
12901
12919
155
TTGTAGGTTTGTTACAGAC
1358
GTCTGTAACAAACCTACAA





NC_045512.2_19mer_win1_12902
12902
12920
156
TGTAGGTTTGTTACAGACA
1359
TGTCTGTAACAAACCTACA





NC_045512.2_19mer_win1_12903
12903
12921
157
GTAGGTTTGTTACAGACAC
1360
GTGTCTGTAACAAACCTAC





NC_045512.2_19mer_win1_12904
12904
12922
158
TAGGTTTGTTACAGACACA
1361
TGTGTCTGTAACAAACCTA





NC_045512.2_19mer_win1_12905
12905
12923
159
AGGTTTGTTACAGACACAC
1362
GTGTGTCTGTAACAAACCT





NC_045512.2_19mer_win1_12906
12906
12924
160
GGTTTGTTACAGACACACC
1363
GGTGTGTCTGTAACAAACC





NC_045512.2_19mer_win1_12966
12966
12984
161
TAAACAACCTAAATAGAGG
1364
CCTCTATTTAGGTTGTTTA





NC_045512.2_19mer_win1_12967
12967
12985
162
AAACAACCTAAATAGAGGT
1365
ACCTCTATTTAGGTTGTTT





NC_045512.2_19mer_win1_12968
12968
12986
163
AACAACCTAAATAGAGGTA
1366
TACCTCTATTTAGGTTGTT





NC_045512.2_19mer_win1_12969
12969
12987
164
ACAACCTAAATAGAGGTAT
1367
ATACCTCTATTTAGGTTGT





NC_045512.2_19mer_win1_12970
12970
12988
165
CAACCTAAATAGAGGTATG
1368
CATACCTCTATTTAGGTTG





NC_045512.2_19mer_win1_12971
12971
12989
166
AACCTAAATAGAGGTATGG
1369
CCATACCTCTATTTAGGTT





NC_045512.2_19mer_win1_12972
12972
12990
167
ACCTAAATAGAGGTATGGT
1370
ACCATACCTCTATTTAGGT





NC_045512.2_19mer_win1_13151
13151
13169
168
AAGATGTTGTGTACACACA
1371
TGTGTGTACACAACATCTT





NC_045512.2_19mer_win1_13152
13152
13170
169
AGATGTTGTGTACACACAC
1372
GTGTGTGTACACAACATCT





NC_045512.2_19mer_win1_13153
13153
13171
170
GATGTTGTGTACACACACT
1373
AGTGTGTGTACACAACATC





NC_045512.2_19mer_win1_13154
13154
13172
171
ATGTTGTGTACACACACTG
1374
CAGTGTGTGTACACAACAT





NC_045512.2_19mer_win1_13155
13155
13173
172
TGTTGTGTACACACACTGG
1375
CCAGTGTGTGTACACAACA





NC_045512.2_19mer_win1_13156
13156
13174
173
GTTGTGTACACACACTGGT
1376
ACCAGTGTGTGTACACAAC





NC_045512.2_19mer_win1_13157
13157
13175
174
TTGTGTACACACACTGGTA
1377
TACCAGTGTGTGTACACAA





NC_045512.2_19mer_win1_13158
13158
13176
175
TGTGTACACACACTGGTAC
1378
GTACCAGTGTGTGTACACA





NC_045512.2_19mer_win1_13363
13363
13381
176
AAACACAGTCTGTACCGTC
1379
GACGGTACAGACTGTGTTT





NC_045512.2_19mer_win1_13364
13364
13382
177
AACACAGTCTGTACCGTCT
1380
AGACGGTACAGACTGTGTT





NC_045512.2_19mer_win1_13365
13365
13383
178
ACACAGTCTGTACCGTCTG
1381
CAGACGGTACAGACTGTGT





NC_045512.2_19mer_win1_13366
13366
13384
179
CACAGTCTGTACCGTCTGC
1382
GCAGACGGTACAGACTGTG





NC_045512.2_19mer_win1_13367
13367
13385
180
ACAGTCTGTACCGTCTGCG
1383
CGCAGACGGTACAGACTGT





NC_045512.2_19mer_win1_13368
13368
13386
181
CAGTCTGTACCGTCTGCGG
1384
CCGCAGACGGTACAGACTG





NC_045512.2_19mer_win1_13388
13388
13406
182
ATGTGGAAAGGTTATGGCT
1385
AGCCATAACCTTTCCACAT





NC_045512.2_19mer_win1_13389
13389
13407
183
TGTGGAAAGGTTATGGCTG
1386
CAGCCATAACCTTTCCACA





NC_045512.2_19mer_win1_13390
13390
13408
184
GTGGAAAGGTTATGGCTGT
1387
ACAGCCATAACCTTTCCAC





NC_045512.2_19mer_win1_13391
13391
13409
185
TGGAAAGGTTATGGCTGTA
1388
TACAGCCATAACCTTTCCA





NC_045512.2_19mer_win1_13392
13392
13410
186
GGAAAGGTTATGGCTGTAG
1389
CTACAGCCATAACCTTTCC





NC_045512.2_19mer_win1_13393
13393
13411
187
GAAAGGTTATGGCTGTAGT
1390
ACTACAGCCATAACCTTTC





NC_045512.2_19mer_win1_13394
13394
13412
188
AAAGGTTATGGCTGTAGTT
1391
AACTACAGCCATAACCTTT





NC_045512.2_19mer_win1_13395
13395
13413
189
AAGGTTATGGCTGTAGTTG
1392
CAACTACAGCCATAACCTT





NC_045512.2_19mer_win1_13396
13396
13414
190
AGGTTATGGCTGTAGTTGT
1393
ACAACTACAGCCATAACCT





NC_045512.2_19mer_win1_13397
13397
13415
191
GGTTATGGCTGTAGTTGTG
1394
CACAACTACAGCCATAACC





NC_045512.2_19mer_win1_13398
13398
13416
192
GTTATGGCTGTAGTTGTGA
1395
TCACAACTACAGCCATAAC





NC_045512.2_19mer_win1_13458
13458
13476
193
CGTTTTTAAACGGGTTTGC
1396
GCAAACCCGTTTAAAAACG





NC_045512.2_19mer_win1_13459
13459
13477
194
GTTTTTAAACGGGTTTGCG
1397
CGCAAACCCGTTTAAAAAC





NC_045512.2_19mer_win1_13460
13460
13478
195
TTTTTAAACGGGTTTGCGG
1398
CCGCAAACCCGTTTAAAAA





NC_045512.2_19mer_win1_13461
13461
13479
196
TTTTAAACGGGTTTGCGGT
1399
ACCGCAAACCCGTTTAAAA





NC_045512.2_19mer_win1_13462
13462
13480
197
TTTAAACGGGTTTGCGGTG
1400
CACCGCAAACCCGTTTAAA





NC_045512.2_19mer_win1_13463
13463
13481
198
TTAAACGGGTTTGCGGTGT
1401
ACACCGCAAACCCGTTTAA





NC_045512.2_19mer_win1_13464
13464
13482
199
TAAACGGGTTTGCGGTGTA
1402
TACACCGCAAACCCGTTTA





NC_045512.2_19mer_win1_13465
13465
13483
200
AAACGGGTTTGCGGTGTAA
1403
TTACACCGCAAACCCGTTT





NC_045512.2_19mer_win1_13466
13466
13484
201
AACGGGTTTGCGGTGTAAG
1404
CTTACACCGCAAACCCGTT





NC_045512.2_19mer_win1_13467
13467
13485
202
ACGGGTTTGCGGTGTAAGT
1405
ACTTACACCGCAAACCCGT





NC_045512.2_19mer_win1_13468
13468
13486
203
CGGGTTTGCGGTGTAAGTG
1406
CACTTACACCGCAAACCCG





NC_045512.2_19mer_win1_13469
13469
13487
204
GGGTTTGCGGTGTAAGTGC
1407
GCACTTACACCGCAAACCC





NC_045512.2_19mer_win1_13470
13470
13488
205
GGTTTGCGGTGTAAGTGCA
1408
TGCACTTACACCGCAAACC





NC_045512.2_19mer_win1_13471
13471
13489
206
GTTTGCGGTGTAAGTGCAG
1409
CTGCACTTACACCGCAAAC





NC_045512.2_19mer_win1_13472
13472
13490
207
TTTGCGGTGTAAGTGCAGC
1410
GCTGCACTTACACCGCAAA





NC_045512.2_19mer_win1_13473
13473
13491
208
TTGCGGTGTAAGTGCAGCC
1411
GGCTGCACTTACACCGCAA





NC_045512.2_19mer_win1_13474
13474
13492
209
TGCGGTGTAAGTGCAGCCC
1412
GGGCTGCACTTACACCGCA





NC_045512.2_19mer_win1_13475
13475
13493
210
GCGGTGTAAGTGCAGCCCG
1413
CGGGCTGCACTTACACCGC





NC_045512.2_19mer_win1_13476
13476
13494
211
CGGTGTAAGTGCAGCCCGT
1414
ACGGGCTGCACTTACACCG





NC_045512.2_19mer_win1_13477
13477
13495
212
GGTGTAAGTGCAGCCCGTC
1415
GACGGGCTGCACTTACACC





NC_045512.2_19mer_win1_13478
13478
13496
213
GTGTAAGTGCAGCCCGTCT
1416
AGACGGGCTGCACTTACAC





NC_045512.2_19mer_win1_13479
13479
13497
214
TGTAAGTGCAGCCCGTCTT
1417
AAGACGGGCTGCACTTACA





NC_045512.2_19mer_win1_13480
13480
13498
215
GTAAGTGCAGCCCGTCTTA
1418
TAAGACGGGCTGCACTTAC





NC_045512.2_19mer_win1_13481
13481
13499
216
TAAGTGCAGCCCGTCTTAC
1419
GTAAGACGGGCTGCACTTA





NC_045512.2_19mer_win1_13482
13482
13500
217
AAGTGCAGCCCGTCTTACA
1420
TGTAAGACGGGCTGCACTT





NC_045512.2_19mer_win1_13483
13483
13501
218
AGTGCAGCCCGTCTTACAC
1421
GTGTAAGACGGGCTGCACT





NC_045512.2_19mer_win1_13484
13484
13502
219
GTGCAGCCCGTCTTACACC
1422
GGTGTAAGACGGGCTGCAC





NC_045512.2_19mer_win1_13485
13485
13503
220
TGCAGCCCGTCTTACACCG
1423
CGGTGTAAGACGGGCTGCA





NC_045512.2_19mer_win1_13486
13486
13504
221
GCAGCCCGTCTTACACCGT
1424
ACGGTGTAAGACGGGCTGC





NC_045512.2_19mer_win1_13487
13487
13505
222
CAGCCCGTCTTACACCGTG
1425
CACGGTGTAAGACGGGCTG





NC_045512.2_19mer_win1_13488
13488
13506
223
AGCCCGTCTTACACCGTGC
1426
GCACGGTGTAAGACGGGCT





NC_045512.2_19mer_win1_13489
13489
13507
224
GCCCGTCTTACACCGTGCG
1427
CGCACGGTGTAAGACGGGC





NC_045512.2_19mer_win1_13490
13490
13508
225
CCCGTCTTACACCGTGCGG
1428
CCGCACGGTGTAAGACGGG





NC_045512.2_19mer_win1_13491
13491
13509
226
CCGTCTTACACCGTGCGGC
1429
GCCGCACGGTGTAAGACGG





NC_045512.2_19mer_win1_13492
13492
13510
227
CGTCTTACACCGTGCGGCA
1430
TGCCGCACGGTGTAAGACG





NC_045512.2_19mer_win1_13493
13493
13511
228
GTCTTACACCGTGCGGCAC
1431
GTGCCGCACGGTGTAAGAC





NC_045512.2_19mer_win1_13494
13494
13512
229
TCTTACACCGTGCGGCACA
1432
TGTGCCGCACGGTGTAAGA





NC_045512.2_19mer_win1_13495
13495
13513
230
CTTACACCGTGCGGCACAG
1433
CTGTGCCGCACGGTGTAAG





NC_045512.2_19mer_win1_13496
13496
13514
231
TTACACCGTGCGGCACAGG
1434
CCTGTGCCGCACGGTGTAA





NC_045512.2_19mer_win1_13497
13497
13515
232
TACACCGTGCGGCACAGGC
1435
GCCTGTGCCGCACGGTGTA





NC_045512.2_19mer_win1_13498
13498
13516
233
ACACCGTGCGGCACAGGCA
1436
TGCCTGTGCCGCACGGTGT





NC_045512.2_19mer_win1_13499
13499
13517
234
CACCGTGCGGCACAGGCAC
1437
GTGCCTGTGCCGCACGGTG





NC_045512.2_19mer_win1_13500
13500
13518
235
ACCGTGCGGCACAGGCACT
1438
AGTGCCTGTGCCGCACGGT





NC_045512.2_19mer_win1_13501
13501
13519
236
CCGTGCGGCACAGGCACTA
1439
TAGTGCCTGTGCCGCACGG





NC_045512.2_19mer_win1_13502
13502
13520
237
CGTGCGGCACAGGCACTAG
1440
CTAGTGCCTGTGCCGCACG





NC_045512.2_19mer_win1_13762
13762
13780
238
GGTGACATGGTACCACATA
1441
TATGTGGTACCATGTCACC





NC_045512.2_19mer_win1_13763
13763
13781
239
GTGACATGGTACCACATAT
1442
ATATGTGGTACCATGTCAC





NC_045512.2_19mer_win1_13764
13764
13782
240
TGACATGGTACCACATATA
1443
TATATGTGGTACCATGTCA





NC_045512.2_19mer_win1_13765
13765
13783
241
GACATGGTACCACATATAT
1444
ATATATGTGGTACCATGTC





NC_045512.2_19mer_win1_13766
13766
13784
242
ACATGGTACCACATATATC
1445
GATATATGTGGTACCATGT





NC_045512.2_19mer_win1_13767
13767
13785
243
CATGGTACCACATATATCA
1446
TGATATATGTGGTACCATG





NC_045512.2_19mer_win1_13768
13768
13786
244
ATGGTACCACATATATCAC
1447
GTGATATATGTGGTACCAT





NC_045512.2_19mer_win1_13769
13769
13787
245
TGGTACCACATATATCACG
1448
CGTGATATATGTGGTACCA





NC_045512.2_19mer_win1_13770
13770
13788
246
GGTACCACATATATCACGT
1449
ACGTGATATATGTGGTACC





NC_045512.2_19mer_win1_13771
13771
13789
247
GTACCACATATATCACGTC
1450
GACGTGATATATGTGGTAC





NC_045512.2_19mer_win1_13772
13772
13790
248
TACCACATATATCACGTCA
1451
TGACGTGATATATGTGGTA





NC_045512.2_19mer_win1_14290
14290
14308
249
GACCGTTATTTTAAATATT
1452
AATATTTAAAATAACGGTC





NC_045512.2_19mer_win1_14291
14291
14309
250
ACCGTTATTTTAAATATTG
1453
CAATATTTAAAATAACGGT





NC_045512.2_19mer_win1_14292
14292
14310
251
CCGTTATTTTAAATATTGG
1454
CCAATATTTAAAATAACGG





NC_045512.2_19mer_win1_14293
14293
14311
252
CGTTATTTTAAATATTGGG
1455
CCCAATATTTAAAATAACG





NC_045512.2_19mer_win1_14294
14294
14312
253
GTTATTTTAAATATTGGGA
1456
TCCCAATATTTAAAATAAC





NC_045512.2_19mer_win1_14404
14404
14422
254
CCACCTACAAGTTTTGGAC
1457
GTCCAAAACTTGTAGGTGG





NC_045512.2_19mer_win1_14405
14405
14423
255
CACCTACAAGTTTTGGACC
1458
GGTCCAAAACTTGTAGGTG





NC_045512.2_19mer_win1_14406
14406
14424
256
ACCTACAAGTTTTGGACCA
1459
TGGTCCAAAACTTGTAGGT





NC_045512.2_19mer_win1_14407
14407
14425
257
CCTACAAGTTTTGGACCAC
1460
GTGGTCCAAAACTTGTAGG





NC_045512.2_19mer_win1_14408
14408
14426
258
CTACAAGTTTTGGACCACT
1461
AGTGGTCCAAAACTTGTAG





NC_045512.2_19mer_win1_14409
14409
14427
259
TACAAGTTTTGGACCACTA
1462
TAGTGGTCCAAAACTTGTA





NC_045512.2_19mer_win1_14410
14410
14428
260
ACAAGTTTTGGACCACTAG
1463
CTAGTGGTCCAAAACTTGT





NC_045512.2_19mer_win1_14411
14411
14429
261
CAAGTTTTGGACCACTAGT
1464
ACTAGTGGTCCAAAACTTG





NC_045512.2_19mer_win1_14500
14500
14518
262
GTACATAATCAGGATGTAA
1465
TTACATCCTGATTATGTAC





NC_045512.2_19mer_win1_14501
14501
14519
263
TACATAATCAGGATGTAAA
1466
TTTACATCCTGATTATGTA





NC_045512.2_19mer_win1_14502
14502
14520
264
ACATAATCAGGATGTAAAC
1467
GTTTACATCCTGATTATGT





NC_045512.2_19mer_win1_14503
14503
14521
265
CATAATCAGGATGTAAACT
1468
AGTTTACATCCTGATTATG





NC_045512.2_19mer_win1_14504
14504
14522
266
ATAATCAGGATGTAAACTT
1469
AAGTTTACATCCTGATTAT





NC_045512.2_19mer_win1_14505
14505
14523
267
TAATCAGGATGTAAACTTA
1470
TAAGTTTACATCCTGATTA





NC_045512.2_19mer_win1_14506
14506
14524
268
AATCAGGATGTAAACTTAC
1471
GTAAGTTTACATCCTGATT





NC_045512.2_19mer_win1_14507
14507
14525
269
ATCAGGATGTAAACTTACA
1472
TGTAAGTTTACATCCTGAT





NC_045512.2_19mer_win1_14508
14508
14526
270
TCAGGATGTAAACTTACAT
1473
ATGTAAGTTTACATCCTGA





NC_045512.2_19mer_win1_14509
14509
14527
271
CAGGATGTAAACTTACATA
1474
TATGTAAGTTTACATCCTG





NC_045512.2_19mer_win1_14510
14510
14528
272
AGGATGTAAACTTACATAG
1475
CTATGTAAGTTTACATCCT





NC_045512.2_19mer_win1_14511
14511
14529
273
GGATGTAAACTTACATAGC
1476
GCTATGTAAGTTTACATCC





NC_045512.2_19mer_win1_14512
14512
14530
274
GATGTAAACTTACATAGCT
1477
AGCTATGTAAGTTTACATC





NC_045512.2_19mer_win1_14513
14513
14531
275
ATGTAAACTTACATAGCTC
1478
GAGCTATGTAAGTTTACAT





NC_045512.2_19mer_win1_14623
14623
14641
276
TGCTTTTCAGTAGCTGCAC
1479
GTGCAGCTACTGAAAAGCA





NC_045512.2_19mer_win1_14624
14624
14642
277
GCTTTTCAGTAGCTGCACT
1480
AGTGCAGCTACTGAAAAGC





NC_045512.2_19mer_win1_14650
14650
14668
278
AATGTTGCTTTTCAAACTG
1481
CAGTTTGAAAAGCAACATT





NC_045512.2_19mer_win1_14651
14651
14669
279
ATGTTGCTTTTCAAACTGT
1482
ACAGTTTGAAAAGCAACAT





NC_045512.2_19mer_win1_14652
14652
14670
280
TGTTGCTTTTCAAACTGTC
1483
GACAGTTTGAAAAGCAACA





NC_045512.2_19mer_win1_14653
14653
14671
281
GTTGCTTTTCAAACTGTCA
1484
TGACAGTTTGAAAAGCAAC





NC_045512.2_19mer_win1_14654
14654
14672
282
TTGCTTTTCAAACTGTCAA
1485
TTGACAGTTTGAAAAGCAA





NC_045512.2_19mer_win1_14655
14655
14673
283
TGCTTTTCAAACTGTCAAA
1486
TTTGACAGTTTGAAAAGCA





NC_045512.2_19mer_win1_14656
14656
14674
284
GCTTTTCAAACTGTCAAAC
1487
GTTTGACAGTTTGAAAAGC





NC_045512.2_19mer_win1_14657
14657
14675
285
CTTTTCAAACTGTCAAACC
1488
GGTTTGACAGTTTGAAAAG





NC_045512.2_19mer_win1_14658
14658
14676
286
TTTTCAAACTGTCAAACCC
1489
GGGTTTGACAGTTTGAAAA





NC_045512.2_19mer_win1_14659
14659
14677
287
TTTCAAACTGTCAAACCCG
1490
CGGGTTTGACAGTTTGAAA





NC_045512.2_19mer_win1_14660
14660
14678
288
TTCAAACTGTCAAACCCGG
1491
CCGGGTTTGACAGTTTGAA





NC_045512.2_19mer_win1_14661
14661
14679
289
TCAAACTGTCAAACCCGGT
1492
ACCGGGTTTGACAGTTTGA





NC_045512.2_19mer_win1_14662
14662
14680
290
CAAACTGTCAAACCCGGTA
1493
TACCGGGTTTGACAGTTTG





NC_045512.2_19mer_win1_14663
14663
14681
291
AAACTGTCAAACCCGGTAA
1494
TTACCGGGTTTGACAGTTT





NC_045512.2_19mer_win1_14664
14664
14682
292
AACTGTCAAACCCGGTAAT
1495
ATTACCGGGTTTGACAGTT





NC_045512.2_19mer_win1_14665
14665
14683
293
ACTGTCAAACCCGGTAATT
1496
AATTACCGGGTTTGACAGT





NC_045512.2_19mer_win1_14666
14666
14684
294
CTGTCAAACCCGGTAATTT
1497
AAATTACCGGGTTTGACAG





NC_045512.2_19mer_win1_14667
14667
14685
295
TGTCAAACCCGGTAATTTT
1498
AAAATTACCGGGTTTGACA





NC_045512.2_19mer_win1_14668
14668
14686
296
GTCAAACCCGGTAATTTTA
1499
TAAAATTACCGGGTTTGAC





NC_045512.2_19mer_win1_14669
14669
14687
297
TCAAACCCGGTAATTTTAA
1500
TTAAAATTACCGGGTTTGA





NC_045512.2_19mer_win1_14698
14698
14716
298
TATGACTTTGCTGTGTCTA
1501
TAGACACAGCAAAGTCATA





NC_045512.2_19mer_win1_14699
14699
14717
299
ATGACTTTGCTGTGTCTAA
1502
TTAGACACAGCAAAGTCAT





NC_045512.2_19mer_win1_14722
14722
14740
300
TTCTTTAAGGAAGGAAGTT
1503
AACTTCCTTCCTTAAAGAA





NC_045512.2_19mer_win1_14723
14723
14741
301
TCTTTAAGGAAGGAAGTTC
1504
GAACTTCCTTCCTTAAAGA





NC_045512.2_19mer_win1_14724
14724
14742
302
CTTTAAGGAAGGAAGTTCT
1505
AGAACTTCCTTCCTTAAAG





NC_045512.2_19mer_win1_14725
14725
14743
303
TTTAAGGAAGGAAGTTCTG
1506
CAGAACTTCCTTCCTTAAA





NC_045512.2_19mer_win1_14726
14726
14744
304
TTAAGGAAGGAAGTTCTGT
1507
ACAGAACTTCCTTCCTTAA





NC_045512.2_19mer_win1_14727
14727
14745
305
TAAGGAAGGAAGTTCTGTT
1508
AACAGAACTTCCTTCCTTA





NC_045512.2_19mer_win1_14728
14728
14746
306
AAGGAAGGAAGTTCTGTTG
1509
CAACAGAACTTCCTTCCTT





NC_045512.2_19mer_win1_14729
14729
14747
307
AGGAAGGAAGTTCTGTTGA
1510
TCAACAGAACTTCCTTCCT





NC_045512.2_19mer_win1_14730
14730
14748
308
GGAAGGAAGTTCTGTTGAA
1511
TTCAACAGAACTTCCTTCC





NC_045512.2_19mer_win1_14750
14750
14768
309
TAAAACACTTCTTCTTTGC
1512
GCAAAGAAGAAGTGTTTTA





NC_045512.2_19mer_win1_14751
14751
14769
310
AAAACACTTCTTCTTTGCT
1513
AGCAAAGAAGAAGTGTTTT





NC_045512.2_19mer_win1_14752
14752
14770
311
AAACACTTCTTCTTTGCTC
1514
GAGCAAAGAAGAAGTGTTT





NC_045512.2_19mer_win1_14753
14753
14771
312
AACACTTCTTCTTTGCTCA
1515
TGAGCAAAGAAGAAGTGTT





NC_045512.2_19mer_win1_14754
14754
14772
313
ACACTTCTTCTTTGCTCAG
1516
CTGAGCAAAGAAGAAGTGT





NC_045512.2_19mer_win1_14755
14755
14773
314
CACTTCTTCTTTGCTCAGG
1517
CCTGAGCAAAGAAGAAGTG





NC_045512.2_19mer_win1_14756
14756
14774
315
ACTTCTTCTTTGCTCAGGA
1518
TCCTGAGCAAAGAAGAAGT





NC_045512.2_19mer_win1_14757
14757
14775
316
CTTCTTCTTTGCTCAGGAT
1519
ATCCTGAGCAAAGAAGAAG





NC_045512.2_19mer_win1_14758
14758
14776
317
TTCTTCTTTGCTCAGGATG
1520
CATCCTGAGCAAAGAAGAA





NC_045512.2_19mer_win1_14759
14759
14777
318
TCTTCTTTGCTCAGGATGG
1521
CCATCCTGAGCAAAGAAGA





NC_045512.2_19mer_win1_14821
14821
14839
319
CCAACAATGTGTGATATCA
1522
TGATATCACACATTGTTGG





NC_045512.2_19mer_win1_14822
14822
14840
320
CAACAATGTGTGATATCAG
1523
CTGATATCACACATTGTTG





NC_045512.2_19mer_win1_14823
14823
14841
321
AACAATGTGTGATATCAGA
1524
TCTGATATCACACATTGTT





NC_045512.2_19mer_win1_14824
14824
14842
322
ACAATGTGTGATATCAGAC
1525
GTCTGATATCACACATTGT





NC_045512.2_19mer_win1_14825
14825
14843
323
CAATGTGTGATATCAGACA
1526
TGTCTGATATCACACATTG





NC_045512.2_19mer_win1_14826
14826
14844
324
AATGTGTGATATCAGACAA
1527
TTGTCTGATATCACACATT





NC_045512.2_19mer_win1_14827
14827
14845
325
ATGTGTGATATCAGACAAC
1528
GTTGTCTGATATCACACAT





NC_045512.2_19mer_win1_14828
14828
14846
326
TGTGTGATATCAGACAACT
1529
AGTTGTCTGATATCACACA





NC_045512.2_19mer_win1_14854
14854
14872
327
GTAGTTGAAGTTGTTGATA
1530
TATCAACAACTTCAACTAC





NC_045512.2_19mer_win1_14855
14855
14873
328
TAGTTGAAGTTGTTGATAA
1531
TTATCAACAACTTCAACTA





NC_045512.2_19mer_win1_14875
14875
14893
329
TACTTTGATTGTTACGATG
1532
CATCGTAACAATCAAAGTA





NC_045512.2_19mer_win1_14876
14876
14894
330
ACTTTGATTGTTACGATGG
1533
CCATCGTAACAATCAAAGT





NC_045512.2_19mer_win1_14877
14877
14895
331
CTTTGATTGTTACGATGGT
1534
ACCATCGTAACAATCAAAG





NC_045512.2_19mer_win1_14878
14878
14896
332
TTTGATTGTTACGATGGTG
1535
CACCATCGTAACAATCAAA





NC_045512.2_19mer_win1_14879
14879
14897
333
TTGATTGTTACGATGGTGG
1536
CCACCATCGTAACAATCAA





NC_045512.2_19mer_win1_14880
14880
14898
334
TGATTGTTACGATGGTGGC
1537
GCCACCATCGTAACAATCA





NC_045512.2_19mer_win1_14881
14881
14899
335
GATTGTTACGATGGTGGCT
1538
AGCCACCATCGTAACAATC





NC_045512.2_19mer_win1_14882
14882
14900
336
ATTGTTACGATGGTGGCTG
1539
CAGCCACCATCGTAACAAT





NC_045512.2_19mer_win1_14883
14883
14901
337
TTGTTACGATGGTGGCTGT
1540
ACAGCCACCATCGTAACAA





NC_045512.2_19mer_win1_14884
14884
14902
338
TGTTACGATGGTGGCTGTA
1541
TACAGCCACCATCGTAACA





NC_045512.2_19mer_win1_14885
14885
14903
339
GTTACGATGGTGGCTGTAT
1542
ATACAGCCACCATCGTAAC





NC_045512.2_19mer_win1_14962
14962
14980
340
AAATGGGGTAAGGCTAGAC
1543
GTCTAGCCTTACCCCATTT





NC_045512.2_19mer_win1_14963
14963
14981
341
AATGGGGTAAGGCTAGACT
1544
AGTCTAGCCTTACCCCATT





NC_045512.2_19mer_win1_14964
14964
14982
342
ATGGGGTAAGGCTAGACTT
1545
AAGTCTAGCCTTACCCCAT





NC_045512.2_19mer_win1_14965
14965
14983
343
TGGGGTAAGGCTAGACTTT
1546
AAAGTCTAGCCTTACCCCA





NC_045512.2_19mer_win1_14966
14966
14984
344
GGGGTAAGGCTAGACTTTA
1547
TAAAGTCTAGCCTTACCCC





NC_045512.2_19mer_win1_14967
14967
14985
345
GGGTAAGGCTAGACTTTAT
1548
ATAAAGTCTAGCCTTACCC





NC_045512.2_19mer_win1_14968
14968
14986
346
GGTAAGGCTAGACTTTATT
1549
AATAAAGTCTAGCCTTACC





NC_045512.2_19mer_win1_14969
14969
14987
347
GTAAGGCTAGACTTTATTA
1550
TAATAAAGTCTAGCCTTAC





NC_045512.2_19mer_win1_14970
14970
14988
348
TAAGGCTAGACTTTATTAT
1551
ATAATAAAGTCTAGCCTTA





NC_045512.2_19mer_win1_14971
14971
14989
349
AAGGCTAGACTTTATTATG
1552
CATAATAAAGTCTAGCCTT





NC_045512.2_19mer_win1_14972
14972
14990
350
AGGCTAGACTTTATTATGA
1553
TCATAATAAAGTCTAGCCT





NC_045512.2_19mer_win1_14992
14992
15010
351
TCAATGAGTTATGAGGATC
1554
GATCCTCATAACTCATTGA





NC_045512.2_19mer_win1_14993
14993
15011
352
CAATGAGTTATGAGGATCA
1555
TGATCCTCATAACTCATTG





NC_045512.2_19mer_win1_14994
14994
15012
353
AATGAGTTATGAGGATCAA
1556
TTGATCCTCATAACTCATT





NC_045512.2_19mer_win1_14995
14995
15013
354
ATGAGTTATGAGGATCAAG
1557
CTTGATCCTCATAACTCAT





NC_045512.2_19mer_win1_14996
14996
15014
355
TGAGTTATGAGGATCAAGA
1558
TCTTGATCCTCATAACTCA





NC_045512.2_19mer_win1_14997
14997
15015
356
GAGTTATGAGGATCAAGAT
1559
ATCTTGATCCTCATAACTC





NC_045512.2_19mer_win1_14998
14998
15016
357
AGTTATGAGGATCAAGATG
1560
CATCTTGATCCTCATAACT





NC_045512.2_19mer_win1_14999
14999
15017
358
GTTATGAGGATCAAGATGC
1561
GCATCTTGATCCTCATAAC





NC_045512.2_19mer_win1_15000
15000
15018
359
TTATGAGGATCAAGATGCA
1562
TGCATCTTGATCCTCATAA





NC_045512.2_19mer_win1_15001
15001
15019
360
TATGAGGATCAAGATGCAC
1563
GTGCATCTTGATCCTCATA





NC_045512.2_19mer_win1_15002
15002
15020
361
ATGAGGATCAAGATGCACT
1564
AGTGCATCTTGATCCTCAT





NC_045512.2_19mer_win1_15055
15055
15073
362
ATAACTCAAATGAATCTTA
1565
TAAGATTCATTTGAGTTAT





NC_045512.2_19mer_win1_15056
15056
15074
363
TAACTCAAATGAATCTTAA
1566
TTAAGATTCATTTGAGTTA





NC_045512.2_19mer_win1_15057
15057
15075
364
AACTCAAATGAATCTTAAG
1567
CTTAAGATTCATTTGAGTT





NC_045512.2_19mer_win1_15058
15058
15076
365
ACTCAAATGAATCTTAAGT
1568
ACTTAAGATTCATTTGAGT





NC_045512.2_19mer_win1_15059
15059
15077
366
CTCAAATGAATCTTAAGTA
1569
TACTTAAGATTCATTTGAG





NC_045512.2_19mer_win1_15060
15060
15078
367
TCAAATGAATCTTAAGTAT
1570
ATACTTAAGATTCATTTGA





NC_045512.2_19mer_win1_15061
15061
15079
368
CAAATGAATCTTAAGTATG
1571
CATACTTAAGATTCATTTG





NC_045512.2_19mer_win1_15062
15062
15080
369
AAATGAATCTTAAGTATGC
1572
GCATACTTAAGATTCATTT





NC_045512.2_19mer_win1_15063
15063
15081
370
AATGAATCTTAAGTATGCC
1573
GGCATACTTAAGATTCATT





NC_045512.2_19mer_win1_15064
15064
15082
371
ATGAATCTTAAGTATGCCA
1574
TGGCATACTTAAGATTCAT





NC_045512.2_19mer_win1_15065
15065
15083
372
TGAATCTTAAGTATGCCAT
1575
ATGGCATACTTAAGATTCA





NC_045512.2_19mer_win1_15066
15066
15084
373
GAATCTTAAGTATGCCATT
1576
AATGGCATACTTAAGATTC





NC_045512.2_19mer_win1_15067
15067
15085
374
AATCTTAAGTATGCCATTA
1577
TAATGGCATACTTAAGATT





NC_045512.2_19mer_win1_15068
15068
15086
375
ATCTTAAGTATGCCATTAG
1578
CTAATGGCATACTTAAGAT





NC_045512.2_19mer_win1_15069
15069
15087
376
TCTTAAGTATGCCATTAGT
1579
ACTAATGGCATACTTAAGA





NC_045512.2_19mer_win1_15070
15070
15088
377
CTTAAGTATGCCATTAGTG
1580
CACTAATGGCATACTTAAG





NC_045512.2_19mer_win1_15071
15071
15089
378
TTAAGTATGCCATTAGTGC
1581
GCACTAATGGCATACTTAA





NC_045512.2_19mer_win1_15072
15072
15090
379
TAAGTATGCCATTAGTGCA
1582
TGCACTAATGGCATACTTA





NC_045512.2_19mer_win1_15073
15073
15091
380
AAGTATGCCATTAGTGCAA
1583
TTGCACTAATGGCATACTT





NC_045512.2_19mer_win1_15074
15074
15092
381
AGTATGCCATTAGTGCAAA
1584
TTTGCACTAATGGCATACT





NC_045512.2_19mer_win1_15075
15075
15093
382
GTATGCCATTAGTGCAAAG
1585
CTTTGCACTAATGGCATAC





NC_045512.2_19mer_win1_15076
15076
15094
383
TATGCCATTAGTGCAAAGA
1586
TCTTTGCACTAATGGCATA





NC_045512.2_19mer_win1_15077
15077
15095
384
ATGCCATTAGTGCAAAGAA
1587
TTCTTTGCACTAATGGCAT





NC_045512.2_19mer_win1_15078
15078
15096
385
TGCCATTAGTGCAAAGAAT
1588
ATTCTTTGCACTAATGGCA





NC_045512.2_19mer_win1_15079
15079
15097
386
GCCATTAGTGCAAAGAATA
1589
TATTCTTTGCACTAATGGC





NC_045512.2_19mer_win1_15080
15080
15098
387
CCATTAGTGCAAAGAATAG
1590
CTATTCTTTGCACTAATGG





NC_045512.2_19mer_win1_15081
15081
15099
388
CATTAGTGCAAAGAATAGA
1591
TCTATTCTTTGCACTAATG





NC_045512.2_19mer_win1_15082
15082
15100
389
ATTAGTGCAAAGAATAGAG
1592
CTCTATTCTTTGCACTAAT





NC_045512.2_19mer_win1_15083
15083
15101
390
TTAGTGCAAAGAATAGAGC
1593
GCTCTATTCTTTGCACTAA





NC_045512.2_19mer_win1_15084
15084
15102
391
TAGTGCAAAGAATAGAGCT
1594
AGCTCTATTCTTTGCACTA





NC_045512.2_19mer_win1_15085
15085
15103
392
AGTGCAAAGAATAGAGCTC
1595
GAGCTCTATTCTTTGCACT





NC_045512.2_19mer_win1_15086
15086
15104
393
GTGCAAAGAATAGAGCTCG
1596
CGAGCTCTATTCTTTGCAC





NC_045512.2_19mer_win1_15087
15087
15105
394
TGCAAAGAATAGAGCTCGC
1597
GCGAGCTCTATTCTTTGCA





NC_045512.2_19mer_win1_15088
15088
15106
395
GCAAAGAATAGAGCTCGCA
1598
TGCGAGCTCTATTCTTTGC





NC_045512.2_19mer_win1_15089
15089
15107
396
CAAAGAATAGAGCTCGCAC
1599
GTGCGAGCTCTATTCTTTG





NC_045512.2_19mer_win1_15090
15090
15108
397
AAAGAATAGAGCTCGCACC
1600
GGTGCGAGCTCTATTCTTT





NC_045512.2_19mer_win1_15091
15091
15109
398
AAGAATAGAGCTCGCACCG
1601
CGGTGCGAGCTCTATTCTT





NC_045512.2_19mer_win1_15092
15092
15110
399
AGAATAGAGCTCGCACCGT
1602
ACGGTGCGAGCTCTATTCT





NC_045512.2_19mer_win1_15093
15093
15111
400
GAATAGAGCTCGCACCGTA
1603
TACGGTGCGAGCTCTATTC





NC_045512.2_19mer_win1_15094
15094
15112
401
AATAGAGCTCGCACCGTAG
1604
CTACGGTGCGAGCTCTATT





NC_045512.2_19mer_win1_15095
15095
15113
402
ATAGAGCTCGCACCGTAGC
1605
GCTACGGTGCGAGCTCTAT





NC_045512.2_19mer_win1_15096
15096
15114
403
TAGAGCTCGCACCGTAGCT
1606
AGCTACGGTGCGAGCTCTA





NC_045512.2_19mer_win1_15097
15097
15115
404
AGAGCTCGCACCGTAGCTG
1607
CAGCTACGGTGCGAGCTCT





NC_045512.2_19mer_win1_15098
15098
15116
405
GAGCTCGCACCGTAGCTGG
1608
CCAGCTACGGTGCGAGCTC





NC_045512.2_19mer_win1_15099
15099
15117
406
AGCTCGCACCGTAGCTGGT
1609
ACCAGCTACGGTGCGAGCT





NC_045512.2_19mer_win1_15100
15100
15118
407
GCTCGCACCGTAGCTGGTG
1610
CACCAGCTACGGTGCGAGC





NC_045512.2_19mer_win1_15101
15101
15119
408
CTCGCACCGTAGCTGGTGT
1611
ACACCAGCTACGGTGCGAG





NC_045512.2_19mer_win1_15102
15102
15120
409
TCGCACCGTAGCTGGTGTC
1612
GACACCAGCTACGGTGCGA





NC_045512.2_19mer_win1_15103
15103
15121
410
CGCACCGTAGCTGGTGTCT
1613
AGACACCAGCTACGGTGCG





NC_045512.2_19mer_win1_15104
15104
15122
411
GCACCGTAGCTGGTGTCTC
1614
GAGACACCAGCTACGGTGC





NC_045512.2_19mer_win1_15105
15105
15123
412
CACCGTAGCTGGTGTCTCT
1615
AGAGACACCAGCTACGGTG





NC_045512.2_19mer_win1_15106
15106
15124
413
ACCGTAGCTGGTGTCTCTA
1616
TAGAGACACCAGCTACGGT





NC_045512.2_19mer_win1_15107
15107
15125
414
CCGTAGCTGGTGTCTCTAT
1617
ATAGAGACACCAGCTACGG





NC_045512.2_19mer_win1_15108
15108
15126
415
CGTAGCTGGTGTCTCTATC
1618
GATAGAGACACCAGCTACG





NC_045512.2_19mer_win1_15109
15109
15127
416
GTAGCTGGTGTCTCTATCT
1619
AGATAGAGACACCAGCTAC





NC_045512.2_19mer_win1_15110
15110
15128
417
TAGCTGGTGTCTCTATCTG
1620
CAGATAGAGACACCAGCTA





NC_045512.2_19mer_win1_15111
15111
15129
418
AGCTGGTGTCTCTATCTGT
1621
ACAGATAGAGACACCAGCT





NC_045512.2_19mer_win1_15112
15112
15130
419
GCTGGTGTCTCTATCTGTA
1622
TACAGATAGAGACACCAGC





NC_045512.2_19mer_win1_15113
15113
15131
420
CTGGTGTCTCTATCTGTAG
1623
CTACAGATAGAGACACCAG





NC_045512.2_19mer_win1_15114
15114
15132
421
TGGTGTCTCTATCTGTAGT
1624
ACTACAGATAGAGACACCA





NC_045512.2_19mer_win1_15115
15115
15133
422
GGTGTCTCTATCTGTAGTA
1625
TACTACAGATAGAGACACC





NC_045512.2_19mer_win1_15116
15116
15134
423
GTGTCTCTATCTGTAGTAC
1626
GTACTACAGATAGAGACAC





NC_045512.2_19mer_win1_15117
15117
15135
424
TGTCTCTATCTGTAGTACT
1627
AGTACTACAGATAGAGACA





NC_045512.2_19mer_win1_15118
15118
15136
425
GTCTCTATCTGTAGTACTA
1628
TAGTACTACAGATAGAGAC





NC_045512.2_19mer_win1_15119
15119
15137
426
TCTCTATCTGTAGTACTAT
1629
ATAGTACTACAGATAGAGA





NC_045512.2_19mer_win1_15120
15120
15138
427
CTCTATCTGTAGTACTATG
1630
CATAGTACTACAGATAGAG





NC_045512.2_19mer_win1_15121
15121
15139
428
TCTATCTGTAGTACTATGA
1631
TCATAGTACTACAGATAGA





NC_045512.2_19mer_win1_15122
15122
15140
429
CTATCTGTAGTACTATGAC
1632
GTCATAGTACTACAGATAG





NC_045512.2_19mer_win1_15172
15172
15190
430
TCAATAGCCGCCACTAGAG
1633
CTCTAGTGGCGGCTATTGA





NC_045512.2_19mer_win1_15173
15173
15191
431
CAATAGCCGCCACTAGAGG
1634
CCTCTAGTGGCGGCTATTG





NC_045512.2_19mer_win1_15174
15174
15192
432
AATAGCCGCCACTAGAGGA
1635
TCCTCTAGTGGCGGCTATT





NC_045512.2_19mer_win1_15175
15175
15193
433
ATAGCCGCCACTAGAGGAG
1636
CTCCTCTAGTGGCGGCTAT





NC_045512.2_19mer_win1_15176
15176
15194
434
TAGCCGCCACTAGAGGAGC
1637
GCTCCTCTAGTGGCGGCTA





NC_045512.2_19mer_win1_15177
15177
15195
435
AGCCGCCACTAGAGGAGCT
1638
AGCTCCTCTAGTGGCGGCT





NC_045512.2_19mer_win1_15178
15178
15196
436
GCCGCCACTAGAGGAGCTA
1639
TAGCTCCTCTAGTGGCGGC





NC_045512.2_19mer_win1_15179
15179
15197
437
CCGCCACTAGAGGAGCTAC
1640
GTAGCTCCTCTAGTGGCGG





NC_045512.2_19mer_win1_15180
15180
15198
438
CGCCACTAGAGGAGCTACT
1641
AGTAGCTCCTCTAGTGGCG





NC_045512.2_19mer_win1_15181
15181
15199
439
GCCACTAGAGGAGCTACTG
1642
CAGTAGCTCCTCTAGTGGC





NC_045512.2_19mer_win1_15182
15182
15200
440
CCACTAGAGGAGCTACTGT
1643
ACAGTAGCTCCTCTAGTGG





NC_045512.2_19mer_win1_15310
15310
15328
441
AGAGCCATGCCTAACATGC
1644
GCATGTTAGGCATGGCTCT





NC_045512.2_19mer_win1_15311
15311
15329
442
GAGCCATGCCTAACATGCT
1645
AGCATGTTAGGCATGGCTC





NC_045512.2_19mer_win1_15312
15312
15330
443
AGCCATGCCTAACATGCTT
1646
AAGCATGTTAGGCATGGCT





NC_045512.2_19mer_win1_15313
15313
15331
444
GCCATGCCTAACATGCTTA
1647
TAAGCATGTTAGGCATGGC





NC_045512.2_19mer_win1_15314
15314
15332
445
CCATGCCTAACATGCTTAG
1648
CTAAGCATGTTAGGCATGG





NC_045512.2_19mer_win1_15346
15346
15364
446
CTTGTTCTTGCTCGCAAAC
1649
GTTTGCGAGCAAGAACAAG





NC_045512.2_19mer_win1_15347
15347
15365
447
TTGTTCTTGCTCGCAAACA
1650
TGTTTGCGAGCAAGAACAA





NC_045512.2_19mer_win1_15348
15348
15366
448
TGTTCTTGCTCGCAAACAT
1651
ATGTTTGCGAGCAAGAACA





NC_045512.2_19mer_win1_15349
15349
15367
449
GTTCTTGCTCGCAAACATA
1652
TATGTTTGCGAGCAAGAAC





NC_045512.2_19mer_win1_15496
15496
15514
450
ACAACTGCTTATGCTAATA
1653
TATTAGCATAAGCAGTTGT





NC_045512.2_19mer_win1_15497
15497
15515
451
CAACTGCTTATGCTAATAG
1654
CTATTAGCATAAGCAGTTG





NC_045512.2_19mer_win1_15498
15498
15516
452
AACTGCTTATGCTAATAGT
1655
ACTATTAGCATAAGCAGTT





NC_045512.2_19mer_win1_15499
15499
15517
453
ACTGCTTATGCTAATAGTG
1656
CACTATTAGCATAAGCAGT





NC_045512.2_19mer_win1_15500
15500
15518
454
CTGCTTATGCTAATAGTGT
1657
ACACTATTAGCATAAGCAG





NC_045512.2_19mer_win1_15622
15622
15640
455
TATGAGTGTCTCTATAGAA
1658
TTCTATAGAGACACTCATA





NC_045512.2_19mer_win1_15623
15623
15641
456
ATGAGTGTCTCTATAGAAA
1659
TTTCTATAGAGACACTCAT





NC_045512.2_19mer_win1_15624
15624
15642
457
TGAGTGTCTCTATAGAAAT
1660
ATTTCTATAGAGACACTCA





NC_045512.2_19mer_win1_15625
15625
15643
458
GAGTGTCTCTATAGAAATA
1661
TATTTCTATAGAGACACTC





NC_045512.2_19mer_win1_15626
15626
15644
459
AGTGTCTCTATAGAAATAG
1662
CTATTTCTATAGAGACACT





NC_045512.2_19mer_win1_15838
15838
15856
460
TGGACTGAGACTGACCTTA
1663
TAAGGTCAGTCTCAGTCCA





NC_045512.2_19mer_win1_15839
15839
15857
461
GGACTGAGACTGACCTTAC
1664
GTAAGGTCAGTCTCAGTCC





NC_045512.2_19mer_win1_15840
15840
15858
462
GACTGAGACTGACCTTACT
1665
AGTAAGGTCAGTCTCAGTC





NC_045512.2_19mer_win1_15841
15841
15859
463
ACTGAGACTGACCTTACTA
1666
TAGTAAGGTCAGTCTCAGT





NC_045512.2_19mer_win1_15842
15842
15860
464
CTGAGACTGACCTTACTAA
1667
TTAGTAAGGTCAGTCTCAG





NC_045512.2_19mer_win1_15843
15843
15861
465
TGAGACTGACCTTACTAAA
1668
TTTAGTAAGGTCAGTCTCA





NC_045512.2_19mer_win1_15844
15844
15862
466
GAGACTGACCTTACTAAAG
1669
CTTTAGTAAGGTCAGTCTC





NC_045512.2_19mer_win1_15845
15845
15863
467
AGACTGACCTTACTAAAGG
1670
CCTTTAGTAAGGTCAGTCT





NC_045512.2_19mer_win1_15846
15846
15864
468
GACTGACCTTACTAAAGGA
1671
TCCTTTAGTAAGGTCAGTC





NC_045512.2_19mer_win1_15847
15847
15865
469
ACTGACCTTACTAAAGGAC
1672
GTCCTTTAGTAAGGTCAGT





NC_045512.2_19mer_win1_15848
15848
15866
470
CTGACCTTACTAAAGGACC
1673
GGTCCTTTAGTAAGGTCAG





NC_045512.2_19mer_win1_15849
15849
15867
471
TGACCTTACTAAAGGACCT
1674
AGGTCCTTTAGTAAGGTCA





NC_045512.2_19mer_win1_15850
15850
15868
472
GACCTTACTAAAGGACCTC
1675
GAGGTCCTTTAGTAAGGTC





NC_045512.2_19mer_win1_15851
15851
15869
473
ACCTTACTAAAGGACCTCA
1676
TGAGGTCCTTTAGTAAGGT





NC_045512.2_19mer_win1_15886
15886
15904
474
CATACAATGCTAGTTAAAC
1677
GTTTAACTAGCATTGTATG





NC_045512.2_19mer_win1_15887
15887
15905
475
ATACAATGCTAGTTAAACA
1678
TGTTTAACTAGCATTGTAT





NC_045512.2_19mer_win1_15985
15985
16003
476
AAAACAGATGGTACACTTA
1679
TAAGTGTACCATCTGTTTT





NC_045512.2_19mer_win1_15986
15986
16004
477
AAACAGATGGTACACTTAT
1680
ATAAGTGTACCATCTGTTT





NC_045512.2_19mer_win1_15987
15987
16005
478
AACAGATGGTACACTTATG
1681
CATAAGTGTACCATCTGTT





NC_045512.2_19mer_win1_15988
15988
16006
479
ACAGATGGTACACTTATGA
1682
TCATAAGTGTACCATCTGT





NC_045512.2_19mer_win1_15989
15989
16007
480
CAGATGGTACACTTATGAT
1683
ATCATAAGTGTACCATCTG





NC_045512.2_19mer_win1_15990
15990
16008
481
AGATGGTACACTTATGATT
1684
AATCATAAGTGTACCATCT





NC_045512.2_19mer_win1_15991
15991
16009
482
GATGGTACACTTATGATTG
1685
CAATCATAAGTGTACCATC





NC_045512.2_19mer_win1_15992
15992
16010
483
ATGGTACACTTATGATTGA
1686
TCAATCATAAGTGTACCAT





NC_045512.2_19mer_win1_16057
16057
16075
484
CCTAATCAGGAGTATGCTG
1687
CAGCATACTCCTGATTAGG





NC_045512.2_19mer_win1_16058
16058
16076
485
CTAATCAGGAGTATGCTGA
1688
TCAGCATACTCCTGATTAG





NC_045512.2_19mer_win1_16059
16059
16077
486
TAATCAGGAGTATGCTGAT
1689
ATCAGCATACTCCTGATTA





NC_045512.2_19mer_win1_16060
16060
16078
487
AATCAGGAGTATGCTGATG
1690
CATCAGCATACTCCTGATT





NC_045512.2_19mer_win1_16061
16061
16079
488
ATCAGGAGTATGCTGATGT
1691
ACATCAGCATACTCCTGAT





NC_045512.2_19mer_win1_16186
16186
16204
489
TGGGAACCTGAGTTTTATG
1692
CATAAAACTCAGGTTCCCA





NC_045512.2_19mer_win1_16187
16187
16205
490
GGGAACCTGAGTTTTATGA
1693
TCATAAAACTCAGGTTCCC





NC_045512.2_19mer_win1_16430
16430
16448
491
TAGGAGGTATGAGCTATTA
1694
TAATAGCTCATACCTCCTA





NC_045512.2_19mer_win1_16822
16822
16840
492
GGAGAGTACACCTTTGAAA
1695
TTTCAAAGGTGTACTCTCC





NC_045512.2_19mer_win1_16823
16823
16841
493
GAGAGTACACCTTTGAAAA
1696
TTTTCAAAGGTGTACTCTC





NC_045512.2_19mer_win1_16824
16824
16842
494
AGAGTACACCTTTGAAAAA
1697
TTTTTCAAAGGTGTACTCT





NC_045512.2_19mer_win1_16825
16825
16843
495
GAGTACACCTTTGAAAAAG
1698
CTTTTTCAAAGGTGTACTC





NC_045512.2_19mer_win1_16826
16826
16844
496
AGTACACCTTTGAAAAAGG
1699
CCTTTTTCAAAGGTGTACT





NC_045512.2_19mer_win1_16827
16827
16845
497
GTACACCTTTGAAAAAGGT
1700
ACCTTTTTCAAAGGTGTAC





NC_045512.2_19mer_win1_16828
16828
16846
498
TACACCTTTGAAAAAGGTG
1701
CACCTTTTTCAAAGGTGTA





NC_045512.2_19mer_win1_16829
16829
16847
499
ACACCTTTGAAAAAGGTGA
1702
TCACCTTTTTCAAAGGTGT





NC_045512.2_19mer_win1_16830
16830
16848
500
CACCTTTGAAAAAGGTGAC
1703
GTCACCTTTTTCAAAGGTG





NC_045512.2_19mer_win1_16831
16831
16849
501
ACCTTTGAAAAAGGTGACT
1704
AGTCACCTTTTTCAAAGGT





NC_045512.2_19mer_win1_16832
16832
16850
502
CCTTTGAAAAAGGTGACTA
1705
TAGTCACCTTTTTCAAAGG





NC_045512.2_19mer_win1_16833
16833
16851
503
CTTTGAAAAAGGTGACTAT
1706
ATAGTCACCTTTTTCAAAG





NC_045512.2_19mer_win1_16834
16834
16852
504
TTTGAAAAAGGTGACTATG
1707
CATAGTCACCTTTTTCAAA





NC_045512.2_19mer_win1_16835
16835
16853
505
TTGAAAAAGGTGACTATGG
1708
CCATAGTCACCTTTTTCAA





NC_045512.2_19mer_win1_16836
16836
16854
506
TGAAAAAGGTGACTATGGT
1709
ACCATAGTCACCTTTTTCA





NC_045512.2_19mer_win1_16837
16837
16855
507
GAAAAAGGTGACTATGGTG
1710
CACCATAGTCACCTTTTTC





NC_045512.2_19mer_win1_16838
16838
16856
508
AAAAAGGTGACTATGGTGA
1711
TCACCATAGTCACCTTTTT





NC_045512.2_19mer_win1_16839
16839
16857
509
AAAAGGTGACTATGGTGAT
1712
ATCACCATAGTCACCTTTT





NC_045512.2_19mer_win1_16840
16840
16858
510
AAAGGTGACTATGGTGATG
1713
CATCACCATAGTCACCTTT





NC_045512.2_19mer_win1_16841
16841
16859
511
AAGGTGACTATGGTGATGC
1714
GCATCACCATAGTCACCTT





NC_045512.2_19mer_win1_16842
16842
16860
512
AGGTGACTATGGTGATGCT
1715
AGCATCACCATAGTCACCT





NC_045512.2_19mer_win1_16843
16843
16861
513
GGTGACTATGGTGATGCTG
1716
CAGCATCACCATAGTCACC





NC_045512.2_19mer_win1_16844
16844
16862
514
GTGACTATGGTGATGCTGT
1717
ACAGCATCACCATAGTCAC





NC_045512.2_19mer_win1_16845
16845
16863
515
TGACTATGGTGATGCTGTT
1718
AACAGCATCACCATAGTCA





NC_045512.2_19mer_win1_16846
16846
16864
516
GACTATGGTGATGCTGTTG
1719
CAACAGCATCACCATAGTC





NC_045512.2_19mer_win1_16847
16847
16865
517
ACTATGGTGATGCTGTTGT
1720
ACAACAGCATCACCATAGT





NC_045512.2_19mer_win1_16954
16954
16972
518
CTAGTGCCACAAGAGCACT
1721
AGTGCTCTTGTGGCACTAG





NC_045512.2_19mer_win1_16955
16955
16973
519
TAGTGCCACAAGAGCACTA
1722
TAGTGCTCTTGTGGCACTA





NC_045512.2_19mer_win1_16956
16956
16974
520
AGTGCCACAAGAGCACTAT
1723
ATAGTGCTCTTGTGGCACT





NC_045512.2_19mer_win1_16957
16957
16975
521
GTGCCACAAGAGCACTATG
1724
CATAGTGCTCTTGTGGCAC





NC_045512.2_19mer_win1_16958
16958
16976
522
TGCCACAAGAGCACTATGT
1725
ACATAGTGCTCTTGTGGCA





NC_045512.2_19mer_win1_17008
17008
17026
523
ATCTCAGATGAGTTTTCTA
1726
TAGAAAACTCATCTGAGAT





NC_045512.2_19mer_win1_17009
17009
17027
524
TCTCAGATGAGTTTTCTAG
1727
CTAGAAAACTCATCTGAGA





NC_045512.2_19mer_win1_17010
17010
17028
525
CTCAGATGAGTTTTCTAGC
1728
GCTAGAAAACTCATCTGAG





NC_045512.2_19mer_win1_17011
17011
17029
526
TCAGATGAGTTTTCTAGCA
1729
TGCTAGAAAACTCATCTGA





NC_045512.2_19mer_win1_17012
17012
17030
527
CAGATGAGTTTTCTAGCAA
1730
TTGCTAGAAAACTCATCTG





NC_045512.2_19mer_win1_17013
17013
17031
528
AGATGAGTTTTCTAGCAAT
1731
ATTGCTAGAAAACTCATCT





NC_045512.2_19mer_win1_17014
17014
17032
529
GATGAGTTTTCTAGCAATG
1732
CATTGCTAGAAAACTCATC





NC_045512.2_19mer_win1_17015
17015
17033
530
ATGAGTTTTCTAGCAATGT
1733
ACATTGCTAGAAAACTCAT





NC_045512.2_19mer_win1_17016
17016
17034
531
TGAGTTTTCTAGCAATGTT
1734
AACATTGCTAGAAAACTCA





NC_045512.2_19mer_win1_17017
17017
17035
532
GAGTTTTCTAGCAATGTTG
1735
CAACATTGCTAGAAAACTC





NC_045512.2_19mer_win1_17018
17018
17036
533
AGTTTTCTAGCAATGTTGC
1736
GCAACATTGCTAGAAAACT





NC_045512.2_19mer_win1_17019
17019
17037
534
GTTTTCTAGCAATGTTGCA
1737
TGCAACATTGCTAGAAAAC





NC_045512.2_19mer_win1_17020
17020
17038
535
TTTTCTAGCAATGTTGCAA
1738
TTGCAACATTGCTAGAAAA





NC_045512.2_19mer_win1_17021
17021
17039
536
TTTCTAGCAATGTTGCAAA
1739
TTTGCAACATTGCTAGAAA





NC_045512.2_19mer_win1_17022
17022
17040
537
TTCTAGCAATGTTGCAAAT
1740
ATTTGCAACATTGCTAGAA





NC_045512.2_19mer_win1_17023
17023
17041
538
TCTAGCAATGTTGCAAATT
1741
AATTTGCAACATTGCTAGA





NC_045512.2_19mer_win1_17024
17024
17042
539
CTAGCAATGTTGCAAATTA
1742
TAATTTGCAACATTGCTAG





NC_045512.2_19mer_win1_17080
17080
17098
540
GGACCACCTGGTACTGGTA
1743
TACCAGTACCAGGTGGTCC





NC_045512.2_19mer_win1_17081
17081
17099
541
GACCACCTGGTACTGGTAA
1744
TTACCAGTACCAGGTGGTC





NC_045512.2_19mer_win1_17082
17082
17100
542
ACCACCTGGTACTGGTAAG
1745
CTTACCAGTACCAGGTGGT





NC_045512.2_19mer_win1_17083
17083
17101
543
CCACCTGGTACTGGTAAGA
1746
TCTTACCAGTACCAGGTGG





NC_045512.2_19mer_win1_17084
17084
17102
544
CACCTGGTACTGGTAAGAG
1747
CTCTTACCAGTACCAGGTG





NC_045512.2_19mer_win1_17085
17085
17103
545
ACCTGGTACTGGTAAGAGT
1748
ACTCTTACCAGTACCAGGT





NC_045512.2_19mer_win1_17086
17086
17104
546
CCTGGTACTGGTAAGAGTC
1749
GACTCTTACCAGTACCAGG





NC_045512.2_19mer_win1_17087
17087
17105
547
CTGGTACTGGTAAGAGTCA
1750
TGACTCTTACCAGTACCAG





NC_045512.2_19mer_win1_17088
17088
17106
548
TGGTACTGGTAAGAGTCAT
1751
ATGACTCTTACCAGTACCA





NC_045512.2_19mer_win1_17089
17089
17107
549
GGTACTGGTAAGAGTCATT
1752
AATGACTCTTACCAGTACC





NC_045512.2_19mer_win1_17090
17090
17108
550
GTACTGGTAAGAGTCATTT
1753
AAATGACTCTTACCAGTAC





NC_045512.2_19mer_win1_17091
17091
17109
551
TACTGGTAAGAGTCATTTT
1754
AAAATGACTCTTACCAGTA





NC_045512.2_19mer_win1_17092
17092
17110
552
ACTGGTAAGAGTCATTTTG
1755
CAAAATGACTCTTACCAGT





NC_045512.2_19mer_win1_17093
17093
17111
553
CTGGTAAGAGTCATTTTGC
1756
GCAAAATGACTCTTACCAG





NC_045512.2_19mer_win1_17137
17137
17155
554
TCTGCTCGCATAGTGTATA
1757
TATACACTATGCGAGCAGA





NC_045512.2_19mer_win1_17138
17138
17156
555
CTGCTCGCATAGTGTATAC
1758
GTATACACTATGCGAGCAG





NC_045512.2_19mer_win1_17269
17269
17287
556
AAATTCAAAGTGAATTCAA
1759
TTGAATTCACTTTGAATTT





NC_045512.2_19mer_win1_17270
17270
17288
557
AATTCAAAGTGAATTCAAC
1760
GTTGAATTCACTTTGAATT





NC_045512.2_19mer_win1_17271
17271
17289
558
ATTCAAAGTGAATTCAACA
1761
TGTTGAATTCACTTTGAAT





NC_045512.2_19mer_win1_17530
17530
17548
559
ATAGGTCCAGACATGTTCC
1762
GGAACATGTCTGGACCTAT





NC_045512.2_19mer_win1_17531
17531
17549
560
TAGGTCCAGACATGTTCCT
1763
AGGAACATGTCTGGACCTA





NC_045512.2_19mer_win1_17563
17563
17581
561
CGTTGTCCTGCTGAAATTG
1764
CAATTTCAGCAGGACAACG





NC_045512.2_19mer_win1_17564
17564
17582
562
GTTGTCCTGCTGAAATTGT
1765
ACAATTTCAGCAGGACAAC





NC_045512.2_19mer_win1_17680
17680
17698
563
CATGATGTTTCATCTGCAA
1766
TTGCAGATGAAACATCATG





NC_045512.2_19mer_win1_17681
17681
17699
564
ATGATGTTTCATCTGCAAT
1767
ATTGCAGATGAAACATCAT





NC_045512.2_19mer_win1_17746
17746
17764
565
CCTGCTTGGAGAAAAGCTG
1768
CAGCTTTTCTCCAAGCAGG





NC_045512.2_19mer_win1_17747
17747
17765
566
CTGCTTGGAGAAAAGCTGT
1769
ACAGCTTTTCTCCAAGCAG





NC_045512.2_19mer_win1_17857
17857
17875
567
TATGACTATGTCATATTCA
1770
TGAATATGACATAGTCATA





NC_045512.2_19mer_win1_17858
17858
17876
568
ATGACTATGTCATATTCAC
1771
GTGAATATGACATAGTCAT





NC_045512.2_19mer_win1_17956
17956
17974
569
TGCATAATGTCTGATAGAG
1772
CTCTATCAGACATTATGCA





NC_045512.2_19mer_win1_17957
17957
17975
570
GCATAATGTCTGATAGAGA
1773
TCTCTATCAGACATTATGC





NC_045512.2_19mer_win1_18100
18100
18118
571
ACACAGGCACCTACACACC
1774
GGTGTGTAGGTGCCTGTGT





NC_045512.2_19mer_win1_18101
18101
18119
572
CACAGGCACCTACACACCT
1775
AGGTGTGTAGGTGCCTGTG





NC_045512.2_19mer_win1_18102
18102
18120
573
ACAGGCACCTACACACCTC
1776
GAGGTGTGTAGGTGCCTGT





NC_045512.2_19mer_win1_18103
18103
18121
574
CAGGCACCTACACACCTCA
1777
TGAGGTGTGTAGGTGCCTG





NC_045512.2_19mer_win1_18104
18104
18122
575
AGGCACCTACACACCTCAG
1778
CTGAGGTGTGTAGGTGCCT





NC_045512.2_19mer_win1_18196
18196
18214
576
AGACTCATCTCTATGATGG
1779
CCATCATAGAGATGAGTCT





NC_045512.2_19mer_win1_18197
18197
18215
577
GACTCATCTCTATGATGGG
1780
CCCATCATAGAGATGAGTC





NC_045512.2_19mer_win1_18198
18198
18216
578
ACTCATCTCTATGATGGGT
1781
ACCCATCATAGAGATGAGT





NC_045512.2_19mer_win1_18199
18199
18217
579
CTCATCTCTATGATGGGTT
1782
AACCCATCATAGAGATGAG





NC_045512.2_19mer_win1_18200
18200
18218
580
TCATCTCTATGATGGGTTT
1783
AAACCCATCATAGAGATGA





NC_045512.2_19mer_win1_19618
19618
19636
581
CAGAGTTTAGAAAATGTGG
1784
CCACATTTTCTAAACTCTG





NC_045512.2_19mer_win1_19619
19619
19637
582
AGAGTTTAGAAAATGTGGC
1785
GCCACATTTTCTAAACTCT





NC_045512.2_19mer_win1_19620
19620
19638
583
GAGTTTAGAAAATGTGGCT
1786
AGCCACATTTTCTAAACTC





NC_045512.2_19mer_win1_19621
19621
19639
584
AGTTTAGAAAATGTGGCTT
1787
AAGCCACATTTTCTAAACT





NC_045512.2_19mer_win1_19783
19783
19801
585
TTTGAGCTTTGGGCTAAGC
1788
GCTTAGCCCAAAGCTCAAA





NC_045512.2_19mer_win1_19784
19784
19802
586
TTGAGCTTTGGGCTAAGCG
1789
CGCTTAGCCCAAAGCTCAA





NC_045512.2_19mer_win1_19831
19831
19849
587
ATACTCAATAATTTGGGTG
1790
CACCCAAATTATTGAGTAT





NC_045512.2_19mer_win1_19832
19832
19850
588
TACTCAATAATTTGGGTGT
1791
ACACCCAAATTATTGAGTA





NC_045512.2_19mer_win1_20107
20107
20125
589
AATGGAGTCACATTAATTG
1792
CAATTAATGTGACTCCATT





NC_045512.2_19mer_win1_20108
20108
20126
590
ATGGAGTCACATTAATTGG
1793
CCAATTAATGTGACTCCAT





NC_045512.2_19mer_win1_20109
20109
20127
591
TGGAGTCACATTAATTGGA
1794
TCCAATTAATGTGACTCCA





NC_045512.2_19mer_win1_20110
20110
20128
592
GGAGTCACATTAATTGGAG
1795
CTCCAATTAATGTGACTCC





NC_045512.2_19mer_win1_20111
20111
20129
593
GAGTCACATTAATTGGAGA
1796
TCTCCAATTAATGTGACTC





NC_045512.2_19mer_win1_20112
20112
20130
594
AGTCACATTAATTGGAGAA
1797
TTCTCCAATTAATGTGACT





NC_045512.2_19mer_win1_20776
20776
20794
595
ATAATGATGAATGTCGCAA
1798
TTGCGACATTCATCATTAT





NC_045512.2_19mer_win1_20777
20777
20795
596
TAATGATGAATGTCGCAAA
1799
TTTGCGACATTCATCATTA





NC_045512.2_19mer_win1_21502
21502
21520
597
ATTAGAGAAAACAACAGAG
1800
CTCTGTTGTTTTCTCTAAT





NC_045512.2_19mer_win1_21503
21503
21521
598
TTAGAGAAAACAACAGAGT
1801
ACTCTGTTGTTTTCTCTAA





NC_045512.2_19mer_win1_21504
21504
21522
599
TAGAGAAAACAACAGAGTT
1802
AACTCTGTTGTTTTCTCTA





NC_045512.2_19mer_win1_21505
21505
21523
600
AGAGAAAACAACAGAGTTG
1803
CAACTCTGTTGTTTTCTCT





NC_045512.2_19mer_win1_21506
21506
21524
601
GAGAAAACAACAGAGTTGT
1804
ACAACTCTGTTGTTTTCTC





NC_045512.2_19mer_win1_24302
24302
24320
602
AATGTTCTCTATGAGAACC
1805
GGTTCTCATAGAGAACATT





NC_045512.2_19mer_win1_24303
24303
24321
603
ATGTTCTCTATGAGAACCA
1806
TGGTTCTCATAGAGAACAT





NC_045512.2_19mer_win1_24304
24304
24322
604
TGTTCTCTATGAGAACCAA
1807
TTGGTTCTCATAGAGAACA





NC_045512.2_19mer_win1_24305
24305
24323
605
GTTCTCTATGAGAACCAAA
1808
TTTGGTTCTCATAGAGAAC





NC_045512.2_19mer_win1_24306
24306
24324
606
TTCTCTATGAGAACCAAAA
1809
TTTTGGTTCTCATAGAGAA





NC_045512.2_19mer_win1_24307
24307
24325
607
TCTCTATGAGAACCAAAAA
1810
TTTTTGGTTCTCATAGAGA





NC_045512.2_19mer_win1_24446
24446
24464
608
CTTGTTAAACAACTTAGCT
1811
AGCTAAGTTGTTTAACAAG





NC_045512.2_19mer_win1_24447
24447
24465
609
TTGTTAAACAACTTAGCTC
1812
GAGCTAAGTTGTTTAACAA





NC_045512.2_19mer_win1_24620
24620
24638
610
GCTTCTGCTAATCTTGCTG
1813
CAGCAAGATTAGCAGAAGC





NC_045512.2_19mer_win1_24621
24621
24639
611
CTTCTGCTAATCTTGCTGC
1814
GCAGCAAGATTAGCAGAAG





NC_045512.2_19mer_win1_24622
24622
24640
612
TTCTGCTAATCTTGCTGCT
1815
AGCAGCAAGATTAGCAGAA





NC_045512.2_19mer_win1_24623
24623
24641
613
TCTGCTAATCTTGCTGCTA
1816
TAGCAGCAAGATTAGCAGA





NC_045512.2_19mer_win1_24624
24624
24642
614
CTGCTAATCTTGCTGCTAC
1817
GTAGCAGCAAGATTAGCAG





NC_045512.2_19mer_win1_24625
24625
24643
615
TGCTAATCTTGCTGCTACT
1818
AGTAGCAGCAAGATTAGCA





NC_045512.2_19mer_win1_24626
24626
24644
616
GCTAATCTTGCTGCTACTA
1819
TAGTAGCAGCAAGATTAGC





NC_045512.2_19mer_win1_24627
24627
24645
617
CTAATCTTGCTGCTACTAA
1820
TTAGTAGCAGCAAGATTAG





NC_045512.2_19mer_win1_24628
24628
24646
618
TAATCTTGCTGCTACTAAA
1821
TTTAGTAGCAGCAAGATTA





NC_045512.2_19mer_win1_24629
24629
24647
619
AATCTTGCTGCTACTAAAA
1822
TTTTAGTAGCAGCAAGATT





NC_045512.2_19mer_win1_24630
24630
24648
620
ATCTTGCTGCTACTAAAAT
1823
ATTTTAGTAGCAGCAAGAT





NC_045512.2_19mer_win1_24631
24631
24649
621
TCTTGCTGCTACTAAAATG
1824
CATTTTAGTAGCAGCAAGA





NC_045512.2_19mer_win1_24632
24632
24650
622
CTTGCTGCTACTAAAATGT
1825
ACATTTTAGTAGCAGCAAG





NC_045512.2_19mer_win1_24633
24633
24651
623
TTGCTGCTACTAAAATGTC
1826
GACATTTTAGTAGCAGCAA





NC_045512.2_19mer_win1_24662
24662
24680
624
CTTGGACAATCAAAAAGAG
1827
CTCTTTTTGATTGTCCAAG





NC_045512.2_19mer_win1_24663
24663
24681
625
TTGGACAATCAAAAAGAGT
1828
ACTCTTTTTGATTGTCCAA





NC_045512.2_19mer_win1_24664
24664
24682
626
TGGACAATCAAAAAGAGTT
1829
AACTCTTTTTGATTGTCCA





NC_045512.2_19mer_win1_24665
24665
24683
627
GGACAATCAAAAAGAGTTG
1830
CAACTCTTTTTGATTGTCC





NC_045512.2_19mer_win1_24666
24666
24684
628
GACAATCAAAAAGAGTTGA
1831
TCAACTCTTTTTGATTGTC





NC_045512.2_19mer_win1_25034
25034
25052
629
AATCATACATCACCAGATG
1832
CATCTGGTGATGTATGATT





NC_045512.2_19mer_win1_25035
25035
25053
630
ATCATACATCACCAGATGT
1833
ACATCTGGTGATGTATGAT





NC_045512.2_19mer_win1_25038
25038
25056
633
ATACATCACCAGATGTTGA
1836
TCAACATCTGGTGATGTAT





NC_045512.2_19mer_win1_25039
25039
25057
634
TACATCACCAGATGTTGAT
1837
ATCAACATCTGGTGATGTA





NC_045512.2_19mer_win1_25104
25104
25122
635
AAGAAATTGACCGCCTCAA
1838
TTGAGGCGGTCAATTTCTT





NC_045512.2_19mer_win1_25105
25105
25123
636
AGAAATTGACCGCCTCAAT
1839
ATTGAGGCGGTCAATTTCT





NC_045512.2_19mer_win1_25106
25106
25124
637
GAAATTGACCGCCTCAATG
1840
CATTGAGGCGGTCAATTTC





NC_045512.2_19mer_win1_25107
25107
25125
638
AAATTGACCGCCTCAATGA
1841
TCATTGAGGCGGTCAATTT





NC_045512.2_19mer_win1_25108
25108
25126
639
AATTGACCGCCTCAATGAG
1842
CTCATTGAGGCGGTCAATT





NC_045512.2_19mer_win1_25109
25109
25127
640
ATTGACCGCCTCAATGAGG
1843
CCTCATTGAGGCGGTCAAT





NC_045512.2_19mer_win1_25110
25110
25128
641
TTGACCGCCTCAATGAGGT
1844
ACCTCATTGAGGCGGTCAA





NC_045512.2_19mer_win1_25364
25364
25382
642
GTCAAATTACATTACACAT
1845
ATGTGTAATGTAATTTGAC





NC_045512.2_19mer_win1_25365
25365
25383
643
TCAAATTACATTACACATA
1846
TATGTGTAATGTAATTTGA





NC_045512.2_19mer_win1_25366
25366
25384
644
CAAATTACATTACACATAA
1847
TTATGTGTAATGTAATTTG





NC_045512.2_19mer_win1_25367
25367
25385
645
AAATTACATTACACATAAA
1848
TTTATGTGTAATGTAATTT





NC_045512.2_19mer_win1_25368
25368
25386
646
AATTACATTACACATAAAC
1849
GTTTATGTGTAATGTAATT





NC_045512.2_19mer_win1_25369
25369
25387
647
ATTACATTACACATAAACG
1850
CGTTTATGTGTAATGTAAT





NC_045512.2_19mer_win1_25502
25502
25520
648
TACAAGCCTCACTCCCTTT
1851
AAAGGGAGTGAGGCTTGTA





NC_045512.2_19mer_win1_25503
25503
25521
649
ACAAGCCTCACTCCCTTTC
1852
GAAAGGGAGTGAGGCTTGT





NC_045512.2_19mer_win1_25504
25504
25522
650
CAAGCCTCACTCCCTTTCG
1853
CGAAAGGGAGTGAGGCTTG





NC_045512.2_19mer_win1_25505
25505
25523
651
AAGCCTCACTCCCTTTCGG
1854
CCGAAAGGGAGTGAGGCTT





NC_045512.2_19mer_win1_25506
25506
25524
652
AGCCTCACTCCCTTTCGGA
1855
TCCGAAAGGGAGTGAGGCT





NC_045512.2_19mer_win1_25507
25507
25525
653
GCCTCACTCCCTTTCGGAT
1856
ATCCGAAAGGGAGTGAGGC





NC_045512.2_19mer_win1_25508
25508
25526
654
CCTCACTCCCTTTCGGATG
1857
CATCCGAAAGGGAGTGAGG





NC_045512.2_19mer_win1_25509
25509
25527
655
CTCACTCCCTTTCGGATGG
1858
CCATCCGAAAGGGAGTGAG





NC_045512.2_19mer_win1_25510
25510
25528
656
TCACTCCCTTTCGGATGGC
1859
GCCATCCGAAAGGGAGTGA





NC_045512.2_19mer_win1_25511
25511
25529
657
CACTCCCTTTCGGATGGCT
1860
AGCCATCCGAAAGGGAGTG





NC_045512.2_19mer_win1_25512
25512
25530
658
ACTCCCTTTCGGATGGCTT
1861
AAGCCATCCGAAAGGGAGT





NC_045512.2_19mer_win1_26191
26191
26209
659
CCGACGACGACTACTAGCG
1862
CGCTAGTAGTCGTCGTCGG





NC_045512.2_19mer_win1_26192
26192
26210
660
CGACGACGACTACTAGCGT
1863
ACGCTAGTAGTCGTCGTCG





NC_045512.2_19mer_win1_26193
26193
26211
661
GACGACGACTACTAGCGTG
1864
CACGCTAGTAGTCGTCGTC





NC_045512.2_19mer_win1_26194
26194
26212
662
ACGACGACTACTAGCGTGC
1865
GCACGCTAGTAGTCGTCGT





NC_045512.2_19mer_win1_26195
26195
26213
663
CGACGACTACTAGCGTGCC
1866
GGCACGCTAGTAGTCGTCG





NC_045512.2_19mer_win1_26196
26196
26214
664
GACGACTACTAGCGTGCCT
1867
AGGCACGCTAGTAGTCGTC





NC_045512.2_19mer_win1_26197
26197
26215
665
ACGACTACTAGCGTGCCTT
1868
AAGGCACGCTAGTAGTCGT





NC_045512.2_19mer_win1_26198
26198
26216
666
CGACTACTAGCGTGCCTTT
1869
AAAGGCACGCTAGTAGTCG





NC_045512.2_19mer_win1_26199
26199
26217
667
GACTACTAGCGTGCCTTTG
1870
CAAAGGCACGCTAGTAGTC





NC_045512.2_19mer_win1_26200
26200
26218
668
ACTACTAGCGTGCCTTTGT
1871
ACAAAGGCACGCTAGTAGT





NC_045512.2_19mer_win1_26201
26201
26219
669
CTACTAGCGTGCCTTTGTA
1872
TACAAAGGCACGCTAGTAG





NC_045512.2_19mer_win1_26202
26202
26220
670
TACTAGCGTGCCTTTGTAA
1873
TTACAAAGGCACGCTAGTA





NC_045512.2_19mer_win1_26203
26203
26221
671
ACTAGCGTGCCTTTGTAAG
1874
CTTACAAAGGCACGCTAGT





NC_045512.2_19mer_win1_26204
26204
26222
672
CTAGCGTGCCTTTGTAAGC
1875
GCTTACAAAGGCACGCTAG





NC_045512.2_19mer_win1_26205
26205
26223
673
TAGCGTGCCTTTGTAAGCA
1876
TGCTTACAAAGGCACGCTA





NC_045512.2_19mer_win1_26206
26206
26224
674
AGCGTGCCTTTGTAAGCAC
1877
GTGCTTACAAAGGCACGCT





NC_045512.2_19mer_win1_26207
26207
26225
675
GCGTGCCTTTGTAAGCACA
1878
TGTGCTTACAAAGGCACGC





NC_045512.2_19mer_win1_26208
26208
26226
676
CGTGCCTTTGTAAGCACAA
1879
TTGTGCTTACAAAGGCACG





NC_045512.2_19mer_win1_26209
26209
26227
677
GTGCCTTTGTAAGCACAAG
1880
CTTGTGCTTACAAAGGCAC





NC_045512.2_19mer_win1_26232
26232
26250
678
TGAGTACGAACTTATGTAC
1881
GTACATAAGTTCGTACTCA





NC_045512.2_19mer_win1_26233
26233
26251
679
GAGTACGAACTTATGTACT
1882
AGTACATAAGTTCGTACTC





NC_045512.2_19mer_win1_26234
26234
26252
680
AGTACGAACTTATGTACTC
1883
GAGTACATAAGTTCGTACT





NC_045512.2_19mer_win1_26235
26235
26253
681
GTACGAACTTATGTACTCA
1884
TGAGTACATAAGTTCGTAC





NC_045512.2_19mer_win1_26236
26236
26254
682
TACGAACTTATGTACTCAT
1885
ATGAGTACATAAGTTCGTA





NC_045512.2_19mer_win1_26237
26237
26255
683
ACGAACTTATGTACTCATT
1886
AATGAGTACATAAGTTCGT





NC_045512.2_19mer_win1_26238
26238
26256
684
CGAACTTATGTACTCATTC
1887
GAATGAGTACATAAGTTCG





NC_045512.2_19mer_win1_26239
26239
26257
685
GAACTTATGTACTCATTCG
1888
CGAATGAGTACATAAGTTC





NC_045512.2_19mer_win1_26240
26240
26258
686
AACTTATGTACTCATTCGT
1889
ACGAATGAGTACATAAGTT





NC_045512.2_19mer_win1_26241
26241
26259
687
ACTTATGTACTCATTCGTT
1890
AACGAATGAGTACATAAGT





NC_045512.2_19mer_win1_26242
26242
26260
688
CTTATGTACTCATTCGTTT
1891
AAACGAATGAGTACATAAG





NC_045512.2_19mer_win1_26243
26243
26261
689
TTATGTACTCATTCGTTTC
1892
GAAACGAATGAGTACATAA





NC_045512.2_19mer_win1_26244
26244
26262
690
TATGTACTCATTCGTTTCG
1893
CGAAACGAATGAGTACATA





NC_045512.2_19mer_win1_26245
26245
26263
691
ATGTACTCATTCGTTTCGG
1894
CCGAAACGAATGAGTACAT





NC_045512.2_19mer_win1_26246
26246
26264
692
TGTACTCATTCGTTTCGGA
1895
TCCGAAACGAATGAGTACA





NC_045512.2_19mer_win1_26247
26247
26265
693
GTACTCATTCGTTTCGGAA
1896
TTCCGAAACGAATGAGTAC





NC_045512.2_19mer_win1_26248
26248
26266
694
TACTCATTCGTTTCGGAAG
1897
CTTCCGAAACGAATGAGTA





NC_045512.2_19mer_win1_26249
26249
26267
695
ACTCATTCGTTTCGGAAGA
1898
TCTTCCGAAACGAATGAGT





NC_045512.2_19mer_win1_26269
26269
26287
696
ACAGGTACGTTAATAGTTA
1899
TAACTATTAACGTACCTGT





NC_045512.2_19mer_win1_26270
26270
26288
697
CAGGTACGTTAATAGTTAA
1900
TTAACTATTAACGTACCTG





NC_045512.2_19mer_win1_26271
26271
26289
698
AGGTACGTTAATAGTTAAT
1901
ATTAACTATTAACGTACCT





NC_045512.2_19mer_win1_26272
26272
26290
699
GGTACGTTAATAGTTAATA
1902
TATTAACTATTAACGTACC





NC_045512.2_19mer_win1_26273
26273
26291
700
GTACGTTAATAGTTAATAG
1903
CTATTAACTATTAACGTAC





NC_045512.2_19mer_win1_26274
26274
26292
701
TACGTTAATAGTTAATAGC
1904
GCTATTAACTATTAACGTA





NC_045512.2_19mer_win1_26275
26275
26293
702
ACGTTAATAGTTAATAGCG
1905
CGCTATTAACTATTAACGT





NC_045512.2_19mer_win1_26276
26276
26294
703
CGTTAATAGTTAATAGCGT
1906
ACGCTATTAACTATTAACG





NC_045512.2_19mer_win1_26277
26277
26295
704
GTTAATAGTTAATAGCGTA
1907
TACGCTATTAACTATTAAC





NC_045512.2_19mer_win1_26278
26278
26296
705
TTAATAGTTAATAGCGTAC
1908
GTACGCTATTAACTATTAA





NC_045512.2_19mer_win1_26279
26279
26297
706
TAATAGTTAATAGCGTACT
1909
AGTACGCTATTAACTATTA





NC_045512.2_19mer_win1_26280
26280
26298
707
AATAGTTAATAGCGTACTT
1910
AAGTACGCTATTAACTATT





NC_045512.2_19mer_win1_26281
26281
26299
708
ATAGTTAATAGCGTACTTC
1911
GAAGTACGCTATTAACTAT





NC_045512.2_19mer_win1_26282
26282
26300
709
TAGTTAATAGCGTACTTCT
1912
AGAAGTACGCTATTAACTA





NC_045512.2_19mer_win1_26283
26283
26301
710
AGTTAATAGCGTACTTCTT
1913
AAGAAGTACGCTATTAACT





NC_045512.2_19mer_win1_26284
26284
26302
711
GTTAATAGCGTACTTCTTT
1914
AAAGAAGTACGCTATTAAC





NC_045512.2_19mer_win1_26285
26285
26303
712
TTAATAGCGTACTTCTTTT
1915
AAAAGAAGTACGCTATTAA





NC_045512.2_19mer_win1_26286
26286
26304
713
TAATAGCGTACTTCTTTTT
1916
AAAAAGAAGTACGCTATTA





NC_045512.2_19mer_win1_26287
26287
26305
714
AATAGCGTACTTCTTTTTC
1917
GAAAAAGAAGTACGCTATT





NC_045512.2_19mer_win1_26288
26288
26306
715
ATAGCGTACTTCTTTTTCT
1918
AGAAAAAGAAGTACGCTAT





NC_045512.2_19mer_win1_26289
26289
26307
716
TAGCGTACTTCTTTTTCTT
1919
AAGAAAAAGAAGTACGCTA





NC_045512.2_19mer_win1_26290
26290
26308
717
AGCGTACTTCTTTTTCTTG
1920
CAAGAAAAAGAAGTACGCT





NC_045512.2_19mer_win1_26291
26291
26309
718
GCGTACTTCTTTTTCTTGC
1921
GCAAGAAAAAGAAGTACGC





NC_045512.2_19mer_winl_26292
26292
26310
719
CGTACTTCTTTTTCTTGCT
1922
AGCAAGAAAAAGAAGTACG





NC_045512.2_19mer_winl_26293
26293
26311
720
GTACTTCTTTTTCTTGCTT
1923
AAGCAAGAAAAAGAAGTAC





NC_045512.2_19mer_winl_26294
26294
26312
721
TACTTCTTTTTCTTGCTTT
1924
AAAGCAAGAAAAAGAAGTA





NC_045512.2_19mer_winl_26295
26295
26313
722
ACTTCTTTTTCTTGCTTTC
1925
GAAAGCAAGAAAAAGAAGT





NC_045512.2_19mer_winl_26296
26296
26314
723
CTTCTTTTTCTTGCTTTCG
1926
CGAAAGCAAGAAAAAGAAG





NC_045512.2_19mer_winl_26297
26297
26315
724
TTCTTTTTCTTGCTTTCGT
1927
ACGAAAGCAAGAAAAAGAA





NC_045512.2_19mer_winl_26298
26298
26316
725
TCTTTTTCTTGCTTTCGTG
1928
CACGAAAGCAAGAAAAAGA





NC_045512.2_19mer_winl_26299
26299
26317
726
CTTTTTCTTGCTTTCGTGG
1929
CCACGAAAGCAAGAAAAAG





NC_045512.2_19mer_winl_26300
26300
26318
727
TTTTTCTTGCTTTCGTGGT
1930
ACCACGAAAGCAAGAAAAA





NC_045512.2_19mer_winl_26301
26301
26319
728
TTTTCTTGCTTTCGTGGTA
1931
TACCACGAAAGCAAGAAAA





NC_045512.2_19mer_winl_26302
26302
26320
729
TTTCTTGCTTTCGTGGTAT
1932
ATACCACGAAAGCAAGAAA





NC_045512.2_19mer_winl_26303
26303
26321
730
TTCTTGCTTTCGTGGTATT
1933
AATACCACGAAAGCAAGAA





NC_045512.2_19mer_winl_26304
26304
26322
731
TCTTGCTTTCGTGGTATTC
1934
GAATACCACGAAAGCAAGA





NC_045512.2_19mer_winl_26305
26305
26323
732
CTTGCTTTCGTGGTATTCT
1935
AGAATACCACGAAAGCAAG





NC_045512.2_19mer_winl_26306
26306
26324
733
TTGCTTTCGTGGTATTCTT
1936
AAGAATACCACGAAAGCAA





NC_045512.2_19mer_winl_26307
26307
26325
734
TGCTTTCGTGGTATTCTTG
1937
CAAGAATACCACGAAAGCA





NC_045512.2_19mer_winl_26308
26308
26326
735
GCTTTCGTGGTATTCTTGC
1938
GCAAGAATACCACGAAAGC





NC_045512.2_19mer_winl_26309
26309
26327
736
CTTTCGTGGTATTCTTGCT
1939
AGCAAGAATACCACGAAAG





NC_045512.2_19mer_winl_26310
26310
26328
737
TTTCGTGGTATTCTTGCTA
1940
TAGCAAGAATACCACGAAA





NC_045512.2_19mer_winl_26311
26311
26329
738
TTCGTGGTATTCTTGCTAG
1941
CTAGCAAGAATACCACGAA





NC_045512.2_19mer_win1_26312
26312
26330
739
TCGTGGTATTCTTGCTAGT
1942
ACTAGCAAGAATACCACGA





NC_045512.2_19mer_win1_26332
26332
26350
740
ACACTAGCCATCCTTACTG
1943
CAGTAAGGATGGCTAGTGT





NC_045512.2_19mer_win1_26333
26333
26351
741
CACTAGCCATCCTTACTGC
1944
GCAGTAAGGATGGCTAGTG





NC_045512.2_19mer_win1_26334
26334
26352
742
ACTAGCCATCCTTACTGCG
1945
CGCAGTAAGGATGGCTAGT





NC_045512.2_19mer_win1_26335
26335
26353
743
CTAGCCATCCTTACTGCGC
1946
GCGCAGTAAGGATGGCTAG





NC_045512.2_19mer_win1_26336
26336
26354
744
TAGCCATCCTTACTGCGCT
1947
AGCGCAGTAAGGATGGCTA





NC_045512.2_19mer_win1_26337
26337
26355
745
AGCCATCCTTACTGCGCTT
1948
AAGCGCAGTAAGGATGGCT





NC_045512.2_19mer_win1_26338
26338
26356
746
GCCATCCTTACTGCGCTTC
1949
GAAGCGCAGTAAGGATGGC





NC_045512.2_19mer_win1_26339
26339
26357
747
CCATCCTTACTGCGCTTCG
1950
CGAAGCGCAGTAAGGATGG





NC_045512.2_19mer_win1_26340
26340
26358
748
CATCCTTACTGCGCTTCGA
1951
TCGAAGCGCAGTAAGGATG





NC_045512.2_19mer_win1_26341
26341
26359
749
ATCCTTACTGCGCTTCGAT
1952
ATCGAAGCGCAGTAAGGAT





NC_045512.2_19mer_win1_26342
26342
26360
750
TCCTTACTGCGCTTCGATT
1953
AATCGAAGCGCAGTAAGGA





NC_045512.2_19mer_win1_26343
26343
26361
751
CCTTACTGCGCTTCGATTG
1954
CAATCGAAGCGCAGTAAGG





NC_045512.2_19mer_win1_26344
26344
26362
752
CTTACTGCGCTTCGATTGT
1955
ACAATCGAAGCGCAGTAAG





NC_045512.2_19mer_win1_26345
26345
26363
753
TTACTGCGCTTCGATTGTG
1956
CACAATCGAAGCGCAGTAA





NC_045512.2_19mer_win1_26346
26346
26364
754
TACTGCGCTTCGATTGTGT
1957
ACACAATCGAAGCGCAGTA





NC_045512.2_19mer_win1_26347
26347
26365
755
ACTGCGCTTCGATTGTGTG
1958
CACACAATCGAAGCGCAGT





NC_045512.2_19mer_win1_26348
26348
26366
756
CTGCGCTTCGATTGTGTGC
1959
GCACACAATCGAAGCGCAG





NC_045512.2_19mer_win1_26349
26349
26367
757
TGCGCTTCGATTGTGTGCG
1960
CGCACACAATCGAAGCGCA





NC_045512.2_19mer_win1_26350
26350
26368
758
GCGCTTCGATTGTGTGCGT
1961
ACGCACACAATCGAAGCGC





NC_045512.2_19mer_win1_26351
26351
26369
759
CGCTTCGATTGTGTGCGTA
1962
TACGCACACAATCGAAGCG





NC_045512.2_19mer_win1_26352
26352
26370
760
GCTTCGATTGTGTGCGTAC
1963
GTACGCACACAATCGAAGC





NC_045512.2_19mer_win1_26353
26353
26371
761
CTTCGATTGTGTGCGTACT
1964
AGTACGCACACAATCGAAG





NC_045512.2_19mer_win1_26354
26354
26372
762
TTCGATTGTGTGCGTACTG
1965
CAGTACGCACACAATCGAA





NC_045512.2_19mer_win1_26355
26355
26373
763
TCGATTGTGTGCGTACTGC
1966
GCAGTACGCACACAATCGA





NC_045512.2_19mer_win1_26356
26356
26374
764
CGATTGTGTGCGTACTGCT
1967
AGCAGTACGCACACAATCG





NC_045512.2_19mer_win1_26357
26357
26375
765
GATTGTGTGCGTACTGCTG
1968
CAGCAGTACGCACACAATC





NC_045512.2_19mer_win1_26358
26358
26376
766
ATTGTGTGCGTACTGCTGC
1969
GCAGCAGTACGCACACAAT





NC_045512.2_19mer_win1_26359
26359
26377
767
TTGTGTGCGTACTGCTGCA
1970
TGCAGCAGTACGCACACAA





NC_045512.2_19mer_win1_26360
26360
26378
768
TGTGTGCGTACTGCTGCAA
1971
TTGCAGCAGTACGCACACA





NC_045512.2_19mer_win1_26361
26361
26379
769
GTGTGCGTACTGCTGCAAT
1972
ATTGCAGCAGTACGCACAC





NC_045512.2_19mer_win1_26362
26362
26380
770
TGTGCGTACTGCTGCAATA
1973
TATTGCAGCAGTACGCACA





NC_045512.2_19mer_win1_26363
26363
26381
771
GTGCGTACTGCTGCAATAT
1974
ATATTGCAGCAGTACGCAC





NC_045512.2_19mer_win1_26364
26364
26382
772
TGCGTACTGCTGCAATATT
1975
AATATTGCAGCAGTACGCA





NC_045512.2_19mer_win1_26365
26365
26383
773
GCGTACTGCTGCAATATTG
1976
CAATATTGCAGCAGTACGC





NC_045512.2_19mer_win1_26366
26366
26384
774
CGTACTGCTGCAATATTGT
1977
ACAATATTGCAGCAGTACG





NC_045512.2_19mer_win1_26367
26367
26385
775
GTACTGCTGCAATATTGTT
1978
AACAATATTGCAGCAGTAC





NC_045512.2_19mer_win1_26368
26368
26386
776
TACTGCTGCAATATTGTTA
1979
TAACAATATTGCAGCAGTA





NC_045512.2_19mer_win1_26369
26369
26387
777
ACTGCTGCAATATTGTTAA
1980
TTAACAATATTGCAGCAGT





NC_045512.2_19mer_win1_26370
26370
26388
778
CTGCTGCAATATTGTTAAC
1981
GTTAACAATATTGCAGCAG





NC_045512.2_19mer_win1_26371
26371
26389
779
TGCTGCAATATTGTTAACG
1982
CGTTAACAATATTGCAGCA





NC_045512.2_19mer_win1_26372
26372
26390
780
GCTGCAATATTGTTAACGT
1983
ACGTTAACAATATTGCAGC





NC_045512.2_19mer_win1_26373
26373
26391
781
CTGCAATATTGTTAACGTG
1984
CACGTTAACAATATTGCAG





NC_045512.2_19mer_win1_26374
26374
26392
782
TGCAATATTGTTAACGTGA
1985
TCACGTTAACAATATTGCA





NC_045512.2_19mer_win1_26375
26375
26393
783
GCAATATTGTTAACGTGAG
1986
CTCACGTTAACAATATTGC





NC_045512.2_19mer_win1_26376
26376
26394
784
CAATATTGTTAACGTGAGT
1987
ACTCACGTTAACAATATTG





NC_045512.2_19mer_win1_26450
26450
26468
785
GAGTTCCTGATCTTCTGGT
1988
ACCAGAAGATCAGGAACTC





NC_045512.2_19mer_win1_26451
26451
26469
786
AGTTCCTGATCTTCTGGTC
1989
GACCAGAAGATCAGGAACT





NC_045512.2_19mer_win1_26452
26452
26470
787
GTTCCTGATCTTCTGGTCT
1990
AGACCAGAAGATCAGGAAC





NC_045512.2_19mer_win1_26453
26453
26471
788
TTCCTGATCTTCTGGTCTA
1991
TAGACCAGAAGATCAGGAA





NC_045512.2_19mer_win1_26454
26454
26472
789
TCCTGATCTTCTGGTCTAA
1992
TTAGACCAGAAGATCAGGA





NC_045512.2_19mer_win1_26455
26455
26473
790
CCTGATCTTCTGGTCTAAA
1993
TTTAGACCAGAAGATCAGG





NC_045512.2_19mer_win1_26456
26456
26474
791
CTGATCTTCTGGTCTAAAC
1994
GTTTAGACCAGAAGATCAG





NC_045512.2_19mer_win1_26457
26457
26475
792
TGATCTTCTGGTCTAAACG
1995
CGTTTAGACCAGAAGATCA





NC_045512.2_19mer_win1_26458
26458
26476
793
GATCTTCTGGTCTAAACGA
1996
TCGTTTAGACCAGAAGATC





NC_045512.2_19mer_win1_26459
26459
26477
794
ATCTTCTGGTCTAAACGAA
1997
TTCGTTTAGACCAGAAGAT





NC_045512.2_19mer_win1_26460
26460
26478
795
TCTTCTGGTCTAAACGAAC
1998
GTTCGTTTAGACCAGAAGA





NC_045512.2_19mer_win1_26461
26461
26479
796
CTTCTGGTCTAAACGAACT
1999
AGTTCGTTTAGACCAGAAG





NC_045512.2_19mer_win1_26462
26462
26480
797
TTCTGGTCTAAACGAACTA
2000
TAGTTCGTTTAGACCAGAA





NC_045512.2_19mer_win1_26463
26463
26481
798
TCTGGTCTAAACGAACTAA
2001
TTAGTTCGTTTAGACCAGA





NC_045512.2_19mer_win1_26574
26574
26592
799
GAACAATGGAACCTAGTAA
2002
TTACTAGGTTCCATTGTTC





NC_045512.2_19mer_win1_26575
26575
26593
800
AACAATGGAACCTAGTAAT
2003
ATTACTAGGTTCCATTGTT





NC_045512.2_19mer_win1_26576
26576
26594
801
ACAATGGAACCTAGTAATA
2004
TATTACTAGGTTCCATTGT





NC_045512.2_19mer_win1_26577
26577
26595
802
CAATGGAACCTAGTAATAG
2005
CTATTACTAGGTTCCATTG





NC_045512.2_19mer_win1_26578
26578
26596
803
AATGGAACCTAGTAATAGG
2006
CCTATTACTAGGTTCCATT





NC_045512.2_19mer_win1_26579
26579
26597
804
ATGGAACCTAGTAATAGGT
2007
ACCTATTACTAGGTTCCAT





NC_045512.2_19mer_win1_26580
26580
26598
805
TGGAACCTAGTAATAGGTT
2008
AACCTATTACTAGGTTCCA





NC_045512.2_19mer_win1_26581
26581
26599
806
GGAACCTAGTAATAGGTTT
2009
AAACCTATTACTAGGTTCC





NC_045512.2_19mer_win1_26582
26582
26600
807
GAACCTAGTAATAGGTTTC
2010
GAAACCTATTACTAGGTTC





NC_045512.2_19mer_win1_27033
27033
27051
808
GCTACATCACGAACGCTTT
2011
AAAGCGTTCGTGATGTAGC





NC_045512.2_19mer_win1_27034
27034
27052
809
CTACATCACGAACGCTTTC
2012
GAAAGCGTTCGTGATGTAG





NC_045512.2_19mer_win1_27035
27035
27053
810
TACATCACGAACGCTTTCT
2013
AGAAAGCGTTCGTGATGTA





NC_045512.2_19mer_win1_27036
27036
27054
811
ACATCACGAACGCTTTCTT
2014
AAGAAAGCGTTCGTGATGT





NC_045512.2_19mer_win1_27037
27037
27055
812
CATCACGAACGCTTTCTTA
2015
TAAGAAAGCGTTCGTGATG





NC_045512.2_19mer_win1_27038
27038
27056
813
ATCACGAACGCTTTCTTAT
2016
ATAAGAAAGCGTTCGTGAT





NC_045512.2_19mer_win1_27039
27039
27057
814
TCACGAACGCTTTCTTATT
2017
AATAAGAAAGCGTTCGTGA





NC_045512.2_19mer_win1_27040
27040
27058
815
CACGAACGCTTTCTTATTA
2018
TAATAAGAAAGCGTTCGTG





NC_045512.2_19mer_win1_27041
27041
27059
816
ACGAACGCTTTCTTATTAC
2019
GTAATAAGAAAGCGTTCGT





NC_045512.2_19mer_win1_27042
27042
27060
817
CGAACGCTTTCTTATTACA
2020
TGTAATAAGAAAGCGTTCG





NC_045512.2_19mer_win1_27043
27043
27061
818
GAACGCTTTCTTATTACAA
2021
TTGTAATAAGAAAGCGTTC





NC_045512.2_19mer_win1_27044
27044
27062
819
AACGCTTTCTTATTACAAA
2022
TTTGTAATAAGAAAGCGTT





NC_045512.2_19mer_win1_27045
27045
27063
820
ACGCTTTCTTATTACAAAT
2023
ATTTGTAATAAGAAAGCGT





NC_045512.2_19mer_win1_27046
27046
27064
821
CGCTTTCTTATTACAAATT
2024
AATTTGTAATAAGAAAGCG





NC_045512.2_19mer_win1_27093
27093
27111
822
TCAGGTTTTGCTGCATACA
2025
TGTATGCAGCAAAACCTGA





NC_045512.2_19mer_win1_27183
27183
27201
823
GTACAGTAAGTGACAACAG
2026
CTGTTGTCACTTACTGTAC





NC_045512.2_19mer_win1_27184
27184
27202
824
TACAGTAAGTGACAACAGA
2027
TCTGTTGTCACTTACTGTA





NC_045512.2_19mer_win1_27185
27185
27203
825
ACAGTAAGTGACAACAGAT
2028
ATCTGTTGTCACTTACTGT





NC_045512.2_19mer_win1_27186
27186
27204
826
CAGTAAGTGACAACAGATG
2029
CATCTGTTGTCACTTACTG





NC_045512.2_19mer_win1_27187
27187
27205
827
AGTAAGTGACAACAGATGT
2030
ACATCTGTTGTCACTTACT





NC_045512.2_19mer_win1_27188
27188
27206
828
GTAAGTGACAACAGATGTT
2031
AACATCTGTTGTCACTTAC





NC_045512.2_19mer_win1_27189
27189
27207
829
TAAGTGACAACAGATGTTT
2032
AAACATCTGTTGTCACTTA





NC_045512.2_19mer_win1_27190
27190
27208
830
AAGTGACAACAGATGTTTC
2033
GAAACATCTGTTGTCACTT





NC_045512.2_19mer_win1_27191
27191
27209
831
AGTGACAACAGATGTTTCA
2034
TGAAACATCTGTTGTCACT





NC_045512.2_19mer_win1_27192
27192
27210
832
GTGACAACAGATGTTTCAT
2035
ATGAAACATCTGTTGTCAC





NC_045512.2_19mer_win1_27193
27193
27211
833
TGACAACAGATGTTTCATC
2036
GATGAAACATCTGTTGTCA





NC_045512.2_19mer_win1_27194
27194
27212
834
GACAACAGATGTTTCATCT
2037
AGATGAAACATCTGTTGTC





NC_045512.2_19mer_win1_27382
27382
27400
835
GATTAAACGAACATGAAAA
2038
TTTTCATGTTCGTTTAATC





NC_045512.2_19mer_win1_27383
27383
27401
836
ATTAAACGAACATGAAAAT
2039
ATTTTCATGTTCGTTTAAT





NC_045512.2_19mer_win1_27384
27384
27402
837
TTAAACGAACATGAAAATT
2040
AATTTTCATGTTCGTTTAA





NC_045512.2_19mer_win1_27385
27385
27403
838
TAAACGAACATGAAAATTA
2041
TAATTTTCATGTTCGTTTA





NC_045512.2_19mer_win1_27386
27386
27404
839
AAACGAACATGAAAATTAT
2042
ATAATTTTCATGTTCGTTT





NC_045512.2_19mer_win1_27387
27387
27405
840
AACGAACATGAAAATTATT
2043
AATAATTTTCATGTTCGTT





NC_045512.2_19mer_win1_27388
27388
27406
841
ACGAACATGAAAATTATTC
2044
GAATAATTTTCATGTTCGT





NC_045512.2_19mer_win1_27389
27389
27407
842
CGAACATGAAAATTATTCT
2045
AGAATAATTTTCATGTTCG





NC_045512.2_19mer_win1_27511
27511
27529
843
TACGAGGGCAATTCACCAT
2046
ATGGTGAATTGCCCTCGTA





NC_045512.2_19mer_win1_27512
27512
27530
844
ACGAGGGCAATTCACCATT
2047
AATGGTGAATTGCCCTCGT





NC_045512.2_19mer_win1_27513
27513
27531
845
CGAGGGCAATTCACCATTT
2048
AAATGGTGAATTGCCCTCG





NC_045512.2_19mer_win1_27514
27514
27532
846
GAGGGCAATTCACCATTTC
2049
GAAATGGTGAATTGCCCTC





NC_045512.2_19mer_win1_27515
27515
27533
847
AGGGCAATTCACCATTTCA
2050
TGAAATGGTGAATTGCCCT





NC_045512.2_19mer_win1_27771
27771
27789
848
TTAATTGACTTCTATTTGT
2051
ACAAATAGAAGTCAATTAA





NC_045512.2_19mer_win1_27772
27772
27790
849
TAATTGACTTCTATTTGTG
2052
CACAAATAGAAGTCAATTA





NC_045512.2_19mer_win1_27773
27773
27791
850
AATTGACTTCTATTTGTGC
2053
GCACAAATAGAAGTCAATT





NC_045512.2_19mer_win1_27774
27774
27792
851
ATTGACTTCTATTTGTGCT
2054
AGCACAAATAGAAGTCAAT





NC_045512.2_19mer_win1_27775
27775
27793
852
TTGACTTCTATTTGTGCTT
2055
AAGCACAAATAGAAGTCAA





NC_045512.2_19mer_win1_27776
27776
27794
853
TGACTTCTATTTGTGCTTT
2056
AAAGCACAAATAGAAGTCA





NC_045512.2_19mer_win1_27777
27777
27795
854
GACTTCTATTTGTGCTTTT
2057
AAAAGCACAAATAGAAGTC





NC_045512.2_19mer_win1_27778
27778
27796
855
ACTTCTATTTGTGCTTTTT
2058
AAAAAGCACAAATAGAAGT





NC_045512.2_19mer_win1_27779
27779
27797
856
CTTCTATTTGTGCTTTTTA
2059
TAAAAAGCACAAATAGAAG





NC_045512.2_19mer_win1_27780
27780
27798
857
TTCTATTTGTGCTTTTTAG
2060
CTAAAAAGCACAAATAGAA





NC_045512.2_19mer_win1_27781
27781
27799
858
TCTATTTGTGCTTTTTAGC
2061
GCTAAAAAGCACAAATAGA





NC_045512.2_19mer_win1_27782
27782
27800
859
CTATTTGTGCTTTTTAGCC
2062
GGCTAAAAAGCACAAATAG





NC_045512.2_19mer_win1_27783
27783
27801
860
TATTTGTGCTTTTTAGCCT
2063
AGGCTAAAAAGCACAAATA





NC_045512.2_19mer_win1_27784
27784
27802
861
ATTTGTGCTTTTTAGCCTT
2064
AAGGCTAAAAAGCACAAAT





NC_045512.2_19mer_win1_27785
27785
27803
862
TTTGTGCTTTTTAGCCTTT
2065
AAAGGCTAAAAAGCACAAA





NC_045512.2_19mer_win1_27786
27786
27804
863
TTGTGCTTTTTAGCCTTTC
2066
GAAAGGCTAAAAAGCACAA





NC_045512.2_19mer_win1_27787
27787
27805
864
TGTGCTTTTTAGCCTTTCT
2067
AGAAAGGCTAAAAAGCACA





NC_045512.2_19mer_win1_27788
27788
27806
865
GTGCTTTTTAGCCTTTCTG
2068
CAGAAAGGCTAAAAAGCAC





NC_045512.2_19mer_win1_27789
27789
27807
866
TGCTTTTTAGCCTTTCTGC
2069
GCAGAAAGGCTAAAAAGCA





NC_045512.2_19mer_win1_27790
27790
27808
867
GCTTTTTAGCCTTTCTGCT
2070
AGCAGAAAGGCTAAAAAGC





NC_045512.2_19mer_win1_27791
27791
27809
868
CTTTTTAGCCTTTCTGCTA
2071
TAGCAGAAAGGCTAAAAAG





NC_045512.2_19mer_win1_27792
27792
27810
869
TTTTTAGCCTTTCTGCTAT
2072
ATAGCAGAAAGGCTAAAAA





NC_045512.2_19mer_win1_27793
27793
27811
870
TTTTAGCCTTTCTGCTATT
2073
AATAGCAGAAAGGCTAAAA





NC_045512.2_19mer_win1_27794
27794
27812
871
TTTAGCCTTTCTGCTATTC
2074
GAATAGCAGAAAGGCTAAA





NC_045512.2_19mer_win1_27795
27795
27813
872
TTAGCCTTTCTGCTATTCC
2075
GGAATAGCAGAAAGGCTAA





NC_045512.2_19mer_win1_27796
27796
27814
873
TAGCCTTTCTGCTATTCCT
2076
AGGAATAGCAGAAAGGCTA





NC_045512.2_19mer_win1_27797
27797
27815
874
AGCCTTTCTGCTATTCCTT
2077
AAGGAATAGCAGAAAGGCT





NC_045512.2_19mer_win1_27798
27798
27816
875
GCCTTTCTGCTATTCCTTG
2078
CAAGGAATAGCAGAAAGGC





NC_045512.2_19mer_win1_27799
27799
27817
876
CCTTTCTGCTATTCCTTGT
2079
ACAAGGAATAGCAGAAAGG





NC_045512.2_19mer_win1_27800
27800
27818
877
CTTTCTGCTATTCCTTGTT
2080
AACAAGGAATAGCAGAAAG





NC_045512.2_19mer_win1_28270
28270
28288
878
TAAAATGTCTGATAATGGA
2081
TCCATTATCAGACATTTTA





NC_045512.2_19mer_win1_28271
28271
28289
879
AAAATGTCTGATAATGGAC
2082
GTCCATTATCAGACATTTT





NC_045512.2_19mer_win1_28272
28272
28290
880
AAATGTCTGATAATGGACC
2083
GGTCCATTATCAGACATTT





NC_045512.2_19mer_win1_28273
28273
28291
881
AATGTCTGATAATGGACCC
2084
GGGTCCATTATCAGACATT





NC_045512.2_19mer_win1_28274
28274
28292
882
ATGTCTGATAATGGACCCC
2085
GGGGTCCATTATCAGACAT





NC_045512.2_19mer_win1_28275
28275
28293
883
TGTCTGATAATGGACCCCA
2086
TGGGGTCCATTATCAGACA





NC_045512.2_19mer_win1_28276
28276
28294
884
GTCTGATAATGGACCCCAA
2087
TTGGGGTCCATTATCAGAC





NC_045512.2_19mer_win1_28277
28277
28295
885
TCTGATAATGGACCCCAAA
2088
TTTGGGGTCCATTATCAGA





NC_045512.2_19mer_win1_28278
28278
28296
886
CTGATAATGGACCCCAAAA
2089
TTTTGGGGTCCATTATCAG





NC_045512.2_19mer_win1_28397
28397
28415
887
CCCCAAGGTTTACCCAATA
2090
TATTGGGTAAACCTTGGGG





NC_045512.2_19mer_win1_28398
28398
28416
888
CCCAAGGTTTACCCAATAA
2091
TTATTGGGTAAACCTTGGG





NC_045512.2_19mer_win1_28399
28399
28417
889
CCAAGGTTTACCCAATAAT
2092
ATTATTGGGTAAACCTTGG





NC_045512.2_19mer_win1_28400
28400
28418
890
CAAGGTTTACCCAATAATA
2093
TATTATTGGGTAAACCTTG





NC_045512.2_19mer_win1_28401
28401
28419
891
AAGGTTTACCCAATAATAC
2094
GTATTATTGGGTAAACCTT





NC_045512.2_19mer_win1_28402
28402
28420
892
AGGTTTACCCAATAATACT
2095
AGTATTATTGGGTAAACCT





NC_045512.2_19mer_win1_28403
28403
28421
893
GGTTTACCCAATAATACTG
2096
CAGTATTATTGGGTAAACC





NC_045512.2_19mer_win1_28404
28404
28422
894
GTTTACCCAATAATACTGC
2097
GCAGTATTATTGGGTAAAC





NC_045512.2_19mer_win1_28405
28405
28423
895
TTTACCCAATAATACTGCG
2098
CGCAGTATTATTGGGTAAA





NC_045512.2_19mer_win1_28406
28406
28424
896
TTACCCAATAATACTGCGT
2099
ACGCAGTATTATTGGGTAA





NC_045512.2_19mer_win1_28407
28407
28425
897
TACCCAATAATACTGCGTC
2100
GACGCAGTATTATTGGGTA





NC_045512.2_19mer_win1_28408
28408
28426
898
ACCCAATAATACTGCGTCT
2101
AGACGCAGTATTATTGGGT





NC_045512.2_19mer_win1_28409
28409
28427
899
CCCAATAATACTGCGTCTT
2102
AAGACGCAGTATTATTGGG





NC_045512.2_19mer_win1_28410
28410
28428
900
CCAATAATACTGCGTCTTG
2103
CAAGACGCAGTATTATTGG





NC_045512.2_19mer_win1_28411
28411
28429
901
CAATAATACTGCGTCTTGG
2104
CCAAGACGCAGTATTATTG





NC_045512.2_19mer_win1_28412
28412
28430
902
AATAATACTGCGTCTTGGT
2105
ACCAAGACGCAGTATTATT





NC_045512.2_19mer_win1_28413
28413
28431
903
ATAATACTGCGTCTTGGTT
2106
AACCAAGACGCAGTATTAT





NC_045512.2_19mer_win1_28414
28414
28432
904
TAATACTGCGTCTTGGTTC
2107
GAACCAAGACGCAGTATTA





NC_045512.2_19mer_win1_28415
28415
28433
905
AATACTGCGTCTTGGTTCA
2108
TGAACCAAGACGCAGTATT





NC_045512.2_19mer_win1_28416
28416
28434
906
ATACTGCGTCTTGGTTCAC
2109
GTGAACCAAGACGCAGTAT





NC_045512.2_19mer_win1_28513
28513
28531
907
AGATGACCAAATTGGCTAC
2110
GTAGCCAATTTGGTCATCT





NC_045512.2_19mer_win1_28514
28514
28532
908
GATGACCAAATTGGCTACT
2111
AGTAGCCAATTTGGTCATC





NC_045512.2_19mer_win1_28515
28515
28533
909
ATGACCAAATTGGCTACTA
2112
TAGTAGCCAATTTGGTCAT





NC_045512.2_19mer_win1_28516
28516
28534
910
TGACCAAATTGGCTACTAC
2113
GTAGTAGCCAATTTGGTCA





NC_045512.2_19mer_win1_28517
28517
28535
911
GACCAAATTGGCTACTACC
2114
GGTAGTAGCCAATTTGGTC





NC_045512.2_19mer_win1_28518
28518
28536
912
ACCAAATTGGCTACTACCG
2115
CGGTAGTAGCCAATTTGGT





NC_045512.2_19mer_win1_28519
28519
28537
913
CCAAATTGGCTACTACCGA
2116
TCGGTAGTAGCCAATTTGG





NC_045512.2_19mer_win1_28520
28520
28538
914
CAAATTGGCTACTACCGAA
2117
TTCGGTAGTAGCCAATTTG





NC_045512.2_19mer_win1_28521
28521
28539
915
AAATTGGCTACTACCGAAG
2118
CTTCGGTAGTAGCCAATTT





NC_045512.2_19mer_win1_28522
28522
28540
916
AATTGGCTACTACCGAAGA
2119
TCTTCGGTAGTAGCCAATT





NC_045512.2_19mer_win1_28523
28523
28541
917
ATTGGCTACTACCGAAGAG
2120
CTCTTCGGTAGTAGCCAAT





NC_045512.2_19mer_win1_28524
28524
28542
918
TTGGCTACTACCGAAGAGC
2121
GCTCTTCGGTAGTAGCCAA





NC_045512.2_19mer_win1_28525
28525
28543
919
TGGCTACTACCGAAGAGCT
2122
AGCTCTTCGGTAGTAGCCA





NC_045512.2_19mer_win1_28526
28526
28544
920
GGCTACTACCGAAGAGCTA
2123
TAGCTCTTCGGTAGTAGCC





NC_045512.2_19mer_win1_28527
28527
28545
921
GCTACTACCGAAGAGCTAC
2124
GTAGCTCTTCGGTAGTAGC





NC_045512.2_19mer_win1_28528
28528
28546
922
CTACTACCGAAGAGCTACC
2125
GGTAGCTCTTCGGTAGTAG





NC_045512.2_19mer_win1_28673
28673
28691
923
GCAACTGAGGGAGCCTTGA
2126
TCAAGGCTCCCTCAGTTGC





NC_045512.2_19mer_win1_28674
28674
28692
924
CAACTGAGGGAGCCTTGAA
2127
TTCAAGGCTCCCTCAGTTG





NC_045512.2_19mer_win1_28706
28706
28724
925
CACATTGGCACCCGCAATC
2128
GATTGCGGGTGCCAATGTG





NC_045512.2_19mer_win1_28707
28707
28725
926
ACATTGGCACCCGCAATCC
2129
GGATTGCGGGTGCCAATGT





NC_045512.2_19mer_win1_28708
28708
28726
927
CATTGGCACCCGCAATCCT
2130
AGGATTGCGGGTGCCAATG





NC_045512.2_19mer_win1_28744
28744
28762
928
CGTGCTACAACTTCCTCAA
2131
TTGAGGAAGTTGTAGCACG





NC_045512.2_19mer_win1_28745
28745
28763
929
GTGCTACAACTTCCTCAAG
2132
CTTGAGGAAGTTGTAGCAC





NC_045512.2_19mer_win1_28746
28746
28764
930
TGCTACAACTTCCTCAAGG
2133
CCTTGAGGAAGTTGTAGCA





NC_045512.2_19mer_win1_28747
28747
28765
931
GCTACAACTTCCTCAAGGA
2134
TCCTTGAGGAAGTTGTAGC





NC_045512.2_19mer_win1_28748
28748
28766
932
CTACAACTTCCTCAAGGAA
2135
TTCCTTGAGGAAGTTGTAG





NC_045512.2_19mer_win1_28749
28749
28767
933
TACAACTTCCTCAAGGAAC
2136
GTTCCTTGAGGAAGTTGTA





NC_045512.2_19mer_win1_28750
28750
28768
934
ACAACTTCCTCAAGGAACA
2137
TGTTCCTTGAGGAAGTTGT





NC_045512.2_19mer_win1_28751
28751
28769
935
CAACTTCCTCAAGGAACAA
2138
TTGTTCCTTGAGGAAGTTG





NC_045512.2_19mer_win1_28752
28752
28770
936
AACTTCCTCAAGGAACAAC
2139
GTTGTTCCTTGAGGAAGTT





NC_045512.2_19mer_win1_28753
28753
28771
937
ACTTCCTCAAGGAACAACA
2140
TGTTGTTCCTTGAGGAAGT





NC_045512.2_19mer_win1_28754
28754
28772
938
CTTCCTCAAGGAACAACAT
2141
ATGTTGTTCCTTGAGGAAG





NC_045512.2_19mer_win1_28755
28755
28773
939
TTCCTCAAGGAACAACATT
2142
AATGTTGTTCCTTGAGGAA





NC_045512.2_19mer_win1_28756
28756
28774
940
TCCTCAAGGAACAACATTG
2143
CAATGTTGTTCCTTGAGGA





NC_045512.2_19mer_win1_28757
28757
28775
941
CCTCAAGGAACAACATTGC
2144
GCAATGTTGTTCCTTGAGG





NC_045512.2_19mer_win1_28758
28758
28776
942
CTCAAGGAACAACATTGCC
2145
GGCAATGTTGTTCCTTGAG





NC_045512.2_19mer_win1_28759
28759
28777
943
TCAAGGAACAACATTGCCA
2146
TGGCAATGTTGTTCCTTGA





NC_045512.2_19mer_win1_28760
28760
28778
944
CAAGGAACAACATTGCCAA
2147
TTGGCAATGTTGTTCCTTG





NC_045512.2_19mer_win1_28761
28761
28779
945
AAGGAACAACATTGCCAAA
2148
TTTGGCAATGTTGTTCCTT





NC_045512.2_19mer_win1_28762
28762
28780
946
AGGAACAACATTGCCAAAA
2149
TTTTGGCAATGTTGTTCCT





NC_045512.2_19mer_win1_28763
28763
28781
947
GGAACAACATTGCCAAAAG
2150
CTTTTGGCAATGTTGTTCC





NC_045512.2_19mer_win1_28764
28764
28782
948
GAACAACATTGCCAAAAGG
2151
CCTTTTGGCAATGTTGTTC





NC_045512.2_19mer_win1_28765
28765
28783
949
AACAACATTGCCAAAAGGC
2152
GCCTTTTGGCAATGTTGTT





NC_045512.2_19mer_win1_28766
28766
28784
950
ACAACATTGCCAAAAGGCT
2153
AGCCTTTTGGCAATGTTGT





NC_045512.2_19mer_win1_28767
28767
28785
951
CAACATTGCCAAAAGGCTT
2154
AAGCCTTTTGGCAATGTTG





NC_045512.2_19mer_win1_28768
28768
28786
952
AACATTGCCAAAAGGCTTC
2155
GAAGCCTTTTGGCAATGTT





NC_045512.2_19mer_win1_28769
28769
28787
953
ACATTGCCAAAAGGCTTCT
2156
AGAAGCCTTTTGGCAATGT





NC_045512.2_19mer_win1_28770
28770
28788
954
CATTGCCAAAAGGCTTCTA
2157
TAGAAGCCTTTTGGCAATG





NC_045512.2_19mer_win1_28771
28771
28789
955
ATTGCCAAAAGGCTTCTAC
2158
GTAGAAGCCTTTTGGCAAT





NC_045512.2_19mer_win1_28772
28772
28790
956
TTGCCAAAAGGCTTCTACG
2159
CGTAGAAGCCTTTTGGCAA





NC_045512.2_19mer_win1_28773
28773
28791
957
TGCCAAAAGGCTTCTACGC
2160
GCGTAGAAGCCTTTTGGCA





NC_045512.2_19mer_win1_28774
28774
28792
958
GCCAAAAGGCTTCTACGCA
2161
TGCGTAGAAGCCTTTTGGC





NC_045512.2_19mer_win1_28775
28775
28793
959
CCAAAAGGCTTCTACGCAG
2162
CTGCGTAGAAGCCTTTTGG





NC_045512.2_19mer_win1_28776
28776
28794
960
CAAAAGGCTTCTACGCAGA
2163
TCTGCGTAGAAGCCTTTTG





NC_045512.2_19mer_win1_28799
28799
28817
961
AGCAGAGGCGGCAGTCAAG
2164
CTTGACTGCCGCCTCTGCT





NC_045512.2_19mer_win1_28800
28800
28818
962
GCAGAGGCGGCAGTCAAGC
2165
GCTTGACTGCCGCCTCTGC





NC_045512.2_19mer_win1_28801
28801
28819
963
CAGAGGCGGCAGTCAAGCC
2166
GGCTTGACTGCCGCCTCTG





NC_045512.2_19mer_win1_28802
28802
28820
964
AGAGGCGGCAGTCAAGCCT
2167
AGGCTTGACTGCCGCCTCT





NC_045512.2_19mer_win1_28803
28803
28821
965
GAGGCGGCAGTCAAGCCTC
2168
GAGGCTTGACTGCCGCCTC





NC_045512.2_19mer_win1_28804
28804
28822
966
AGGCGGCAGTCAAGCCTCT
2169
AGAGGCTTGACTGCCGCCT





NC_045512.2_19mer_win1_28805
28805
28823
967
GGCGGCAGTCAAGCCTCTT
2170
AAGAGGCTTGACTGCCGCC





NC_045512.2_19mer_win1_28806
28806
28824
968
GCGGCAGTCAAGCCTCTTC
2171
GAAGAGGCTTGACTGCCGC





NC_045512.2_19mer_win1_28807
28807
28825
969
CGGCAGTCAAGCCTCTTCT
2172
AGAAGAGGCTTGACTGCCG





NC_045512.2_19mer_win1_28808
28808
28826
970
GGCAGTCAAGCCTCTTCTC
2173
GAGAAGAGGCTTGACTGCC





NC_045512.2_19mer_win1_28809
28809
28827
971
GCAGTCAAGCCTCTTCTCG
2174
CGAGAAGAGGCTTGACTGC





NC_045512.2_19mer_win1_28946
28946
28964
972
GACAGATTGAACCAGCTTG
2175
CAAGCTGGTTCAATCTGTC





NC_045512.2_19mer_win1_28947
28947
28965
973
ACAGATTGAACCAGCTTGA
2176
TCAAGCTGGTTCAATCTGT





NC_045512.2_19mer_win1_28948
28948
28966
974
CAGATTGAACCAGCTTGAG
2177
CTCAAGCTGGTTCAATCTG





NC_045512.2_19mer_win1_28949
28949
28967
975
AGATTGAACCAGCTTGAGA
2178
TCTCAAGCTGGTTCAATCT





NC_045512.2_19mer_win1_28950
28950
28968
976
GATTGAACCAGCTTGAGAG
2179
CTCTCAAGCTGGTTCAATC





NC_045512.2_19mer_win1_28951
28951
28969
977
ATTGAACCAGCTTGAGAGC
2180
GCTCTCAAGCTGGTTCAAT





NC_045512.2_19mer_win1_28952
28952
28970
978
TTGAACCAGCTTGAGAGCA
2181
TGCTCTCAAGCTGGTTCAA





NC_045512.2_19mer_win1_28953
28953
28971
979
TGAACCAGCTTGAGAGCAA
2182
TTGCTCTCAAGCTGGTTCA





NC_045512.2_19mer_win1_28954
28954
28972
980
GAACCAGCTTGAGAGCAAA
2183
TTTGCTCTCAAGCTGGTTC





NC_045512.2_19mer_win1_28976
28976
28994
981
TCTGGTAAAGGCCAACAAC
2184
GTTGTTGGCCTTTACCAGA





NC_045512.2_19mer_win1_28977
28977
28995
982
CTGGTAAAGGCCAACAACA
2185
TGTTGTTGGCCTTTACCAG





NC_045512.2_19mer_win1_28978
28978
28996
983
TGGTAAAGGCCAACAACAA
2186
TTGTTGTTGGCCTTTACCA





NC_045512.2_19mer_win1_28979
28979
28997
984
GGTAAAGGCCAACAACAAC
2187
GTTGTTGTTGGCCTTTACC





NC_045512.2_19mer_win1_28980
28980
28998
985
GTAAAGGCCAACAACAACA
2188
TGTTGTTGTTGGCCTTTAC





NC_045512.2_19mer_win1_28981
28981
28999
986
TAAAGGCCAACAACAACAA
2189
TTGTTGTTGTTGGCCTTTA





NC_045512.2_19mer_win1_28982
28982
29000
987
AAAGGCCAACAACAACAAG
2190
CTTGTTGTTGTTGGCCTTT





NC_045512.2_19mer_win1_28983
28983
29001
988
AAGGCCAACAACAACAAGG
2191
CCTTGTTGTTGTTGGCCTT





NC_045512.2_19mer_win1_28984
28984
29002
989
AGGCCAACAACAACAAGGC
2192
GCCTTGTTGTTGTTGGCCT





NC_045512.2_19mer_win1_28985
28985
29003
990
GGCCAACAACAACAAGGCC
2193
GGCCTTGTTGTTGTTGGCC





NC_045512.2_19mer_win1_28986
28986
29004
991
GCCAACAACAACAAGGCCA
2194
TGGCCTTGTTGTTGTTGGC





NC_045512.2_19mer_win1_28987
28987
29005
992
CCAACAACAACAAGGCCAA
2195
TTGGCCTTGTTGTTGTTGG





NC_045512.2_19mer_win1_28988
28988
29006
993
CAACAACAACAAGGCCAAA
2196
TTTGGCCTTGTTGTTGTTG





NC_045512.2_19mer_win1_28989
28989
29007
994
AACAACAACAAGGCCAAAC
2197
GTTTGGCCTTGTTGTTGTT





NC_045512.2_19mer_win1_28990
28990
29008
995
ACAACAACAAGGCCAAACT
2198
AGTTTGGCCTTGTTGTTGT





NC_045512.2_19mer_win1_28991
28991
29009
996
CAACAACAAGGCCAAACTG
2199
CAGTTTGGCCTTGTTGTTG





NC_045512.2_19mer_win1_28992
28992
29010
997
AACAACAAGGCCAAACTGT
2200
ACAGTTTGGCCTTGTTGTT





NC_045512.2_19mer_win1_28993
28993
29011
998
ACAACAAGGCCAAACTGTC
2201
GACAGTTTGGCCTTGTTGT





NC_045512.2_19mer_win1_28994
28994
29012
999
CAACAAGGCCAAACTGTCA
2202
TGACAGTTTGGCCTTGTTG





NC_045512.2_19mer_win1_28995
28995
29013
1000
AACAAGGCCAAACTGTCAC
2203
GTGACAGTTTGGCCTTGTT





NC_045512.2_19mer_win1_28996
28996
29014
1001
ACAAGGCCAAACTGTCACT
2204
AGTGACAGTTTGGCCTTGT





NC_045512.2_19mer_win1_28997
28997
29015
1002
CAAGGCCAAACTGTCACTA
2205
TAGTGACAGTTTGGCCTTG





NC_045512.2_19mer_win1_28998
28998
29016
1003
AAGGCCAAACTGTCACTAA
2206
TTAGTGACAGTTTGGCCTT





NC_045512.2_19mer_win1_28999
28999
29017
1004
AGGCCAAACTGTCACTAAG
2207
CTTAGTGACAGTTTGGCCT





NC_045512.2_19mer_win1_29000
29000
29018
1005
GGCCAAACTGTCACTAAGA
2208
TCTTAGTGACAGTTTGGCC





NC_045512.2_19mer_win1_29001
29001
29019
1006
GCCAAACTGTCACTAAGAA
2209
TTCTTAGTGACAGTTTGGC





NC_045512.2_19mer_win1_29002
29002
29020
1007
CCAAACTGTCACTAAGAAA
2210
TTTCTTAGTGACAGTTTGG





NC_045512.2_19mer_win1_29003
29003
29021
1008
CAAACTGTCACTAAGAAAT
2211
ATTTCTTAGTGACAGTTTG





NC_045512.2_19mer_win1_29004
29004
29022
1009
AAACTGTCACTAAGAAATC
2212
GATTTCTTAGTGACAGTTT





NC_045512.2_19mer_win1_29005
29005
29023
1010
AACTGTCACTAAGAAATCT
2213
AGATTTCTTAGTGACAGTT





NC_045512.2_19mer_win1_29006
29006
29024
1011
ACTGTCACTAAGAAATCTG
2214
CAGATTTCTTAGTGACAGT





NC_045512.2_19mer_win1_29007
29007
29025
1012
CTGTCACTAAGAAATCTGC
2215
GCAGATTTCTTAGTGACAG





NC_045512.2_19mer_win1_29008
29008
29026
1013
TGTCACTAAGAAATCTGCT
2216
AGCAGATTTCTTAGTGACA





NC_045512.2_19mer_win1_29009
29009
29027
1014
GTCACTAAGAAATCTGCTG
2217
CAGCAGATTTCTTAGTGAC





NC_045512.2_19mer_win1_29010
29010
29028
1015
TCACTAAGAAATCTGCTGC
2218
GCAGCAGATTTCTTAGTGA





NC_045512.2_19mer_win1_29011
29011
29029
1016
CACTAAGAAATCTGCTGCT
2219
AGCAGCAGATTTCTTAGTG





NC_045512.2_19mer_win1_29012
29012
29030
1017
ACTAAGAAATCTGCTGCTG
2220
CAGCAGCAGATTTCTTAGT





NC_045512.2_19mer_win1_29013
29013
29031
1018
CTAAGAAATCTGCTGCTGA
2221
TCAGCAGCAGATTTCTTAG





NC_045512.2_19mer_win1_29014
29014
29032
1019
TAAGAAATCTGCTGCTGAG
2222
CTCAGCAGCAGATTTCTTA





NC_045512.2_19mer_win1_29015
29015
29033
1020
AAGAAATCTGCTGCTGAGG
2223
CCTCAGCAGCAGATTTCTT





NC_045512.2_19mer_win1_29016
29016
29034
1021
AGAAATCTGCTGCTGAGGC
2224
GCCTCAGCAGCAGATTTCT





NC_045512.2_19mer_win1_29144
29144
29162
1022
CTAATCAGACAAGGAACTG
2225
CAGTTCCTTGTCTGATTAG





NC_045512.2_19mer_win1_29145
29145
29163
1023
TAATCAGACAAGGAACTGA
2226
TCAGTTCCTTGTCTGATTA





NC_045512.2_19mer_win1_29146
29146
29164
1024
AATCAGACAAGGAACTGAT
2227
ATCAGTTCCTTGTCTGATT





NC_045512.2_19mer_win1_29147
29147
29165
1025
ATCAGACAAGGAACTGATT
2228
AATCAGTTCCTTGTCTGAT





NC_045512.2_19mer_win1_29148
29148
29166
1026
TCAGACAAGGAACTGATTA
2229
TAATCAGTTCCTTGTCTGA





NC_045512.2_19mer_win1_29149
29149
29167
1027
CAGACAAGGAACTGATTAC
2230
GTAATCAGTTCCTTGTCTG





NC_045512.2_19mer_win1_29150
29150
29168
1028
AGACAAGGAACTGATTACA
2231
TGTAATCAGTTCCTTGTCT





NC_045512.2_19mer_win1_29151
29151
29169
1029
GACAAGGAACTGATTACAA
2232
TTGTAATCAGTTCCTTGTC





NC_045512.2_19mer_win1_29152
29152
29170
1030
ACAAGGAACTGATTACAAA
2233
TTTGTAATCAGTTCCTTGT





NC_045512.2_19mer_win1_29153
29153
29171
1031
CAAGGAACTGATTACAAAC
2234
GTTTGTAATCAGTTCCTTG





NC_045512.2_19mer_win1_29154
29154
29172
1032
AAGGAACTGATTACAAACA
2235
TGTTTGTAATCAGTTCCTT





NC_045512.2_19mer_win1_29174
29174
29192
1033
TGGCCGCAAATTGCACAAT
2236
ATTGTGCAATTTGCGGCCA





NC_045512.2_19mer_win1_29175
29175
29193
1034
GGCCGCAAATTGCACAATT
2237
AATTGTGCAATTTGCGGCC





NC_045512.2_19mer_win1_29176
29176
29194
1035
GCCGCAAATTGCACAATTT
2238
AAATTGTGCAATTTGCGGC





NC_045512.2_19mer_win1_29177
29177
29195
1036
CCGCAAATTGCACAATTTG
2239
CAAATTGTGCAATTTGCGG





NC_045512.2_19mer_win1_29178
29178
29196
1037
CGCAAATTGCACAATTTGC
2240
GCAAATTGTGCAATTTGCG





NC_045512.2_19mer_win1_29228
29228
29246
1038
CGCATTGGCATGGAAGTCA
2241
TGACTTCCATGCCAATGCG





NC_045512.2_19mer_win1_29229
29229
29247
1039
GCATTGGCATGGAAGTCAC
2242
GTGACTTCCATGCCAATGC





NC_045512.2_19mer_win1_29230
29230
29248
1040
CATTGGCATGGAAGTCACA
2243
TGTGACTTCCATGCCAATG





NC_045512.2_19mer_win1_29231
29231
29249
1041
ATTGGCATGGAAGTCACAC
2244
GTGTGACTTCCATGCCAAT





NC_045512.2_19mer_win1_29232
29232
29250
1042
TTGGCATGGAAGTCACACC
2245
GGTGTGACTTCCATGCCAA





NC_045512.2_19mer_win1_29233
29233
29251
1043
TGGCATGGAAGTCACACCT
2246
AGGTGTGACTTCCATGCCA





NC_045512.2_19mer_win1_29234
29234
29252
1044
GGCATGGAAGTCACACCTT
2247
AAGGTGTGACTTCCATGCC





NC_045512.2_19mer_win1_29235
29235
29253
1045
GCATGGAAGTCACACCTTC
2248
GAAGGTGTGACTTCCATGC





NC_045512.2_19mer_win1_29236
29236
29254
1046
CATGGAAGTCACACCTTCG
2249
CGAAGGTGTGACTTCCATG





NC_045512.2_19mer_win1_29237
29237
29255
1047
ATGGAAGTCACACCTTCGG
2250
CCGAAGGTGTGACTTCCAT





NC_045512.2_19mer_win1_29238
29238
29256
1048
TGGAAGTCACACCTTCGGG
2251
CCCGAAGGTGTGACTTCCA





NC_045512.2_19mer_win1_29239
29239
29257
1049
GGAAGTCACACCTTCGGGA
2252
TCCCGAAGGTGTGACTTCC





NC_045512.2_19mer_win1_29240
29240
29258
1050
GAAGTCACACCTTCGGGAA
2253
TTCCCGAAGGTGTGACTTC





NC_045512.2_19mer_win1_29241
29241
29259
1051
AAGTCACACCTTCGGGAAC
2254
GTTCCCGAAGGTGTGACTT





NC_045512.2_19mer_win1_29285
29285
29303
1052
AAATTGGATGACAAAGATC
2255
GATCTTTGTCATCCAATTT





NC_045512.2_19mer_win1_29286
29286
29304
1053
AATTGGATGACAAAGATCC
2256
GGATCTTTGTCATCCAATT





NC_045512.2_19mer_win1_29287
29287
29305
1054
ATTGGATGACAAAGATCCA
2257
TGGATCTTTGTCATCCAAT





NC_045512.2_19mer_win1_29342
29342
29360
1055
ATTGACGCATACAAAACAT
2258
ATGTTTTGTATGCGTCAAT





NC_045512.2_19mer_win1_29343
29343
29361
1056
TTGACGCATACAAAACATT
2259
AATGTTTTGTATGCGTCAA





NC_045512.2_19mer_win1_29344
29344
29362
1057
TGACGCATACAAAACATTC
2260
GAATGTTTTGTATGCGTCA





NC_045512.2_19mer_win1_29345
29345
29363
1058
GACGCATACAAAACATTCC
2261
GGAATGTTTTGTATGCGTC





NC_045512.2_19mer_win1_29346
29346
29364
1059
ACGCATACAAAACATTCCC
2262
GGGAATGTTTTGTATGCGT





NC_045512.2_19mer_win1_29347
29347
29365
1060
CGCATACAAAACATTCCCA
2263
TGGGAATGTTTTGTATGCG





NC_045512.2_19mer_win1_29348
29348
29366
1061
GCATACAAAACATTCCCAC
2264
GTGGGAATGTTTTGTATGC





NC_045512.2_19mer_win1_29349
29349
29367
1062
CATACAAAACATTCCCACC
2265
GGTGGGAATGTTTTGTATG





NC_045512.2_19mer_win1_29350
29350
29368
1063
ATACAAAACATTCCCACCA
2266
TGGTGGGAATGTTTTGTAT





NC_045512.2_19mer_win1_29351
29351
29369
1064
TACAAAACATTCCCACCAA
2267
TTGGTGGGAATGTTTTGTA





NC_045512.2_19mer_win1_29352
29352
29370
1065
ACAAAACATTCCCACCAAC
2268
GTTGGTGGGAATGTTTTGT





NC_045512.2_19mer_win1_29353
29353
29371
1066
CAAAACATTCCCACCAACA
2269
TGTTGGTGGGAATGTTTTG





NC_045512.2_19mer_win1_29354
29354
29372
1067
AAAACATTCCCACCAACAG
2270
CTGTTGGTGGGAATGTTTT





NC_045512.2_19mer_win1_29355
29355
29373
1068
AAACATTCCCACCAACAGA
2271
TCTGTTGGTGGGAATGTTT





NC_045512.2_19mer_win1_29356
29356
29374
1069
AACATTCCCACCAACAGAG
2272
CTCTGTTGGTGGGAATGTT





NC_045512.2_19mer_win1_29357
29357
29375
1070
ACATTCCCACCAACAGAGC
2273
GCTCTGTTGGTGGGAATGT





NC_045512.2_19mer_win1_29358
29358
29376
1071
CATTCCCACCAACAGAGCC
2274
GGCTCTGTTGGTGGGAATG





NC_045512.2_19mer_win1_29359
29359
29377
1072
ATTCCCACCAACAGAGCCT
2275
AGGCTCTGTTGGTGGGAAT





NC_045512.2_19mer_win1_29360
29360
29378
1073
TTCCCACCAACAGAGCCTA
2276
TAGGCTCTGTTGGTGGGAA





NC_045512.2_19mer_win1_29361
29361
29379
1074
TCCCACCAACAGAGCCTAA
2277
TTAGGCTCTGTTGGTGGGA





NC_045512.2_19mer_win1_29362
29362
29380
1075
CCCACCAACAGAGCCTAAA
2278
TTTAGGCTCTGTTGGTGGG





NC_045512.2_19mer_win1_29363
29363
29381
1076
CCACCAACAGAGCCTAAAA
2279
TTTTAGGCTCTGTTGGTGG





NC_045512.2_19mer_win1_29364
29364
29382
1077
CACCAACAGAGCCTAAAAA
2280
TTTTTAGGCTCTGTTGGTG





NC_045512.2_19mer_win1_29365
29365
29383
1078
ACCAACAGAGCCTAAAAAG
2281
CTTTTTAGGCTCTGTTGGT





NC_045512.2_19mer_win1_29366
29366
29384
1079
CCAACAGAGCCTAAAAAGG
2282
CCTTTTTAGGCTCTGTTGG





NC_045512.2_19mer_win1_29367
29367
29385
1080
CAACAGAGCCTAAAAAGGA
2283
TCCTTTTTAGGCTCTGTTG





NC_045512.2_19mer_win1_29368
29368
29386
1081
AACAGAGCCTAAAAAGGAC
2284
GTCCTTTTTAGGCTCTGTT





NC_045512.2_19mer_win1_29369
29369
29387
1082
ACAGAGCCTAAAAAGGACA
2285
TGTCCTTTTTAGGCTCTGT





NC_045512.2_19mer_win1_29370
29370
29388
1083
CAGAGCCTAAAAAGGACAA
2286
TTGTCCTTTTTAGGCTCTG





NC_045512.2_19mer_win1_29371
29371
29389
1084
AGAGCCTAAAAAGGACAAA
2287
TTTGTCCTTTTTAGGCTCT





NC_045512.2_19mer_win1_29372
29372
29390
1085
GAGCCTAAAAAGGACAAAA
2288
TTTTGTCCTTTTTAGGCTC





NC_045512.2_19mer_win1_29373
29373
29391
1086
AGCCTAAAAAGGACAAAAA
2289
TTTTTGTCCTTTTTAGGCT





NC_045512.2_19mer_win1_29374
29374
29392
1087
GCCTAAAAAGGACAAAAAG
2290
CTTTTTGTCCTTTTTAGGC





NC_045512.2_19mer_win1_29375
29375
29393
1088
CCTAAAAAGGACAAAAAGA
2291
TCTTTTTGTCCTTTTTAGG





NC_045512.2_19mer_win1_29376
29376
29394
1089
CTAAAAAGGACAAAAAGAA
2292
TTCTTTTTGTCCTTTTTAG





NC_045512.2_19mer_win1_29444
29444
29462
1090
ACTGTGACTCTTCTTCCTG
2293
CAGGAAGAAGAGTCACAGT





NC_045512.2_19mer_win1_29445
29445
29463
1091
CTGTGACTCTTCTTCCTGC
2294
GCAGGAAGAAGAGTCACAG





NC_045512.2_19mer_win1_29543
29543
29561
1092
GACCACACAAGGCAGATGG
2295
CCATCTGCCTTGTGTGGTC





NC_045512.2_19mer_win1_29544
29544
29562
1093
ACCACACAAGGCAGATGGG
2296
CCCATCTGCCTTGTGTGGT





NC_045512.2_19mer_win1_29545
29545
29563
1094
CCACACAAGGCAGATGGGC
2297
GCCCATCTGCCTTGTGTGG





NC_045512.2_19mer_win1_29546
29546
29564
1095
CACACAAGGCAGATGGGCT
2298
AGCCCATCTGCCTTGTGTG





NC_045512.2_19mer_win1_29547
29547
29565
1096
ACACAAGGCAGATGGGCTA
2299
TAGCCCATCTGCCTTGTGT





NC_045512.2_19mer_win1_29548
29548
29566
1097
CACAAGGCAGATGGGCTAT
2300
ATAGCCCATCTGCCTTGTG





NC_045512.2_19mer_win1_29598
29598
29616
1098
ATAGTCTACTCTTGTGCAG
2301
CTGCACAAGAGTAGACTAT





NC_045512.2_19mer_win1_29599
29599
29617
1099
TAGTCTACTCTTGTGCAGA
2302
TCTGCACAAGAGTAGACTA





NC_045512.2_19mer_win1_29600
29600
29618
1100
AGTCTACTCTTGTGCAGAA
2303
TTCTGCACAAGAGTAGACT





NC_045512.2_19mer_win1_29601
29601
29619
1101
GTCTACTCTTGTGCAGAAT
2304
ATTCTGCACAAGAGTAGAC





NC_045512.2_19mer_win1_29602
29602
29620
1102
TCTACTCTTGTGCAGAATG
2305
CATTCTGCACAAGAGTAGA





NC_045512.2_19mer_win1_29603
29603
29621
1103
CTACTCTTGTGCAGAATGA
2306
TCATTCTGCACAAGAGTAG





NC_045512.2_19mer_win1_29604
29604
29622
1104
TACTCTTGTGCAGAATGAA
2307
TTCATTCTGCACAAGAGTA





NC_045512.2_19mer_win1_29605
29605
29623
1105
ACTCTTGTGCAGAATGAAT
2308
ATTCATTCTGCACAAGAGT





NC_045512.2_19mer_win1_29606
29606
29624
1106
CTCTTGTGCAGAATGAATT
2309
AATTCATTCTGCACAAGAG





NC_045512.2_19mer_win1_29607
29607
29625
1107
TCTTGTGCAGAATGAATTC
2310
GAATTCATTCTGCACAAGA





NC_045512.2_19mer_win1_29608
29608
29626
1108
CTTGTGCAGAATGAATTCT
2311
AGAATTCATTCTGCACAAG





NC_045512.2_19mer_win1_29609
29609
29627
1109
TTGTGCAGAATGAATTCTC
2312
GAGAATTCATTCTGCACAA





NC_045512.2_19mer_win1_29610
29610
29628
1110
TGTGCAGAATGAATTCTCG
2313
CGAGAATTCATTCTGCACA





NC_045512.2_19mer_win1_29611
29611
29629
1111
GTGCAGAATGAATTCTCGT
2314
ACGAGAATTCATTCTGCAC





NC_045512.2_19mer_win1_29612
29612
29630
1112
TGCAGAATGAATTCTCGTA
2315
TACGAGAATTCATTCTGCA





NC_045512.2_19mer_win1_29652
29652
29670
1113
TAGTTAACTTTAATCTCAC
2316
GTGAGATTAAAGTTAACTA





NC_045512.2_19mer_win1_29653
29653
29671
1114
AGTTAACTTTAATCTCACA
2317
TGTGAGATTAAAGTTAACT





NC_045512.2_19mer_win1_29654
29654
29672
1115
GTTAACTTTAATCTCACAT
2318
ATGTGAGATTAAAGTTAAC





NC_045512.2_19mer_win1_29655
29655
29673
1116
TTAACTTTAATCTCACATA
2319
TATGTGAGATTAAAGTTAA





NC_045512.2_19mer_win1_29656
29656
29674
1117
TAACTTTAATCTCACATAG
2320
CTATGTGAGATTAAAGTTA





NC_045512.2_19mer_win1_29657
29657
29675
1118
AACTTTAATCTCACATAGC
2321
GCTATGTGAGATTAAAGTT





NC_045512.2_19mer_win1_29658
29658
29676
1119
ACTTTAATCTCACATAGCA
2322
TGCTATGTGAGATTAAAGT





NC_045512.2_19mer_win1_29659
29659
29677
1120
CTTTAATCTCACATAGCAA
2323
TTGCTATGTGAGATTAAAG





NC_045512.2_19mer_win1_29660
29660
29678
1121
TTTAATCTCACATAGCAAT
2324
ATTGCTATGTGAGATTAAA





NC_045512.2_19mer_win1_29661
29661
29679
1122
TTAATCTCACATAGCAATC
2325
GATTGCTATGTGAGATTAA





NC_045512.2_19mer_win1_29662
29662
29680
1123
TAATCTCACATAGCAATCT
2326
AGATTGCTATGTGAGATTA





NC_045512.2_19mer_win1_29663
29663
29681
1124
AATCTCACATAGCAATCTT
2327
AAGATTGCTATGTGAGATT





NC_045512.2_19mer_win1_29664
29664
29682
1125
ATCTCACATAGCAATCTTT
2328
AAAGATTGCTATGTGAGAT





NC_045512.2_19mer_win1_29665
29665
29683
1126
TCTCACATAGCAATCTTTA
2329
TAAAGATTGCTATGTGAGA





NC_045512.2_19mer_win1_29666
29666
29684
1127
CTCACATAGCAATCTTTAA
2330
TTAAAGATTGCTATGTGAG





NC_045512.2_19mer_win1_29667
29667
29685
1128
TCACATAGCAATCTTTAAT
2331
ATTAAAGATTGCTATGTGA





NC_045512.2_19mer_win1_29668
29668
29686
1129
CACATAGCAATCTTTAATC
2332
GATTAAAGATTGCTATGTG





NC_045512.2_19mer_win1_29669
29669
29687
1130
ACATAGCAATCTTTAATCA
2333
TGATTAAAGATTGCTATGT





NC_045512.2_19mer_win1_29689
29689
29707
1131
TGTGTAACATTAGGGAGGA
2334
TCCTCCCTAATGTTACACA





NC_045512.2_19mer_win1_29690
29690
29708
1132
GTGTAACATTAGGGAGGAC
2335
GTCCTCCCTAATGTTACAC





NC_045512.2_19mer_win1_29691
29691
29709
1133
TGTAACATTAGGGAGGACT
2336
AGTCCTCCCTAATGTTACA





NC_045512.2_19mer_win1_29692
29692
29710
1134
GTAACATTAGGGAGGACTT
2337
AAGTCCTCCCTAATGTTAC





NC_045512.2_19mer_win1_29693
29693
29711
1135
TAACATTAGGGAGGACTTG
2338
CAAGTCCTCCCTAATGTTA





NC_045512.2_19mer_win1_29694
29694
29712
1136
AACATTAGGGAGGACTTGA
2339
TCAAGTCCTCCCTAATGTT





NC_045512.2_19mer_win1_29695
29695
29713
1137
ACATTAGGGAGGACTTGAA
2340
TTCAAGTCCTCCCTAATGT





NC_045512.2_19mer_win1_29696
29696
29714
1138
CATTAGGGAGGACTTGAAA
2341
TTTCAAGTCCTCCCTAATG





NC_045512.2_19mer_win1_29697
29697
29715
1139
ATTAGGGAGGACTTGAAAG
2342
CTTTCAAGTCCTCCCTAAT





NC_045512.2_19mer_win1_29698
29698
29716
1140
TTAGGGAGGACTTGAAAGA
2343
TCTTTCAAGTCCTCCCTAA





NC_045512.2_19mer_win1_29699
29699
29717
1141
TAGGGAGGACTTGAAAGAG
2344
CTCTTTCAAGTCCTCCCTA





NC_045512.2_19mer_win1_29700
29700
29718
1142
AGGGAGGACTTGAAAGAGC
2345
GCTCTTTCAAGTCCTCCCT





NC_045512.2_19mer_win1_29701
29701
29719
1143
GGGAGGACTTGAAAGAGCC
2346
GGCTCTTTCAAGTCCTCCC





NC_045512.2_19mer_win1_29702
29702
29720
1144
GGAGGACTTGAAAGAGCCA
2347
TGGCTCTTTCAAGTCCTCC





NC_045512.2_19mer_win1_29703
29703
29721
1145
GAGGACTTGAAAGAGCCAC
2348
GTGGCTCTTTCAAGTCCTC





NC_045512.2_19mer_win1_29704
29704
29722
1146
AGGACTTGAAAGAGCCACC
2349
GGTGGCTCTTTCAAGTCCT





NC_045512.2_19mer_win1_29705
29705
29723
1147
GGACTTGAAAGAGCCACCA
2350
TGGTGGCTCTTTCAAGTCC





NC_045512.2_19mer_win1_29706
29706
29724
1148
GACTTGAAAGAGCCACCAC
2351
GTGGTGGCTCTTTCAAGTC





NC_045512.2_19mer_win1_29707
29707
29725
1149
ACTTGAAAGAGCCACCACA
2352
TGTGGTGGCTCTTTCAAGT





NC_045512.2_19mer_win1_29708
29708
29726
1150
CTTGAAAGAGCCACCACAT
2353
ATGTGGTGGCTCTTTCAAG





NC_045512.2_19mer_win1_29709
29709
29727
1151
TTGAAAGAGCCACCACATT
2354
AATGTGGTGGCTCTTTCAA





NC_045512.2_19mer_win1_29710
29710
29728
1152
TGAAAGAGCCACCACATTT
2355
AAATGTGGTGGCTCTTTCA





NC_045512.2_19mer_win1_29711
29711
29729
1153
GAAAGAGCCACCACATTTT
2356
AAAATGTGGTGGCTCTTTC





NC_045512.2_19mer_win1_29712
29712
29730
1154
AAAGAGCCACCACATTTTC
2357
GAAAATGTGGTGGCTCTTT





NC_045512.2_19mer_win1_29713
29713
29731
1155
AAGAGCCACCACATTTTCA
2358
TGAAAATGTGGTGGCTCTT





NC_045512.2_19mer_win1_29733
29733
29751
1156
CGAGGCCACGCGGAGTACG
2359
CGTACTCCGCGTGGCCTCG





NC_045512.2_19mer_win1_29734
29734
29752
1157
GAGGCCACGCGGAGTACGA
2360
TCGTACTCCGCGTGGCCTC





NC_045512.2_19mer_win1_29735
29735
29753
1158
AGGCCACGCGGAGTACGAT
2361
ATCGTACTCCGCGTGGCCT





NC_045512.2_19mer_win1_29736
29736
29754
1159
GGCCACGCGGAGTACGATC
2362
GATCGTACTCCGCGTGGCC





NC_045512.2_19mer_win1_29737
29737
29755
1160
GCCACGCGGAGTACGATCG
2363
CGATCGTACTCCGCGTGGC





NC_045512.2_19mer_win1_29738
29738
29756
1161
CCACGCGGAGTACGATCGA
2364
TCGATCGTACTCCGCGTGG





NC_045512.2_19mer_win1_29739
29739
29757
1162
CACGCGGAGTACGATCGAG
2365
CTCGATCGTACTCCGCGTG





NC_045512.2_19mer_win1_29770
29770
29788
1163
AATGCTAGGGAGAGCTGCC
2366
GGCAGCTCTCCCTAGCATT





NC_045512.2_19mer_win1_29771
29771
29789
1164
ATGCTAGGGAGAGCTGCCT
2367
AGGCAGCTCTCCCTAGCAT





NC_045512.2_19mer_win1_29772
29772
29790
1165
TGCTAGGGAGAGCTGCCTA
2368
TAGGCAGCTCTCCCTAGCA





NC_045512.2_19mer_win1_29773
29773
29791
1166
GCTAGGGAGAGCTGCCTAT
2369
ATAGGCAGCTCTCCCTAGC





NC_045512.2_19mer_win1_29774
29774
29792
1167
CTAGGGAGAGCTGCCTATA
2370
TATAGGCAGCTCTCCCTAG





NC_045512.2_19mer_win1_29775
29775
29793
1168
TAGGGAGAGCTGCCTATAT
2371
ATATAGGCAGCTCTCCCTA





NC_045512.2_19mer_win1_29776
29776
29794
1169
AGGGAGAGCTGCCTATATG
2372
CATATAGGCAGCTCTCCCT





NC_045512.2_19mer_win1_29777
29777
29795
1170
GGGAGAGCTGCCTATATGG
2373
CCATATAGGCAGCTCTCCC





NC_045512.2_19mer_win1_29778
29778
29796
1171
GGAGAGCTGCCTATATGGA
2374
TCCATATAGGCAGCTCTCC





NC_045512.2_19mer_win1_29779
29779
29797
1172
GAGAGCTGCCTATATGGAA
2375
TTCCATATAGGCAGCTCTC





NC_045512.2_19mer_win1_29780
29780
29798
1173
AGAGCTGCCTATATGGAAG
2376
CTTCCATATAGGCAGCTCT





NC_045512.2_19mer_win1_29781
29781
29799
1174
GAGCTGCCTATATGGAAGA
2377
TCTTCCATATAGGCAGCTC





NC_045512.2_19mer_win1_29782
29782
29800
1175
AGCTGCCTATATGGAAGAG
2378
CTCTTCCATATAGGCAGCT





NC_045512.2_19mer_win1_29783
29783
29801
1176
GCTGCCTATATGGAAGAGC
2379
GCTCTTCCATATAGGCAGC





NC_045512.2_19mer_win1_29784
29784
29802
1177
CTGCCTATATGGAAGAGCC
2380
GGCTCTTCCATATAGGCAG





NC_045512.2_19mer_win1_29785
29785
29803
1178
TGCCTATATGGAAGAGCCC
2381
GGGCTCTTCCATATAGGCA





NC_045512.2_19mer_win1_29786
29786
29804
1179
GCCTATATGGAAGAGCCCT
2382
AGGGCTCTTCCATATAGGC





NC_045512.2_19mer_win1_29787
29787
29805
1180
CCTATATGGAAGAGCCCTA
2383
TAGGGCTCTTCCATATAGG





NC_045512.2_19mer_win1_29788
29788
29806
1181
CTATATGGAAGAGCCCTAA
2384
TTAGGGCTCTTCCATATAG





NC_045512.2_19mer_win1_29789
29789
29807
1182
TATATGGAAGAGCCCTAAT
2385
ATTAGGGCTCTTCCATATA





NC_045512.2_19mer_win1_29790
29790
29808
1183
ATATGGAAGAGCCCTAATG
2386
CATTAGGGCTCTTCCATAT





NC_045512.2_19mer_win1_29791
29791
29809
1184
TATGGAAGAGCCCTAATGT
2387
ACATTAGGGCTCTTCCATA





NC_045512.2_19mer_win1_29792
29792
29810
1185
ATGGAAGAGCCCTAATGTG
2388
CACATTAGGGCTCTTCCAT





NC_045512.2_19mer_win1_29793
29793
29811
1186
TGGAAGAGCCCTAATGTGT
2389
ACACATTAGGGCTCTTCCA





NC_045512.2_19mer_win1_29794
29794
29812
1187
GGAAGAGCCCTAATGTGTA
2390
TACACATTAGGGCTCTTCC





NC_045512.2_19mer_win1_29795
29795
29813
1188
GAAGAGCCCTAATGTGTAA
2391
TTACACATTAGGGCTCTTC





NC_045512.2_19mer_win1_29796
29796
29814
1189
AAGAGCCCTAATGTGTAAA
2392
TTTACACATTAGGGCTCTT





NC_045512.2_19mer_win1_29797
29797
29815
1190
AGAGCCCTAATGTGTAAAA
2393
TTTTACACATTAGGGCTCT





NC_045512.2_19mer_win1_29798
29798
29816
1191
GAGCCCTAATGTGTAAAAT
2394
ATTTTACACATTAGGGCTC





NC_045512.2_19mer_win1_29799
29799
29817
1192
AGCCCTAATGTGTAAAATT
2395
AATTTTACACATTAGGGCT





NC_045512.2_19mer_win1_29800
29800
29818
1193
GCCCTAATGTGTAAAATTA
2396
TAATTTTACACATTAGGGC





NC_045512.2_19mer_win1_29801
29801
29819
1194
CCCTAATGTGTAAAATTAA
2397
TTAATTTTACACATTAGGG





NC_045512.2_19mer_win1_29802
29802
29820
1195
CCTAATGTGTAAAATTAAT
2398
ATTAATTTTACACATTAGG





NC_045512.2_19mer_win1_29803
29803
29821
1196
CTAATGTGTAAAATTAATT
2399
AATTAATTTTACACATTAG





NC_045512.2_19mer_win1_29804
29804
29822
1197
TAATGTGTAAAATTAATTT
2400
AAATTAATTTTACACATTA





NC_045512.2_19mer_win1_29805
29805
29823
1198
AATGTGTAAAATTAATTTT
2401
AAAATTAATTTTACACATT





NC_045512.2_19mer_win1_29806
29806
29824
1199
ATGTGTAAAATTAATTTTA
2402
TAAAATTAATTTTACACAT





NC_045512.2_19mer_win1_29807
29807
29825
1200
TGTGTAAAATTAATTTTAG
2403
CTAAAATTAATTTTACACA





NC_045512.2_19mer_win1_29808
29808
29826
1201
GTGTAAAATTAATTTTAGT
2404
ACTAAAATTAATTTTACAC





NC_045512.2_19mer_win1_29809
29809
29827
1202
TGTAAAATTAATTTTAGTA
2405
TACTAAAATTAATTTTACA





NC_045512.2_19mer_win1_29810
29810
29828
1203
GTAAAATTAATTTTAGTAG
2406
CTACTAAAATTAATTTTAC





21-mer Target Sequences











NC_045512.2_21mer_win1_00190
190
210
2411
GACGAATGCCAAAGCAGGCAC
3393
CACGGACGAAACCGTAAGCAG





NC_045512.2_21mer_win1_00191
191
211
2412
ACGAATGCCAAAGCAGGCACA
3394
ACACGGACGAAACCGTAAGCA





NC_045512.2_21mer_win1_00192
192
212
2413
CGAATGCCAAAGCAGGCACAA
3395
AACACGGACGAAACCGTAAGC





NC_045512.2_21mer_win1_00193
193
213
2414
GAATGCCAAAGCAGGCACAAC
3396
CAACACGGACGAAACCGTAAG





NC_045512.2_21mer_win1_00194
194
214
2415
AATGCCAAAGCAGGCACAACG
3397
GCAACACGGACGAAACCGTAA





NC_045512.2_21mer_win1_00195
195
215
2416
ATGCCAAAGCAGGCACAACGT
3398
TGCAACACGGACGAAACCGTA





NC_045512.2_21mer_win1_00196
196
216
2417
TGCCAAAGCAGGCACAACGTC
3399
CTGCAACACGGACGAAACCGT





NC_045512.2_21mer_win1_00233
233
253
2418
GATCCAAAGCAGGCCCACACT
3400
TCACACCCGGACGAAACCTAG





NC_045512.2_21mer_win1_00234
234
254
2419
ATCCAAAGCAGGCCCACACTG
3401
GTCACACCCGGACGAAACCTA





NC_045512.2_21mer_win1_00235
235
255
2420
TCCAAAGCAGGCCCACACTGG
3402
GGTCACACCCGGACGAAACCT





NC_045512.2_21mer_win1_00236
236
256
2421
CCAAAGCAGGCCCACACTGGC
3403
CGGTCACACCCGGACGAAACC





NC_045512.2_21mer_win1_00237
237
257
2422
CAAAGCAGGCCCACACTGGCT
3404
TCGGTCACACCCGGACGAAAC





NC_045512.2_21mer_win1_00238
238
258
2423
AAAGCAGGCCCACACTGGCTT
3405
TTCGGTCACACCCGGACGAAA





NC_045512.2_21mer_win1_00239
239
259
2424
AAGCAGGCCCACACTGGCTTT
3406
TTTCGGTCACACCCGGACGAA





NC_045512.2_21mer_win1_00240
240
260
2425
AGCAGGCCCACACTGGCTTTC
3407
CTTTCGGTCACACCCGGACGA





NC_045512.2_21mer_win1_00241
241
261
2426
GCAGGCCCACACTGGCTTTCC
3408
CCTTTCGGTCACACCCGGACG





NC_045512.2_21mer_win1_00242
242
262
2427
CAGGCCCACACTGGCTTTCCA
3409
ACCTTTCGGTCACACCCGGAC





NC_045512.2_21mer_win1_00243
243
263
2428
AGGCCCACACTGGCTTTCCAT
3410
TACCTTTCGGTCACACCCGGA





NC_045512.2_21mer_win1_00244
244
264
2429
GGCCCACACTGGCTTTCCATT
3411
TTACCTTTCGGTCACACCCGG





NC_045512.2_21mer_win1_00245
245
265
2430
GCCCACACTGGCTTTCCATTC
3412
CTTACCTTTCGGTCACACCCG





NC_045512.2_21mer_win1_00246
246
266
2431
CCCACACTGGCTTTCCATTCT
3413
TCTTACCTTTCGGTCACACCC





NC_045512.2_21mer_win1_00247
247
267
2432
CCACACTGGCTTTCCATTCTA
3414
ATCTTACCTTTCGGTCACACC





NC_045512.2_21mer_win1_00248
248
268
2433
CACACTGGCTTTCCATTCTAC
3415
CATCTTACCTTTCGGTCACAC





NC_045512.2_21mer_win1_00249
249
269
2434
ACACTGGCTTTCCATTCTACC
3416
CCATCTTACCTTTCGGTCACA





NC_045512.2_21mer_win1_00250
250
270
2435
CACTGGCTTTCCATTCTACCT
3417
TCCATCTTACCTTTCGGTCAC





NC_045512.2_21mer_win1_00251
251
271
2436
ACTGGCTTTCCATTCTACCTC
3418
CTCCATCTTACCTTTCGGTCA





NC_045512.2_21mer_win1_00252
252
272
2437
CTGGCTTTCCATTCTACCTCT
3419
TCTCCATCTTACCTTTCGGTC





NC_045512.2_21mer_win1_00253
253
273
2438
TGGCTTTCCATTCTACCTCTC
3420
CTCTCCATCTTACCTTTCGGT





NC_045512.2_21mer_win1_00254
254
274
2439
GGCTTTCCATTCTACCTCTCG
3421
GCTCTCCATCTTACCTTTCGG





NC_045512.2_21mer_win1_00255
255
275
2440
GCTTTCCATTCTACCTCTCGG
3422
GGCTCTCCATCTTACCTTTCG





NC_045512.2_21mer_win1_00256
256
276
2441
CTTTCCATTCTACCTCTCGGA
3423
AGGCTCTCCATCTTACCTTTC





NC_045512.2_21mer_win1_00257
257
277
2442
TTTCCATTCTACCTCTCGGAA
3424
AAGGCTCTCCATCTTACCTTT





NC_045512.2_21mer_win1_00258
258
278
2443
TTCCATTCTACCTCTCGGAAC
3425
CAAGGCTCTCCATCTTACCTT





NC_045512.2_21mer_win1_00259
259
279
2444
TCCATTCTACCTCTCGGAACA
3426
ACAAGGCTCTCCATCTTACCT





NC_045512.2_21mer_win1_00288
288
308
2445
AGTTGCTCTTTTGTGTGCAGG
3427
GGACGTGTGTTTTCTCGTTGA





NC_045512.2_21mer_win1_00289
289
309
2446
GTTGCTCTTTTGTGTGCAGGT
3428
TGGACGTGTGTTTTCTCGTTG





NC_045512.2_21mer_win1_00290
290
310
2447
TTGCTCTTTTGTGTGCAGGTT
3429
TTGGACGTGTGTTTTCTCGTT





NC_045512.2_21mer_win1_00291
291
311
2448
TGCTCTTTTGTGTGCAGGTTG
3430
GTTGGACGTGTGTTTTCTCGT





NC_045512.2_21mer_win1_00292
292
312
2449
GCTCTTTTGTGTGCAGGTTGA
3431
AGTTGGACGTGTGTTTTCTCG





NC_045512.2_21mer_win1_00293
293
313
2450
CTCTTTTGTGTGCAGGTTGAG
3432
GAGTTGGACGTGTGTTTTCTC





NC_045512.2_21mer_win1_00294
294
314
2451
TCTTTTGTGTGCAGGTTGAGT
3433
TGAGTTGGACGTGTGTTTTCT





NC_045512.2_21mer_win1_00295
295
315
2452
CTTTTGTGTGCAGGTTGAGTC
3434
CTGAGTTGGACGTGTGTTTTC





NC_045512.2_21mer_win1_00296
296
316
2453
TTTTGTGTGCAGGTTGAGTCA
3435
ACTGAGTTGGACGTGTGTTTT





NC_045512.2_21mer_win1_00297
297
317
2454
TTTGTGTGCAGGTTGAGTCAA
3436
AACTGAGTTGGACGTGTGTTT





NC_045512.2_21mer_win1_00298
298
318
2455
TTGTGTGCAGGTTGAGTCAAA
3437
AAACTGAGTTGGACGTGTGTT





NC_045512.2_21mer_win1_00299
299
319
2456
TGTGTGCAGGTTGAGTCAAAC
3438
CAAACTGAGTTGGACGTGTGT





NC_045512.2_21mer_win1_00300
300
320
2457
GTGTGCAGGTTGAGTCAAACG
3439
GCAAACTGAGTTGGACGTGTG





NC_045512.2_21mer_win1_00301
301
321
2458
TGTGCAGGTTGAGTCAAACGG
3440
GGCAAACTGAGTTGGACGTGT





NC_045512.2_21mer_win1_00302
302
322
2459
GTGCAGGTTGAGTCAAACGGA
3441
AGGCAAACTGAGTTGGACGTG





NC_045512.2_21mer_win1_00303
303
323
2460
TGCAGGTTGAGTCAAACGGAC
3442
CAGGCAAACTGAGTTGGACGT





NC_045512.2_21mer_win1_00304
304
324
2461
GCAGGTTGAGTCAAACGGACA
3443
ACAGGCAAACTGAGTTGGACG





NC_045512.2_21mer_win1_00455
455
475
2462
GAACTTGTCGGGATACACAAG
3444
GAACACATAGGGCTGTTCAAG





NC_045512.2_21mer_win1_00456
456
476
2463
AACTTGTCGGGATACACAAGT
3445
TGAACACATAGGGCTGTTCAA





NC_045512.2_21mer_win1_00457
457
477
2464
ACTTGTCGGGATACACAAGTA
3446
ATGAACACATAGGGCTGTTCA





NC_045512.2_21mer_win1_00626
626
646
2465
CAAGAAGAAGCATTCTTGCCA
3447
ACCGTTCTTACGAAGAAGAAC





NC_045512.2_21mer_win1_00627
627
647
2466
AAGAAGAAGCATTCTTGCCAT
3448
TACCGTTCTTACGAAGAAGAA





NC_045512.2_21mer_win1_00628
628
648
2467
AGAAGAAGCATTCTTGCCATT
3449
TTACCGTTCTTACGAAGAAGA





NC_045512.2_21mer_win1_00629
629
649
2468
GAAGAAGCATTCTTGCCATTA
3450
ATTACCGTTCTTACGAAGAAG





NC_045512.2_21mer_win1_00630
630
650
2469
AAGAAGCATTCTTGCCATTAT
3451
TATTACCGTTCTTACGAAGAA





NC_045512.2_21mer_win1_00631
631
651
2470
AGAAGCATTCTTGCCATTATT
3452
TTATTACCGTTCTTACGAAGA





NC_045512.2_21mer_win1_03352
3352
3372
2471
ACCAATAAATTTTGAATGACT
3453
TCAGTAAGTTTTAAATAACCA





NC_045512.2_21mer_win1_03353
3353
3373
2472
CCAATAAATTTTGAATGACTG
3454
GTCAGTAAGTTTTAAATAACC





NC_045512.2_21mer_win1_03354
3354
3374
2473
CAATAAATTTTGAATGACTGT
3455
TGTCAGTAAGTTTTAAATAAC





NC_045512.2_21mer_win1_03355
3355
3375
2474
AATAAATTTTGAATGACTGTT
3456
TTGTCAGTAAGTTTTAAATAA





NC_045512.2_21mer_win1_03356
3356
3376
2475
ATAAATTTTGAATGACTGTTA
3457
ATTGTCAGTAAGTTTTAAATA





NC_045512.2_21mer_win1_03357
3357
3377
2476
TAAATTTTGAATGACTGTTAC
3458
CATTGTCAGTAAGTTTTAAAT





NC_045512.2_21mer_win1_03358
3358
3378
2477
AAATTTTGAATGACTGTTACA
3459
ACATTGTCAGTAAGTTTTAAA





NC_045512.2_21mer_win1_06406
6406
6426
2478
GAGACTTCTTCATCACCTTTT
3460
TTTTCCACTACTTCTTCAGAG





NC_045512.2_21mer_win1_06407
6407
6427
2479
AGACTTCTTCATCACCTTTTA
3461
ATTTTCCACTACTTCTTCAGA





NC_045512.2_21mer_win1_06408
6408
6428
2480
GACTTCTTCATCACCTTTTAG
3462
GATTTTCCACTACTTCTTCAG





NC_045512.2_21mer_win1_06409
6409
6429
2481
ACTTCTTCATCACCTTTTAGG
3463
GGATTTTCCACTACTTCTTCA





NC_045512.2_21mer_win1_06410
6410
6430
2482
CTTCTTCATCACCTTTTAGGA
3464
AGGATTTTCCACTACTTCTTC





NC_045512.2_21mer_win1_06411
6411
6431
2483
TTCTTCATCACCTTTTAGGAT
3465
TAGGATTTTCCACTACTTCTT





NC_045512.2_21mer_win1_06412
6412
6432
2484
TCTTCATCACCTTTTAGGATG
3466
GTAGGATTTTCCACTACTTCT





NC_045512.2_21mer_win1_06413
6413
6433
2485
CTTCATCACCTTTTAGGATGG
3467
GGTAGGATTTTCCACTACTTC





NC_045512.2_21mer_win1_06461
6461
6481
2486
CACTTTTGATGGCTTCAACAT
3468
TACAACTTCGGTAGTTTTCAC





NC_045512.2_21mer_win1_06462
6462
6482
2487
ACTTTTGATGGCTTCAACATC
3469
CTACAACTTCGGTAGTTTTCA





NC_045512.2_21mer_win1_06463
6463
6483
2488
CTTTTGATGGCTTCAACATCC
3470
CCTACAACTTCGGTAGTTTTC





NC_045512.2_21mer_win1_10484
10484
10504
2489
AGTACACCATCACAACCAAAA
3471
AAAACCAACACTACCACATGA





NC_045512.2_21mer_win1_10485
10485
10505
2490
GTACACCATCACAACCAAAAT
3472
TAAAACCAACACTACCACATG





NC_045512.2_21mer_win1_10486
10486
10506
2491
TACACCATCACAACCAAAATT
3473
TTAAAACCAACACTACCACAT





NC_045512.2_21mer_win1_10487
10487
10507
2492
ACACCATCACAACCAAAATTG
3474
GTTAAAACCAACACTACCACA





NC_045512.2_21mer_win1_10488
10488
10508
2493
CACCATCACAACCAAAATTGT
3475
TGTTAAAACCAACACTACCAC





NC_045512.2_21mer_win1_10489
10489
10509
2494
ACCATCACAACCAAAATTGTA
3476
ATGTTAAAACCAACACTACCA





NC_045512.2_21mer_win1_11609
11609
11629
2495
CAAATAACAAAGAATCCGATA
3477
ATAGCCTAAGAAACAATAAAC





NC_045512.2_21mer_win1_11610
11610
11630
2496
AAATAACAAAGAATCCGATAA
3478
AATAGCCTAAGAAACAATAAA





NC_045512.2_21mer_win1_12023
12023
12043
2497
AGGTACGTCCCACGACATCTG
3479
GTCTACAGCACCCTGCATGGA





NC_045512.2_21mer_win1_12024
12024
12044
2498
GGTACGTCCCACGACATCTGT
3480
TGTCTACAGCACCCTGCATGG





NC_045512.2_21mer_win1_12025
12025
12045
2499
GTACGTCCCACGACATCTGTA
3481
ATGTCTACAGCACCCTGCATG





NC_045512.2_21mer_win1_12212
12212
12232
2500
AGAAACTTACACCGATTTAGA
3482
AGATTTAGCCACATTCAAAGA





NC_045512.2_21mer_win1_12213
12213
12233
2501
GAAACTTACACCGATTTAGAC
3483
CAGATTTAGCCACATTCAAAG





NC_045512.2_21mer_win1_12214
12214
12234
2502
AAACTTACACCGATTTAGACT
3484
TCAGATTTAGCCACATTCAAA





NC_045512.2_21mer_win1_12839
12839
12859
2503
TTTACCCGATCTAAGGGATTC
3485
CTTAGGGAATCTAGCCCATTT





NC_045512.2_21mer_win1_12840
12840
12860
2504
TTACCCGATCTAAGGGATTCT
3486
TCTTAGGGAATCTAGCCCATT





NC_045512.2_21mer_win1_12841
12841
12861
2505
TACCCGATCTAAGGGATTCTC
3487
CTCTTAGGGAATCTAGCCCAT





NC_045512.2_21mer_win1_12842
12842
12862
2506
ACCCGATCTAAGGGATTCTCA
3488
ACTCTTAGGGAATCTAGCCCA





NC_045512.2_21mer_win1_12843
12843
12863
2507
CCCGATCTAAGGGATTCTCAC
3489
CACTCTTAGGGAATCTAGCCC





NC_045512.2_21mer_win1_12844
12844
12864
2508
CCGATCTAAGGGATTCTCACT
3490
TCACTCTTAGGGAATCTAGCC





NC_045512.2_21mer_win1_12845
12845
12865
2509
CGATCTAAGGGATTCTCACTA
3491
ATCACTCTTAGGGAATCTAGC





NC_045512.2_21mer_win1_12846
12846
12866
2510
GATCTAAGGGATTCTCACTAC
3492
CATCACTCTTAGGGAATCTAG





NC_045512.2_21mer_win1_12847
12847
12867
2511
ATCTAAGGGATTCTCACTACC
3493
CCATCACTCTTAGGGAATCTA





NC_045512.2_21mer_win1_12885
12885
12905
2512
GTCTTGACCTTGGTGGAACAT
3494
TACAAGGTGGTTCCAGTTCTG





NC_045512.2_21mer_win1_12886
12886
12906
2513
TCTTGACCTTGGTGGAACATC
3495
CTACAAGGTGGTTCCAGTTCT





NC_045512.2_21mer_win1_12887
12887
12907
2514
CTTGACCTTGGTGGAACATCC
3496
CCTACAAGGTGGTTCCAGTTC





NC_045512.2_21mer_win1_12888
12888
12908
2515
TTGACCTTGGTGGAACATCCA
3497
ACCTACAAGGTGGTTCCAGTT





NC_045512.2_21mer_win1_12889
12889
12909
2516
TGACCTTGGTGGAACATCCAA
3498
AACCTACAAGGTGGTTCCAGT





NC_045512.2_21mer_win1_12890
12890
12910
2517
GACCTTGGTGGAACATCCAAA
3499
AAACCTACAAGGTGGTTCCAG





NC_045512.2_21mer_win1_12891
12891
12911
2518
ACCTTGGTGGAACATCCAAAC
3500
CAAACCTACAAGGTGGTTCCA





NC_045512.2_2lmer_win1_12892
12892
12912
2519
CCTTGGTGGAACATCCAAACA
3501
ACAAACCTACAAGGTGGTTCC





NC_045512.2_2lmer_win1_12893
12893
12913
2520
CTTGGTGGAACATCCAAACAA
3502
AACAAACCTACAAGGTGGTTC





NC_045512.2_2lmer_win1_12894
12894
12914
2521
TTGGTGGAACATCCAAACAAT
3503
TAACAAACCTACAAGGTGGTT





NC_045512.2_2lmer_win1_12895
12895
12915
2522
TGGTGGAACATCCAAACAATG
3504
GTAACAAACCTACAAGGTGGT





NC_045512.2_2lmer_win1_12896
12896
12916
2523
GGTGGAACATCCAAACAATGT
3505
TGTAACAAACCTACAAGGTGG





NC_045512.2_2lmer_win1_12897
12897
12917
2524
GTGGAACATCCAAACAATGTC
3506
CTGTAACAAACCTACAAGGTG





NC_045512.2_2lmer_win1_12898
12898
12918
2525
TGGAACATCCAAACAATGTCT
3507
TCTGTAACAAACCTACAAGGT





NC_045512.2_2lmer_win1_12899
12899
12919
2526
GGAACATCCAAACAATGTCTG
3508
GTCTGTAACAAACCTACAAGG





NC_045512.2_21mer_win1_12900
12900
12920
2527
GAACATCCAAACAATGTCTGT
3509
TGTCTGTAACAAACCTACAAG





NC_045512.2_2lmer_win1_12901
12901
12921
2528
AACATCCAAACAATGTCTGTG
3510
GTGTCTGTAACAAACCTACAA





NC_045512.2_2lmer_win1_12902
12902
12922
2529
ACATCCAAACAATGTCTGTGT
3511
TGTGTCTGTAACAAACCTACA





NC_045512.2_2lmer_win1_12903
12903
12923
2530
CATCCAAACAATGTCTGTGTG
3512
GTGTGTCTGTAACAAACCTAC





NC_045512.2_2lmer_win1_12904
12904
12924
2531
ATCCAAACAATGTCTGTGTGG
3513
GGTGTGTCTGTAACAAACCTA





NC_045512.2_2lmer_win1_12966
12966
12986
2532
ATTTGTTGGATTTATCTCCAT
3514
TACCTCTATTTAGGTTGTTTA





NC_045512.2_2lmer_win1_12967
12967
12987
2533
TTTGTTGGATTTATCTCCATA
3515
ATACCTCTATTTAGGTTGTTT





NC_045512.2_2lmer_win1_12968
12968
12988
2534
TTGTTGGATTTATCTCCATAC
3516
CATACCTCTATTTAGGTTGTT





NC_045512.2_2lmer_win1_12969
12969
12989
2535
TGTTGGATTTATCTCCATACC
3517
CCATACCTCTATTTAGGTTGT





NC_045512.2_2lmer_win1_12970
12970
12990
2536
GTTGGATTTATCTCCATACCA
3518
ACCATACCTCTATTTAGGTTG





NC_045512.2_2lmer_win1_13151
13151
13171
2537
TTCTACAACACATGTGTGTGA
3519
AGTGTGTGTACACAACATCTT





NC_045512.2_2lmer_win1_13152
13152
13172
2538
TCTACAACACATGTGTGTGAC
3520
CAGTGTGTGTACACAACATCT





NC_045512.2_2lmer_win1_13153
13153
13173
2539
CTACAACACATGTGTGTGACC
3521
CCAGTGTGTGTACACAACATC





NC_045512.2_2lmer_win1_13154
13154
13174
2540
TACAACACATGTGTGTGACCA
3522
ACCAGTGTGTGTACACAACAT





NC_045512.2_2lmer_win1_13155
13155
13175
2541
ACAACACATGTGTGTGACCAT
3523
TACCAGTGTGTGTACACAACA





NC_045512.2_21mer_win1_13156
13156
13176
2542
CAACACATGTGTGTGACCATG
3524
GTACCAGTGTGTGTACACAAC





NC_045512.2_21mer_win1_13363
13363
13383
2543
TTTGTGTCAGACATGGCAGAC
3525
CAGACGGTACAGACTGTGTTT





NC_045512.2_21mer_win1_13364
13364
13384
2544
TTGTGTCAGACATGGCAGACG
3526
GCAGACGGTACAGACTGTGTT





NC_045512.2_21mer_win1_13365
13365
13385
2545
TGTGTCAGACATGGCAGACGC
3527
CGCAGACGGTACAGACTGTGT





NC_045512.2_21mer_win1_13366
13366
13386
2546
GTGTCAGACATGGCAGACGCC
3528
CCGCAGACGGTACAGACTGTG





NC_045512.2_21mer_win1_13388
13388
13408
2547
TACACCTTTCCAATACCGACA
3529
ACAGCCATAACCTTTCCACAT





NC_045512.2_21mer_win1_13389
13389
13409
2548
ACACCTTTCCAATACCGACAT
3530
TACAGCCATAACCTTTCCACA





NC_045512.2_21mer_win1_13390
13390
13410
2549
CACCTTTCCAATACCGACATC
3531
CTACAGCCATAACCTTTCCAC





NC_045512.2_21mer_win1_13391
13391
13411
2550
ACCTTTCCAATACCGACATCA
3532
ACTACAGCCATAACCTTTCCA





NC_045512.2_21mer_win1_13392
13392
13412
2551
CCTTTCCAATACCGACATCAA
3533
AACTACAGCCATAACCTTTCC





NC_045512.2_21mer_win1_13393
13393
13413
2552
CTTTCCAATACCGACATCAAC
3534
CAACTACAGCCATAACCTTTC





NC_045512.2_21mer_win1_13394
13394
13414
2553
TTTCCAATACCGACATCAACA
3535
ACAACTACAGCCATAACCTTT





NC_045512.2_21mer_win1_13395
13395
13415
2554
TTCCAATACCGACATCAACAC
3536
CACAACTACAGCCATAACCTT





NC_045512.2_21mer_win1_13396
13396
13416
2555
TCCAATACCGACATCAACACT
3537
TCACAACTACAGCCATAACCT





NC_045512.2_21mer_win1_13458
13458
13478
2556
GCAAAAATTTGCCCAAACGCC
3538
CCGCAAACCCGTTTAAAAACG





NC_045512.2_21mer_win1_13459
13459
13479
2557
CAAAAATTTGCCCAAACGCCA
3539
ACCGCAAACCCGTTTAAAAAC





NC_045512.2_21mer_win1_13460
13460
13480
2558
AAAAATTTGCCCAAACGCCAC
3540
CACCGCAAACCCGTTTAAAAA





NC_045512.2_21mer_win1_13461
13461
13481
2559
AAAATTTGCCCAAACGCCACA
3541
ACACCGCAAACCCGTTTAAAA





NC_045512.2_21mer_win1_13462
13462
13482
2560
AAATTTGCCCAAACGCCACAT
3542
TACACCGCAAACCCGTTTAAA





NC_045512.2_21mer_win1_13463
13463
13483
2561
AATTTGCCCAAACGCCACATT
3543
TTACACCGCAAACCCGTTTAA





NC_045512.2_21mer_win1_13464
13464
13484
2562
ATTTGCCCAAACGCCACATTC
3544
CTTACACCGCAAACCCGTTTA





NC_045512.2_21mer_win1_13465
13465
13485
2563
TTTGCCCAAACGCCACATTCA
3545
ACTTACACCGCAAACCCGTTT





NC_045512.2_21mer_win1_13466
13466
13486
2564
TTGCCCAAACGCCACATTCAC
3546
CACTTACACCGCAAACCCGTT





NC_045512.2_21mer_win1_13467
13467
13487
2565
TGCCCAAACGCCACATTCACG
3547
GCACTTACACCGCAAACCCGT





NC_045512.2_21mer_win1_13468
13468
13488
2566
GCCCAAACGCCACATTCACGT
3548
TGCACTTACACCGCAAACCCG





NC_045512.2_21mer_win1_13469
13469
13489
2567
CCCAAACGCCACATTCACGTC
3549
CTGCACTTACACCGCAAACCC





NC_045512.2_21mer_win1_13470
13470
13490
2568
CCAAACGCCACATTCACGTCG
3550
GCTGCACTTACACCGCAAACC





NC_045512.2_21mer_win1_13471
13471
13491
2569
CAAACGCCACATTCACGTCGG
3551
GGCTGCACTTACACCGCAAAC





NC_045512.2_21mer_win1_13472
13472
13492
2570
AAACGCCACATTCACGTCGGG
3552
GGGCTGCACTTACACCGCAAA





NC_045512.2_21mer_win1_13473
13473
13493
2571
AACGCCACATTCACGTCGGGC
3553
CGGGCTGCACTTACACCGCAA





NC_045512.2_21mer_win1_13474
13474
13494
2572
ACGCCACATTCACGTCGGGCA
3554
ACGGGCTGCACTTACACCGCA





NC_045512.2_21mer_win1_13475
13475
13495
2573
CGCCACATTCACGTCGGGCAG
3555
GACGGGCTGCACTTACACCGC





NC_045512.2_21mer_win1_13476
13476
13496
2574
GCCACATTCACGTCGGGCAGA
3556
AGACGGGCTGCACTTACACCG





NC_045512.2_21mer_win1_13477
13477
13497
2575
CCACATTCACGTCGGGCAGAA
3557
AAGACGGGCTGCACTTACACC





NC_045512.2_21mer_win1_13478
13478
13498
2576
CACATTCACGTCGGGCAGAAT
3558
TAAGACGGGCTGCACTTACAC





NC_045512.2_21mer_win1_13479
13479
13499
2577
ACATTCACGTCGGGCAGAATG
3559
GTAAGACGGGCTGCACTTACA





NC_045512.2_21mer_win1_13480
13480
13500
2578
CATTCACGTCGGGCAGAATGT
3560
TGTAAGACGGGCTGCACTTAC





NC_045512.2_21mer_win1_13481
13481
13501
2579
ATTCACGTCGGGCAGAATGTG
3561
GTGTAAGACGGGCTGCACTTA





NC_045512.2_21mer_win1_13482
13482
13502
2580
TTCACGTCGGGCAGAATGTGG
3562
GGTGTAAGACGGGCTGCACTT





NC_045512.2_21mer_win1_13483
13483
13503
2581
TCACGTCGGGCAGAATGTGGC
3563
CGGTGTAAGACGGGCTGCACT





NC_045512.2_21mer_win1_13484
13484
13504
2582
CACGTCGGGCAGAATGTGGCA
3564
ACGGTGTAAGACGGGCTGCAC





NC_045512.2_21mer_win1_13485
13485
13505
2583
ACGTCGGGCAGAATGTGGCAC
3565
CACGGTGTAAGACGGGCTGCA





NC_045512.2_21mer_win1_13486
13486
13506
2584
CGTCGGGCAGAATGTGGCACG
3566
GCACGGTGTAAGACGGGCTGC





NC_045512.2_21mer_win1_13487
13487
13507
2585
GTCGGGCAGAATGTGGCACGC
3567
CGCACGGTGTAAGACGGGCTG





NC_045512.2_21mer_win1_13488
13488
13508
2586
TCGGGCAGAATGTGGCACGCC
3568
CCGCACGGTGTAAGACGGGCT





NC_045512.2_21mer_win1_13489
13489
13509
2587
CGGGCAGAATGTGGCACGCCG
3569
GCCGCACGGTGTAAGACGGGC





NC_045512.2_21mer_win1_13490
13490
13510
2588
GGGCAGAATGTGGCACGCCGT
3570
TGCCGCACGGTGTAAGACGGG





NC_045512.2_21mer_win1_13491
13491
13511
2589
GGCAGAATGTGGCACGCCGTG
3571
GTGCCGCACGGTGTAAGACGG





NC_045512.2_21mer_win1_13492
13492
13512
2590
GCAGAATGTGGCACGCCGTGT
3572
TGTGCCGCACGGTGTAAGACG





NC_045512.2_21mer_win1_13493
13493
13513
2591
CAGAATGTGGCACGCCGTGTC
3573
CTGTGCCGCACGGTGTAAGAC





NC_045512.2_21mer_win1_13494
13494
13514
2592
AGAATGTGGCACGCCGTGTCC
3574
CCTGTGCCGCACGGTGTAAGA





NC_045512.2_21mer_win1_13495
13495
13515
2593
GAATGTGGCACGCCGTGTCCG
3575
GCCTGTGCCGCACGGTGTAAG





NC_045512.2_21mer_win1_13496
13496
13516
2594
AATGTGGCACGCCGTGTCCGT
3576
TGCCTGTGCCGCACGGTGTAA





NC_045512.2_21mer_win1_13497
13497
13517
2595
ATGTGGCACGCCGTGTCCGTG
3577
GTGCCTGTGCCGCACGGTGTA





NC_045512.2_21mer_win1_13498
13498
13518
2596
TGTGGCACGCCGTGTCCGTGA
3578
AGTGCCTGTGCCGCACGGTGT





NC_045512.2_21mer_win1_13499
13499
13519
2597
GTGGCACGCCGTGTCCGTGAT
3579
TAGTGCCTGTGCCGCACGGTG





NC_045512.2_21mer_win1_13500
13500
13520
2598
TGGCACGCCGTGTCCGTGATC
3580
CTAGTGCCTGTGCCGCACGGT





NC_045512.2_21mer_win1_13762
13762
13782
2599
CCACTGTACCATGGTGTATAT
3581
TATATGTGGTACCATGTCACC





NC_045512.2_21mer_win1_13763
13763
13783
2600
CACTGTACCATGGTGTATATA
3582
ATATATGTGGTACCATGTCAC





NC_045512.2_21mer_win1_13764
13764
13784
2601
ACTGTACCATGGTGTATATAG
3583
GATATATGTGGTACCATGTCA





NC_045512.2_21mer_win1_13765
13765
13785
2602
CTGTACCATGGTGTATATAGT
3584
TGATATATGTGGTACCATGTC





NC_045512.2_21mer_win1_13766
13766
13786
2603
TGTACCATGGTGTATATAGTG
3585
GTGATATATGTGGTACCATGT





NC_045512.2_21mer_win1_13767
13767
13787
2604
GTACCATGGTGTATATAGTGC
3586
CGTGATATATGTGGTACCATG





NC_045512.2_21mer_win1_13768
13768
13788
2605
TACCATGGTGTATATAGTGCA
3587
ACGTGATATATGTGGTACCAT





NC_045512.2_21mer_win1_13769
13769
13789
2606
ACCATGGTGTATATAGTGCAG
3588
GACGTGATATATGTGGTACCA





NC_045512.2_21mer_win1_13770
13770
13790
2607
CCATGGTGTATATAGTGCAGT
3589
TGACGTGATATATGTGGTACC





NC_045512.2_21mer_win1_14290
14290
14310
2608
CTGGCAATAAAATTTATAACC
3590
CCAATATTTAAAATAACGGTC





NC_045512.2_21mer_win1_14291
14291
14311
2609
TGGCAATAAAATTTATAACCC
3591
CCCAATATTTAAAATAACGGT





NC_045512.2_21mer_win1_14292
14292
14312
2610
GGCAATAAAATTTATAACCCT
3592
TCCCAATATTTAAAATAACGG





NC_045512.2_21mer_win1_14404
14404
14424
2611
GGTGGATGTTCAAAACCTGGT
3593
TGGTCCAAAACTTGTAGGTGG





NC_045512.2_2lmer_win1_14405
14405
14425
2612
GTGGATGTTCAAAACCTGGTG
3594
GTGGTCCAAAACTTGTAGGTG





NC_045512.2_21mer_win1_14406
14406
14426
2613
TGGATGTTCAAAACCTGGTGA
3595
AGTGGTCCAAAACTTGTAGGT





NC_045512.2_21mer_win1_14407
14407
14427
2614
GGATGTTCAAAACCTGGTGAT
3596
TAGTGGTCCAAAACTTGTAGG





NC_045512.2_2lmer_win1_14408
14408
14428
2615
GATGTTCAAAACCTGGTGATC
3597
CTAGTGGTCCAAAACTTGTAG





NC_045512.2_2lmer_win1_14409
14409
14429
2616
ATGTTCAAAACCTGGTGATCA
3598
ACTAGTGGTCCAAAACTTGTA





NC_045512.2_2lmer_win1_14500
14500
14520
2617
CATGTATTAGTCCTACATTTG
3599
GTTTACATCCTGATTATGTAC





NC_045512.2_2lmer_win1_14501
14501
14521
2618
ATGTATTAGTCCTACATTTGA
3600
AGTTTACATCCTGATTATGTA





NC_045512.2_2lmer_win1_14502
14502
14522
2619
TGTATTAGTCCTACATTTGAA
3601
AAGTTTACATCCTGATTATGT





NC_045512.2_2lmer_win1_14503
14503
14523
2620
GTATTAGTCCTACATTTGAAT
3602
TAAGTTTACATCCTGATTATG





NC_045512.2_2lmer_win1_14504
14504
14524
2621
TATTAGTCCTACATTTGAATG
3603
GTAAGTTTACATCCTGATTAT





NC_045512.2_2lmer_win1_14505
14505
14525
2622
ATTAGTCCTACATTTGAATGT
3604
TGTAAGTTTACATCCTGATTA





NC_045512.2_2lmer_win1_14506
14506
14526
2623
TTAGTCCTACATTTGAATGTA
3605
ATGTAAGTTTACATCCTGATT





NC_045512.2_2lmer_win1_14507
14507
14527
2624
TAGTCCTACATTTGAATGTAT
3606
TATGTAAGTTTACATCCTGAT





NC_045512.2_2lmer_win1_14508
14508
14528
2625
AGTCCTACATTTGAATGTATC
3607
CTATGTAAGTTTACATCCTGA





NC_045512.2_2lmer_win1_14509
14509
14529
2626
GTCCTACATTTGAATGTATCG
3608
GCTATGTAAGTTTACATCCTG





NC_045512.2_2lmer_win1_14510
14510
14530
2627
TCCTACATTTGAATGTATCGA
3609
AGCTATGTAAGTTTACATCCT





NC_045512.2_2lmer_win1_14511
14511
14531
2628
CCTACATTTGAATGTATCGAG
3610
GAGCTATGTAAGTTTACATCC





NC_045512.2_2lmer_win1_14650
14650
14670
2629
TTACAACGAAAAGTTTGACAG
3611
GACAGTTTGAAAAGCAACATT





NC_045512.2_2lmer_win1_14651
14651
14671
2630
TACAACGAAAAGTTTGACAGT
3612
TGACAGTTTGAAAAGCAACAT





NC_045512.2_2lmer_win1_14652
14652
14672
2631
ACAACGAAAAGTTTGACAGTT
3613
TTGACAGTTTGAAAAGCAACA





NC_045512.2_2lmer_win1_14653
14653
14673
2632
CAACGAAAAGTTTGACAGTTT
3614
TTTGACAGTTTGAAAAGCAAC





NC_045512.2_2lmer_win1_14654
14654
14674
2633
AACGAAAAGTTTGACAGTTTG
3615
GTTTGACAGTTTGAAAAGCAA





NC_045512.2_21mer_win1_14655
14655
14675
2634
ACGAAAAGTTTGACAGTTTGG
3616
GGTTTGACAGTTTGAAAAGCA





NC_045512.2_21mer_win1_14656
14656
14676
2635
CGAAAAGTTTGACAGTTTGGG
3617
GGGTTTGACAGTTTGAAAAGC





NC_045512.2_21mer_win1_14657
14657
14677
2636
GAAAAGTTTGACAGTTTGGGC
3618
CGGGTTTGACAGTTTGAAAAG





NC_045512.2_21mer_win1_14658
14658
14678
2637
AAAAGTTTGACAGTTTGGGCC
3619
CCGGGTTTGACAGTTTGAAAA





NC_045512.2_21mer_win1_14659
14659
14679
2638
AAAGTTTGACAGTTTGGGCCA
3620
ACCGGGTTTGACAGTTTGAAA





NC_045512.2_21mer_win1_14660
14660
14680
2639
AAGTTTGACAGTTTGGGCCAT
3621
TACCGGGTTTGACAGTTTGAA





NC_045512.2_21mer_win1_14661
14661
14681
2640
AGTTTGACAGTTTGGGCCATT
3622
TTACCGGGTTTGACAGTTTGA





NC_045512.2_21mer_win1_14662
14662
14682
2641
GTTTGACAGTTTGGGCCATTA
3623
ATTACCGGGTTTGACAGTTTG





NC_045512.2_21mer_win1_14663
14663
14683
2642
TTTGACAGTTTGGGCCATTAA
3624
AATTACCGGGTTTGACAGTTT





NC_045512.2_21mer_win1_14664
14664
14684
2643
TTGACAGTTTGGGCCATTAAA
3625
AAATTACCGGGTTTGACAGTT





NC_045512.2_21mer_win1_14665
14665
14685
2644
TGACAGTTTGGGCCATTAAAA
3626
AAAATTACCGGGTTTGACAGT





NC_045512.2_21mer_win1_14666
14666
14686
2645
GACAGTTTGGGCCATTAAAAT
3627
TAAAATTACCGGGTTTGACAG





NC_045512.2_21mer_win1_14667
14667
14687
2646
ACAGTTTGGGCCATTAAAATT
3628
TTAAAATTACCGGGTTTGACA





NC_045512.2_21mer_win1_14722
14722
14742
2647
AAGAAATTCCTTCCTTCAAGA
3629
AGAACTTCCTTCCTTAAAGAA





NC_045512.2_21mer_win1_14723
14723
14743
2648
AGAAATTCCTTCCTTCAAGAC
3630
CAGAACTTCCTTCCTTAAAGA





NC_045512.2_21mer_win1_14724
14724
14744
2649
GAAATTCCTTCCTTCAAGACA
3631
ACAGAACTTCCTTCCTTAAAG





NC_045512.2_21mer_win1_14725
14725
14745
2650
AAATTCCTTCCTTCAAGACAA
3632
AACAGAACTTCCTTCCTTAAA





NC_045512.2_21mer_win1_14726
14726
14746
2651
AATTCCTTCCTTCAAGACAAC
3633
CAACAGAACTTCCTTCCTTAA





NC_045512.2_21mer_win1_14727
14727
14747
2652
ATTCCTTCCTTCAAGACAACT
3634
TCAACAGAACTTCCTTCCTTA





NC_045512.2_21mer_win1_14728
14728
14748
2653
TTCCTTCCTTCAAGACAACTT
3635
TTCAACAGAACTTCCTTCCTT





NC_045512.2_21mer_win1_14750
14750
14770
2654
ATTTTGTGAAGAAGAAACGAG
3636
GAGCAAAGAAGAAGTGTTTTA





NC_045512.2_21mer_win1_14751
14751
14771
2655
TTTTGTGAAGAAGAAACGAGT
3637
TGAGCAAAGAAGAAGTGTTTT





NC_045512.2_21mer_win1_14752
14752
14772
2656
TTTGTGAAGAAGAAACGAGTC
3638
CTGAGCAAAGAAGAAGTGTTT





NC_045512.2_21mer_win1_14753
14753
14773
2657
TTGTGAAGAAGAAACGAGTCC
3639
CCTGAGCAAAGAAGAAGTGTT





NC_045512.2_21mer_win1_14754
14754
14774
2658
TGTGAAGAAGAAACGAGTCCT
3640
TCCTGAGCAAAGAAGAAGTGT





NC_045512.2_21mer_win1_14755
14755
14775
2659
GTGAAGAAGAAACGAGTCCTA
3641
ATCCTGAGCAAAGAAGAAGTG





NC_045512.2_21mer_win1_14756
14756
14776
2660
TGAAGAAGAAACGAGTCCTAC
3642
CATCCTGAGCAAAGAAGAAGT





NC_045512.2_21mer_win1_14757
14757
14777
2661
GAAGAAGAAACGAGTCCTACC
3643
CCATCCTGAGCAAAGAAGAAG





NC_045512.2_21mer_win1_14821
14821
14841
2662
GGTTGTTACACACTATAGTCT
3644
TCTGATATCACACATTGTTGG





NC_045512.2_21mer_win1_14822
14822
14842
2663
GTTGTTACACACTATAGTCTG
3645
GTCTGATATCACACATTGTTG





NC_045512.2_21mer_win1_14823
14823
14843
2664
TTGTTACACACTATAGTCTGT
3646
TGTCTGATATCACACATTGTT





NC_045512.2_21mer_win1_14824
14824
14844
2665
TGTTACACACTATAGTCTGTT
3647
TTGTCTGATATCACACATTGT





NC_045512.2_21mer_win1_14825
14825
14845
2666
GTTACACACTATAGTCTGTTG
3648
GTTGTCTGATATCACACATTG





NC_045512.2_21mer_win1_14826
14826
14846
2667
TTACACACTATAGTCTGTTGA
3649
AGTTGTCTGATATCACACATT





NC_045512.2_21mer_win1_14875
14875
14895
2668
ATGAAACTAACAATGCTACCA
3650
ACCATCGTAACAATCAAAGTA





NC_045512.2_21mer_win1_14876
14876
14896
2669
TGAAACTAACAATGCTACCAC
3651
CACCATCGTAACAATCAAAGT





NC_045512.2_21mer_win1_14877
14877
14897
2670
GAAACTAACAATGCTACCACC
3652
CCACCATCGTAACAATCAAAG





NC_045512.2_21mer_win1_14878
14878
14898
2671
AAACTAACAATGCTACCACCG
3653
GCCACCATCGTAACAATCAAA





NC_045512.2_21mer_win1_14879
14879
14899
2672
AACTAACAATGCTACCACCGA
3654
AGCCACCATCGTAACAATCAA





NC_045512.2_21mer_win1_14880
14880
14900
2673
ACTAACAATGCTACCACCGAC
3655
CAGCCACCATCGTAACAATCA





NC_045512.2_21mer_win1_14881
14881
14901
2674
CTAACAATGCTACCACCGACA
3656
ACAGCCACCATCGTAACAATC





NC_045512.2_21mer_win1_14882
14882
14902
2675
TAACAATGCTACCACCGACAT
3657
TACAGCCACCATCGTAACAAT





NC_045512.2_21mer_win1_14883
14883
14903
2676
AACAATGCTACCACCGACATA
3658
ATACAGCCACCATCGTAACAA





NC_045512.2_21mer_win1_14962
14962
14982
2677
TTTACCCCATTCCGATCTGAA
3659
AAGTCTAGCCTTACCCCATTT





NC_045512.2_21mer_win1_14963
14963
14983
2678
TTACCCCATTCCGATCTGAAA
3660
AAAGTCTAGCCTTACCCCATT





NC_045512.2_21mer_win1_14964
14964
14984
2679
TACCCCATTCCGATCTGAAAT
3661
TAAAGTCTAGCCTTACCCCAT





NC_045512.2_21mer_win1_14965
14965
14985
2680
ACCCCATTCCGATCTGAAATA
3662
ATAAAGTCTAGCCTTACCCCA





NC_045512.2_21mer_win1_14966
14966
14986
2681
CCCCATTCCGATCTGAAATAA
3663
AATAAAGTCTAGCCTTACCCC





NC_045512.2_21mer_win1_14967
14967
14987
2682
CCCATTCCGATCTGAAATAAT
3664
TAATAAAGTCTAGCCTTACCC





NC_045512.2_21mer_win1_14968
14968
14988
2683
CCATTCCGATCTGAAATAATA
3665
ATAATAAAGTCTAGCCTTACC





NC_045512.2_21mer_win1_14969
14969
14989
2684
CATTCCGATCTGAAATAATAC
3666
CATAATAAAGTCTAGCCTTAC





NC_045512.2_21mer_win1_14970
14970
14990
2685
ATTCCGATCTGAAATAATACT
3667
TCATAATAAAGTCTAGCCTTA





NC_045512.2_21mer_win1_14992
14992
15012
2686
AGTTACTCAATACTCCTAGTT
3668
TTGATCCTCATAACTCATTGA





NC_045512.2_21mer_win1_14993
14993
15013
2687
GTTACTCAATACTCCTAGTTC
3669
CTTGATCCTCATAACTCATTG





NC_045512.2_21mer_win1_14994
14994
15014
2688
TTACTCAATACTCCTAGTTCT
3670
TCTTGATCCTCATAACTCATT





NC_045512.2_21mer_win1_14995
14995
15015
2689
TACTCAATACTCCTAGTTCTA
3671
ATCTTGATCCTCATAACTCAT





NC_045512.2_21mer_win1_14996
14996
15016
2690
ACTCAATACTCCTAGTTCTAC
3672
CATCTTGATCCTCATAACTCA





NC_045512.2_21mer_win1_14997
14997
15017
2691
CTCAATACTCCTAGTTCTACG
3673
GCATCTTGATCCTCATAACTC





NC_045512.2_21mer_win1_14998
14998
15018
2692
TCAATACTCCTAGTTCTACGT
3674
TGCATCTTGATCCTCATAACT





NC_045512.2_21mer_win1_14999
14999
15019
2693
CAATACTCCTAGTTCTACGTG
3675
GTGCATCTTGATCCTCATAAC





NC_045512.2_21mer_win1_15000
15000
15020
2694
AATACTCCTAGTTCTACGTGA
3676
AGTGCATCTTGATCCTCATAA





NC_045512.2_21mer_win1_15055
15055
15075
2695
TATTGAGTTTACTTAGAATTC
3677
CTTAAGATTCATTTGAGTTAT





NC_045512.2_21mer_win1_15056
15056
15076
2696
ATTGAGTTTACTTAGAATTCA
3678
ACTTAAGATTCATTTGAGTTA





NC_045512.2_21mer_win1_15057
15057
15077
2697
TTGAGTTTACTTAGAATTCAT
3679
TACTTAAGATTCATTTGAGTT





NC_045512.2_21mer_win1_15058
15058
15078
2698
TGAGTTTACTTAGAATTCATA
3680
ATACTTAAGATTCATTTGAGT





NC_045512.2_21mer_win1_15059
15059
15079
2699
GAGTTTACTTAGAATTCATAC
3681
CATACTTAAGATTCATTTGAG





NC_045512.2_21mer_win1_15060
15060
15080
2700
AGTTTACTTAGAATTCATACG
3682
GCATACTTAAGATTCATTTGA





NC_045512.2_21mer_win1_15061
15061
15081
2701
GTTTACTTAGAATTCATACGG
3683
GGCATACTTAAGATTCATTTG





NC_045512.2_21mer_win1_15062
15062
15082
2702
TTTACTTAGAATTCATACGGT
3684
TGGCATACTTAAGATTCATTT





NC_045512.2_2lmer_win1_15063
15063
15083
2703
TTACTTAGAATTCATACGGTA
3685
ATGGCATACTTAAGATTCATT





NC_045512.2_2lmer_win1_15064
15064
15084
2704
TACTTAGAATTCATACGGTAA
3686
AATGGCATACTTAAGATTCAT





NC_045512.2_2lmer_win1_15065
15065
15085
2705
ACTTAGAATTCATACGGTAAT
3687
TAATGGCATACTTAAGATTCA





NC_045512.2_2lmer_win1_15066
15066
15086
2706
CTTAGAATTCATACGGTAATC
3688
CTAATGGCATACTTAAGATTC





NC_045512.2_2lmer_win1_15067
15067
15087
2707
TTAGAATTCATACGGTAATCA
3689
ACTAATGGCATACTTAAGATT





NC_045512.2_2lmer_win1_15068
15068
15088
2708
TAGAATTCATACGGTAATCAC
3690
CACTAATGGCATACTTAAGAT





NC_045512.2_2lmer_win1_15069
15069
15089
2709
AGAATTCATACGGTAATCACG
3691
GCACTAATGGCATACTTAAGA





NC_045512.2_2lmer_win1_15070
15070
15090
2710
GAATTCATACGGTAATCACGT
3692
TGCACTAATGGCATACTTAAG





NC_045512.2_2lmer_win1_15071
15071
15091
2711
AATTCATACGGTAATCACGTT
3693
TTGCACTAATGGCATACTTAA





NC_045512.2_2lmer_win1_15072
15072
15092
2712
ATTCATACGGTAATCACGTTT
3694
TTTGCACTAATGGCATACTTA





NC_045512.2_2lmer_win1_15073
15073
15093
2713
TTCATACGGTAATCACGTTTC
3695
CTTTGCACTAATGGCATACTT





NC_045512.2_2lmer_win1_15074
15074
15094
2714
TCATACGGTAATCACGTTTCT
3696
TCTTTGCACTAATGGCATACT





NC_045512.2_2lmer_win1_15075
15075
15095
2715
CATACGGTAATCACGTTTCTT
3697
TTCTTTGCACTAATGGCATAC





NC_045512.2_2lmer_win1_15076
15076
15096
2716
ATACGGTAATCACGTTTCTTA
3698
ATTCTTTGCACTAATGGCATA





NC_045512.2_2lmer_win1_15077
15077
15097
2717
TACGGTAATCACGTTTCTTAT
3699
TATTCTTTGCACTAATGGCAT





NC_045512.2_2lmer_win1_15078
15078
15098
2718
ACGGTAATCACGTTTCTTATC
3700
CTATTCTTTGCACTAATGGCA





NC_045512.2_2lmer_win1_15079
15079
15099
2719
CGGTAATCACGTTTCTTATCT
3701
TCTATTCTTTGCACTAATGGC





NC_045512.2_2lmer_win1_15080
15080
15100
2720
GGTAATCACGTTTCTTATCTC
3702
CTCTATTCTTTGCACTAATGG





NC_045512.2_2lmer_win1_15081
15081
15101
2721
GTAATCACGTTTCTTATCTCG
3703
GCTCTATTCTTTGCACTAATG





NC_045512.2_2lmer_win1_15082
15082
15102
2722
TAATCACGTTTCTTATCTCGA
3704
AGCTCTATTCTTTGCACTAAT





NC_045512.2_2lmer_win1_15083
15083
15103
2723
AATCACGTTTCTTATCTCGAG
3705
GAGCTCTATTCTTTGCACTAA





NC_045512.2_2lmer_win1_15084
15084
15104
2724
ATCACGTTTCTTATCTCGAGC
3706
CGAGCTCTATTCTTTGCACTA





NC_045512.2_2lmer_win1_15085
15085
15105
2725
TCACGTTTCTTATCTCGAGCG
3707
GCGAGCTCTATTCTTTGCACT





NC_045512.2_21mer_win1_15086
15086
15106
2726
CACGTTTCTTATCTCGAGCGT
3708
TGCGAGCTCTATTCTTTGCAC





NC_045512.2_21mer_win1_15087
15087
15107
2727
ACGTTTCTTATCTCGAGCGTG
3709
GTGCGAGCTCTATTCTTTGCA





NC_045512.2_21mer_win1_15088
15088
15108
2728
CGTTTCTTATCTCGAGCGTGG
3710
GGTGCGAGCTCTATTCTTTGC





NC_045512.2_21mer_win1_15089
15089
15109
2729
GTTTCTTATCTCGAGCGTGGC
3711
CGGTGCGAGCTCTATTCTTTG





NC_045512.2_21mer_win1_15090
15090
15110
2730
TTTCTTATCTCGAGCGTGGCA
3712
ACGGTGCGAGCTCTATTCTTT





NC_045512.2_21mer_win1_15091
15091
15111
2731
TTCTTATCTCGAGCGTGGCAT
3713
TACGGTGCGAGCTCTATTCTT





NC_045512.2_21mer_win1_15092
15092
15112
2732
TCTTATCTCGAGCGTGGCATC
3714
CTACGGTGCGAGCTCTATTCT





NC_045512.2_21mer_win1_15093
15093
15113
2733
CTTATCTCGAGCGTGGCATCG
3715
GCTACGGTGCGAGCTCTATTC





NC_045512.2_21mer_win1_15094
15094
15114
2734
TTATCTCGAGCGTGGCATCGA
3716
AGCTACGGTGCGAGCTCTATT





NC_045512.2_21mer_win1_15095
15095
15115
2735
TATCTCGAGCGTGGCATCGAC
3717
CAGCTACGGTGCGAGCTCTAT





NC_045512.2_21mer_win1_15096
15096
15116
2736
ATCTCGAGCGTGGCATCGACC
3718
CCAGCTACGGTGCGAGCTCTA





NC_045512.2_21mer_win1_15097
15097
15117
2737
TCTCGAGCGTGGCATCGACCA
3719
ACCAGCTACGGTGCGAGCTCT





NC_045512.2_21mer_win1_15098
15098
15118
2738
CTCGAGCGTGGCATCGACCAC
3720
CACCAGCTACGGTGCGAGCTC





NC_045512.2_21mer_win1_15099
15099
15119
2739
TCGAGCGTGGCATCGACCACA
3721
ACACCAGCTACGGTGCGAGCT





NC_045512.2_21mer_win1_15100
15100
15120
2740
CGAGCGTGGCATCGACCACAG
3722
GACACCAGCTACGGTGCGAGC





NC_045512.2_21mer_win1_15101
15101
15121
2741
GAGCGTGGCATCGACCACAGA
3723
AGACACCAGCTACGGTGCGAG





NC_045512.2_21mer_win1_15102
15102
15122
2742
AGCGTGGCATCGACCACAGAG
3724
GAGACACCAGCTACGGTGCGA





NC_045512.2_21mer_win1_15103
15103
15123
2743
GCGTGGCATCGACCACAGAGA
3725
AGAGACACCAGCTACGGTGCG





NC_045512.2_21mer_win1_15104
15104
15124
2744
CGTGGCATCGACCACAGAGAT
3726
TAGAGACACCAGCTACGGTGC





NC_045512.2_21mer_win1_15105
15105
15125
2745
GTGGCATCGACCACAGAGATA
3727
ATAGAGACACCAGCTACGGTG





NC_045512.2_21mer_win1_15106
15106
15126
2746
TGGCATCGACCACAGAGATAG
3728
GATAGAGACACCAGCTACGGT





NC_045512.2_21mer_win1_15107
15107
15127
2747
GGCATCGACCACAGAGATAGA
3729
AGATAGAGACACCAGCTACGG





NC_045512.2_21mer_win1_15108
15108
15128
2748
GCATCGACCACAGAGATAGAC
3730
CAGATAGAGACACCAGCTACG





NC_045512.2_2lmer_win1_15109
15109
15129
2749
CATCGACCACAGAGATAGACA
3731
ACAGATAGAGACACCAGCTAC





NC_045512.2_2lmer_win1_15110
15110
15130
2750
ATCGACCACAGAGATAGACAT
3732
TACAGATAGAGACACCAGCTA





NC_045512.2_2lmer_win1_15111
15111
15131
2751
TCGACCACAGAGATAGACATC
3733
CTACAGATAGAGACACCAGCT





NC_045512.2_2lmer_win1_15112
15112
15132
2752
CGACCACAGAGATAGACATCA
3734
ACTACAGATAGAGACACCAGC





NC_045512.2_2lmer_win1_15113
15113
15133
2753
GACCACAGAGATAGACATCAT
3735
TACTACAGATAGAGACACCAG





NC_045512.2_2lmer_win1_15114
15114
15134
2754
ACCACAGAGATAGACATCATG
3736
GTACTACAGATAGAGACACCA





NC_045512.2_2lmer_win1_15115
15115
15135
2755
CCACAGAGATAGACATCATGA
3737
AGTACTACAGATAGAGACACC





NC_045512.2_2lmer_win1_15116
15116
15136
2756
CACAGAGATAGACATCATGAT
3738
TAGTACTACAGATAGAGACAC





NC_045512.2_2lmer_win1_15117
15117
15137
2757
ACAGAGATAGACATCATGATA
3739
ATAGTACTACAGATAGAGACA





NC_045512.2_2lmer_win1_15118
15118
15138
2758
CAGAGATAGACATCATGATAC
3740
CATAGTACTACAGATAGAGAC





NC_045512.2_2lmer_win1_15119
15119
15139
2759
AGAGATAGACATCATGATACT
3741
TCATAGTACTACAGATAGAGA





NC_045512.2_2lmer_win1_15120
15120
15140
2760
GAGATAGACATCATGATACTG
3742
GTCATAGTACTACAGATAGAG





NC_045512.2_2lmer_win1_15172
15172
15192
2761
AGTTATCGGCGGTGATCTCCT
3743
TCCTCTAGTGGCGGCTATTGA





NC_045512.2_2lmer_win1_15173
15173
15193
2762
GTTATCGGCGGTGATCTCCTC
3744
CTCCTCTAGTGGCGGCTATTG





NC_045512.2_2lmer_win1_15174
15174
15194
2763
TTATCGGCGGTGATCTCCTCG
3745
GCTCCTCTAGTGGCGGCTATT





NC_045512.2_2lmer_win1_15175
15175
15195
2764
TATCGGCGGTGATCTCCTCGA
3746
AGCTCCTCTAGTGGCGGCTAT





NC_045512.2_2lmer_win1_15176
15176
15196
2765
ATCGGCGGTGATCTCCTCGAT
3747
TAGCTCCTCTAGTGGCGGCTA





NC_045512.2_2lmer_win1_15177
15177
15197
2766
TCGGCGGTGATCTCCTCGATG
3748
GTAGCTCCTCTAGTGGCGGCT





NC_045512.2_2lmer_win1_15178
15178
15198
2767
CGGCGGTGATCTCCTCGATGA
3749
AGTAGCTCCTCTAGTGGCGGC





NC_045512.2_2lmer_win1_15179
15179
15199
2768
GGCGGTGATCTCCTCGATGAC
3750
CAGTAGCTCCTCTAGTGGCGG





NC_045512.2_2lmer_win1_15180
15180
15200
2769
GCGGTGATCTCCTCGATGACA
3751
ACAGTAGCTCCTCTAGTGGCG





NC_045512.2_2lmer_win1_15310
15310
15330
2770
TCTCGGTACGGATTGTACGAA
3752
AAGCATGTTAGGCATGGCTCT





NC_045512.2_2lmer_win1_15311
15311
15331
2771
CTCGGTACGGATTGTACGAAT
3753
TAAGCATGTTAGGCATGGCTC





NC_045512.2_21mer_win1_15312
15312
15332
2772
TCGGTACGGATTGTACGAATC
3754
CTAAGCATGTTAGGCATGGCT





NC_045512.2_21mer_win1_15346
15346
15366
2773
GAACAAGAACGAGCGTTTGTA
3755
ATGTTTGCGAGCAAGAACAAG





NC_045512.2_21mer_win1_15347
15347
15367
2774
AACAAGAACGAGCGTTTGTAT
3756
TATGTTTGCGAGCAAGAACAA





NC_045512.2_21mer_win1_15496
15496
15516
2775
TGTTGACGAATACGATTATCA
3757
ACTATTAGCATAAGCAGTTGT





NC_045512.2_21mer_win1_15497
15497
15517
2776
GTTGACGAATACGATTATCAC
3758
CACTATTAGCATAAGCAGTTG





NC_045512.2_21mer_win1_15498
15498
15518
2777
TTGACGAATACGATTATCACA
3759
ACACTATTAGCATAAGCAGTT





NC_045512.2_21mer_win1_15622
15622
15642
2778
ATACTCACAGAGATATCTTTA
3760
ATTTCTATAGAGACACTCATA





NC_045512.2_21mer_win1_15623
15623
15643
2779
TACTCACAGAGATATCTTTAT
3761
TATTTCTATAGAGACACTCAT





NC_045512.2_21mer_win1_15624
15624
15644
2780
ACTCACAGAGATATCTTTATC
3762
CTATTTCTATAGAGACACTCA





NC_045512.2_21mer_win1_15838
15838
15858
2781
ACCTGACTCTGACTGGAATGA
3763
AGTAAGGTCAGTCTCAGTCCA





NC_045512.2_21mer_win1_15839
15839
15859
2782
CCTGACTCTGACTGGAATGAT
3764
TAGTAAGGTCAGTCTCAGTCC





NC_045512.2_21mer_win1_15840
15840
15860
2783
CTGACTCTGACTGGAATGATT
3765
TTAGTAAGGTCAGTCTCAGTC





NC_045512.2_21mer_win1_15841
15841
15861
2784
TGACTCTGACTGGAATGATTT
3766
TTTAGTAAGGTCAGTCTCAGT





NC_045512.2_21mer_win1_15842
15842
15862
2785
GACTCTGACTGGAATGATTTC
3767
CTTTAGTAAGGTCAGTCTCAG





NC_045512.2_21mer_win1_15843
15843
15863
2786
ACTCTGACTGGAATGATTTCC
3768
CCTTTAGTAAGGTCAGTCTCA





NC_045512.2_21mer_win1_15844
15844
15864
2787
CTCTGACTGGAATGATTTCCT
3769
TCCTTTAGTAAGGTCAGTCTC





NC_045512.2_21mer_win1_15845
15845
15865
2788
TCTGACTGGAATGATTTCCTG
3770
GTCCTTTAGTAAGGTCAGTCT





NC_045512.2_21mer_win1_15846
15846
15866
2789
CTGACTGGAATGATTTCCTGG
3771
GGTCCTTTAGTAAGGTCAGTC





NC_045512.2_21mer_win1_15847
15847
15867
2790
TGACTGGAATGATTTCCTGGA
3772
AGGTCCTTTAGTAAGGTCAGT





NC_045512.2_21mer_win1_15848
15848
15868
2791
GACTGGAATGATTTCCTGGAG
3773
GAGGTCCTTTAGTAAGGTCAG





NC_045512.2_21mer_win1_15849
15849
15869
2792
ACTGGAATGATTTCCTGGAGT
3774
TGAGGTCCTTTAGTAAGGTCA





NC_045512.2_21mer_win1_15985
15985
16005
2793
TTTTGTCTACCATGTGAATAC
3775
CATAAGTGTACCATCTGTTTT





NC_045512.2_21mer_win1_15986
15986
16006
2794
TTTGTCTACCATGTGAATACT
3776
TCATAAGTGTACCATCTGTTT





NC_045512.2_21mer_win1_15987
15987
16007
2795
TTGTCTACCATGTGAATACTA
3777
ATCATAAGTGTACCATCTGTT





NC_045512.2_21mer_win1_15988
15988
16008
2796
TGTCTACCATGTGAATACTAA
3778
AATCATAAGTGTACCATCTGT





NC_045512.2_21mer_win1_15989
15989
16009
2797
GTCTACCATGTGAATACTAAC
3779
CAATCATAAGTGTACCATCTG





NC_045512.2_21mer_win1_15990
15990
16010
2798
TCTACCATGTGAATACTAACT
3780
TCAATCATAAGTGTACCATCT





NC_045512.2_21mer_win1_16057
16057
16077
2799
GGATTAGTCCTCATACGACTA
3781
ATCAGCATACTCCTGATTAGG





NC_045512.2_21mer_win1_16058
16058
16078
2800
GATTAGTCCTCATACGACTAC
3782
CATCAGCATACTCCTGATTAG





NC_045512.2_21mer_win1_16059
16059
16079
2801
ATTAGTCCTCATACGACTACA
3783
ACATCAGCATACTCCTGATTA





NC_045512.2_21mer_win1_16822
16822
16842
2802
CCTCTCATGTGGAAACTTTTT
3784
TTTTTCAAAGGTGTACTCTCC





NC_045512.2_21mer_win1_16823
16823
16843
2803
CTCTCATGTGGAAACTTTTTC
3785
TTTTTCAAAGGTGTACTCTC





NC_045512.2_21mer_win1_16824
16824
16844
2804
TCTCATGTGGAAACTTTTTCC
3786
CCTTTTTCAAAGGTGTACTCT





NC_045512.2_21mer_win1_16825
16825
16845
2805
CTCATGTGGAAACTTTTTCCA
3787
ACCTTTTTCAAAGGTGTACTC





NC_045512.2_21mer_win1_16826
16826
16846
2806
TCATGTGGAAACTTTTTCCAC
3788
CACCTTTTTCAAAGGTGTACT





NC_045512.2_21mer_win1_16827
16827
16847
2807
CATGTGGAAACTTTTTCCACT
3789
TCACCTTTTTCAAAGGTGTAC





NC_045512.2_21mer_win1_16828
16828
16848
2808
ATGTGGAAACTTTTTCCACTG
3790
GTCACCTTTTTCAAAGGTGTA





NC_045512.2_21mer_win1_16829
16829
16849
2809
TGTGGAAACTTTTTCCACTGA
3791
AGTCACCTTTTTCAAAGGTGT





NC_045512.2_21mer_win1_16830
16830
16850
2810
GTGGAAACTTTTTCCACTGAT
3792
TAGTCACCTTTTTCAAAGGTG





NC_045512.2_21mer_win1_16831
16831
16851
2811
TGGAAACTTTTTCCACTGATA
3793
ATAGTCACCTTTTTCAAAGGT





NC_045512.2_21mer_win1_16832
16832
16852
2812
GGAAACTTTTTCCACTGATAC
3794
CATAGTCACCTTTTTCAAAGG





NC_045512.2_21mer_win1_16833
16833
16853
2813
GAAACTTTTTCCACTGATACC
3795
CCATAGTCACCTTTTTCAAAG





NC_045512.2_21mer_win1_16834
16834
16854
2814
AAACTTTTTCCACTGATACCA
3796
ACCATAGTCACCTTTTTCAAA





NC_045512.2_21mer_win1_16835
16835
16855
2815
AACTTTTTCCACTGATACCAC
3797
CACCATAGTCACCTTTTTCAA





NC_045512.2_21mer_win1_16836
16836
16856
2816
ACTTTTTCCACTGATACCACT
3798
TCACCATAGTCACCTTTTTCA





NC_045512.2_21mer_win1_16837
16837
16857
2817
CTTTTTCCACTGATACCACTA
3799
ATCACCATAGTCACCTTTTTC





NC_045512.2_21mer_win1_16838
16838
16858
2818
TTTTTCCACTGATACCACTAC
3800
CATCACCATAGTCACCTTTTT





NC_045512.2_21mer_win1_16839
16839
16859
2819
TTTTCCACTGATACCACTACG
3801
GCATCACCATAGTCACCTTTT





NC_045512.2_21mer_win1_16840
16840
16860
2820
TTTCCACTGATACCACTACGA
3802
AGCATCACCATAGTCACCTTT





NC_045512.2_21mer_win1_16841
16841
16861
2821
TTCCACTGATACCACTACGAC
3803
CAGCATCACCATAGTCACCTT





NC_045512.2_21mer_win1_16842
16842
16862
2822
TCCACTGATACCACTACGACA
3804
ACAGCATCACCATAGTCACCT





NC_045512.2_21mer_win1_16843
16843
16863
2823
CCACTGATACCACTACGACAA
3805
AACAGCATCACCATAGTCACC





NC_045512.2_21mer_win1_16844
16844
16864
2824
CACTGATACCACTACGACAAC
3806
CAACAGCATCACCATAGTCAC





NC_045512.2_21mer_win1_16845
16845
16865
2825
ACTGATACCACTACGACAACA
3807
ACAACAGCATCACCATAGTCA





NC_045512.2_21mer_win1_16954
16954
16974
2826
GATCACGGTGTTCTCGTGATA
3808
ATAGTGCTCTTGTGGCACTAG





NC_045512.2_21mer_win1_16955
16955
16975
2827
ATCACGGTGTTCTCGTGATAC
3809
CATAGTGCTCTTGTGGCACTA





NC_045512.2_21mer_win1_16956
16956
16976
2828
TCACGGTGTTCTCGTGATACA
3810
ACATAGTGCTCTTGTGGCACT





NC_045512.2_21mer_win1_17008
17008
17028
2829
TAGAGTCTACTCAAAAGATCG
3811
GCTAGAAAACTCATCTGAGAT





NC_045512.2_21mer_win1_17009
17009
17029
2830
AGAGTCTACTCAAAAGATCGT
3812
TGCTAGAAAACTCATCTGAGA





NC_045512.2_21mer_win1_17010
17010
17030
2831
GAGTCTACTCAAAAGATCGTT
3813
TTGCTAGAAAACTCATCTGAG





NC_045512.2_21mer_win1_17011
17011
17031
2832
AGTCTACTCAAAAGATCGTTA
3814
ATTGCTAGAAAACTCATCTGA





NC_045512.2_21mer_win1_17012
17012
17032
2833
GTCTACTCAAAAGATCGTTAC
3815
CATTGCTAGAAAACTCATCTG





NC_045512.2_21mer_win1_17013
17013
17033
2834
TCTACTCAAAAGATCGTTACA
3816
ACATTGCTAGAAAACTCATCT





NC_045512.2_21mer_win1_17014
17014
17034
2835
CTACTCAAAAGATCGTTACAA
3817
AACATTGCTAGAAAACTCATC





NC_045512.2_21mer_win1_17015
17015
17035
2836
TACTCAAAAGATCGTTACAAC
3818
CAACATTGCTAGAAAACTCAT





NC_045512.2_21mer_win1_17016
17016
17036
2837
ACTCAAAAGATCGTTACAACG
3819
GCAACATTGCTAGAAAACTCA





NC_045512.2_21mer_win1_17017
17017
17037
2838
CTCAAAAGATCGTTACAACGT
3820
TGCAACATTGCTAGAAAACTC





NC_045512.2_21mer_win1_17018
17018
17038
2839
TCAAAAGATCGTTACAACGTT
3821
TTGCAACATTGCTAGAAAACT





NC_045512.2_21mer_win1_17019
17019
17039
2840
CAAAAGATCGTTACAACGTTT
3822
TTTGCAACATTGCTAGAAAAC





NC_045512.2_21mer_win1_17020
17020
17040
2841
AAAAGATCGTTACAACGTTTA
3823
ATTTGCAACATTGCTAGAAAA





NC_045512.2_21mer_win1_17021
17021
17041
2842
AAAGATCGTTACAACGTTTAA
3824
AATTTGCAACATTGCTAGAAA





NC_045512.2_21mer_win1_17022
17022
17042
2843
AAGATCGTTACAACGTTTAAT
3825
TAATTTGCAACATTGCTAGAA





NC_045512.2_21mer_win1_17080
17080
17100
2844
CCTGGTGGACCATGACCATTC
3826
CTTACCAGTACCAGGTGGTCC





NC_045512.2_21mer_win1_17081
17081
17101
2845
CTGGTGGACCATGACCATTCT
3827
TCTTACCAGTACCAGGTGGTC





NC_045512.2_21mer_win1_17082
17082
17102
2846
TGGTGGACCATGACCATTCTC
3828
CTCTTACCAGTACCAGGTGGT





NC_045512.2_21mer_win1_17083
17083
17103
2847
GGTGGACCATGACCATTCTCA
3829
ACTCTTACCAGTACCAGGTGG





NC_045512.2_21mer_win1_17084
17084
17104
2848
GTGGACCATGACCATTCTCAG
3830
GACTCTTACCAGTACCAGGTG





NC_045512.2_21mer_win1_17085
17085
17105
2849
TGGACCATGACCATTCTCAGT
3831
TGACTCTTACCAGTACCAGGT





NC_045512.2_21mer_win1_17086
17086
17106
2850
GGACCATGACCATTCTCAGTA
3832
ATGACTCTTACCAGTACCAGG





NC_045512.2_21mer_win1_17087
17087
17107
2851
GACCATGACCATTCTCAGTAA
3833
AATGACTCTTACCAGTACCAG





NC_045512.2_21mer_win1_17088
17088
17108
2852
ACCATGACCATTCTCAGTAAA
3834
AAATGACTCTTACCAGTACCA





NC_045512.2_21mer_win1_17089
17089
17109
2853
CCATGACCATTCTCAGTAAAA
3835
AAAATGACTCTTACCAGTACC





NC_045512.2_21mer_win1_17090
17090
17110
2854
CATGACCATTCTCAGTAAAAC
3836
CAAAATGACTCTTACCAGTAC





NC_045512.2_21mer_win1_17091
17091
17111
2855
ATGACCATTCTCAGTAAAACG
3837
GCAAAATGACTCTTACCAGTA





NC_045512.2_21mer_win1_17269
17269
17289
2856
TTTAAGTTTCACTTAAGTTGT
3838
TGTTGAATTCACTTTGAATTT





NC_045512.2_21mer_win1_18100
18100
18120
2857
TGTGTCCGTGGATGTGTGGAG
3839
GAGGTGTGTAGGTGCCTGTGT





NC_045512.2_21mer_win1_18101
18101
18121
2858
GTGTCCGTGGATGTGTGGAGT
3840
TGAGGTGTGTAGGTGCCTGTG





NC_045512.2_21mer_win1_18102
18102
18122
2859
TGTCCGTGGATGTGTGGAGTC
3841
CTGAGGTGTGTAGGTGCCTGT





NC_045512.2_21mer_win1_18196
18196
18216
2860
TCTGAGTAGAGATACTACCCA
3842
ACCCATCATAGAGATGAGTCT





NC_045512.2_21mer_win1_18197
18197
18217
2861
CTGAGTAGAGATACTACCCAA
3843
AACCCATCATAGAGATGAGTC





NC_045512.2_21mer_win1_18198
18198
18218
2862
TGAGTAGAGATACTACCCAAA
3844
AAACCCATCATAGAGATGAGT





NC_045512.2_21mer_win1_19618
19618
19638
2863
GTCTCAAATCTTTTACACCGA
3845
AGCCACATTTTCTAAACTCTG





NC_045512.2_21mer_win1_19619
19619
19639
2864
TCTCAAATCTTTTACACCGAA
3846
AAGCCACATTTTCTAAACTCT





NC_045512.2_21mer_win1_20107
20107
20127
2865
TTACCTCAGTGTAATTAACCT
3847
TCCAATTAATGTGACTCCATT





NC_045512.2_21mer_win1_20108
20108
20128
2866
TACCTCAGTGTAATTAACCTC
3848
CTCCAATTAATGTGACTCCAT





NC_045512.2_21mer_win1_20109
20109
20129
2867
ACCTCAGTGTAATTAACCTCT
3849
TCTCCAATTAATGTGACTCCA





NC_045512.2_21mer_win1_20110
20110
20130
2868
CCTCAGTGTAATTAACCTCTT
3850
TTCTCCAATTAATGTGACTCC





NC_045512.2_21mer_win1_21502
21502
21522
2869
TAATCTCTTTTGTTGTCTCAA
3851
AACTCTGTTGTTTTCTCTAAT





NC_045512.2_21mer_win1_21503
21503
21523
2870
AATCTCTTTTGTTGTCTCAAC
3852
CAACTCTGTTGTTTTCTCTAA





NC_045512.2_21mer_win1_21504
21504
21524
2871
ATCTCTTTTGTTGTCTCAACA
3853
ACAACTCTGTTGTTTTCTCTA





NC_045512.2_21mer_win1_24302
24302
24322
2872
TTACAAGAGATACTCTTGGTT
3854
TTGGTTCTCATAGAGAACATT





NC_045512.2_21mer_win1_24303
24303
24323
2873
TACAAGAGATACTCTTGGTTT
3855
TTTGGTTCTCATAGAGAACAT





NC_045512.2_21mer_win1_24304
24304
24324
2874
ACAAGAGATACTCTTGGTTTT
3856
TTTTGGTTCTCATAGAGAACA





NC_045512.2_21mer_win1_24305
24305
24325
2875
CAAGAGATACTCTTGGTTTTT
3857
TTTTTGGTTCTCATAGAGAAC





NC_045512.2_21mer_win1_24620
24620
24640
2876
CGAAGACGATTAGAACGACGA
3858
AGCAGCAAGATTAGCAGAAGC





NC_045512.2_21mer_win1_24621
24621
24641
2877
GAAGACGATTAGAACGACGAT
3859
TAGCAGCAAGATTAGCAGAAG





NC_045512.2_21mer_win1_24622
24622
24642
2878
AAGACGATTAGAACGACGATG
3860
GTAGCAGCAAGATTAGCAGAA





NC_045512.2_21mer_win1_24623
24623
24643
2879
AGACGATTAGAACGACGATGA
3861
AGTAGCAGCAAGATTAGCAGA





NC_045512.2_21mer_win1_24624
24624
24644
2880
GACGATTAGAACGACGATGAT
3862
TAGTAGCAGCAAGATTAGCAG





NC_045512.2_21mer_win1_24625
24625
24645
2881
ACGATTAGAACGACGATGATT
3863
TTAGTAGCAGCAAGATTAGCA





NC_045512.2_21mer_win1_24626
24626
24646
2882
CGATTAGAACGACGATGATTT
3864
TTTAGTAGCAGCAAGATTAGC





NC_045512.2_21mer_win1_24627
24627
24647
2883
GATTAGAACGACGATGATTTT
3865
TTTTAGTAGCAGCAAGATTAG





NC_045512.2_21mer_win1_24628
24628
24648
2884
ATTAGAACGACGATGATTTTA
3866
ATTTTAGTAGCAGCAAGATTA





NC_045512.2_21mer_win1_24629
24629
24649
2885
TTAGAACGACGATGATTTTAC
3867
CATTTTAGTAGCAGCAAGATT





NC_045512.2_21mer_win1_24630
24630
24650
2886
TAGAACGACGATGATTTTACA
3868
ACATTTTAGTAGCAGCAAGAT





NC_045512.2_21mer_win1_24631
24631
24651
2887
AGAACGACGATGATTTTACAG
3869
GACATTTTAGTAGCAGCAAGA





NC_045512.2_21mer_win1_24662
24662
24682
2888
GAACCTGTTAGTTTTTCTCAA
3870
AACTCTTTTTGATTGTCCAAG





NC_045512.2_21mer_win1_24663
24663
24683
2889
AACCTGTTAGTTTTTCTCAAC
3871
CAACTCTTTTTGATTGTCCAA





NC_045512.2_21mer_win1_24664
24664
24684
2890
ACCTGTTAGTTTTTCTCAACT
3872
TCAACTCTTTTTGATTGTCCA





NC_045512.2_21mer_win1_25034
25034
25054
2891
TTAGTATGTAGTGGTCTACAA
3873
AACATCTGGTGATGTATGATT





NC_045512.2_2lmer_win1_25035
25035
25055
2892
TAGTATGTAGTGGTCTACAAC
3874
CAACATCTGGTGATGTATGAT





NC_045512.2_21mer_win1_25036
25036
25056
2893
AGTATGTAGTGGTCTACAACT
3875
TCAACATCTGGTGATGTATGA





NC_045512.2_21mer_win1_25037
25037
25057
2894
GTATGTAGTGGTCTACAACTA
3876
ATCAACATCTGGTGATGTATG





NC_045512.2_2lmer_win1_25104
25104
25124
2895
TTCTTTAACTGGCGGAGTTAC
3877
CATTGAGGCGGTCAATTTCTT





NC_045512.2_2lmer_win1_25105
25105
25125
2896
TCTTTAACTGGCGGAGTTACT
3878
TCATTGAGGCGGTCAATTTCT





NC_045512.2_2lmer_win1_25106
25106
25126
2897
CTTTAACTGGCGGAGTTACTC
3879
CTCATTGAGGCGGTCAATTTC





NC_045512.2_2lmer_win1_25107
25107
25127
2898
TTTAACTGGCGGAGTTACTCC
3880
CCTCATTGAGGCGGTCAATTT





NC_045512.2_2lmer_win1_25108
25108
25128
2899
TTAACTGGCGGAGTTACTCCA
3881
ACCTCATTGAGGCGGTCAATT





NC_045512.2_21mer_win1_25364
25364
25384
2900
CAGTTTAATGTAATGTGTATT
3882
TTATGTGTAATGTAATTTGAC





NC_045512.2_21mer_win1_25365
25365
25385
2901
AGTTTAATGTAATGTGTATTT
3883
TTTATGTGTAATGTAATTTGA





NC_045512.2_21mer_win1_25366
25366
25386
2902
GTTTAATGTAATGTGTATTTG
3884
GTTTATGTGTAATGTAATTTG





NC_045512.2_21mer_win1_25367
25367
25387
2903
TTTAATGTAATGTGTATTTGC
3885
CGTTTATGTGTAATGTAATTT





NC_045512.2_21mer_win1_25502
25502
25522
2904
ATGTTCGGAGTGAGGGAAAGC
3886
CGAAAGGGAGTGAGGCTTGTA





NC_045512.2_21mer_win1_25503
25503
25523
2905
TGTTCGGAGTGAGGGAAAGCC
3887
CCGAAAGGGAGTGAGGCTTGT





NC_045512.2_21mer_win1_25504
25504
25524
2906
GTTCGGAGTGAGGGAAAGCCT
3888
TCCGAAAGGGAGTGAGGCTTG





NC_045512.2_21mer_win1_25505
25505
25525
2907
TTCGGAGTGAGGGAAAGCCTA
3889
ATCCGAAAGGGAGTGAGGCTT





NC_045512.2_21mer_win1_25506
25506
25526
2908
TCGGAGTGAGGGAAAGCCTAC
3890
CATCCGAAAGGGAGTGAGGCT





NC_045512.2_21mer_win1_25507
25507
25527
2909
CGGAGTGAGGGAAAGCCTACC
3891
CCATCCGAAAGGGAGTGAGGC





NC_045512.2_21mer_win1_25508
25508
25528
2910
GGAGTGAGGGAAAGCCTACCG
3892
GCCATCCGAAAGGGAGTGAGG





NC_045512.2_21mer_win1_25509
25509
25529
2911
GAGTGAGGGAAAGCCTACCGA
3893
AGCCATCCGAAAGGGAGTGAG





NC_045512.2_21mer_win1_25510
25510
25530
2912
AGTGAGGGAAAGCCTACCGAA
3894
AAGCCATCCGAAAGGGAGTGA





NC_045512.2_21mer_win1_26191
26191
26211
2913
GGCTGCTGCTGATGATCGCAC
3895
CACGCTAGTAGTCGTCGTCGG





NC_045512.2_21mer_win1_26192
26192
26212
2914
GCTGCTGCTGATGATCGCACG
3896
GCACGCTAGTAGTCGTCGTCG





NC_045512.2_21mer_win1_26193
26193
26213
2915
CTGCTGCTGATGATCGCACGG
3897
GGCACGCTAGTAGTCGTCGTC





NC_045512.2_21mer_win1_26194
26194
26214
2916
TGCTGCTGATGATCGCACGGA
3898
AGGCACGCTAGTAGTCGTCGT





NC_045512.2_21mer_win1_26195
26195
26215
2917
GCTGCTGATGATCGCACGGAA
3899
AAGGCACGCTAGTAGTCGTCG





NC_045512.2_21mer_win1_26196
26196
26216
2918
CTGCTGATGATCGCACGGAAA
3900
AAAGGCACGCTAGTAGTCGTC





NC_045512.2_21mer_win1_26197
26197
26217
2919
TGCTGATGATCGCACGGAAAC
3901
CAAAGGCACGCTAGTAGTCGT





NC_045512.2_21mer_win1_26198
26198
26218
2920
GCTGATGATCGCACGGAAACA
3902
ACAAAGGCACGCTAGTAGTCG





NC_045512.2_21mer_win1_26199
26199
26219
2921
CTGATGATCGCACGGAAACAT
3903
TACAAAGGCACGCTAGTAGTC





NC_045512.2_21mer_win1_26200
26200
26220
2922
TGATGATCGCACGGAAACATT
3904
TTACAAAGGCACGCTAGTAGT





NC_045512.2_21mer_win1_26201
26201
26221
2923
GATGATCGCACGGAAACATTC
3905
CTTACAAAGGCACGCTAGTAG





NC_045512.2_21mer_win1_26202
26202
26222
2924
ATGATCGCACGGAAACATTCG
3906
GCTTACAAAGGCACGCTAGTA





NC_045512.2_21mer_win1_26203
26203
26223
2925
TGATCGCACGGAAACATTCGT
3907
TGCTTACAAAGGCACGCTAGT





NC_045512.2_21mer_win1_26204
26204
26224
2926
GATCGCACGGAAACATTCGTG
3908
GTGCTTACAAAGGCACGCTAG





NC_045512.2_21mer_win1_26205
26205
26225
2927
ATCGCACGGAAACATTCGTGT
3909
TGTGCTTACAAAGGCACGCTA





NC_045512.2_21mer_win1_26206
26206
26226
2928
TCGCACGGAAACATTCGTGTT
3910
TTGTGCTTACAAAGGCACGCT





NC_045512.2_21mer_win1_26207
26207
26227
2929
CGCACGGAAACATTCGTGTTC
3911
CTTGTGCTTACAAAGGCACGC





NC_045512.2_21mer_win1_26232
26232
26252
2930
ACTCATGCTTGAATACATGAG
3912
GAGTACATAAGTTCGTACTCA





NC_045512.2_21mer_win1_26233
26233
26253
2931
CTCATGCTTGAATACATGAGT
3913
TGAGTACATAAGTTCGTACTC





NC_045512.2_21mer_win1_26234
26234
26254
2932
TCATGCTTGAATACATGAGTA
3914
ATGAGTACATAAGTTCGTACT





NC_045512.2_21mer_win1_26235
26235
26255
2933
CATGCTTGAATACATGAGTAA
3915
AATGAGTACATAAGTTCGTAC





NC_045512.2_21mer_win1_26236
26236
26256
2934
ATGCTTGAATACATGAGTAAG
3916
GAATGAGTACATAAGTTCGTA





NC_045512.2_21mer_win1_26237
26237
26257
2935
TGCTTGAATACATGAGTAAGC
3917
CGAATGAGTACATAAGTTCGT





NC_045512.2_21mer_win1_26238
26238
26258
2936
GCTTGAATACATGAGTAAGCA
3918
ACGAATGAGTACATAAGTTCG





NC_045512.2_21mer_win1_26239
26239
26259
2937
CTTGAATACATGAGTAAGCAA
3919
AACGAATGAGTACATAAGTTC





NC_045512.2_21mer_win1_26240
26240
26260
2938
TTGAATACATGAGTAAGCAAA
3920
AAACGAATGAGTACATAAGTT





NC_045512.2_21mer_win1_26241
26241
26261
2939
TGAATACATGAGTAAGCAAAG
3921
GAAACGAATGAGTACATAAGT





NC_045512.2_21mer_win1_26242
26242
26262
2940
GAATACATGAGTAAGCAAAGC
3922
CGAAACGAATGAGTACATAAG





NC_045512.2_21mer_win1_26243
26243
26263
2941
AATACATGAGTAAGCAAAGCC
3923
CCGAAACGAATGAGTACATAA





NC_045512.2_21mer_win1_26244
26244
26264
2942
ATACATGAGTAAGCAAAGCCT
3924
TCCGAAACGAATGAGTACATA





NC_045512.2_21mer_win1_26245
26245
26265
2943
TACATGAGTAAGCAAAGCCTT
3925
TTCCGAAACGAATGAGTACAT





NC_045512.2_21mer_win1_26246
26246
26266
2944
ACATGAGTAAGCAAAGCCTTC
3926
CTTCCGAAACGAATGAGTACA





NC_045512.2_21mer_win1_26247
26247
26267
2945
CATGAGTAAGCAAAGCCTTCT
3927
TCTTCCGAAACGAATGAGTAC





NC_045512.2_21mer_win1_26269
26269
26289
2946
TGTCCATGCAATTATCAATTA
3928
ATTAACTATTAACGTACCTGT





NC_045512.2_21mer_win1_26270
26270
26290
2947
GTCCATGCAATTATCAATTAT
3929
TATTAACTATTAACGTACCTG





NC_045512.2_21mer_win1_26271
26271
26291
2948
TCCATGCAATTATCAATTATC
3930
CTATTAACTATTAACGTACCT





NC_045512.2_21mer_win1_26272
26272
26292
2949
CCATGCAATTATCAATTATCG
3931
GCTATTAACTATTAACGTACC





NC_045512.2_21mer_win1_26273
26273
26293
2950
CATGCAATTATCAATTATCGC
3932
CGCTATTAACTATTAACGTAC





NC_045512.2_21mer_win1_26274
26274
26294
2951
ATGCAATTATCAATTATCGCA
3933
ACGCTATTAACTATTAACGTA





NC_045512.2_21mer_win1_26275
26275
26295
2952
TGCAATTATCAATTATCGCAT
3934
TACGCTATTAACTATTAACGT





NC_045512.2_21mer_win1_26276
26276
26296
2953
GCAATTATCAATTATCGCATG
3935
GTACGCTATTAACTATTAACG





NC_045512.2_21mer_win1_26277
26277
26297
2954
CAATTATCAATTATCGCATGA
3936
AGTACGCTATTAACTATTAAC





NC_045512.2_21mer_win1_26278
26278
26298
2955
AATTATCAATTATCGCATGAA
3937
AAGTACGCTATTAACTATTAA





NC_045512.2_21mer_win1_26279
26279
26299
2956
ATTATCAATTATCGCATGAAG
3938
GAAGTACGCTATTAACTATTA





NC_045512.2_21mer_win1_26280
26280
26300
2957
TTATCAATTATCGCATGAAGA
3939
AGAAGTACGCTATTAACTATT





NC_045512.2_21mer_win1_26281
26281
26301
2958
TATCAATTATCGCATGAAGAA
3940
AAGAAGTACGCTATTAACTAT





NC_045512.2_21mer_win1_26282
26282
26302
2959
ATCAATTATCGCATGAAGAAA
3941
AAAGAAGTACGCTATTAACTA





NC_045512.2_21mer_win1_26283
26283
26303
2960
TCAATTATCGCATGAAGAAAA
3942
AAAAGAAGTACGCTATTAACT





NC_045512.2_21mer_win1_26284
26284
26304
2961
CAATTATCGCATGAAGAAAAA
3943
AAAAAGAAGTACGCTATTAAC





NC_045512.2_21mer_win1_26285
26285
26305
2962
AATTATCGCATGAAGAAAAAG
3944
GAAAAAGAAGTACGCTATTAA





NC_045512.2_21mer_win1_26286
26286
26306
2963
ATTATCGCATGAAGAAAAAGA
3945
AGAAAAAGAAGTACGCTATTA





NC_045512.2_21mer_win1_26287
26287
26307
2964
TTATCGCATGAAGAAAAAGAA
3946
AAGAAAAAGAAGTACGCTATT





NC_045512.2_21mer_win1_26288
26288
26308
2965
TATCGCATGAAGAAAAAGAAC
3947
CAAGAAAAAGAAGTACGCTAT





NC_045512.2_21mer_win1_26289
26289
26309
2966
ATCGCATGAAGAAAAAGAACG
3948
GCAAGAAAAAGAAGTACGCTA





NC_045512.2_21mer_win1_26290
26290
26310
2967
TCGCATGAAGAAAAAGAACGA
3949
AGCAAGAAAAAGAAGTACGCT





NC_045512.2_21mer_win1_26291
26291
26311
2968
CGCATGAAGAAAAAGAACGAA
3950
AAGCAAGAAAAAGAAGTACGC





NC_045512.2_21mer_win1_26292
26292
26312
2969
GCATGAAGAAAAAGAACGAAA
3951
AAAGCAAGAAAAAGAAGTACG





NC_045512.2_21mer_win1_26293
26293
26313
2970
CATGAAGAAAAAGAACGAAAG
3952
GAAAGCAAGAAAAAGAAGTAC





NC_045512.2_21mer_win1_26294
26294
26314
2971
ATGAAGAAAAAGAACGAAAGC
3953
CGAAAGCAAGAAAAAGAAGTA





NC_045512.2_21mer_win1_26295
26295
26315
2972
TGAAGAAAAAGAACGAAAGCA
3954
ACGAAAGCAAGAAAAAGAAGT





NC_045512.2_21mer_win1_26296
26296
26316
2973
GAAGAAAAAGAACGAAAGCAC
3955
CACGAAAGCAAGAAAAAGAAG





NC_045512.2_21mer_win1_26297
26297
26317
2974
AAGAAAAAGAACGAAAGCACC
3956
CCACGAAAGCAAGAAAAAGAA





NC_045512.2_21mer_win1_26298
26298
26318
2975
AGAAAAAGAACGAAAGCACCA
3957
ACCACGAAAGCAAGAAAAAGA





NC_045512.2_21mer_win1_26299
26299
26319
2976
GAAAAAGAACGAAAGCACCAT
3958
TACCACGAAAGCAAGAAAAAG





NC_045512.2_21mer_win1_26300
26300
26320
2977
AAAAAGAACGAAAGCACCATA
3959
ATACCACGAAAGCAAGAAAAA





NC_045512.2_21mer_win1_26301
26301
26321
2978
AAAAGAACGAAAGCACCATAA
3960
AATACCACGAAAGCAAGAAAA





NC_045512.2_21mer_win1_26302
26302
26322
2979
AAAGAACGAAAGCACCATAAG
3961
GAATACCACGAAAGCAAGAAA





NC_045512.2_21mer_win1_26303
26303
26323
2980
AAGAACGAAAGCACCATAAGA
3962
AGAATACCACGAAAGCAAGAA





NC_045512.2_21mer_win1_26304
26304
26324
2981
AGAACGAAAGCACCATAAGAA
3963
AAGAATACCACGAAAGCAAGA





NC_045512.2_21mer_win1_26305
26305
26325
2982
GAACGAAAGCACCATAAGAAC
3964
CAAGAATACCACGAAAGCAAG





NC_045512.2_21mer_win1_26306
26306
26326
2983
AACGAAAGCACCATAAGAACG
3965
GCAAGAATACCACGAAAGCAA





NC_045512.2_21mer_win1_26307
26307
26327
2984
ACGAAAGCACCATAAGAACGA
3966
AGCAAGAATACCACGAAAGCA





NC_045512.2_21mer_win1_26308
26308
26328
2985
CGAAAGCACCATAAGAACGAT
3967
TAGCAAGAATACCACGAAAGC





NC_045512.2_21mer_win1_26309
26309
26329
2986
GAAAGCACCATAAGAACGATC
3968
CTAGCAAGAATACCACGAAAG





NC_045512.2_21mer_win1_26310
26310
26330
2987
AAAGCACCATAAGAACGATCA
3969
ACTAGCAAGAATACCACGAAA





NC_045512.2_21mer_win1_26332
26332
26352
2988
TGTGATCGGTAGGAATGACGC
3970
CGCAGTAAGGATGGCTAGTGT





NC_045512.2_21mer_win1_26333
26333
26353
2989
GTGATCGGTAGGAATGACGCG
3971
GCGCAGTAAGGATGGCTAGTG





NC_045512.2_21mer_win1_26334
26334
26354
2990
TGATCGGTAGGAATGACGCGA
3972
AGCGCAGTAAGGATGGCTAGT





NC_045512.2_21mer_win1_26335
26335
26355
2991
GATCGGTAGGAATGACGCGAA
3973
AAGCGCAGTAAGGATGGCTAG





NC_045512.2_21mer_win1_26336
26336
26356
2992
ATCGGTAGGAATGACGCGAAG
3974
GAAGCGCAGTAAGGATGGCTA





NC_045512.2_21mer_win1_26337
26337
26357
2993
TCGGTAGGAATGACGCGAAGC
3975
CGAAGCGCAGTAAGGATGGCT





NC_045512.2_21mer_win1_26338
26338
26358
2994
CGGTAGGAATGACGCGAAGCT
3976
TCGAAGCGCAGTAAGGATGGC





NC_045512.2_21mer_win1_26339
26339
26359
2995
GGTAGGAATGACGCGAAGCTA
3977
ATCGAAGCGCAGTAAGGATGG





NC_045512.2_21mer_win1_26340
26340
26360
2996
GTAGGAATGACGCGAAGCTAA
3978
AATCGAAGCGCAGTAAGGATG





NC_045512.2_21mer_win1_26341
26341
26361
2997
TAGGAATGACGCGAAGCTAAC
3979
CAATCGAAGCGCAGTAAGGAT





NC_045512.2_21mer_win1_26342
26342
26362
2998
AGGAATGACGCGAAGCTAACA
3980
ACAATCGAAGCGCAGTAAGGA





NC_045512.2_21mer_win1_26343
26343
26363
2999
GGAATGACGCGAAGCTAACAC
3981
CACAATCGAAGCGCAGTAAGG





NC_045512.2_21mer_win1_26344
26344
26364
3000
GAATGACGCGAAGCTAACACA
3982
ACACAATCGAAGCGCAGTAAG





NC_045512.2_21mer_win1_26345
26345
26365
3001
AATGACGCGAAGCTAACACAC
3983
CACACAATCGAAGCGCAGTAA





NC_045512.2_21mer_win1_26346
26346
26366
3002
ATGACGCGAAGCTAACACACG
3984
GCACACAATCGAAGCGCAGTA





NC_045512.2_21mer_win1_26347
26347
26367
3003
TGACGCGAAGCTAACACACGC
3985
CGCACACAATCGAAGCGCAGT





NC_045512.2_21mer_win1_26348
26348
26368
3004
GACGCGAAGCTAACACACGCA
3986
ACGCACACAATCGAAGCGCAG





NC_045512.2_21mer_win1_26349
26349
26369
3005
ACGCGAAGCTAACACACGCAT
3987
TACGCACACAATCGAAGCGCA





NC_045512.2_21mer_win1_26350
26350
26370
3006
CGCGAAGCTAACACACGCATG
3988
GTACGCACACAATCGAAGCGC





NC_045512.2_21mer_win1_26351
26351
26371
3007
GCGAAGCTAACACACGCATGA
3989
AGTACGCACACAATCGAAGCG





NC_045512.2_21mer_win1_26352
26352
26372
3008
CGAAGCTAACACACGCATGAC
3990
CAGTACGCACACAATCGAAGC





NC_045512.2_21mer_win1_26353
26353
26373
3009
GAAGCTAACACACGCATGACG
3991
GCAGTACGCACACAATCGAAG





NC_045512.2_21mer_win1_26354
26354
26374
3010
AAGCTAACACACGCATGACGA
3992
AGCAGTACGCACACAATCGAA





NC_045512.2_21mer_win1_26355
26355
26375
3011
AGCTAACACACGCATGACGAC
3993
CAGCAGTACGCACACAATCGA





NC_045512.2_21mer_win1_26356
26356
26376
3012
GCTAACACACGCATGACGACG
3994
GCAGCAGTACGCACACAATCG





NC_045512.2_21mer_win1_26357
26357
26377
3013
CTAACACACGCATGACGACGT
3995
TGCAGCAGTACGCACACAATC





NC_045512.2_21mer_win1_26358
26358
26378
3014
TAACACACGCATGACGACGTT
3996
TTGCAGCAGTACGCACACAAT





NC_045512.2_21mer_win1_26359
26359
26379
3015
AACACACGCATGACGACGTTA
3997
ATTGCAGCAGTACGCACACAA





NC_045512.2_21mer_win1_26360
26360
26380
3016
ACACACGCATGACGACGTTAT
3998
TATTGCAGCAGTACGCACACA





NC_045512.2_21mer_win1_26361
26361
26381
3017
CACACGCATGACGACGTTATA
3999
ATATTGCAGCAGTACGCACAC





NC_045512.2_21mer_win1_26362
26362
26382
3018
ACACGCATGACGACGTTATAA
4000
AATATTGCAGCAGTACGCACA





NC_045512.2_21mer_win1_26363
26363
26383
3019
CACGCATGACGACGTTATAAC
4001
CAATATTGCAGCAGTACGCAC





NC_045512.2_21mer_win1_26364
26364
26384
3020
ACGCATGACGACGTTATAACA
4002
ACAATATTGCAGCAGTACGCA





NC_045512.2_21mer_win1_26365
26365
26385
3021
CGCATGACGACGTTATAACAA
4003
AACAATATTGCAGCAGTACGC





NC_045512.2_21mer_win1_26366
26366
26386
3022
GCATGACGACGTTATAACAAT
4004
TAACAATATTGCAGCAGTACG





NC_045512.2_21mer_win1_26367
26367
26387
3023
CATGACGACGTTATAACAATT
4005
TTAACAATATTGCAGCAGTAC





NC_045512.2_21mer_win1_26368
26368
26388
3024
ATGACGACGTTATAACAATTG
4006
GTTAACAATATTGCAGCAGTA





NC_045512.2_21mer_win1_26369
26369
26389
3025
TGACGACGTTATAACAATTGC
4007
CGTTAACAATATTGCAGCAGT





NC_045512.2_21mer_win1_26370
26370
26390
3026
GACGACGTTATAACAATTGCA
4008
ACGTTAACAATATTGCAGCAG





NC_045512.2_21mer_win1_26371
26371
26391
3027
ACGACGTTATAACAATTGCAC
4009
CACGTTAACAATATTGCAGCA





NC_045512.2_21mer_win1_26372
26372
26392
3028
CGACGTTATAACAATTGCACT
4010
TCACGTTAACAATATTGCAGC





NC_045512.2_21mer_win1_26373
26373
26393
3029
GACGTTATAACAATTGCACTC
4011
CTCACGTTAACAATATTGCAG





NC_045512.2_21mer_win1_26374
26374
26394
3030
ACGTTATAACAATTGCACTCA
4012
ACTCACGTTAACAATATTGCA





NC_045512.2_21mer_win1_26450
26450
26470
3031
CTCAAGGACTAGAAGACCAGA
4013
AGACCAGAAGATCAGGAACTC





NC_045512.2_21mer_win1_26451
26451
26471
3032
TCAAGGACTAGAAGACCAGAT
4014
TAGACCAGAAGATCAGGAACT





NC_045512.2_21mer_win1_26452
26452
26472
3033
CAAGGACTAGAAGACCAGATT
4015
TTAGACCAGAAGATCAGGAAC





NC_045512.2_21mer_win1_26453
26453
26473
3034
AAGGACTAGAAGACCAGATTT
4016
TTTAGACCAGAAGATCAGGAA





NC_045512.2_21mer_win1_26454
26454
26474
3035
AGGACTAGAAGACCAGATTTG
4017
GTTTAGACCAGAAGATCAGGA





NC_045512.2_21mer_win1_26455
26455
26475
3036
GGACTAGAAGACCAGATTTGC
4018
CGTTTAGACCAGAAGATCAGG





NC_045512.2_21mer_win1_26456
26456
26476
3037
GACTAGAAGACCAGATTTGCT
4019
TCGTTTAGACCAGAAGATCAG





NC_045512.2_21mer_win1_26457
26457
26477
3038
ACTAGAAGACCAGATTTGCTT
4020
TTCGTTTAGACCAGAAGATCA





NC_045512.2_21mer_win1_26458
26458
26478
3039
CTAGAAGACCAGATTTGCTTG
4021
GTTCGTTTAGACCAGAAGATC





NC_045512.2_21mer_win1_26459
26459
26479
3040
TAGAAGACCAGATTTGCTTGA
4022
AGTTCGTTTAGACCAGAAGAT





NC_045512.2_21mer_win1_26460
26460
26480
3041
AGAAGACCAGATTTGCTTGAT
4023
TAGTTCGTTTAGACCAGAAGA





NC_045512.2_21mer_win1_26461
26461
26481
3042
GAAGACCAGATTTGCTTGATT
4024
TTAGTTCGTTTAGACCAGAAG





NC_045512.2_21mer_win1_26574
26574
26594
3043
CTTGTTACCTTGGATCATTAT
4025
TATTACTAGGTTCCATTGTTC





NC_045512.2_21mer_win1_26575
26575
26595
3044
TTGTTACCTTGGATCATTATC
4026
CTATTACTAGGTTCCATTGTT





NC_045512.2_21mer_win1_26576
26576
26596
3045
TGTTACCTTGGATCATTATCC
4027
CCTATTACTAGGTTCCATTGT





NC_045512.2_21mer_win1_26577
26577
26597
3046
GTTACCTTGGATCATTATCCA
4028
ACCTATTACTAGGTTCCATTG





NC_045512.2_21mer_win1_26578
26578
26598
3047
TTACCTTGGATCATTATCCAA
4029
AACCTATTACTAGGTTCCATT





NC_045512.2_21mer_win1_26579
26579
26599
3048
TACCTTGGATCATTATCCAAA
4030
AAACCTATTACTAGGTTCCAT





NC_045512.2_21mer_win1_26580
26580
26600
3049
ACCTTGGATCATTATCCAAAG
4031
GAAACCTATTACTAGGTTCCA





NC_045512.2_21mer_win1_27033
27033
27053
3050
CGATGTAGTGCTTGCGAAAGA
4032
AGAAAGCGTTCGTGATGTAGC





NC_045512.2_21mer_win1_27034
27034
27054
3051
GATGTAGTGCTTGCGAAAGAA
4033
AAGAAAGCGTTCGTGATGTAG





NC_045512.2_21mer_win1_27035
27035
27055
3052
ATGTAGTGCTTGCGAAAGAAT
4034
TAAGAAAGCGTTCGTGATGTA





NC_045512.2_21mer_win1_27036
27036
27056
3053
TGTAGTGCTTGCGAAAGAATA
4035
ATAAGAAAGCGTTCGTGATGT





NC_045512.2_21mer_win1_27037
27037
27057
3054
GTAGTGCTTGCGAAAGAATAA
4036
AATAAGAAAGCGTTCGTGATG





NC_045512.2_21mer_win1_27038
27038
27058
3055
TAGTGCTTGCGAAAGAATAAT
4037
TAATAAGAAAGCGTTCGTGAT





NC_045512.2_21mer_win1_27039
27039
27059
3056
AGTGCTTGCGAAAGAATAATG
4038
GTAATAAGAAAGCGTTCGTGA





NC_045512.2_21mer_win1_27040
27040
27060
3057
GTGCTTGCGAAAGAATAATGT
4039
TGTAATAAGAAAGCGTTCGTG





NC_045512.2_21mer_win1_27041
27041
27061
3058
TGCTTGCGAAAGAATAATGTT
4040
TTGTAATAAGAAAGCGTTCGT





NC_045512.2_21mer_win1_27042
27042
27062
3059
GCTTGCGAAAGAATAATGTTT
4041
TTTGTAATAAGAAAGCGTTCG





NC_045512.2_21mer_win1_27043
27043
27063
3060
CTTGCGAAAGAATAATGTTTA
4042
ATTTGTAATAAGAAAGCGTTC





NC_045512.2_21mer_win1_27044
27044
27064
3061
TTGCGAAAGAATAATGTTTAA
4043
AATTTGTAATAAGAAAGCGTT





NC_045512.2_21mer_win1_27183
27183
27203
3062
CATGTCATTCACTGTTGTCTA
4044
ATCTGTTGTCACTTACTGTAC





NC_045512.2_21mer_win1_27184
27184
27204
3063
ATGTCATTCACTGTTGTCTAC
4045
CATCTGTTGTCACTTACTGTA





NC_045512.2_21mer_win1_27185
27185
27205
3064
TGTCATTCACTGTTGTCTACA
4046
ACATCTGTTGTCACTTACTGT





NC_045512.2_21mer_win1_27186
27186
27206
3065
GTCATTCACTGTTGTCTACAA
4047
AACATCTGTTGTCACTTACTG





NC_045512.2_21mer_win1_27187
27187
27207
3066
TCATTCACTGTTGTCTACAAA
4048
AAACATCTGTTGTCACTTACT





NC_045512.2_21mer_win1_27188
27188
27208
3067
CATTCACTGTTGTCTACAAAG
4049
GAAACATCTGTTGTCACTTAC





NC_045512.2_21mer_win1_27189
27189
27209
3068
ATTCACTGTTGTCTACAAAGT
4050
TGAAACATCTGTTGTCACTTA





NC_045512.2_21mer_win1_27190
27190
27210
3069
TTCACTGTTGTCTACAAAGTA
4051
ATGAAACATCTGTTGTCACTT





NC_045512.2_21mer_win1_27191
27191
27211
3070
TCACTGTTGTCTACAAAGTAG
4052
GATGAAACATCTGTTGTCACT





NC_045512.2_21mer_win1_27192
27192
27212
3071
CACTGTTGTCTACAAAGTAGA
4053
AGATGAAACATCTGTTGTCAC





NC_045512.2_21mer_win1_27382
27382
27402
3072
CTAATTTGCTTGTACTTTTAA
4054
AATTTTCATGTTCGTTTAATC





NC_045512.2_21mer_win1_27383
27383
27403
3073
TAATTTGCTTGTACTTTTAAT
4055
TAATTTTCATGTTCGTTTAAT





NC_045512.2_21mer_win1_27384
27384
27404
3074
AATTTGCTTGTACTTTTAATA
4056
ATAATTTTCATGTTCGTTTAA





NC_045512.2_21mer_win1_27385
27385
27405
3075
ATTTGCTTGTACTTTTAATAA
4057
AATAATTTTCATGTTCGTTTA





NC_045512.2_21mer_win1_27386
27386
27406
3076
TTTGCTTGTACTTTTAATAAG
4058
GAATAATTTTCATGTTCGTTT





NC_045512.2_21mer_win1_27387
27387
27407
3077
TTGCTTGTACTTTTAATAAGA
4059
AGAATAATTTTCATGTTCGTT





NC_045512.2_21mer_win1_27511
27511
27531
3078
ATGCTCCCGTTAAGTGGTAAA
4060
AAATGGTGAATTGCCCTCGTA





NC_045512.2_21mer_win1_27512
27512
27532
3079
TGCTCCCGTTAAGTGGTAAAG
4061
GAAATGGTGAATTGCCCTCGT





NC_045512.2_21mer_win1_27513
27513
27533
3080
GCTCCCGTTAAGTGGTAAAGT
4062
TGAAATGGTGAATTGCCCTCG





NC_045512.2_21mer_win1_27771
27771
27791
3081
AATTAACTGAAGATAAACACG
4063
GCACAAATAGAAGTCAATTAA





NC_045512.2_21mer_win1_27772
27772
27792
3082
ATTAACTGAAGATAAACACGA
4064
AGCACAAATAGAAGTCAATTA





NC_045512.2_21mer_win1_27773
27773
27793
3083
TTAACTGAAGATAAACACGAA
4065
AAGCACAAATAGAAGTCAATT





NC_045512.2_21mer_win1_27774
27774
27794
3084
TAACTGAAGATAAACACGAAA
4066
AAAGCACAAATAGAAGTCAAT





NC_045512.2_21mer_win1_27775
27775
27795
3085
AACTGAAGATAAACACGAAAA
4067
AAAAGCACAAATAGAAGTCAA





NC_045512.2_21mer_win1_27776
27776
27796
3086
ACTGAAGATAAACACGAAAAA
4068
AAAAAGCACAAATAGAAGTCA





NC_045512.2_21mer_win1_27777
27777
27797
3087
CTGAAGATAAACACGAAAAAT
4069
TAAAAAGCACAAATAGAAGTC





NC_045512.2_21mer_win1_27778
27778
27798
3088
TGAAGATAAACACGAAAAATC
4070
CTAAAAAGCACAAATAGAAGT





NC_045512.2_21mer_win1_27779
27779
27799
3089
GAAGATAAACACGAAAAATCG
4071
GCTAAAAAGCACAAATAGAAG





NC_045512.2_21mer_win1_27780
27780
27800
3090
AAGATAAACACGAAAAATCGG
4072
GGCTAAAAAGCACAAATAGAA





NC_045512.2_21mer_win1_27781
27781
27801
3091
AGATAAACACGAAAAATCGGA
4073
AGGCTAAAAAGCACAAATAGA





NC_045512.2_21mer_win1_27782
27782
27802
3092
GATAAACACGAAAAATCGGAA
4074
AAGGCTAAAAAGCACAAATAG





NC_045512.2_21mer_win1_27783
27783
27803
3093
ATAAACACGAAAAATCGGAAA
4075
AAAGGCTAAAAAGCACAAATA





NC_045512.2_21mer_win1_27784
27784
27804
3094
TAAACACGAAAAATCGGAAAG
4076
GAAAGGCTAAAAAGCACAAAT





NC_045512.2_21mer_win1_27785
27785
27805
3095
AAACACGAAAAATCGGAAAGA
4077
AGAAAGGCTAAAAAGCACAAA





NC_045512.2_21mer_win1_27786
27786
27806
3096
AACACGAAAAATCGGAAAGAC
4078
CAGAAAGGCTAAAAAGCACAA





NC_045512.2_21mer_win1_27787
27787
27807
3097
ACACGAAAAATCGGAAAGACG
4079
GCAGAAAGGCTAAAAAGCACA





NC_045512.2_21mer_win1_27788
27788
27808
3098
CACGAAAAATCGGAAAGACGA
4080
AGCAGAAAGGCTAAAAAGCAC





NC_045512.2_21mer_win1_27789
27789
27809
3099
ACGAAAAATCGGAAAGACGAT
4081
TAGCAGAAAGGCTAAAAAGCA





NC_045512.2_21mer_win1_27790
27790
27810
3100
CGAAAAATCGGAAAGACGATA
4082
ATAGCAGAAAGGCTAAAAAGC





NC_045512.2_21mer_win1_27791
27791
27811
3101
GAAAAATCGGAAAGACGATAA
4083
AATAGCAGAAAGGCTAAAAAG





NC_045512.2_21mer_win1_27792
27792
27812
3102
AAAAATCGGAAAGACGATAAG
4084
GAATAGCAGAAAGGCTAAAAA





NC_045512.2_21mer_win1_27793
27793
27813
3103
AAAATCGGAAAGACGATAAGG
4085
GGAATAGCAGAAAGGCTAAAA





NC_045512.2_21mer_win1_27794
27794
27814
3104
AAATCGGAAAGACGATAAGGA
4086
AGGAATAGCAGAAAGGCTAAA





NC_045512.2_21mer_win1_27795
27795
27815
3105
AATCGGAAAGACGATAAGGAA
4087
AAGGAATAGCAGAAAGGCTAA





NC_045512.2_21mer_win1_27796
27796
27816
3106
ATCGGAAAGACGATAAGGAAC
4088
CAAGGAATAGCAGAAAGGCTA





NC_045512.2_21mer_win1_27797
27797
27817
3107
TCGGAAAGACGATAAGGAACA
4089
ACAAGGAATAGCAGAAAGGCT





NC_045512.2_21mer_win1_27798
27798
27818
3108
CGGAAAGACGATAAGGAACAA
4090
AACAAGGAATAGCAGAAAGGC





NC_045512.2_21mer_win1_28270
28270
28290
3109
ATTTTACAGACTATTACCTGG
4091
GGTCCATTATCAGACATTTTA





NC_045512.2_21mer_win1_28271
28271
28291
3110
TTTTACAGACTATTACCTGGG
4092
GGGTCCATTATCAGACATTTT





NC_045512.2_21mer_win1_28272
28272
28292
3111
TTTACAGACTATTACCTGGGG
4093
GGGGTCCATTATCAGACATTT





NC_045512.2_21mer_win1_28273
28273
28293
3112
TTACAGACTATTACCTGGGGT
4094
TGGGGTCCATTATCAGACATT





NC_045512.2_21mer_win1_28274
28274
28294
3113
TACAGACTATTACCTGGGGTT
4095
TTGGGGTCCATTATCAGACAT





NC_045512.2_21mer_win1_28275
28275
28295
3114
ACAGACTATTACCTGGGGTTT
4096
TTTGGGGTCCATTATCAGACA





NC_045512.2_21mer_win1_28276
28276
28296
3115
CAGACTATTACCTGGGGTTTT
4097
TTTTGGGGTCCATTATCAGAC





NC_045512.2_21mer_win1_28397
28397
28417
3116
GGGGTTCCAAATGGGTTATTA
4098
ATTATTGGGTAAACCTTGGGG





NC_045512.2_21mer_win1_28398
28398
28418
3117
GGGTTCCAAATGGGTTATTAT
4099
TATTATTGGGTAAACCTTGGG





NC_045512.2_21mer_win1_28399
28399
28419
3118
GGTTCCAAATGGGTTATTATG
4100
GTATTATTGGGTAAACCTTGG





NC_045512.2_21mer_win1_28400
28400
28420
3119
GTTCCAAATGGGTTATTATGA
4101
AGTATTATTGGGTAAACCTTG





NC_045512.2_21mer_win1_28401
28401
28421
3120
TTCCAAATGGGTTATTATGAC
4102
CAGTATTATTGGGTAAACCTT





NC_045512.2_21mer_win1_28402
28402
28422
3121
TCCAAATGGGTTATTATGACG
4103
GCAGTATTATTGGGTAAACCT





NC_045512.2_21mer_win1_28403
28403
28423
3122
CCAAATGGGTTATTATGACGC
4104
CGCAGTATTATTGGGTAAACC





NC_045512.2_21mer_win1_28404
28404
28424
3123
CAAATGGGTTATTATGACGCA
4105
ACGCAGTATTATTGGGTAAAC





NC_045512.2_21mer_win1_28405
28405
28425
3124
AAATGGGTTATTATGACGCAG
4106
GACGCAGTATTATTGGGTAAA





NC_045512.2_21mer_win1_28406
28406
28426
3125
AATGGGTTATTATGACGCAGA
4107
AGACGCAGTATTATTGGGTAA





NC_045512.2_21mer_win1_28407
28407
28427
3126
ATGGGTTATTATGACGCAGAA
4108
AAGACGCAGTATTATTGGGTA





NC_045512.2_21mer_win1_28408
28408
28428
3127
TGGGTTATTATGACGCAGAAC
4109
CAAGACGCAGTATTATTGGGT





NC_045512.2_21mer_win1_28409
28409
28429
3128
GGGTTATTATGACGCAGAACC
4110
CCAAGACGCAGTATTATTGGG





NC_045512.2_21mer_win1_28410
28410
28430
3129
GGTTATTATGACGCAGAACCA
4111
ACCAAGACGCAGTATTATTGG





NC_045512.2_21mer_win1_28411
28411
28431
3130
GTTATTATGACGCAGAACCAA
4112
AACCAAGACGCAGTATTATTG





NC_045512.2_21mer_win1_28412
28412
28432
3131
TTATTATGACGCAGAACCAAG
4113
GAACCAAGACGCAGTATTATT





NC_045512.2_21mer_win1_28413
28413
28433
3132
TATTATGACGCAGAACCAAGT
4114
TGAACCAAGACGCAGTATTAT





NC_045512.2_21mer_win1_28414
28414
28434
3133
ATTATGACGCAGAACCAAGTG
4115
GTGAACCAAGACGCAGTATTA





NC_045512.2_21mer_win1_28513
28513
28533
3134
TCTACTGGTTTAACCGATGAT
4116
TAGTAGCCAATTTGGTCATCT





NC_045512.2_21mer_win1_28514
28514
28534
3135
CTACTGGTTTAACCGATGATG
4117
GTAGTAGCCAATTTGGTCATC





NC_045512.2_21mer_win1_28515
28515
28535
3136
TACTGGTTTAACCGATGATGG
4118
GGTAGTAGCCAATTTGGTCAT





NC_045512.2_21mer_win1_28516
28516
28536
3137
ACTGGTTTAACCGATGATGGC
4119
CGGTAGTAGCCAATTTGGTCA





NC_045512.2_21mer_win1_28517
28517
28537
3138
CTGGTTTAACCGATGATGGCT
4120
TCGGTAGTAGCCAATTTGGTC





NC_045512.2_21mer_win1_28518
28518
28538
3139
TGGTTTAACCGATGATGGCTT
4121
TTCGGTAGTAGCCAATTTGGT





NC_045512.2_21mer_win1_28519
28519
28539
3140
GGTTTAACCGATGATGGCTTC
4122
CTTCGGTAGTAGCCAATTTGG





NC_045512.2_21mer_win1_28520
28520
28540
3141
GTTTAACCGATGATGGCTTCT
4123
TCTTCGGTAGTAGCCAATTTG





NC_045512.2_21mer_win1_28521
28521
28541
3142
TTTAACCGATGATGGCTTCTC
4124
CTCTTCGGTAGTAGCCAATTT





NC_045512.2_21mer_win1_28522
28522
28542
3143
TTAACCGATGATGGCTTCTCG
4125
GCTCTTCGGTAGTAGCCAATT





NC_045512.2_21mer_win1_28523
28523
28543
3144
TAACCGATGATGGCTTCTCGA
4126
AGCTCTTCGGTAGTAGCCAAT





NC_045512.2_21mer_win1_28524
28524
28544
3145
AACCGATGATGGCTTCTCGAT
4127
TAGCTCTTCGGTAGTAGCCAA





NC_045512.2_21mer_win1_28525
28525
28545
3146
ACCGATGATGGCTTCTCGATG
4128
GTAGCTCTTCGGTAGTAGCCA





NC_045512.2_21mer_win1_28526
28526
28546
3147
CCGATGATGGCTTCTCGATGG
4129
GGTAGCTCTTCGGTAGTAGCC





NC_045512.2_21mer_win1_28706
28706
28726
3148
GTGTAACCGTGGGCGTTAGGA
4130
AGGATTGCGGGTGCCAATGTG





NC_045512.2_21mer_win1_28744
28744
28764
3149
GCACGATGTTGAAGGAGTTCC
4131
CCTTGAGGAAGTTGTAGCACG





NC_045512.2_21mer_win1_28745
28745
28765
3150
CACGATGTTGAAGGAGTTCCT
4132
TCCTTGAGGAAGTTGTAGCAC





NC_045512.2_21mer_win1_28746
28746
28766
3151
ACGATGTTGAAGGAGTTCCTT
4133
TTCCTTGAGGAAGTTGTAGCA





NC_045512.2_21mer_win1_28747
28747
28767
3152
CGATGTTGAAGGAGTTCCTTG
4134
GTTCCTTGAGGAAGTTGTAGC





NC_045512.2_21mer_win1_28748
28748
28768
3153
GATGTTGAAGGAGTTCCTTGT
4135
TGTTCCTTGAGGAAGTTGTAG





NC_045512.2_21mer_win1_28749
28749
28769
3154
ATGTTGAAGGAGTTCCTTGTT
4136
TTGTTCCTTGAGGAAGTTGTA





NC_045512.2_21mer_win1_28750
28750
28770
3155
TGTTGAAGGAGTTCCTTGTTG
4137
GTTGTTCCTTGAGGAAGTTGT





NC_045512.2_21mer_win1_28751
28751
28771
3156
GTTGAAGGAGTTCCTTGTTGT
4138
TGTTGTTCCTTGAGGAAGTTG





NC_045512.2_21mer_win1_28752
28752
28772
3157
TTGAAGGAGTTCCTTGTTGTA
4139
ATGTTGTTCCTTGAGGAAGTT





NC_045512.2_21mer_win1_28753
28753
28773
3158
TGAAGGAGTTCCTTGTTGTAA
4140
AATGTTGTTCCTTGAGGAAGT





NC_045512.2_21mer_win1_28754
28754
28774
3159
GAAGGAGTTCCTTGTTGTAAC
4141
CAATGTTGTTCCTTGAGGAAG





NC_045512.2_21mer_win1_28755
28755
28775
3160
AAGGAGTTCCTTGTTGTAACG
4142
GCAATGTTGTTCCTTGAGGAA





NC_045512.2_21mer_win1_28756
28756
28776
3161
AGGAGTTCCTTGTTGTAACGG
4143
GGCAATGTTGTTCCTTGAGGA





NC_045512.2_21mer_win1_28757
28757
28777
3162
GGAGTTCCTTGTTGTAACGGT
4144
TGGCAATGTTGTTCCTTGAGG





NC_045512.2_21mer_win1_28758
28758
28778
3163
GAGTTCCTTGTTGTAACGGTT
4145
TTGGCAATGTTGTTCCTTGAG





NC_045512.2_21mer_win1_28759
28759
28779
3164
AGTTCCTTGTTGTAACGGTTT
4146
TTTGGCAATGTTGTTCCTTGA





NC_045512.2_21mer_win1_28760
28760
28780
3165
GTTCCTTGTTGTAACGGTTTT
4147
TTTTGGCAATGTTGTTCCTTG





NC_045512.2_21mer_win1_28761
28761
28781
3166
TTCCTTGTTGTAACGGTTTTC
4148
CTTTTGGCAATGTTGTTCCTT





NC_045512.2_21mer_win1_28762
28762
28782
3167
TCCTTGTTGTAACGGTTTTCC
4149
CCTTTTGGCAATGTTGTTCCT





NC_045512.2_21mer_win1_28763
28763
28783
3168
CCTTGTTGTAACGGTTTTCCG
4150
GCCTTTTGGCAATGTTGTTCC





NC_045512.2_21mer_win1_28764
28764
28784
3169
CTTGTTGTAACGGTTTTCCGA
4151
AGCCTTTTGGCAATGTTGTTC





NC_045512.2_21mer_win1_28765
28765
28785
3170
TTGTTGTAACGGTTTTCCGAA
4152
AAGCCTTTTGGCAATGTTGTT





NC_045512.2_21mer_win1_28766
28766
28786
3171
TGTTGTAACGGTTTTCCGAAG
4153
GAAGCCTTTTGGCAATGTTGT





NC_045512.2_21mer_win1_28767
28767
28787
3172
GTTGTAACGGTTTTCCGAAGA
4154
AGAAGCCTTTTGGCAATGTTG





NC_045512.2_21mer_win1_28768
28768
28788
3173
TTGTAACGGTTTTCCGAAGAT
4155
TAGAAGCCTTTTGGCAATGTT





NC_045512.2_21mer_win1_28769
28769
28789
3174
TGTAACGGTTTTCCGAAGATG
4156
GTAGAAGCCTTTTGGCAATGT





NC_045512.2_21mer_win1_28770
28770
28790
3175
GTAACGGTTTTCCGAAGATGC
4157
CGTAGAAGCCTTTTGGCAATG





NC_045512.2_21mer_win1_28771
28771
28791
3176
TAACGGTTTTCCGAAGATGCG
4158
GCGTAGAAGCCTTTTGGCAAT





NC_045512.2_21mer_win1_28772
28772
28792
3177
AACGGTTTTCCGAAGATGCGT
4159
TGCGTAGAAGCCTTTTGGCAA





NC_045512.2_21mer_win1_28773
28773
28793
3178
ACGGTTTTCCGAAGATGCGTC
4160
CTGCGTAGAAGCCTTTTGGCA





NC_045512.2_21mer_win1_28774
28774
28794
3179
CGGTTTTCCGAAGATGCGTCT
4161
TCTGCGTAGAAGCCTTTTGGC





NC_045512.2_21mer_win1_28799
28799
28819
3180
TCGTCTCCGCCGTCAGTTCGG
4162
GGCTTGACTGCCGCCTCTGCT





NC_045512.2_21mer_win1_28800
28800
28820
3181
CGTCTCCGCCGTCAGTTCGGA
4163
AGGCTTGACTGCCGCCTCTGC





NC_045512.2_21mer_win1_28801
28801
28821
3182
GTCTCCGCCGTCAGTTCGGAG
4164
GAGGCTTGACTGCCGCCTCTG





NC_045512.2_21mer_win1_28802
28802
28822
3183
TCTCCGCCGTCAGTTCGGAGA
4165
AGAGGCTTGACTGCCGCCTCT





NC_045512.2_21mer_win1_28803
28803
28823
3184
CTCCGCCGTCAGTTCGGAGAA
4166
AAGAGGCTTGACTGCCGCCTC





NC_045512.2_21mer_win1_28804
28804
28824
3185
TCCGCCGTCAGTTCGGAGAAG
4167
GAAGAGGCTTGACTGCCGCCT





NC_045512.2_21mer_win1_28805
28805
28825
3186
CCGCCGTCAGTTCGGAGAAGA
4168
AGAAGAGGCTTGACTGCCGCC





NC_045512.2_21mer_win1_28806
28806
28826
3187
CGCCGTCAGTTCGGAGAAGAG
4169
GAGAAGAGGCTTGACTGCCGC





NC_045512.2_21mer_win1_28807
28807
28827
3188
GCCGTCAGTTCGGAGAAGAGC
4170
CGAGAAGAGGCTTGACTGCCG





NC_045512.2_21mer_win1_28946
28946
28966
3189
CTGTCTAACTTGGTCGAACTC
4171
CTCAAGCTGGTTCAATCTGTC





NC_045512.2_21mer_win1_28947
28947
28967
3190
TGTCTAACTTGGTCGAACTCT
4172
TCTCAAGCTGGTTCAATCTGT





NC_045512.2_21mer_win1_28948
28948
28968
3191
GTCTAACTTGGTCGAACTCTC
4173
CTCTCAAGCTGGTTCAATCTG





NC_045512.2_21mer_win1_28949
28949
28969
3192
TCTAACTTGGTCGAACTCTCG
4174
GCTCTCAAGCTGGTTCAATCT





NC_045512.2_21mer_win1_28950
28950
28970
3193
CTAACTTGGTCGAACTCTCGT
4175
TGCTCTCAAGCTGGTTCAATC





NC_045512.2_21mer_win1_28951
28951
28971
3194
TAACTTGGTCGAACTCTCGTT
4176
TTGCTCTCAAGCTGGTTCAAT





NC_045512.2_21mer_win1_28952
28952
28972
3195
AACTTGGTCGAACTCTCGTTT
4177
TTTGCTCTCAAGCTGGTTCAA





NC_045512.2_21mer_win1_28976
28976
28996
3196
AGACCATTTCCGGTTGTTGTT
4178
TTGTTGTTGGCCTTTACCAGA





NC_045512.2_21mer_win1_28977
28977
28997
3197
GACCATTTCCGGTTGTTGTTG
4179
GTTGTTGTTGGCCTTTACCAG





NC_045512.2_21mer_win1_28978
28978
28998
3198
ACCATTTCCGGTTGTTGTTGT
4180
TGTTGTTGTTGGCCTTTACCA





NC_045512.2_21mer_win1_28979
28979
28999
3199
CCATTTCCGGTTGTTGTTGTT
4181
TTGTTGTTGTTGGCCTTTACC





NC_045512.2_21mer_win1_28980
28980
29000
3200
CATTTCCGGTTGTTGTTGTTC
4182
CTTGTTGTTGTTGGCCTTTAC





NC_045512.2_21mer_win1_28981
28981
29001
3201
ATTTCCGGTTGTTGTTGTTCC
4183
CCTTGTTGTTGTTGGCCTTTA





NC_045512.2_21mer_win1_28982
28982
29002
3202
TTTCCGGTTGTTGTTGTTCCG
4184
GCCTTGTTGTTGTTGGCCTTT





NC_045512.2_21mer_win1_28983
28983
29003
3203
TTCCGGTTGTTGTTGTTCCGG
4185
GGCCTTGTTGTTGTTGGCCTT





NC_045512.2_21mer_win1_28984
28984
29004
3204
TCCGGTTGTTGTTGTTCCGGT
4186
TGGCCTTGTTGTTGTTGGCCT





NC_045512.2_21mer_win1_28985
28985
29005
3205
CCGGTTGTTGTTGTTCCGGTT
4187
TTGGCCTTGTTGTTGTTGGCC





NC_045512.2_21mer_win1_28986
28986
29006
3206
CGGTTGTTGTTGTTCCGGTTT
4188
TTTGGCCTTGTTGTTGTTGGC





NC_045512.2_21mer_win1_28987
28987
29007
3207
GGTTGTTGTTGTTCCGGTTTG
4189
GTTTGGCCTTGTTGTTGTTGG





NC_045512.2_21mer_win1_28988
28988
29008
3208
GTTGTTGTTGTTCCGGTTTGA
4190
AGTTTGGCCTTGTTGTTGTTG





NC_045512.2_21mer_win1_28989
28989
29009
3209
TTGTTGTTGTTCCGGTTTGAC
4191
CAGTTTGGCCTTGTTGTTGTT





NC_045512.2_21mer_win1_28990
28990
29010
3210
TGTTGTTGTTCCGGTTTGACA
4192
ACAGTTTGGCCTTGTTGTTGT





NC_045512.2_21mer_win1_28991
28991
29011
3211
GTTGTTGTTCCGGTTTGACAG
4193
GACAGTTTGGCCTTGTTGTTG





NC_045512.2_21mer_win1_28992
28992
29012
3212
TTGTTGTTCCGGTTTGACAGT
4194
TGACAGTTTGGCCTTGTTGTT





NC_045512.2_21mer_win1_28993
28993
29013
3213
TGTTGTTCCGGTTTGACAGTG
4195
GTGACAGTTTGGCCTTGTTGT





NC_045512.2_21mer_win1_28994
28994
29014
3214
GTTGTTCCGGTTTGACAGTGA
4196
AGTGACAGTTTGGCCTTGTTG





NC_045512.2_21mer_win1_28995
28995
29015
3215
TTGTTCCGGTTTGACAGTGAT
4197
TAGTGACAGTTTGGCCTTGTT





NC_045512.2_21mer_win1_28996
28996
29016
3216
TGTTCCGGTTTGACAGTGATT
4198
TTAGTGACAGTTTGGCCTTGT





NC_045512.2_21mer_win1_28997
28997
29017
3217
GTTCCGGTTTGACAGTGATTC
4199
CTTAGTGACAGTTTGGCCTTG





NC_045512.2_21mer_win1_28998
28998
29018
3218
TTCCGGTTTGACAGTGATTCT
4200
TCTTAGTGACAGTTTGGCCTT





NC_045512.2_21mer_win1_28999
28999
29019
3219
TCCGGTTTGACAGTGATTCTT
4201
TTCTTAGTGACAGTTTGGCCT





NC_045512.2_21mer_win1_29000
29000
29020
3220
CCGGTTTGACAGTGATTCTTT
4202
TTTCTTAGTGACAGTTTGGCC





NC_045512.2_21mer_win1_29001
29001
29021
3221
CGGTTTGACAGTGATTCTTTA
4203
ATTTCTTAGTGACAGTTTGGC





NC_045512.2_21mer_win1_29002
29002
29022
3222
GGTTTGACAGTGATTCTTTAG
4204
GATTTCTTAGTGACAGTTTGG





NC_045512.2_21mer_win1_29003
29003
29023
3223
GTTTGACAGTGATTCTTTAGA
4205
AGATTTCTTAGTGACAGTTTG





NC_045512.2_21mer_win1_29004
29004
29024
3224
TTTGACAGTGATTCTTTAGAC
4206
CAGATTTCTTAGTGACAGTTT





NC_045512.2_21mer_win1_29005
29005
29025
3225
TTGACAGTGATTCTTTAGACG
4207
GCAGATTTCTTAGTGACAGTT





NC_045512.2_21mer_win1_29006
29006
29026
3226
TGACAGTGATTCTTTAGACGA
4208
AGCAGATTTCTTAGTGACAGT





NC_045512.2_21mer_win1_29007
29007
29027
3227
GACAGTGATTCTTTAGACGAC
4209
CAGCAGATTTCTTAGTGACAG





NC_045512.2_21mer_win1_29008
29008
29028
3228
ACAGTGATTCTTTAGACGACG
4210
GCAGCAGATTTCTTAGTGACA





NC_045512.2_21mer_win1_29009
29009
29029
3229
CAGTGATTCTTTAGACGACGA
4211
AGCAGCAGATTTCTTAGTGAC





NC_045512.2_21mer_win1_29010
29010
29030
3230
AGTGATTCTTTAGACGACGAC
4212
CAGCAGCAGATTTCTTAGTGA





NC_045512.2_21mer_win1_29011
29011
29031
3231
GTGATTCTTTAGACGACGACT
4213
TCAGCAGCAGATTTCTTAGTG





NC_045512.2_21mer_win1_29012
29012
29032
3232
TGATTCTTTAGACGACGACTC
4214
CTCAGCAGCAGATTTCTTAGT





NC_045512.2_21mer_win1_29013
29013
29033
3233
GATTCTTTAGACGACGACTCC
4215
CCTCAGCAGCAGATTTCTTAG





NC_045512.2_21mer_win1_29014
29014
29034
3234
ATTCTTTAGACGACGACTCCG
4216
GCCTCAGCAGCAGATTTCTTA





NC_045512.2_21mer_win1_29144
29144
29164
3235
GATTAGTCTGTTCCTTGACTA
4217
ATCAGTTCCTTGTCTGATTAG





NC_045512.2_21mer_win1_29145
29145
29165
3236
ATTAGTCTGTTCCTTGACTAA
4218
AATCAGTTCCTTGTCTGATTA





NC_045512.2_21mer_win1_29146
29146
29166
3237
TTAGTCTGTTCCTTGACTAAT
4219
TAATCAGTTCCTTGTCTGATT





NC_045512.2_21mer_win1_29147
29147
29167
3238
TAGTCTGTTCCTTGACTAATG
4220
GTAATCAGTTCCTTGTCTGAT





NC_045512.2_21mer_win1_29148
29148
29168
3239
AGTCTGTTCCTTGACTAATGT
4221
TGTAATCAGTTCCTTGTCTGA





NC_045512.2_21mer_win1_29149
29149
29169
3240
GTCTGTTCCTTGACTAATGTT
4222
TTGTAATCAGTTCCTTGTCTG





NC_045512.2_21mer_win1_29150
29150
29170
3241
TCTGTTCCTTGACTAATGTTT
4223
TTTGTAATCAGTTCCTTGTCT





NC_045512.2_21mer_win1_29151
29151
29171
3242
CTGTTCCTTGACTAATGTTTG
4224
GTTTGTAATCAGTTCCTTGTC





NC_045512.2_21mer_win1_29152
29152
29172
3243
TGTTCCTTGACTAATGTTTGT
4225
TGTTTGTAATCAGTTCCTTGT





NC_045512.2_21mer_win1_29174
29174
29194
3244
ACCGGCGTTTAACGTGTTAAA
4226
AAATTGTGCAATTTGCGGCCA





NC_045512.2_21mer_win1_29175
29175
29195
3245
CCGGCGTTTAACGTGTTAAAC
4227
CAAATTGTGCAATTTGCGGCC





NC_045512.2_21mer_win1_29176
29176
29196
3246
CGGCGTTTAACGTGTTAAACG
4228
GCAAATTGTGCAATTTGCGGC





NC_045512.2_21mer_win1_29228
29228
29248
3247
GCGTAACCGTACCTTCAGTGT
4229
TGTGACTTCCATGCCAATGCG





NC_045512.2_21mer_win1_29229
29229
29249
3248
CGTAACCGTACCTTCAGTGTG
4230
GTGTGACTTCCATGCCAATGC





NC_045512.2_21mer_win1_29230
29230
29250
3249
GTAACCGTACCTTCAGTGTGG
4231
GGTGTGACTTCCATGCCAATG





NC_045512.2_21mer_win1_29231
29231
29251
3250
TAACCGTACCTTCAGTGTGGA
4232
AGGTGTGACTTCCATGCCAAT





NC_045512.2_21mer_win1_29232
29232
29252
3251
AACCGTACCTTCAGTGTGGAA
4233
AAGGTGTGACTTCCATGCCAA





NC_045512.2_21mer_win1_29233
29233
29253
3252
ACCGTACCTTCAGTGTGGAAG
4234
GAAGGTGTGACTTCCATGCCA





NC_045512.2_21mer_win1_29234
29234
29254
3253
CCGTACCTTCAGTGTGGAAGC
4235
CGAAGGTGTGACTTCCATGCC





NC_045512.2_21mer_win1_29235
29235
29255
3254
CGTACCTTCAGTGTGGAAGCC
4236
CCGAAGGTGTGACTTCCATGC





NC_045512.2_21mer_win1_29236
29236
29256
3255
GTACCTTCAGTGTGGAAGCCC
4237
CCCGAAGGTGTGACTTCCATG





NC_045512.2_21mer_win1_29237
29237
29257
3256
TACCTTCAGTGTGGAAGCCCT
4238
TCCCGAAGGTGTGACTTCCAT





NC_045512.2_21mer_win1_29238
29238
29258
3257
ACCTTCAGTGTGGAAGCCCTT
4239
TTCCCGAAGGTGTGACTTCCA





NC_045512.2_21mer_win1_29239
29239
29259
3258
CCTTCAGTGTGGAAGCCCTTG
4240
GTTCCCGAAGGTGTGACTTCC





NC_045512.2_21mer_win1_29285
29285
29305
3259
TTTAACCTACTGTTTCTAGGT
4241
TGGATCTTTGTCATCCAATTT





NC_045512.2_21mer_win1_29342
29342
29362
3260
TAACTGCGTATGTTTTGTAAG
4242
GAATGTTTTGTATGCGTCAAT





NC_045512.2_21mer_win1_29343
29343
29363
3261
AACTGCGTATGTTTTGTAAGG
4243
GGAATGTTTTGTATGCGTCAA





NC_045512.2_21mer_win1_29344
29344
29364
3262
ACTGCGTATGTTTTGTAAGGG
4244
GGGAATGTTTTGTATGCGTCA





NC_045512.2_21mer_win1_29345
29345
29365
3263
CTGCGTATGTTTTGTAAGGGT
4245
TGGGAATGTTTTGTATGCGTC





NC_045512.2_21mer_win1_29346
29346
29366
3264
TGCGTATGTTTTGTAAGGGTG
4246
GTGGGAATGTTTTGTATGCGT





NC_045512.2_21mer_win1_29347
29347
29367
3265
GCGTATGTTTTGTAAGGGTGG
4247
GGTGGGAATGTTTTGTATGCG





NC_045512.2_21mer_win1_29348
29348
29368
3266
CGTATGTTTTGTAAGGGTGGT
4248
TGGTGGGAATGTTTTGTATGC





NC_045512.2_21mer_win1_29349
29349
29369
3267
GTATGTTTTGTAAGGGTGGTT
4249
TTGGTGGGAATGTTTTGTATG





NC_045512.2_21mer_win1_29350
29350
29370
3268
TATGTTTTGTAAGGGTGGTTG
4250
GTTGGTGGGAATGTTTTGTAT





NC_045512.2_21mer_win1_29351
29351
29371
3269
ATGTTTTGTAAGGGTGGTTGT
4251
TGTTGGTGGGAATGTTTTGTA





NC_045512.2_21mer_win1_29352
29352
29372
3270
TGTTTTGTAAGGGTGGTTGTC
4252
CTGTTGGTGGGAATGTTTTGT





NC_045512.2_21mer_win1_29353
29353
29373
3271
GTTTTGTAAGGGTGGTTGTCT
4253
TCTGTTGGTGGGAATGTTTTG





NC_045512.2_21mer_win1_29354
29354
29374
3272
TTTTGTAAGGGTGGTTGTCTC
4254
CTCTGTTGGTGGGAATGTTTT





NC_045512.2_21mer_win1_29355
29355
29375
3273
TTTGTAAGGGTGGTTGTCTCG
4255
GCTCTGTTGGTGGGAATGTTT





NC_045512.2_21mer_win1_29356
29356
29376
3274
TTGTAAGGGTGGTTGTCTCGG
4256
GGCTCTGTTGGTGGGAATGTT





NC_045512.2_21mer_win1_29357
29357
29377
3275
TGTAAGGGTGGTTGTCTCGGA
4257
AGGCTCTGTTGGTGGGAATGT





NC_045512.2_21mer_win1_29358
29358
29378
3276
GTAAGGGTGGTTGTCTCGGAT
4258
TAGGCTCTGTTGGTGGGAATG





NC_045512.2_21mer_win1_29359
29359
29379
3277
TAAGGGTGGTTGTCTCGGATT
4259
TTAGGCTCTGTTGGTGGGAAT





NC_045512.2_21mer_win1_29360
29360
29380
3278
AAGGGTGGTTGTCTCGGATTT
4260
TTTAGGCTCTGTTGGTGGGAA





NC_045512.2_2lmer_win1_29361
29361
29381
3279
AGGGTGGTTGTCTCGGATTTT
4261
TTTTAGGCTCTGTTGGTGGGA





NC_045512.2_21mer_win1_29362
29362
29382
3280
GGGTGGTTGTCTCGGATTTTT
4262
TTTTTAGGCTCTGTTGGTGGG





NC_045512.2_21mer_win1_29363
29363
29383
3281
GGTGGTTGTCTCGGATTTTTC
4263
CTTTTTAGGCTCTGTTGGTGG





NC_045512.2_21mer_win1_29364
29364
29384
3282
GTGGTTGTCTCGGATTTTTCC
4264
CCTTTTTAGGCTCTGTTGGTG





NC_045512.2_21mer_win1_29365
29365
29385
3283
TGGTTGTCTCGGATTTTTCCT
4265
TCCTTTTTAGGCTCTGTTGGT





NC_045512.2_21mer_win1_29366
29366
29386
3284
GGTTGTCTCGGATTTTTCCTG
4266
GTCCTTTTTAGGCTCTGTTGG





NC_045512.2_21mer_win1_29367
29367
29387
3285
GTTGTCTCGGATTTTTCCTGT
4267
TGTCCTTTTTAGGCTCTGTTG





NC_045512.2_21mer_win1_29368
29368
29388
3286
TTGTCTCGGATTTTTCCTGTT
4268
TTGTCCTTTTTAGGCTCTGTT





NC_045512.2_21mer_win1_29369
29369
29389
3287
TGTCTCGGATTTTTCCTGTTT
4269
TTTGTCCTTTTTAGGCTCTGT





NC_045512.2_21mer_win1_29370
29370
29390
3288
GTCTCGGATTTTTCCTGTTTT
4270
TTTTGTCCTTTTTAGGCTCTG





NC_045512.2_2lmer_win1_29371
29371
29391
3289
TCTCGGATTTTTCCTGTTTTT
4271
TTTTTGTCCTTTTTAGGCTCT





NC_045512.2_21mer_win1_29372
29372
29392
3290
CTCGGATTTTTCCTGTTTTTC
4272
CTTTTTGTCCTTTTTAGGCTC





NC_045512.2_21mer_win1_29373
29373
29393
3291
TCGGATTTTTCCTGTTTTTCT
4273
TCTTTTTGTCCTTTTTAGGCT





NC_045512.2_21mer_win1_29374
29374
29394
3292
CGGATTTTTCCTGTTTTTCTT
4274
TTCTTTTTGTCCTTTTTAGGC





NC_045512.2_21mer_win1_29543
29543
29563
3293
CTGGTGTGTTCCGTCTACCCG
4275
GCCCATCTGCCTTGTGTGGTC





NC_045512.2_21mer_win1_29544
29544
29564
3294
TGGTGTGTTCCGTCTACCCGA
4276
AGCCCATCTGCCTTGTGTGGT





NC_045512.2_21mer_win1_29545
29545
29565
3295
GGTGTGTTCCGTCTACCCGAT
4277
TAGCCCATCTGCCTTGTGTGG





NC_045512.2_21mer_win1_29546
29546
29566
3296
GTGTGTTCCGTCTACCCGATA
4278
ATAGCCCATCTGCCTTGTGTG





NC_045512.2_21mer_win1_29598
29598
29618
3297
TATCAGATGAGAACACGTCTT
4279
TTCTGCACAAGAGTAGACTAT





NC_045512.2_21mer_win1_29599
29599
29619
3298
ATCAGATGAGAACACGTCTTA
4280
ATTCTGCACAAGAGTAGACTA





NC_045512.2_21mer_win1_29600
29600
29620
3299
TCAGATGAGAACACGTCTTAC
4281
CATTCTGCACAAGAGTAGACT





NC_045512.2_21mer_win1_29601
29601
29621
3300
CAGATGAGAACACGTCTTACT
4282
TCATTCTGCACAAGAGTAGAC





NC_045512.2_21mer_win1_29602
29602
29622
3301
AGATGAGAACACGTCTTACTT
4283
TTCATTCTGCACAAGAGTAGA





NC_045512.2_21mer_win1_29603
29603
29623
3302
GATGAGAACACGTCTTACTTA
4284
ATTCATTCTGCACAAGAGTAG





NC_045512.2_21mer_win1_29604
29604
29624
3303
ATGAGAACACGTCTTACTTAA
4285
AATTCATTCTGCACAAGAGTA





NC_045512.2_21mer_win1_29605
29605
29625
3304
TGAGAACACGTCTTACTTAAG
4286
GAATTCATTCTGCACAAGAGT





NC_045512.2_21mer_win1_29606
29606
29626
3305
GAGAACACGTCTTACTTAAGA
4287
AGAATTCATTCTGCACAAGAG





NC_045512.2_21mer_win1_29607
29607
29627
3306
AGAACACGTCTTACTTAAGAG
4288
GAGAATTCATTCTGCACAAGA





NC_045512.2_21mer_win1_29608
29608
29628
3307
GAACACGTCTTACTTAAGAGC
4289
CGAGAATTCATTCTGCACAAG





NC_045512.2_21mer_win1_29609
29609
29629
3308
AACACGTCTTACTTAAGAGCA
4290
ACGAGAATTCATTCTGCACAA





NC_045512.2_21mer_win1_29610
29610
29630
3309
ACACGTCTTACTTAAGAGCAT
4291
TACGAGAATTCATTCTGCACA





NC_045512.2_21mer_win1_29652
29652
29672
3310
ATCAATTGAAATTAGAGTGTA
4292
ATGTGAGATTAAAGTTAACTA





NC_045512.2_21mer_win1_29653
29653
29673
3311
TCAATTGAAATTAGAGTGTAT
4293
TATGTGAGATTAAAGTTAACT





NC_045512.2_21mer_win1_29654
29654
29674
3312
CAATTGAAATTAGAGTGTATC
4294
CTATGTGAGATTAAAGTTAAC





NC_045512.2_21mer_win1_29655
29655
29675
3313
AATTGAAATTAGAGTGTATCG
4295
GCTATGTGAGATTAAAGTTAA





NC_045512.2_21mer_win1_29656
29656
29676
3314
ATTGAAATTAGAGTGTATCGT
4296
TGCTATGTGAGATTAAAGTTA





NC_045512.2_21mer_win1_29657
29657
29677
3315
TTGAAATTAGAGTGTATCGTT
4297
TTGCTATGTGAGATTAAAGTT





NC_045512.2_21mer_win1_29658
29658
29678
3316
TGAAATTAGAGTGTATCGTTA
4298
ATTGCTATGTGAGATTAAAGT





NC_045512.2_21mer_win1_29659
29659
29679
3317
GAAATTAGAGTGTATCGTTAG
4299
GATTGCTATGTGAGATTAAAG





NC_045512.2_21mer_win1_29660
29660
29680
3318
AAATTAGAGTGTATCGTTAGA
4300
AGATTGCTATGTGAGATTAAA





NC_045512.2_21mer_win1_29661
29661
29681
3319
AATTAGAGTGTATCGTTAGAA
4301
AAGATTGCTATGTGAGATTAA





NC_045512.2_21mer_win1_29662
29662
29682
3320
ATTAGAGTGTATCGTTAGAAA
4302
AAAGATTGCTATGTGAGATTA





NC_045512.2_21mer_win1_29663
29663
29683
3321
TTAGAGTGTATCGTTAGAAAT
4303
TAAAGATTGCTATGTGAGATT





NC_045512.2_21mer_win1_29664
29664
29684
3322
TAGAGTGTATCGTTAGAAATT
4304
TTAAAGATTGCTATGTGAGAT





NC_045512.2_21mer_win1_29665
29665
29685
3323
AGAGTGTATCGTTAGAAATTA
4305
ATTAAAGATTGCTATGTGAGA





NC_045512.2_21mer_win1_29666
29666
29686
3324
GAGTGTATCGTTAGAAATTAG
4306
GATTAAAGATTGCTATGTGAG





NC_045512.2_21mer_win1_29667
29667
29687
3325
AGTGTATCGTTAGAAATTAGT
4307
TGATTAAAGATTGCTATGTGA





NC_045512.2_21mer_win1_29689
29689
29709
3326
ACACATTGTAATCCCTCCTGA
4308
AGTCCTCCCTAATGTTACACA





NC_045512.2_21mer_win1_29690
29690
29710
3327
CACATTGTAATCCCTCCTGAA
4309
AAGTCCTCCCTAATGTTACAC





NC_045512.2_21mer_win1_29691
29691
29711
3328
ACATTGTAATCCCTCCTGAAC
4310
CAAGTCCTCCCTAATGTTACA





NC_045512.2_21mer_win1_29692
29692
29712
3329
CATTGTAATCCCTCCTGAACT
4311
TCAAGTCCTCCCTAATGTTAC





NC_045512.2_21mer_win1_29693
29693
29713
3330
ATTGTAATCCCTCCTGAACTT
4312
TTCAAGTCCTCCCTAATGTTA





NC_045512.2_21mer_win1_29694
29694
29714
3331
TTGTAATCCCTCCTGAACTTT
4313
TTTCAAGTCCTCCCTAATGTT





NC_045512.2_21mer_win1_29695
29695
29715
3332
TGTAATCCCTCCTGAACTTTC
4314
CTTTCAAGTCCTCCCTAATGT





NC_045512.2_21mer_win1_29696
29696
29716
3333
GTAATCCCTCCTGAACTTTCT
4315
TCTTTCAAGTCCTCCCTAATG





NC_045512.2_21mer_win1_29697
29697
29717
3334
TAATCCCTCCTGAACTTTCTC
4316
CTCTTTCAAGTCCTCCCTAAT





NC_045512.2_21mer_win1_29698
29698
29718
3335
AATCCCTCCTGAACTTTCTCG
4317
GCTCTTTCAAGTCCTCCCTAA





NC_045512.2_21mer_win1_29699
29699
29719
3336
ATCCCTCCTGAACTTTCTCGG
4318
GGCTCTTTCAAGTCCTCCCTA





NC_045512.2_21mer_win1_29700
29700
29720
3337
TCCCTCCTGAACTTTCTCGGT
4319
TGGCTCTTTCAAGTCCTCCCT





NC_045512.2_21mer_win1_29701
29701
29721
3338
CCCTCCTGAACTTTCTCGGTG
4320
GTGGCTCTTTCAAGTCCTCCC





NC_045512.2_21mer_win1_29702
29702
29722
3339
CCTCCTGAACTTTCTCGGTGG
4321
GGTGGCTCTTTCAAGTCCTCC





NC_045512.2_21mer_win1_29703
29703
29723
3340
CTCCTGAACTTTCTCGGTGGT
4322
TGGTGGCTCTTTCAAGTCCTC





NC_045512.2_21mer_win1_29704
29704
29724
3341
TCCTGAACTTTCTCGGTGGTG
4323
GTGGTGGCTCTTTCAAGTCCT





NC_045512.2_21mer_win1_29705
29705
29725
3342
CCTGAACTTTCTCGGTGGTGT
4324
TGTGGTGGCTCTTTCAAGTCC





NC_045512.2_21mer_win1_29706
29706
29726
3343
CTGAACTTTCTCGGTGGTGTA
4325
ATGTGGTGGCTCTTTCAAGTC





NC_045512.2_21mer_win1_29707
29707
29727
3344
TGAACTTTCTCGGTGGTGTAA
4326
AATGTGGTGGCTCTTTCAAGT





NC_045512.2_21mer_win1_29708
29708
29728
3345
GAACTTTCTCGGTGGTGTAAA
4327
AAATGTGGTGGCTCTTTCAAG





NC_045512.2_21mer_win1_29709
29709
29729
3346
AACTTTCTCGGTGGTGTAAAA
4328
AAAATGTGGTGGCTCTTTCAA





NC_045512.2_21mer_win1_29710
29710
29730
3347
ACTTTCTCGGTGGTGTAAAAG
4329
GAAAATGTGGTGGCTCTTTCA





NC_045512.2_21mer_win1_29711
29711
29731
3348
CTTTCTCGGTGGTGTAAAAGT
4330
TGAAAATGTGGTGGCTCTTTC





NC_045512.2_21mer_win1_29733
29733
29753
3349
GCTCCGGTGCGCCTCATGCTA
4331
ATCGTACTCCGCGTGGCCTCG





NC_045512.2_21mer_win1_29734
29734
29754
3350
CTCCGGTGCGCCTCATGCTAG
4332
GATCGTACTCCGCGTGGCCTC





NC_045512.2_21mer_win1_29735
29735
29755
3351
TCCGGTGCGCCTCATGCTAGC
4333
CGATCGTACTCCGCGTGGCCT





NC_045512.2_21mer_win1_29736
29736
29756
3352
CCGGTGCGCCTCATGCTAGCT
4334
TCGATCGTACTCCGCGTGGCC





NC_045512.2_21mer_win1_29737
29737
29757
3353
CGGTGCGCCTCATGCTAGCTC
4335
CTCGATCGTACTCCGCGTGGC





NC_045512.2_21mer_win1_29770
29770
29790
3354
TTACGATCCCTCTCGACGGAT
4336
TAGGCAGCTCTCCCTAGCATT





NC_045512.2_21mer_win1_29771
29771
29791
3355
TACGATCCCTCTCGACGGATA
4337
ATAGGCAGCTCTCCCTAGCAT





NC_045512.2_21mer_win1_29772
29772
29792
3356
ACGATCCCTCTCGACGGATAT
4338
TATAGGCAGCTCTCCCTAGCA





NC_045512.2_21mer_win1_29773
29773
29793
3357
CGATCCCTCTCGACGGATATA
4339
ATATAGGCAGCTCTCCCTAGC





NC_045512.2_21mer_win1_29774
29774
29794
3358
GATCCCTCTCGACGGATATAC
4340
CATATAGGCAGCTCTCCCTAG





NC_045512.2_21mer_win1_29775
29775
29795
3359
ATCCCTCTCGACGGATATACC
4341
CCATATAGGCAGCTCTCCCTA





NC_045512.2_21mer_win1_29776
29776
29796
3360
TCCCTCTCGACGGATATACCT
4342
TCCATATAGGCAGCTCTCCCT





NC_045512.2_21mer_win1_29777
29777
29797
3361
CCCTCTCGACGGATATACCTT
4343
TTCCATATAGGCAGCTCTCCC





NC_045512.2_21mer_win1_29778
29778
29798
3362
CCTCTCGACGGATATACCTTC
4344
CTTCCATATAGGCAGCTCTCC





NC_045512.2_21mer_win1_29779
29779
29799
3363
CTCTCGACGGATATACCTTCT
4345
TCTTCCATATAGGCAGCTCTC





NC_045512.2_21mer_win1_29780
29780
29800
3364
TCTCGACGGATATACCTTCTC
4346
CTCTTCCATATAGGCAGCTCT





NC_045512.2_2lmer_win1_29781
29781
29801
3365
CTCGACGGATATACCTTCTCG
4347
GCTCTTCCATATAGGCAGCTC





NC_045512.2_21mer_win1_29782
29782
29802
3366
TCGACGGATATACCTTCTCGG
4348
GGCTCTTCCATATAGGCAGCT





NC_045512.2_21mer_win1_29783
29783
29803
3367
CGACGGATATACCTTCTCGGG
4349
GGGCTCTTCCATATAGGCAGC





NC_045512.2_21mer_win1_29784
29784
29804
3368
GACGGATATACCTTCTCGGGA
4350
AGGGCTCTTCCATATAGGCAG





NC_045512.2_21mer_win1_29785
29785
29805
3369
ACGGATATACCTTCTCGGGAT
4351
TAGGGCTCTTCCATATAGGCA





NC_045512.2_21mer_win1_29786
29786
29806
3370
CGGATATACCTTCTCGGGATT
4352
TTAGGGCTCTTCCATATAGGC





NC_045512.2_21mer_win1_29787
29787
29807
3371
GGATATACCTTCTCGGGATTA
4353
ATTAGGGCTCTTCCATATAGG





NC_045512.2_21mer_win1_29788
29788
29808
3372
GATATACCTTCTCGGGATTAC
4354
CATTAGGGCTCTTCCATATAG





NC_045512.2_21mer_win1_29789
29789
29809
3373
ATATACCTTCTCGGGATTACA
4355
ACATTAGGGCTCTTCCATATA





NC_045512.2_21mer_win1_29790
29790
29810
3374
TATACCTTCTCGGGATTACAC
4356
CACATTAGGGCTCTTCCATAT





NC_045512.2_2lmer_win1_29791
29791
29811
3375
ATACCTTCTCGGGATTACACA
4357
ACACATTAGGGCTCTTCCATA





NC_045512.2_21mer_win1_29792
29792
29812
3376
TACCTTCTCGGGATTACACAT
4358
TACACATTAGGGCTCTTCCAT





NC_045512.2_21mer_win1_29793
29793
29813
3377
ACCTTCTCGGGATTACACATT
4359
TTACACATTAGGGCTCTTCCA





NC_045512.2_21mer_win1_29794
29794
29814
3378
CCTTCTCGGGATTACACATTT
4360
TTTACACATTAGGGCTCTTCC





NC_045512.2_21mer_win1_29795
29795
29815
3379
CTTCTCGGGATTACACATTTT
4361
TTTTACACATTAGGGCTCTTC





NC_045512.2_21mer_win1_29796
29796
29816
3380
TTCTCGGGATTACACATTTTA
4362
ATTTTACACATTAGGGCTCTT





NC_045512.2_21mer_win1_29797
29797
29817
3381
TCTCGGGATTACACATTTTAA
4363
AATTTTACACATTAGGGCTCT





NC_045512.2_21mer_win1_29798
29798
29818
3382
CTCGGGATTACACATTTTAAT
4364
TAATTTTACACATTAGGGCTC





NC_045512.2_21mer_win1_29799
29799
29819
3383
TCGGGATTACACATTTTAATT
4365
TTAATTTTACACATTAGGGCT





NC_045512.2_21mer_win1_29800
29800
29820
3384
CGGGATTACACATTTTAATTA
4366
ATTAATTTTACACATTAGGGC





NC_045512.2_21mer_win1_29801
29801
29821
3385
GGGATTACACATTTTAATTAA
4367
AATTAATTTTACACATTAGGG





NC_045512.2_21mer_win1_29802
29802
29822
3386
GGATTACACATTTTAATTAAA
4368
AAATTAATTTTACACATTAGG





NC_045512.2_21mer_win1_29803
29803
29823
3387
GATTACACATTTTAATTAAAA
4369
AAAATTAATTTTACACATTAG





NC_045512.2_21mer_win1_29804
29804
29824
3388
ATTACACATTTTAATTAAAAT
4370
TAAAATTAATTTTACACATTA





NC_045512.2_21mer_win1_29805
29805
29825
3389
TTACACATTTTAATTAAAATC
4371
CTAAAATTAATTTTACACATT





NC_045512.2_21mer_win1_29806
29806
29826
3390
TACACATTTTAATTAAAATCA
4372
ACTAAAATTAATTTTACACAT





NC_045512.2_21mer_win1_29807
29807
29827
3391
ACACATTTTAATTAAAATCAT
4373
TACTAAAATTAATTTTACACA





NC_045512.2_21mer_win1_29808
29808
29828
3392
CACATTTTAATTAAAATCATC
4374
CTACTAAAATTAATTTTACAC
















TABLE 2







Genome Sequences for Coronaviruses









SEQ




ID
Des-



NO
cription
Sequence





2407
SARS-CoV-
attaaaggtttataccttcccaggtaacaaaccaaccaactttcgatctcttgtagatctgttctctaaacgaactttaaaatctgtgtggctgtcactcggctgcatgcttagtgc



2 genome
actcacgcagtataattaataactaattactgtcgttgacaggacacgagtaactcgtctatcttctgcaggctgcttacggtttcgtccgtgttgcagccgatcatcagcacat



(Genbank
ctaggtttcgtccgggtgtgaccgaaaggtaagatggagagccttgtccctggtttcaacgagaaaacacacgtccaactcagtttgcctgttttacaggttcgcgacgtgct



Accession
cgtacgtggctttggagactccgtggaggaggtatatcagaggcacgtcaacatcttaaagatggcacttgtggcttagtagaagttgaaaaaggcgttttgcctcaacttg



No.
aacagccctatgtgttcatcaaacgttcggatgctcgaactgcacctcatggtcatgttatggttgagctggtagcagaactcgaaggcattcagtacggtcgtagtggtgag



NC_
acacttggtgtccttgtccctcatgtgggcgaaataccagtggcttaccgcaaggttcttcttcgtaagaacggtaataaaggagctggtggccatagttacggcgccgatct



045512.2)
aaagtcatttgacttaggcgacgagcttggcactgatccttatgaagattttcaagaaaactggaacactaaacatagcagtggtgttacccgtgaactcatgcgtgagctta




acggaggggcatacactcgctatgtcgataacaacttctgtggccctgatggctaccctcttgagtgcattaaagaccttctagcacgtgctggtaaagcttcatgcactttgt




ccgaacaactggactttattgacactaagaggggtgtatactgctgccgtgaacatgagcatgaaattgcttggtacacggaacgttctgaaaagagctatgaattgcagac




acatttgaaattaaattggcaaagaaatttgacaccttcaatggggaatgtccaaattttgtatttcccttaaattccataatcaagactattcaaccaagggttgaaaagaaaa




agcttgatggctttatgggtagaattcgatctgtctatccagttgcgtcaccaaatgaatgcaaccaaatgtgcctttcaactctcatgaagtgtgatcattgtggtgaaacttca




tggcagacgggcgattttgttaaagccacttgcgaattttgtggcactgagaatttgactaaagaaggtgccactacttgtggttacttaccccaaaatgctgttgttaaaattta




ttgtccagcatgtcacaattcagaagtaggacctgagcatagtcttgccgaataccataatgaatctggcttgaaaaccattcttcgtaagggtggtcgcactattgcctttgga




ggctgtgtgttctcttatgttggttgccataacaagtgtgcctattgggttccacgtgctagcgctaacataggttgtaaccatacaggtgttgttggagaaggttccgaaggtc




ttaatgacaaccttcttgaaatactccaaaaagagaaagtcaacatcaatattgttggtgactttaaacttaatgaagagatcgccattattttggcatctttttctgcttccacaag




tgatttgtggaaactgtgaaaggtttggattataaagcattcaaacaaattgttgaatcctgtggtaattttaaagttacaaaaggaaaagctaaaaaaggtgcctggaatattg




gtgaacagaaatcaatactgagtcctattatgcatttgcatcagaggctgctcgtgttgtacgatcaattttctcccgcactcttgaaactgctcaaaattctgtgcgtgttttaca




gaaggccgctataacaatactagatggaatttcacagtattcactgagactcattgatgctatgatgttcacatctgatttggctactaacaatctagttgtaatggcctacattac




aggtggtgttgttcagttgacttcgcagtggctaactaacatattggcactgtttatgaaaaactcaaacccgtccttgattggcttgaagagaagtttaaggaaggtgtagag




tttcttagagacggttgggaaattgttaaatttatctcaacctgtgcttgtgaaattgtcggtggacaaattgtcacctgtgcaaaggaaattaaggagagtgttcagacattcttt




aagcttgtaaataaatttttggctttgtgtgctgactctatcattattggtggagctaaacttaaagccttgaatttaggtgaaacatttgtcacgcactcaaagggattgtacaga




aagtgtgttaaatccagagaagaaactggcctactcatgcctctaaaagccccaaaagaaattatcttcttagagggagaaacacttcccacagaagtgttaacagaggaa




gttgtcttgaaaactggtgatttacaaccattagaacaacctactagtgaagctgttgaagctccattggttggtacaccagtttgtattaacgggcttatgttgctcgaaatcaa




agacacagaaaagtactgtgccatgcacctaatatgatggtaacaaacaataccttcacactcaaaggcggtgcaccaacaaaggttacttttggtgatgacactgtgata




gaagtgcaaggttacaagagtgtgaatatcacttttgaacttgatgaaaggattgataaagtacttaatgagaagtgctctgcctatacagttgaactcggtacagaagtaaat




gagttcgcctgtgttgtggcagatgctgtcataaaaactttgcaaccagtatctgaattacttacaccactgggcattgatttagatgagtggagtatggctacatactacttattt




gatgagtaggtgagtttaaattggcttcacatatgtattgttattctaccctccagatgaggatgaagaagaaggtgattgtgaagaagaagagtttgagccatcaactcaat




atgagtatggtactgaagatgattaccaaggtaaacctttggaatttggtgccacttctgctgacttcaacctgaagaagagcaagaagaagattggttagatgatgatagtc




aacaaactgttggtcaacaagacggcagtgaggacaatcagacaactactattcaaacaattgttgaggttcaacctcaattagagatggaacttacaccagttgttcagact




attgaagtgaatagttttagtggttatttaaaacttactgacaatgtatacattaaaaatgcagacattgtggaagaagctaaaaaggtaaaaccaacagtggttgttaatgcag




ccaatgtttaccttaaacatggaggaggtgttgcaggagccttaaataaggctactaacaatgccatgcaagttgaatctgatgattacatagctactaatggaccacttaaag




tgggtggtagttgtgttttaagcggacacaatcttgctaaacactgtcttcatgttgtcggcccaaatgttaacaaaggtgaagacattcaacttcttaagagtgcttatgaaaat




tttaatcagcacgaagttctacttgcaccattattatcagaggtatttttggtgctgaccctatacattattaagagtttgtgtagatactgttcgcacaaatgtctacttagctgtc




tttgataaaaatctctatgacaaacttgtttcaagattttggaaatgaagagtgaaaagcaagttgaacaaaagatcgctgagattcctaaagaggaagttaagccatttataa




ctgaaagtaaaccttcagttgaacagagaaaacaagatgataagaaaatcaaagcttgtgttgaagaagttacaacaactctggaagaaactaagttcctcacagaaaactt




gttactttatattgacattaatggcaatcttcatccagattctgccactcttgttagtgacattgacatcactttcttaaagaaagatgctccatatatagtgggtgatgttgttcaag




agggtgttttaactgctgtggttatacctactaaaaaggctggtggcactactgaaatgctagcgaaagctttgagaaaagtgccaacagacaattatataaccacttacccg




ggtcagggtttaaatggttacactgtagaggaggcaaagacagtgcttaaaaagtgtaaaagtgccttttacattctaccatctattatctctaatgagaagcaagaaattcttg




gaactgtttcttggaatttgcgagaaatgcttgcacatgcagaagaaacacgcaaattaatgcctgtagtgtggaaactaaagccatagtttcaactatacagcgtaaatata




agggtattaaaatacaagagggtgtggttgattatggtgctagattttacttttacaccagtaaaacaactgtagcgtcacttatcaacacacttaacgatctaaatgaaactctt




gttacaatgccacttggctatgtaacacatggcttaaatttggaagaagctgctcggtatatgagatctctcaaagtgccagctacagtttctgtttcttcacctgatgctgttaca




gcgtataatggttatcttacttcttcttctaaaacacctgaagaacattttattgaaaccatctcacttgctggttcctataaagattggtcctattctggacaatctacacaactagg




tatagaatttcttaagagaggtgataaaagtgtatattacactagtaatcctaccacattccacctagatggtgaagttatcacctttgacaatcttaagacacttattctttgaga




gaagtgaggactattaaggtgtttacaacagtagacaacattaacctccacacgcaagttgtggacatgtcaatgacatatggacaacagtttggtccaacttatttggatgg




agctgatgttactaaaataaaacctcataattcacatgaaggtaaaacattttatgttttacctaatgatgacactctacgtgttgaggcttttgagtactaccacacaactgatcct




agttttctgggtaggtacatgtcagcattaaatcacactaaaaagtggaaatacccacaagttaatggtttaacttctattaaatgggcagataacaactgttatcttgccactgc




attgttaacactccaacaaatagagttgaagtttaatccacctgctctacaagatgcttattacagagcaagggctggtgaagctgctaacttttgtgcacttatcttagcctact




gtaataagacagtaggtgagttaggtgatgttagagaaacaatgagttacttgtttcaacatgccaatttagattcttgcaaaagagtcttgaacgtggtgtgtaaaacttgtgg




acaacagcagacaacccttaagggtgtagaagctgttatgtacatgggcacactttcttatgaacaatttaagaaaggtgttcagataccttgtacgtgtggtaaacaagctac




aaaatatctagtacaacaggagtcaccttttgttatgatgtcagcaccacctgctcagtatgaacttaagcatggtacatttacttgtgctagtgagtacactggtaattaccagt




gtggtcactataaacatataacttctaaagaaactttgtattgcatagacggtgattacttacaaagtcctcagaatacaaaggtcctattacggatgttttctacaaagaaaac




agttacacaacaaccataaaaccagttacttataaattggatggtgttgtttgtacagaaattgaccctaagttggacaattattataagaaagacaattcttatttcacagagca




accaattgatcttgtaccaaaccaaccatatccaaacgcaagcttcgataattttaagtttgtatgtgataatatcaaatttgctgatgatttaaaccagttaactggttataagaaa




cctgcttcaagagagcttaaagttacatttttccctgacttaaatggtgatgtggtggctattgattataaacactacacaccctatttaagaaaggagctaaattgttacataaa




cctattgtttggcatgttaacaatgcaactaataaagccacgtataaaccaaatacctggtgtatacgttgtctttggagcacaaaaccagttgaaacatcaaattcgtttgatgt




actgaagtcagaggacgcgcagggaatggataatcttgcctgcgaagatctaaaaccagtactgaagaagtagtggaaaatcctaccatacagaaagacgttcttgagt




gtaatgtgaaaactaccgaagttgtaggagacattatacttaaaccagcaaataatagtttaaaaattacagaagaggttggccacacagatctaatggctgcttatgtagac




aattctagtcttactattaagaaacctaatgaattatctagagtattaggtttgaaaacccttgctactcatggtttagctgctgttaatagtgtcccttgggatactatagctaattat




gctaagccttttcttaacaaagttgttagtacaactactaacatagttacacggtgtttaaaccgtgtttgtactaattatatgccttatttattactttattgctacaattgtgtactttt




actagaagtacaaattctagaattaaagcatctatgccgactactatagcaaagaatactgttaagagtgtcggtaaattttgtctagaggcttcatttaattatttgaagtcacct




aatttttctaaactgataaatattataatttggtttttactattaagtgtttgcctaggttctttaatctactcaaccgctgctttaggtgttttaatgtctaatttaggcatgccttcttact




gtactggttacagagaaggctatttgaactctactaatgtcactattgcaacctactgtactggttctataccttgtagtgtttgtcttagtggtttagattattagacacctatcctt




ctttagaaactatacaaattaccatttcatcttttaaatgggatttaactgatttggcttagttgcagagtggtttttggcatatattatttcactaggtttttctatgtacttggattgg




ctgcaatcatgcaattgtttttcagctattttgcagtacattttattagtaattcttggcttatgtggttaataattaatcttgtacaaatggccccgatttcagctatggttagaatgta




catcttctttgcatcattttattatgtatggaaaagttatgtgcatgttgtagacggttgtaattcatcaacttgtatgatgtgttacaaacgtaatagagcaacaagagtcgaatgt




acaactattgttaatggtgttagaaggtccttttatgtctatgctaatggaggtaaaggcttttgcaaactacacaattggaattgtgttaattgtgatacattctgtgctggtagta




catttattagtgatgaagttgcgagagacttgtcactacagtttaaaagaccaataaatcctactgaccagtcttcttacatcgttgatagtgttacagtgaagaatggttccatcc




atctttactttgataaagctggtcaaaagacttatgaaagacattctctctctcattttgttaacttagacaacctgagagctaataacactaaaggttcattgcctattaatgttata




gtttttgatggtaaatcaaaatgtgaagaatcatctgcaaaatcagcgtctgtttactacagtcagcttatgtgtcaacctatactgttactagatcaggcattagtgtctgatgttg




gtgatagtgcggaagttgcagttaaaatgtttgatgcttacgttaatacgttttcatcaacttttaacgtaccaatggaaaaactcaaaacactagttgcaactgcagaagctga




acttgcaaagaatgtgtccttagacaatgtcttatctacttttatttcagcagctcggcaagggtttgttgattcagatgtagaaactaaagatgttgttgaatgtcttaaattgtca




catcaatctgacatagaagttactggcgatagttgtaataactatatgctcacctataacaaagttgaaaacatgacaccccgtgaccttggtgcttgtattgactgtagtgcgc




gtcatattaatgcgcaggtagcaaaaagtcacaacattgctttgatatggaacgttaaagatttcatgtcattgtctgaacaactacgaaaacaaatacgtagtgctgctaaaa




agaataacttaccttttaagttgacatgtgcaactactagacaagttgttaatgttgtaacaacaaagatagcacttaagggtggtaaaattgttaataattggttgaagcagtta




attaaagttacacttgtgttcctttttgttgctgctattttctatttaataacacctgttcatgtcatgtctaaacatactgacttttcaagtgaaatcataggatacaaggctattgatg




gtggtgtcactcgtgacatagcatctacagatacttgttttgctaacaaacatgctgattttgacacatggtttagccagcgtggtggtagttatactaatgacaaagcttgccca




ttgattgctgcagtcataacaagagaagtgggttttgtcgtgcctggtttgcctggcacgatattacgcacaactaatggtgactttttgcatttcttacctagagtttttagtgca




gttggtaacatctgttacacaccatcaaaacttatagagtacactgactttgcaacatcagcttgtgttttggctgctgaatgtacaatttttaaagatgcttctggtaagccagta




ccatattgttatgataccaatgtactagaaggttctgttgcttatgaaagtttacgccctgacacacgttatgtgctcatggatggctctattattcaatttcctaacacctaccttga




aggttctgttagagtggtaacaacttttgattctgagtactgtaggcacggcacttgtgaaagatcagaagctggtgtttgtgtatctactagtggtagatgggtacttaacaat




gattattacagatattaccaggagttttctgtggtgtagatgctgtaaatttacttactaatatgtttacaccactaattcaacctattggtgattggacatatcagcatctatagta




gctggtggtattgtagctatcgtagtaacatgccttgcctactattttatgaggtttagaagagcttttggtgaatacagtcatgtagttgcctttaatactttactattccttatgtcat




tcactgtactagtttaacaccagtttactcattcttacctggtgtttattctgttatttacttgtacttgacattttatcttactaatgatgtttcttttttagcacatattcagtggatggtt




atgttcacacctttagtacctttctggataacaattgcttatatcatttgtatttccacaaagcatttctattggttctttagtaattacctaaagagacgtgtagtattaatggtgtttcct




ttagtacttttgaagaagctgcgctgtgcacctttttgttaaataaagaaatgtatctaaagttgcgtagtgatgtgctattacctcttacgcaatataatagatacttagctctttata




ataagtacaagtattttagtggagcaatggatacaactagctacagagaagctgcttgttgtcatctcgcaaaggctctcaatgacttcagtaactcaggttctgatgttctttac




caaccaccacaaacctctatcacctcagctgttttgcagagtggttttagaaaaatggcattcccatctggtaaagttgagggttgtatggtacaagtaacttgtggtacaacta




cacttaacggtattggcttgatgacgtagtttactgtccaagacatgtgatctgcacctctgaagacatgcttaaccctaattatgaagatttactcattcgtaagtctaatcataa




tttcttggtacaggctggtaatgttcaactcagggttattggacattctatgcaaaattgtgtacttaagcttaaggttgatacagccaatcctaagacacctaagtataagtttgtt




cgcattcaaccaggacagactttttcagtgttagcttgttacaatggttcaccatctggtgtttaccaatgtgctatgaggcccaatttcactattaagggttcattccttaatggtt




catgtggtagtgttggttttaacatagattatgactgtgtctattttgttacatgcaccatatggaattaccaactggagttcatgctggcacagacttagaaggtaacttttatgg




accttttgttgacaggcaaacagcacaagcagctggtacggacacaactattacagttaatgttttagcttggttgtacgctgctgttataaatggagacaggtggtttctcaat




cgatttaccacaactcttaatgactttaaccttgtggctatgaagtacaattatgaacctctaacacaagaccatgttgacatactaggacctattctgctcaaactggaattgc




cgttttagatatgtgtgcttcattaaaagaattactgcaaaatggtatgaatggacgtaccatattgggtagtgattattagaagatgaatttacaccttttgatgttgttagacaat




gctcaggtgttactttccaaagtgcagtgaaaagaacaatcaagggtacacaccactggttgttactcacaattttgacttcacttttagttttagtccagagtactcaatggtctt




tgttatttttttgtatgaaaatgcctttttaccttttgctatgggtattattgctatgtctgatttgcaatgatgtttgtcaaacataagcatgcatttactgtttgtttttgttaccttctct




tgccactgtagcttattttaatatggtctatatgcctgctagttgggtgatgcgtattatgacatggttggatatggttgatactagtttgtaggttttaagctaaaagactgtgttat




gtatgcatcagctgtagtgttactaatccttatgacagcaagaactgtgtatgatgatggtgctaggagagtgtggacacttatgaatgtcttgacactcgtttataaagtttatta




tggtaatgattagatcaagccatttccatgtgggctcttataatctctgttacttctaactactcaggtgtagttacaactgtcatgtttttggccagaggtattgtttttatgtgtgtt




gagtattgccctattttcttcataactggtaatacacttcagtgtataatgctagtttattgtttcttaggctatttttgtacttgttactttggcctatttgtttactcaaccgctactttag




actgactcttggtgtttatgattacttagtttctacacaggagtttagatatatgaattcacagggactactcccacccaagaatagcatagatgccttcaaactcaacattaaatt




gttgggtgttggtggcaaaccttgtatcaaagtagccactgtacagtctaaaatgtcagatgtaaagtgcacatcagtagtcttactctcagttttgcaacaactcagagtagaa




tcatcatctaaattgtgggctcaatgtgtccagttacacaatgacattctcttagctaaagatactactgaagcctttgaaaaaatggtttcactactttctgttttgattccatgca




gggtgctgtagacataaacaagattgtgaagaaatgctggacaacagggcaaccttacaagctatagcctcagagtttagttccdtccatcatatgcagcttttgctactgc




tcaagaagcttatgagcaggctgttgctaatggtgattctgaagttgttcttaaaaagttgaagaagtattgaatgtggctaaatctgaatttgaccgtgatgcagccatgcaa




cgtaagttggaaaagatggctgatcaagctatgacccaaatgtataaacaggctagatctgaggacaagagggcaaaagttactagtgctatgcagacaatgatttcacta




tgcttagaaagttggataatgatgcactcaacaacattatcaacaatgcaagagatggttgtgttccdtgaacataatacctcttacaacagcagccaaactaatggttgtcat




accagactataacacatataaaaatacgtgtgatggtacaacatttacttatgcatcagcattgtgggaaatccaacaggttgtagatgcagatagtaaaattgttcaacttagt




gaaattagtatggacaattcacctaatttagcatggcctcttattgtaacagctttaagggccaattctgctgtcaaattacagaataatgagcttagtcctgttgcactacgaca




gatgtcttgtgctgccggtactacacaaactgcttgcactgatgacaatgcgttagcttactacaacacaacaaagggaggtaggtttgtacttgcactgttatccgatttacag




gatttgaaatgggctagattccctaagagtgatggaactggtactatctatacagaactggaaccaccttgtaggtttgttacagacacacctaaaggtcctaaagtgaagtat




ttatactttattaaaggattaaacaacctaaatagaggtatggtacttggtagtttagctgccacagtacgtctacaagctggtaatgcaacagaagtgcctgccaattcaactg




tattatattctgtgatttgctgtagatgctgctaaagcttacaaagattatctagctagtgggggacaaccaatcactaattgtgttaagatgttgtgtacacacactggtactg




gtcaggcaataacagttacaccggaagccaatatggatcaagaatcctttggtggtgcatcgtgttgtctgtactgccgttgccacatagatcatccaaatcctaaaggatttt




gtgacttaaaaggtaagtatgtacaaatacctacaacttgtgctaatgaccctgtgggttttacacttaaaaacacagtagtaccgtctgcggtatgtggaaaggttatggctg




tagttgtgatcaactccgcgaacccatgcttcagtcagctgatgcacaatcgtttttaaacgggtttgcggtgtaagtgcagcccgtcttacaccgtgcggcacaggcactag




tactgatgtcgtatacagggcttttgacatctacaatgataaagtagctggttttgctaaattcctaaaaactaattgttgtcgcttccaagaaaaggacgaagatgacaatttaat




tgattcttactttgtagttaagagacacactttctctaactaccaacatgaagaaacaatttataatttacttaaggattgtccagagttgctaaacatgacttattaagtttagaat




agacggtgacatggtaccacatatatcacgtcaacgtcttactaaatacacaatggcagacctcgtctatgattaaggcattttgatgaaggtaattgtgacacattaaaaga




aatacttgtcacatacaattgttgtgatgatgattatttcaataaaaaggactggtatgattttgtagaaaacccagatatattacgcgtatacgccaacttaggtgaacgtgtac




gccaagattgttaaaaacagtacaattctgtgatgccatgcgaaatgctggtattgttggtgtactgacattagataatcaagatctcaatggtaactggtatgatttcggtgatt




tcatacaaaccacgccaggtagtggagttcctgttgtagattcttattattcattgttaatgcctatattaaccttgaccagggctttaactgcagagtcacatgttgacactgactt




aacaaagccttacattaagtgggatttgttaaaatatgacttcacggaagagaggttaaaactattgaccgttattttaaatattgggatcagacataccacccaaattgtgtta




actgtttggatgacagatgcattctgcattgtgcaaactttaatgttttattctctacagtgttcccacctacaagttttggaccactagtgagaaaaatatttgttgatggtgttcca




tttgtagtttcaactggataccacttcagagagctaggtgttgtacataatcaggatgtaaacttacatagctctagacttagttttaaggaattacttgtgtatgctgctgaccctg




ctatgcacgctgcttctggtaatctattactagataaacgcactacgtgatttcagtagctgcacttactaacaatgttgatttcaaactgtcaaacccggtaattttaacaaag




acttctatgactttgctgtgtctaagggtttctttaaggaaggaagttctgttgaattaaaacacttcttctttgctcaggatggtaatgctgctatcagcgattatgactactatcgt




tataatctaccaacaatgtgtgatatcagacaactactatttgtagttgaagttgttgataagtactttgattgttacgatggtggctgtattaatgctaaccaagtcatcgtcaaca




acctagacaaatcagctggttttccatttaataaatggggtaaggctagactttattatgattcaatgagttatgaggatcaagatgcacttttcgcatatacaaaacgtaatgtca




tccctactataactcaaatgaatcttaagtatgccattagtgcaaagaatagagctcgcaccgtagctggtgtctctatctgtagtactatgaccaatagacagtttcatcaaaa




attattgaaatcaatagccgccactagaggagctactgtagtaattggaacaagcaaattctatggtggttggcacaacatgttaaaaactgtttatagtgatgtagaaaaccc




tcaccttatgggttgggattatcctaaatgtgatagagccatgcctaacatgcttagaattatggcctcacttgttcttgctcgcaaacatacaacgtgttgtagcttgtcacacc




gtttctatagattagctaatgagtgtgctcaagtattgagtgaaatggtcatgtgtggcggttcactatatgttaaaccaggtggaacctcatcaggagatgccacaactgctta




tgctaatagtgtttttaacatttgtcaagctgtcacggccaatgttaatgcacttttatctactgatggtaacaaaattgccgataagtatgtccgcaatttacaacacagactttat




gagtgtctctatagaaatagagatgttgacacagactttgtgaatgagttttacgcatatttgcgtaaacatttctcaatgatgatactctctgacgatgctgttgtgtgtttcaata




gcacttatgcatctcaaggtctagtggctagcataaagaactttaagtcagttctttattatcaaaacaatgtttttatgtctgaagcaaaatgttggactgagactgaccttacta




aaggacctcatgaattttgctctcaacatacaatgctagttaaacagggtgatgattatgtgtaccttccttacccagatccatcaagaatcctaggggccggctgttttgtagat




gatatcgtaaaaacagatggtacacttatgattgaacggttcgtgtattagctatagatgcttacccacttactaaacatcctaatcaggagtatgctgatgtattcatttgtactt




acaatacataagaaagctacatgatgagttaacaggacacatgttagacatgtattctgttatgcttactaatgataacacttcaaggtattgggaacctgagt-tttatgaggcta




tgtacacaccgcatacagtcttacaggctgttggggcttgtgttctttgcaattcacagacttcattaagatgtggtgcttgcatacgtagaccattcttatgttgtaaatgctgtta




cgaccatgtcatatcaacatcacataaattagtcttgtagttaatccgtatgtttgcaatgaccaggttgtgatgtcacagatgtgactcaactttacttaggaggtatgagctat




tattgtaaatcacataaaccacccattagttttccattgtgtgctaatggacaagtttttggtttatataaaaatacatgtgttggtagcgataatgttactgactttaatgcaattgca




acatgtgactggacaaatgctggtgattacattttagctaacacctgtactgaaagactcaagctttttgcagcagaaacgctcaaagctactgaggagacatttaaactgtctt




atggtattgctactgtacgtgaagtgctgtctgacagagaattacatctttcatgggaagttggtaaacctagaccaccacttaaccgaaattatgtctttactggttatcgtgta




actaaaaacagtaaagtacaaataggagagtacacctttgaaaaaggtgactatggtgatgctgttgtttaccgaggtacaacaacttacaaattaaatgttggtgattattttgt




gctgacatcacatacagtaatgccattaagtgcacctacactagtgccacaagagcactatgttagaattactggcttatacccaacactcaatatctcagatgagttttctagc




aatgttgcaaattatcaaaaggttggtatgcaaaagtattctacactccagggaccacctggtactggtaagagtcattttgctattggcctagctctctactacccttctgctcg




catagtgtatacagcttgactcatgccgctgttgatgcactatgtgagaaggcattaaaatatttgcctatagataaatgtagtagaattatacctgcacgtgctcgtgtagagt




gttttgataaattcaaagtgaattcaacattagaacagtatgtatttgtactgtaaatgcattgcctgagacgacagcagatatagttgtattgatgaaatttcaatggccacaa




attatgatttgagtgttgtcaatgccagattacgtgctaagcactatgtgtacattggcgaccctgctcaattacctgcaccacgcacattgctaactaagggcacactagaac




cagaatatttcaattcagtgtgtagacttatgaaaactataggtccagacatgttcctcggaacttgtcggcgttgtcctgctgaaattgttgacactgtgagtgctttggtttatg




ataataagcttaaagcacataaagacaaatcagctcaatgctttaaaatgttttataagggtgttatcacgcatgatgtttcatctgcaattaacaggccacaaataggcgtggt




aagagaattccttacacgtaaccctgcttggagaaaagagtctttatttcaccttataattcacagaatgctgtagcctcaaagattttgggactaccaactcaaactgttgattc




atcacagggctcagaatatgactatgtcatattcactcaaaccactgaaacagctcactcttgtaatgtaaacagatttaatgttgctattaccagagcaaaagtaggcatacttt




gcataatgtctgatagagacctttatgacaagttgcaatttacaagtcttgaaattccacgtaggaatgtggcaactttacaagctgaaaatgtaacaggactctttaaagattgt




agtaaggtaatcactgggttacatcctacacaggcacctacacacctcagtgttgacactaaattcaaaactgaaggtttatgtgttgacatacctggcatacctaaggacatg




acctatagaagactcatctctatgatgggttttaaaatgaattatcaagttaatggttaccctaacatgtttatcacccgcgaagaagctataagacatgtacgtgcatggattgg




cttcgatgtcgaggggtgtcatgctactagagaagctgttggtaccaatttacctttacagctaggtttttctacaggtgttaacctagttgctgtacctacaggttatgttgatac




acctaataatacagatttttccagagttagtgctaaaccaccgcctggagatcaatttaaacacctcataccacttatgtacaaaggacttccttggaatgtagtgcgtataaag




attgtacaaatgttaagtgacacacttaaaaatctactgacagagtcgtatttgtcttatgggcacatggctttgagttgacatctatgaagtattttgtgaaaataggacctgag




cgcacctgttgtctatgtgatagacgtgccacatgcttttccactgcttcagacacttatgcctgttggcatcattctattggatttgattacgtctataatccgtttatgattgatgtt




caacaatggggttttacaggtaacctacaaagcaaccatgatctgtattgtcaagtccatggtaatgcacatgtagctagttgtgatgcaatcatgactaggtgtctagctgtcc




acgagtgattgttaagcgtgttgactggactattgaatatcctataattggtgatgaactgaagattaatgcggcttgtagaaaggttcaacacatggttgttaaagctgcatta




ttagcagacaaattcccagttcttcacgacattggtaaccctaaagctattaagtgtgtacctcaagctgatgtagaatggaagttctatgatgcacagccttgtagtgacaaa




gcttataaaatagaagaattattctattcttatgccacacattctgacaaattcacagatggtgtatgcctattttggaattgcaatgtcgatagatatcctgctaattccattgtttgt




agatttgacactagagtgctatctaaccttaacttgcctggttgtgatggtggcagtttgtatgtaaataaacatgcattccacacaccagcttttgataaaagtgatttgttaattt




aaaacaattaccatttttctattactctgacagtccatgtgagtctcatggaaaacaagtagtgtcagatatagattatgtaccactaaagtagctacgtgtataacacgttgcaa




tttaggtggtgctgtctgtagacatcatgctaatgagtacagattgtatctcgatgcttataacatgatgatctcagctggctttagcttgtgggtttacaaacaatttgatacttata




acctaggaacacttttacaagacttcagagtttagaaaatgtggcttttaatgttgtaaataagggacactttgatggacaacagggtgaagtaccagtttctatcattaataac




actgtttacacaaaagttgatggtgttgatgtagaattgtttgaaaataaaacaacattacctgttaatgtagcatttgagctttgggctaagcgcaacattaaaccagtaccaga




ggtgaaaatactcaataatttgggtgtggacattgctgctaatactgtgatctgggactacaaaagagatgctccagcacatatatctactattggtgtttgttctatgactgaca




tagccaagaaaccaactgaaacgatttgtgcaccactcactgtcttttttgatggtagagttgatggtcaagtagacttatttagaaatgcccgtaatggtgttcttattacagaa




ggtagtgttaaaggtttacaaccatctgtaggtcccaaacaagctagtcttaatggagtcacattaattggagaagccgtaaaaacacagttcaattattataagaaagttgat




ggtgttgtccaacaattacctgaaacttactttactcagagtagaaatttacaagaatttaaacccaggagtcaaatggaaattgatttcttagaattagctatggatgaattcatt




gaacggtataaattagaaggctatgccttcgaacatatcgtttatggagattttagtcatagtcagttaggtggtttacatctactgattggactagctaaacgttttaaggaatca




catttgaattagaagattttattcctatggacagtacagttaaaaactatttcataacagatgcgcaaacaggttcatctaagtgtgtgtgttctgttattgatttattacttgatgatt




ttgttgaaataataaaatcccaagatttatctgtagtttctaaggttgtcaaagtgactattgactatacagaaatttcatttatgattggtgtaaagatggccatgtagaaacatttt




acccaaaattacaatctagtcaagcgtggcaaccgggtgttgctatgcctaatattacaaaatgcaaagaatgctattagaaaagtgtgaccttcaaaattatggtgatagtg




caacattacctaaaggcataatgatgaatgtcgcaaaatatactcaactgtgtcaatatttaaacacattaacattagctgtaccctataatatgagagttatacattttggtgctg




gttctgataaaggagttgcaccaggtacagctgttttaagacagtggttgcctacgggtacgctgcttgtcgattcagatcttaatgactttgtctctgatgcagattcaactttg




attggtgattgtgcaactgtacatacagctaataaatgggatctcattattagtgatatgtacgaccctaagactaaaaatgttacaaaagaaaatgactctaaagagggtttttt




cacttacatttgtgggtttatacaacaaaagctagctcttggaggttccgtggctataaagataacagaacattcttggaatgctgatctttataagctcatgggacacttcgcat




ggtggacagcctttgttactaatgtgaatgcgtcatcatctgaagcatttttaattggatgtaattatcttggcaaaccacgcgaacaaatagatggttatgtcatgcatgcaaat




tacatattttggaggaatacaaatccaattcagttgtcttcctattctttatttgacatgagtaaatttccccttaaattaaggggtactgctgttatgtattaaaagaaggtcaaatc




aatgatatgattttatctcttcttagtaaaggtagacttataattagagaaaacaacagagttgttatttctagtgatgttcttgttaacaactaaacgaacaatgtttgtttttcttgttt




tattgccactagtctctagtcagtgtgttaatcttacaaccagaactcaattaccccctgcatacactaattattcacacgtggtgtttattaccctgacaaagttttcagatcctca




gttttacattcaactcaggacttgttcttacctttatttccaatgttacttggttccatgctatacatgtctctgggaccaatggtactaagaggtttgataaccctgtcctaccattta




atgatggtgtttattttgcttccactgagaagtctaacataataagaggctggatttttggtactactttagattcgaagacccagtccctacttattgttaataacgctactaatgtt




gttattaaagtctgtgaatttcaattttgtaatgatccatttttgggtgtttattaccacaaaaacaacaaaagttggatggaaagtgagttcagagtttattctagtgcgaataattg




cacttttgaatatgtactcagccttttcttatggaccttgaaggaaaacagggtaatttcaaaaatcttagggaatttgtgtttaagaatattgatggttattttaaaatatattctaa




gcacacgcctattaatttagtgcgtgatctccctcagggtttttcggctttagaaccattggtagatttgccaataggtattaacatcactaggtttcaaactttacttgctttacata




gaagttatttgactcctggtgattcttcttcaggttggacagaggtgctgcagcttattatgtgggttatcttcaacctaggacttttctattaaaatataatgaaaatggaaccatt




acagatgctgtagactgtgcacttgaccctctctcagaaacaaagtgtacgttgaaatccttcactgtagaaaaaggaatctatcaaacttctaactttagagtccaaccaaca




gaatctattgttagatttcctaatattacaaacttgtgccatttggtgaagtttttaacgccaccagatttgcatctgtttatgcttggaacaggaagagaatcagcaactgtgttg




ctgattattctgtcctatataattccgcatcattttccacttttaagtgttatggagtgtctcctactaaattaaatgatactgattactaatgtctatgcagattcatttgtaattagag




gtgatgaagtcagacaaatcgctccagggcaaactggaaagattgctgattataattataaattaccagatgattttacaggctgcgttatagcttggaattctaacaatcttgat




tctaaggttggtggtaattataattacctgtatagattgtttaggaagtctaatctcaaaccttttgagagagatatttcaactgaaatctatcaggccggtagcacaccttgtaat




ggtgttgaaggttttaattgttactttcctttacaatcatatggtttccaacccactaatggtgttggttaccaaccatacagagtagtagtactttatttgaacttctacatgcacca




gcaactgtttgtggacctaaaaagtctactaatttggttaaaaacaaatgtgtcaatttcaacttcaatggtttaacaggcacaggtgttcttactgagtctaacaaaaagtttctg




cattccaacaatttggcagagacattgctgacactactgatgctgtccgtgatccacagacacttgagattcttgacattacaccatgttatttggtggtgtcagtgttataaca




ccaggaacaaatacttctaaccaggttgctgttattatcaggatgttaactgcacagaagtccctgttgctattcatgcagatcaacttactcctacttggcgtgtttattctaca




ggttctaatgtttttcaaacacgtgcaggctgtttaataggggctgaacatgtcaacaactcatatgagtgtgacatacccattggtgcaggtatatgcgctagttatcagactc




agactaattctcctcggcgggcacgtagtgtagctagtcaatccatcattgcctacactatgtcacttggtgcagaaaattcagttgcttactctaataactctattgccataccc




acaaattttactattagtgttaccacagaaattctaccagtgtctatgaccaagacatcagtagattgtacaatgtacatttgtggtgattcaactgaatgcagcaatcttttgttgc




aatatggcagtttttgtacacaattaaaccgtgattaactggaatagctgttgaacaagacaaaaacacccaagaagtttttgcacaagtcaaacaaatttacaaaacaccac




caattaaagattttggtggttttaatttttcacaaatattaccagatccatcaaaaccaagcaagaggtcatttattgaagatctacttttcaacaaagtgacacttgcagatgctg




gcttcatcaaacaatatggtgattgccttggtgatattgctgctagagacctcatttgtgcacaaaagtttaacggccttactgttttgccacctttgctcacagatgaaatgattg




ctcaatacacttctgcactgttagcgggtacaatcacttctggttggacctttggtgcaggtgctgcattacaaataccatttgctatgcaaatggcttataggtttaatggtattg




gagttacacagaatgttctctatgagaaccaaaaattgattgccaaccaatttaatagtgctattggcaaaattcaagactcactttcttccacagcaagtgcacttggaaaactt




caagatgtggtcaaccaaaatgcacaagctttaaacacgcttgttaaacaacttagctccaattttggtgcaatttcaagtgttttaaatgatatcctttcacgtcttgacaaagtt




gaggctgaagtgcaaattgataggttgatcacaggcagacttcaaagtttgcagacatatgtgactcaacaattaattagagctgcagaaatcagagcttctgctaatcttgct




gctactaaaatgtcagagtgtgtacttggacaatcaaaaagagttgatttttgtggaaagggctatcatcttatgtccttccctcagtcagcacctcatggtgtagtcttcttgcat




gtgacttatgtccctgcacaagaaaagaacttcacaactgctcctgccatttgtcatgatggaaaagcacactttcctcgtgaaggtgtctttgtttcaaatggcacacactggt




ttgtaacacaaaggaatttttatgaaccacaaatcattactacagacaacacatttgtgtaggtaactgtgatgttgtaataggaattgtcaacaacacagtttatgatcct-ttgc




aacctgaattagactcattcaaggaggagttagataaatattttaagaatcatacatcaccagatgttgatttaggtgacatctctggcattaatgcttcagttgtaaacattcaaa




aagaaattgaccgcctcaatgaggttgccaagaatttaaatgaatctctcatcgatctccaagaacttggaaagtatgagcagtatataaaatggccatggtacatttggctag




gttttatagaggcttgattgccatagtaatggtgacaattatgctttgctgtatgaccagttgctgtagttgtctcaagggctgttgttcttgtggatcctgctgcaaatttgatgaa




gacgactctgagccagtgctcaaaggagtcaaattacattacacataaacgaacttatggatttgtttatgagaatcttcacaattggaactgtaactttgaagcaaggtgaaat




caaggatgctactccttcagattttgttcgcgctactgcaacgataccgatacaagcctcactccctttcggatggcttattgttggcgttgcacttcttgctgtttttcagagcgc




ttccaaaatcataaccctcaaaaagagatggcaactagcactctccaagggtgttcactttgtttgcaacttgctgttgttgtttgtaacagtttactcacaccttttgctcgttgct




gctggccttgaagccccttttctctatctttatgctttagtctacttcttgcagagtataaactttgtaagaataataatgaggctttggctttgctggaaatgccgttccaaaaacc




cattactttatgatgccaactattttctttgctggcatactaattgttacgactattgtataccttacaatagtgtaacttcttcaattgtcattacttcaggtgatggcacaacaagtcc




tatttctgaacatgactaccagattggtggttatactgaaaaatgggaatctggagtaaaagactgtgttgtattacacagttacttcacttcagactattaccagctgtactcaac




tcaattgagtacagacactggtgttgaacatgttaccttcttcatctacaataaaattgttgatgagcctgaagaacatgtccaaattcacacaatcgacggttcatccggagtt




gttaatccagtaatggaaccaatttatgatgaaccgacgacgactactagcgtgcctttgtaagcacaagctgatgagtacgaacttatgtactcattcgtttcggaagagaca




ggtacgttaatagttaatagcgtacttattttcttgattcgtggtattcttgctagttacactagccatccttactgcgcttcgattgtgtgcgtactgctgcaatattgttaacgtga




gtcttgtaaaaccttattttacgtttactdcgtgttaaaaatctgaattcttctagagttcctgatcttctggtctaaacgaactaaatattatattagtttttctgtttggaactttaattt




tagccatggcagattccaacggtactattaccgttgaagagcttaaaaagctccttgaacaatggaacctagtaataggtttcctattccttacatggatttgtcttctacaatttg




cctatgccaacaggaataggtttttgtatataattaagttaattttcctaggctgttatggccagtaactttagcttgttttgtgcttgctgctgtttacagaataaattggatcaccg




gtggaattgctatcgcaatggcttgtcttgtaggcttgatgtggctcagctacttcattgcttctttcagactgtttgcgcgtacgcgttccatgtggtcattcaatccagaaacta




acattcttctcaacgtgccactccatggcactattctgaccagaccgcttctagaaagtgaactcgtaatcggagctgtgatccttcgtggacatcttcgtattgctggacacca




tctaggacgctgtgacatcaaggacctgcctaaagaaatcactgttgctacatcacgaacgctttcttattacaaattgggagcttcgcagcgtgtagcaggtgactcaggttt




tgctgcatacagtcgctacaggattggcaactataaattaaacacagaccattccagtagcagtgacaatattgattgcttgtacagtaagtgacaacagatgtttcatctcgt




tgactttcaggttactatagcagagatattactaattattatgaggacttttaaagtttccatttggaatcttgattacatcataaacctcataattaaaaatttatctaagtcactaact




gagaataaatattctcaattagatgaagagcaaccaatggagattgattaaacgaacatgaaaattattcttttcttggcactgataacactcgctacttgtgagattatcactac




caagagtgtgttagaggtacaacagtacttttaaaagaaccttgacttctggaacatacgagggcaattcaccatttcatcctctagctgataacaaatttgcactgacttgctt




tagcactcaatttgatttgcttgtcctgacggcgtaaaacacgtctatcagttacgtgccagatcagtttcacctaaactgttcatcagacaagaggaagttcaagaactttact




ctccaatttttcttattgttgcggcaatagtgtttataacactttgatcacactcaaaagaaagacagaatgattgaactttcattaattgacttctatttgtgattttagcctttctgc




tattccttgttttaattatgcttattatcttttggttctcacttgaactgcaagatcataatgaaacttgtcacgcctaaacgaacatgaaatttcttgttttcttaggaatcatcacaact




gtagctgcatttcaccaagaatgtagtttacagtcatgtactcaacatcaaccatatgtagttgatgacccgtgtcctattcacttctattctaaatggtatattagagtaggagct




agaaaatcagcacctttaattgaattgtgcgtggatgaggctggttctaaatcacccattcagtacatcgatatcggtaattatacagtttcctgtttaccttttacaattaattgcc




aggaacctaaattgggtagtcttgtagtgcgttgttcgttctatgaagactttttagagtatcatgacgttcgtgttgttttagatttcatctaaacgaacaaactaaaatgtctgata




atggaccccaaaatcagcgaaatgcaccccgcattacgtttggtggaccdcagattcaactggcagtaaccagaatggagaacgcagtggggcgcgatcaaaacaac




gtcggccccaaggtttacccaataatactgcgtcttggttcaccgctctcactcaacatggcaaggaagaccttaaattccctcgaggacaaggcgttccaattaacaccaat




agcagtccagatgaccaaattggctactaccgaagagctaccagacgaattcgtggtggtgacggtaaaatgaaagatctcagtccaagatggtatttctactacctagga




actgggccagaagctggacttccctatggtgctaacaaagacggcatcatatgggttgcaactgagggagccttgaatacaccaaaagatcacattggcacccgcaatcc




tgctaacaatgctgcaatcgtgctacaacttcctcaaggaacaacattgccaaaaggcttctacgcagaagggagcagaggcggcagtcaagcctcttctcgttcctcatc




acgtagtcgcaacagttcaagaaattcaactccaggcagcagtaggggaacttctcctgctagaatggctggcaatggcggtgatgctgctcttgattgctgctgcttgac




agattgaaccagcttgagagcaaaatgtaggtaaaggccaacaacaacaaggccaaactgtcactaagaaatctgctgctgaggcttctaagaagcctcggcaaaaac




gtactgccactaaagcatacaatgtaacacaagattcggcagacgtggtccagaacaaacccaaggaaattttggggaccaggaactaatcagacaaggaactgattac




aaacattggccgcaaattgcacaatttgcccccagcgcttcagcgttcttcggaatgtcgcgcattggcatggaagtcacaccttcgggaacgtggttgacctacacaggtg




ccatcaaattggatgacaaagatccaaatttcaaagatcaagtcattttgctgaataagcatattgacgcatacaaaacattcccaccaacagagcctaaaaaggacaaaaa




gaagaaggctgatgaaactcaagccttaccgcagagacagaagaaacagcaaactgtgactatcttcctgctgcagatttggatgatttctccaaacaattgcaacaatcc




atgagcagtgctgactcaactcaggcctaaactcatgcagaccacacaaggcagatgggctatataaacgttttcgcttttccgtttacgatatatagtctactcttgtgcagaa




tgaattctcgtaactacatagcacaagtagatgtagttaactttaatctcacatagcaatctttaatcagtgtgtaacattagggaggacttgaaagagccaccacattttcaccg




aggccacgcggagtacgatcgagtgtacagtgaacaatgctagggagagctgcctatatggaagagccctaatgtgtaaaattaattttagtagtgctatccccatgtgattt




taatagcttcttaggagaatgacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa


2408
SARS-CoV-
atattaggtttttacctacccaggaaaagccaaccaacctcgatctcttgtagatctgttctctaaacgaactttaaaatctgtgtagctgtcgctcggctgcatgcctagtgcac



1 genome
ctacgcagtataaacaataataaattttactgtcgttgacaagaaacgagtaactcgtccctcttctgcagactgcttacggtttcgtccgtgttgcagtcgatcatcagcatacc



(Genbank
taggtttcgtccgggtgtgaccgaaaggtaagatggagagccttgttcttggtgtcaacgagaaaacacacgtccaactcagtttgcctgtccttcaggttagagacgtgcta



Accession
gtgcgtggcttcggggactctgtggaagaggccctatcggaggcacgtgaacacctcaaaaatggcacttgtggtctagtagagctggaaaaaggcgtactgccccagc



No.
ttgaacagccctatgtgttcattaaacgttctgatgccttaagcaccaatcacggccacaaggtcgttgagctggttgcagaaatggacggcattcagtacggtcgtagcggt



NC_
ataacactgggagtactcgtgccacatgtgggcgaaaccccaattgcataccgcaatgttcttcttcgtaagaacggtaataagggagccggtggtcatagctatggcatc



004718.3)
gatctaaagtcttatgacttaggtgacgagcttggcactgatcccattgaagattatgaacaaaactggaacactaagcatggcagtggtgcactccgtgaactcactcgtga




gctcaatggaggtgcagtcactcgctatgtcgacaacaatttctgtggcccagatgggtaccctcttgattgcatcaaagattttctcgcacgcgcgggcaagtcaatgtgca




ctctttccgaacaacttgattacatcgagtcgaagagaggtgtctactgctgccgtgaccatgagcatgaaattgcctggttcactgagcgctctgataagagctacgagca




ccagacacccttcgaaattaagagtgccaagaaatttgacactttcaaaggggaatgcccaaagtttgtgtttcctcttaactcaaaagtcaaagtcattcaaccacgtgttga




aaagaaaaagactgagggtttcatggggcgtatacgctctgtgtaccctgttgcatctccacaggagtgtaacaatatgcacttgtctaccttgatgaaatgtaatcattgcga




tgaagtttcatggcagacgtgcgactttctgaaagccacttgtgaacattgtggcactgaaaatttagttattgaaggacctactacatgtgggtacctacctactaatgctgta




gtgaaaatgccatgtcctgcctgtcaagacccagagattggacctgagcatagtgttgcagattatcacaaccactcaaacattgaaactcgactccgcaagggaggtagg




actagatgttttggaggctgtgtgtttgcctatgttggctgctataataagcgtgcctactgggttcctcgtgctagtgctgatattggctcaggccatactggcattactggtga




caatgtggagaccttgaatgaggatctccttgagatactgagtcgtgaacgtgttaacattaacattgttggcgattttcatttgaatgaagaggttgccatcattttggcatcttt




ctctgcttctacaagtgcctttattgacactataaagagtcttgattacaagtattcaaaaccattgttgagtcctgcggtaactataaagttaccaagggaaagcccgtaaaag




gtgcttggaacattggacaacagagatcagttttaacaccactgtgtggttttccctcacaggctgctggtgttatcagatcaatttttgcgcgcacacttgatgcagcaaacca




ctcaattcctgatttgcaaagagcagctgtcaccatacttgatggtatttctgaacagtcattacgtcttgtcgacgccatggtttatacttcagacctgctcaccaacagtgtcat




tattatggcatatgtaactggtggtcttgtacaacagacttctcagtggttgtctaatcttttgggcactactgttgaaaaactcaggcctatctttgaatggattgaggcgaaact




tagtgcaggagttgaatttctcaaggatgcttgggagattctcaaatttctcattacaggtgtttttgacatcgtcaagggtcaaatacaggttgcttcagataacatcaaggatt




gtgtaaaatgcttcattgatgttgttaacaaggcactcgaaatgtgcattgatcaagtcactatcgctggcgcaaagttgcgatcactcaacttaggtgaagtcttcatcgctca




aagcaagggactttaccgtcagtgtatacgtggcaaggagcagctgcaactactcatgcctcttaaggcaccaaaagaagtaacctttcttgaaggtgattcacatgacaca




gtacttacctctgaggaggttgttctcaagaacggtgaactcgaagcactcgagacgcccgttgatagcttcacaaatggagctatcgttggcacaccagtagtgtaaatg




gcctcatgacttagagattaaggacaaagaacaatactgcgcattgtctcctggtttactggctacaaacaatgtattcgcttaaaagggggtgcaccaattaaaggtgtaa




cattggagaagatactgtttgggaagttcaaggttacaagaatgtgagaatcacatttgagcttgatgaacgtgttgacaaagtgcttaatgaaaagtgactgtctacactgt




tgaatccggtaccgaagttactgagtttgcatgtgttgtagcagaggctgttgtgaagactttacaaccagtttctgatctccttaccaacatgggtattgatcttgatgagtgga




gtgtagctacattctacttatttgatgatgctggtgaagaaaacttttcatcacgtatgtattgttccttttaccctccagatgaggaagaagaggacgatgcagagtgtgagga




agaagaaattgatgaaacctgtgaacatgagtacggtacagaggatgattatcaaggtaccactggaatttggtgcctcagctgaaacagttcgagttgaggaagaaga




agaggaagactggctggatgatactactgagcaatcagagattgagccagaaccagaacctacacctgaagaaccagttaatcagtttactggttatttaaaacttactgac




aatgttgccattaaatgtgttgacatcgttaaggaggcacaaagtgctaatcctatggtgattgtaaatgctgctaacatacacctgaaacatggtggtggtgtagcaggtgca




ctcaacaaggcaaccaatggtgccatgcaaaaggagagtgatgattacattaagctaaatggccctcttacagtaggagggtcttgtttgattctggacataatcttgctaag




aagtgtctgcatgttgttggacctaacctaaatgcaggtgaggacatccagcttcttaaggcagcatatgaaaatttcaattcacaggacatcttacttgcaccattgttgtcag




caggcatatttggtgctaaaccacttcagtattacaagtgtgcgtgcagacggttcgtacacaggtttatattgcagtcaatgacaaagctctttatgagcaggttgtcatgga




ttatcttgataacctgaagcctagagtggaagcacctaaacaagaggagccaccaaacacagaagattccaaaactgaggagaaatctgtcgtacagaagcctgtcgatg




tgaagccaaaaattaaggcctgcattgatgaggttaccacaacactggaagaaactaagtttcttaccaataagttactcttgtttgctgatatcaatggtaagattaccatgat




tctcagaacatgcttagaggtgaagatatgtctttccttgagaaggatgcaccttacatggtaggtgatgttatcactagtggtgatatcacttgtgttgtaataccctccaaaaa




ggctggtggcactactgagatgctctcaagagctttgaagaaagtgccagttgatgagtatataaccacgtaccctggacaaggatgtgctggttatacacttgaggaagct




aagactgctcttaagaaatgcaaatctgcattttatgtactaccttcagaagcacctaatgctaaggaagagattctaggaactgtatcctggaatttgagagaaatgcttgctc




atgctgaagagacaagaaaattaatgcctatatgcatggatgttagagccataatggcaaccatccaacgtaagtataaaggaattaaaattcaagagggcatcgttgactat




ggtgtccgattcttcttttatactagtaaagagcctgtagcttctattattacgaagctgaactctctaaatgagccgcttgtcacaatgccaattggttatgtgacacatggtttta




atcttgaagaggctgcgcgctgtatgcgttctcttaaagctcctgccgtagtgtcagtatcatcaccagatgctgttactacatataatggatacctcacttcgtcatcaaagac




atctgaggagcactttgtagaaacagtttattggctggctcttacagagattggtcctattcaggacagcgtacagagttaggtgttgaatttcttaagcgtggtgacaaaatt




gtgtaccacactctggagagccccgtcgagtttcatcttgacggtgaggttctttcacttgacaaactaaagagtctcttatccctgcgggaggttaagactataaaagtgttc




acaactgtggacaacactaatctccacacacagcttgtggatatgtctatgacatatggacagcagtttggtccaacatacttggatggtgctgatgttacaaaaattaaacct




catgtaaatcatgagggtaagactttattgtactacctagtgatgacacactacgtagtgaagattcgagtactaccatactcttgatgagagttttcttggtaggtacatgtct




gattaaaccacacaaagaaatggaaatttcctcaagttggtggtttaacttcaattaaatgggctgataacaattgttatttgtctagtgttttattagcacttcaacagcttgaagt




caaattcaatgcaccagcacttcaagaggcttattatagagcccgtgctggtgatgctgctaacttttgtgcactcatactcgcttacagtaataaaactgttggcgagcttggt




gatgtcagagaaactatgacccatcttctacagcatgctaatttggaatctgcaaagcgagttcttaatgtggtgtgtaaacattgtggtcagaaaactactaccttaacgggtg




tagaagctgtgatgtatatgggtactctatcttatgataatcttaagacaggtgtttccattccatgtgtgtgtggtcgtgatgctacacaatatctagtacaacaagagtcttctttt




gttatgatgtctgcaccacctgctgagtataaattacagcaaggtacattcttatgtgcgaatgagtacactggtaactatcagtgtggtcattacactcatataactgctaagga




gaccactatcgtattgacggagctcaccttacaaagatgtcagagtacaaaggaccagtgactgatgttttctacaaggaaacatcttacactacaaccatcaagcctgtgt




cgtataaactcgatggagttacttacacagagattgaaccaaaattggatgggtattataaaaaggataatgcttactatacagagcagcctatagaccttgtaccaactcaac




cattaccaaatgcgagttttgataatttcaaactcacatgttctaacacaaaatttgctgatgatttaaatcaaatgacaggcttcacaaagccagcttcacgagagctatctgtc




acattcttcccagacttgaatggcgatgtagtggctattgactatagacactattcagcgagtttcaagaaaggtgctaaattactgcataagccaattgtttggcacattaacc




aggctacaaccaagacaacgttcaaaccaaacacttggtgtttacgttgtctttggagtacaaagccagtagatacttcaaattcatttgaagttctggcagtagaagacacac




aaggaatggacaatcttgcttgtgaaagtcaacaacccacctctgaagaagtagtggaaaatcctaccatacagaaggaagtcatagagtgtgacgtgaaaactaccgaa




gttgtaggcaatgtcatacttaaaccatcagatgaaggtgttaaagtaacacaagagttaggtcatgaggatcttatggctgcttatgtggaaaacacaagcattaccattaag




aaacctaatgagctttcactagccttaggtttaaaaacaattgccactcatggtattgctgcaattaatagtgttccttggagtaaaattttggcttatgtcaaaccattcttaggac




aagcagcaattacaacatcaaattgcgctaagagattagcacaacgtgtgtttaacaattatatgccttatgtgtttacattattgttccaattgtgtacttttactaaaagtaccaat




tctagaattagagcttcactacctacaactattgctaaaaatagtgttaagagtgttgctaaattatgtttggatgccggcattaattatgtgaagtcacccaaattttctaaattgtt




cacaatcgctatgtggctattgttgttaagtatttgcttaggttactaatctgtgtaactgctgatttggtgtactcttatctaattttggtgctccttcttattgtaatggcgttagag




aattgtatcttaattcgtctaacgttactactatggatttctgtgaaggttatttccttgcagcatttgtttaagtggattagactcccttgattcttatccagctcttgaaaccattcag




gtgacgatttcatcgtacaagctagacttgacaattttaggtctggccgctgagtgggttttggcatatatgttgttcacaaaattatttatttattaggtctttcagctataatgca




ggtgttctttggctattttgctagtcatttcatcagcaattcttggctcatgtggtttatcattagtattgtacaaatggcacccgtttctgcaatggttaggatgtacatcttctttgctt




ctttctactacatatggaagagctatgttcatatcatggatggttgcacctcttcgacttgcatgatgtgctataagcgcaatcgtgccacacgcgttgagtgtacaactattgtt




aatggcatgaagagatctttctatgtctatgcaaatggaggccgtggcttctgcaagactcacaattggaattgtctcaattgtgacacattttgcactggtagtacattcattag




tgatgaagttgctcgtgatttgtcactccagtttaaaagaccaatcaaccctactgaccagtcatcgtatattgttgatagtgttgctgtgaaaaatggcgcgcttcacctctactt




tgacaaggctggtcaaaagacctatgagagacatccgctctcccattttgtcaatttagacaatttgagagctaacaacactaaaggttcactgcctattaatgtcatagtttttg




atggcaagtccaaatgcgacgagtctgcttctaagtctgcttctgtgtactacagtcagctgatgtgccaacctattctgttgcttgaccaagctcttgtatcagacgttggaga




tagtactgaagtttccgttaagatgtttgatgcttatgtcgacaccttttcagcaacttttagtgttcctatggaaaaacttaaggcacttgttgctacagctcacagcgagttagc




aaagggtgtagctttagatggtgtcctttctacattcgtgtcagctgcccgacaaggtgttgttgataccgatgttgacacaaaggatgttattgaatgtctcaaactttcacatc




actctgacttagaagtgacaggtgacagttgtaacaatttcatgctcacctataataaggttgaaaacatgacgcccagagatcttggcgcatgtattgactgtaatgcaagg




catatcaatgcccaagtagcaaaaagtcacaatgtttcactcatctggaatgtaaaagactacatgtctttatctgaacagctgcgtaaacaaattcgtagtgctgccaagaag




aacaacataccttttagactaacttgtgctacaactagacaggttgtcaatgtcataactactaaaatctcactcaagggtggtaagattgttagtacttgttttaaacttatgctta




aggccacattattgtgcgttcttgctgcattggtttgttatatcgttatgccagtacatacattgtcaatccatgatggttacacaaatgaaatcattggttacaaagccattcagga




tggtgtcactcgtgacatcatttctactgatgattgttttgcaaataaacatgctggttttgacgcatggtttagccagcgtggtggttcatacaaaaatgacaaaagctgccctg




tagtagctgctatcattacaagagagattggtttcatagtgcctggcttaccgggtactgtgctgagagcaatcaatggtgacttcttgcattttctacctcgtgtttttagtgctgt




tggcaacatttgctacacaccttccaaactcattgagtatagtgattttgctacctctgcttgcgttcttgctgctgagtgtacaatttttaaggatgctatgggcaaacctgtgcc




atattgttatgacactaatttgctagagggttctatttcttatagtgagcttcgtccagacactcgttatgtgcttatggatggttccatcatacagtttcctaacacttacctggagg




gttctgttagagtagtaacaacttttgatgctgagtactgtagacatggtacatgcgaaaggtcagaagtaggtatttgcctatctaccagtggtagatgggttcttaataatga




gcattacagagctctatcaggagttttctgtggtgttgatgcgatgaatctcatagctaacatctttactcctcttgtgcaacctgtgggtgattagatgtgtctgcttcagtagtg




gctggtggtattattgccatattggtgacttgtgctgcctactactttatgaaattcagacgtgtttttggtgagtacaaccatgttgttgctgctaatgcacttttgtttttgatgtcttt




cactatactagtaggtaccagcttacagctttctgccgggagtctactcagtatttacttgtacttgacattctatttcaccaatgatgtttcattcttggctcaccttcaatggttt




gccatgttttctcctattgtgcctttttggataacagcaatctatgtattctgtatttctctgaagcactgccattggttattaacaactatcttaggaaaagagtcatgtttaatgga




gttacatttagtaccttcgaggaggctgattgtgtacctttttgctcaacaaggaaatgtacctaaaattgcgtagcgagacactgttgccacttacacagtataacaggtatct




tgactatataacaagtacaagtatttcagtggagccttagatactaccagctatcgtgaagcagcttgctgccacttagcaaaggctctaaatgactttagcaactcaggtgct




gatgttactaccaaccaccacagacatcaatcacttctgctgttctgcagagtggttttaggaaaatggcattcccgtcaggcaaagttgaagggtgcatggtacaagtaac




ctgtggaactacaactcttaatggattgtggttggatgacacagtatactgtccaagacatgtcatttgcacagcagaagacatgcttaatcctaactatgaagatctgctcatt




cgcaaatccaaccatagctttcttgttcaggctggcaatgttcaacttcgtgttattggccattctatgcaaaattgtctgcttaggcttaaagttgatacttctaaccctaagacac




ccaagtataaatttgtccgtatccaacctggtcaaacattttcagttctagcatgctacaatggttcaccatctggtgtttatcagtgtgccatgagacctaatcataccattaaag




gttattccttaatggatcatgtggtagtgttggttttaacattgattatgattgcgtgtctttctgctatatgcatcatatggagcttccaacaggagtacacgctggtactgactta




gaaggtaaattctatggtccatttgttgacagacaaactgcacaggctgcaggtacagacacaaccataacattaaatgttttggcatggctgtatgctgctgttatcaatggt




gataggtggtttcttaatagattcaccactactttgaatgactttaaccttgtggcaatgaagtacaactatgaacctttgacacaagatcatgttgacatattgggacctctttctg




ctcaaacaggaattgccgtcttagatatgtgtgctgattgaaagagctgctgcagaatggtatgaatggtcgtactatccttggtagcactattttagaagatgagtttacacc




atttgatgttgttagacaatgactggtgttaccttccaaggtaagttcaagaaaattgttaagggcactcatcattggatgatttaactttcttgacatcactattgattcttgttca




aagtacacagtggtcactgtttttctttgtttacgagaatgattcttgccatttactcttggtattatggcaattgctgcatgtgctatgctgcttgttaagcataagcacgcattctt




gtgcttgtttctgttaccttctcttgcaacagttgcttactttaatatggtctacatgcctgctagctgggtgatgcgtatcatgacatggcttgaattggctgacactagcttgtctg




gttataggcttaaggattgtgttatgtatgcttcagctttagttttgcttattctcatgacagctcgcactgtttatgatgatgctgctagacgtgtttggacactgatgaatgtcatta




cacttgtttacaaagtctactatggtaatgattagatcaagctatttccatgtgggccttagttatttctgtaacctctaactattctggtgtcgttacgactatcatgtttttagctag




agctatagtgtttgtgtgtgttgagtattacccattgttatttattactggcaacaccttacagtgtatcatgcttgtttattgtttcttaggctattgttgctgctgctactttggccttttc




tgtttactcaaccgttacttcaggcttactcttggtgtttatgactacttggtactacacaagaatttaggtatatgaactcccaggggcttttgcctcctaagagtagtattgatg




ctttcaagcttaacattaagttgttgggtattggaggtaaaccatgtatcaaggttgctactgtacagtctaaaatgtctgacgtaaagtgcacatctgtggtactgctctcggttc




ttcaacaacttagagtagagtcatcttctaaattgtgggcacaatgtgtacaactccacaatgatattcttcttgcaaaagacacaactgaagctttcgagaagatggtttctcttt




tgtctgttttgctatccatgcagggtgctgtagacattaataggttgtgcgaggaaatgctcgataaccgtgctactcttcaggctattgcttcagaatttagttattaccatcata




tgccgcttatgccactgcccaggaggcctatgagcaggctgtagctaatggtgattctgaagtcgttctcaaaaagttaaagaaatctttgaatgtggctaaatctgagtttga




ccgtgatgctgccatgcaacgcaagttggaaaagatggcagatcaggctatgacccaaatgtacaaacaggcaagatctgaggacaagagggcaaaagtaactagtgc




tatgcaaacaatgctcttcactatgcttaggaagcttgataatgatgcacttaacaacattatcaacaatgcgcgtgatggttgtgttccactcaacatcataccattgactacag




cagccaaactcatggttgttgtccctgattatggtacctacaagaacacttgtgatggtaacacctttacatatgcatctgcactagggaaatccagcaagttgttgatgcgga




tagcaagattgttcaacttagtgaaattaacatggacaattcaccaaatttggcttggcctcttattgttacagctctaagagccaactcagctgttaaactacagaataatgaac




tgagtccagtagcactacgacagatgtcctgtgcggctggtaccacacaaacagcttgtactgatgacaatgcacttgcctactataacaattcgaagggaggtaggtttgt




gctggcattactatcagaccaccaagatctcaaatgggctagattccctaagagtgatggtacaggtacaatttacacagaactggaaccaccttgtaggtttgttacagaca




caccaaaagggcctaaagtgaaatacttgtacttcatcaaaggcttaaacaacctaaatagaggtatggtgctgggcagtttagctgctacagtacgtcttcaggctggaaat




gctacagaagtacctgccaattcaactgtgattccttctgtgatttgcagtagaccctgctaaagcatataaggattacctagcaagtggaggacaaccaatcaccaactgt




gtgaagatgttgtgtacacacactggtacaggacaggcaattactgtaacaccagaagctaacatggaccaagagtcctttggtggtgcttcatgttgtagtattgtagatgc




cacattgaccatccaaatcctaaaggattctgtgacttgaaaggtaagtacgtccaaatacctaccacttgtgctaatgacccagtgggttttacacttagaaacacagtagta




ccgtctgcggaatgtggaaaggttatggctgtagttgtgaccaactccgcgaacccttgatgcagtctgcggatgcatcaacgtttttaaacgggtttgcggtgtaagtgcag




cccgtcttacaccgtgcggcacaggcactagtactgatgtcgtctacagggcttttgatatttacaacgaaaaagttgctggttttgcaaagttcctaaaaactaattgctgtcg




cttccaggagaaggatgaggaaggcaatttattagactcttactttgtagttaagaggcatactatgtctaactaccaacatgaagagactatttataacttggttaaagattgtc




cagcggttgctgtccatgactttttcaagtttagagtagatggtgacatggtaccacatatatcacgtcagcgtctaactaaatacacaatggctgatttagtctatgctctacgt




cattttgatgagggtaattgtgatacattaaaagaaatactcgtcacatacaattgctgtgatgatgattatttcaataagaaggattggtatgacttcgtagagaatcctgacatc




ttacgcgtatatgctaacttaggtgagcgtgtacgccaatcattattaaagactgtacaattctgcgatgctatgcgtgatgcaggcattgtaggcgtactgacattagataatc




aggatcttaatgggaactggtacgatttcggtgatttcgtacaagtagcaccaggctgcggagttcctattgtggattcatattactcattgctgatgcccatcctcactttgact




agggcattggctgctgagtcccatatggatgctgatctcgcaaaaccacttattaagtgggatttgctgaaatatgattttacggaagagagactttgtctcttcgaccgttattt




taaatattgggaccagacataccatcccaattgtattaactgtttggatgataggtgtatccttcattgtgcaaactttaatgtgttattttctactgtgtttccacctacaagttttgg




accactagtaagaaaaatatttgtagatggtgttccttttgttgtttcaactggataccattttcgtgagttaggagtcgtacataatcaggatgtaaacttacatagctcgcgtctc




agtttcaaggaacttttagtgtatgctgctgatccagctatgcatgcagcttctggcaatttattgctagataaacgcactacatgatttcagtagctgcactaacaaacaatgtt




gcttttcaaactgtcaaacccggtaattttaataaagacttttatgactttgctgtgtctaaaggtttctttaaggaaggaagttctgttgaactaaaacacttcttctttgctcaggat




ggcaacgctgctatcagtgattatgactattatcgttataatctgccaacaatgtgtgatatcagacaactcctattcgtagttgaagttgttgataaatactttgattgttacgatg




gtggctgtattaatgccaaccaagtaatcgttaacaatctggataaatcagctggtttcccatttaataaatggggtaaggctagactttattatgactcaatgagttatgaggat




caagatgcacttttcgcgtatactaagcgtaatgtcatccctactataactcaaatgaatcttaagtatgccattagtgcaaagaatagagctcgcaccgtagaggtgtactat




ctgtagtactatgacaaatagacagtttcatcagaaattattgaagtcaatagccgccactagaggagctactgtggtaattggaacaagcaagttttacggtggctggcata




atatgttaaaaactgtttacagtgatgtagaaactccacaccttatgggttgggattatccaaaatgtgacagagccatgcctaacatgcttaggataatggcctctcttgttctt




gctcgcaaacataacacttgctgtaacttatcacaccgtttctacaggttagctaacgagtgtgcgcaagtattaagtgagatggtcatgtgtggcggctcactatatgttaaac




caggtggaacatcatccggtgatgctacaactgcttatgctaatagtgtctttaacatttgtcaagctgttacagccaatgtaaatgcacttattcaactgatggtaataagata




gctgacaagtatgtccgcaatctacaacacaggctctatgagtgtactatagaaatagggatgttgatcatgaattcgtggatgagttttacgcttacctgcgtaaacatttctc




catgatgattattctgatgatgccgttgtgtgctataacagtaactatgcggctcaaggtttagtagctagcattaagaactttaaggcagttattattatcaaaataatgtgttc




atgtctgaggcaaaatgttggactgagactgaccttactaaaggacctcacgaattttgctcacagcatacaatgctagttaaacaaggagatgattacgtgtacctgccttac




ccagatccatcaagaatattaggcgcaggctgttttgtcgatgatattgtcaaaacagatggtacacttatgattgaaaggttcgtgtcactggctattgatgcttacccacttac




aaaacatcctaatcaggagtatgctgatgtctttcacttgtatttacaatacattagaaagttacatgatgagcttactggccacatgttggacatgtattccgtaatgctaactaat




gataacacctcacggtactgggaacctgagttttatgaggctatgtacacaccacatacagtcttgcaggctgtaggtgcttgtgtattgtgcaattcacagacttcacttcgtt




gcggtgcctgtattaggagaccattcctatgttgcaagtgctgctatgaccatgtcatttcaacatcacacaaattagtgttgtctgttaatccctatgtttgcaatgccccaggtt




gtgatgtcactgatgtgacacaactgtatctaggaggtatgagctattattgcaagtcacataagcctcccattagttttccattatgtgctaatggtcaggtttttggtttatacaa




aaacacatgtgtaggcagtgacaatgtcactgacttcaatgcgatagcaacatgtgattggactaatgctggcgattacatacttgccaacacttgtactgagagactcaagc




ttttcgcagcagaaacgctcaaagccactgaggaaacatttaagctgtcatatggtattgccactgtacgcgaagtactctctgacagagaattgcatctttcatgggaggttg




gaaaacctagaccaccattgaacagaaactatgtattactggttaccgtgtaactaaaaatagtaaagtacagattggagagtacacctttgaaaaaggtgactatggtgat




gctgttgtgtacagaggtactacgacatacaagttgaatgttggtgattactttgtgttgacatctcacactgtaatgccacttagtgcacctactctagtgccacaagagcact




atgtgagaattactggcttgtacccaacactcaacatctcagatgagttttctagcaatgttgcaaattatcaaaaggtcggcatgcaaaagtactctacactccaaggaccac




ctggtactggtaagagtcattttgccatcggacttgactctattacccatctgctcgcatagtgtatacggcatgctctcatgcagctgttgatgccctatgtgaaaaggcatta




aaatatttgcccatagataaatgtagtagaatcatacctgcgcgtgcgcgcgtagagtgttttgataaattcaaagtgaattcaacactagaacagtatgttttagcactgtaaa




tgcattgccagaaacaactgctgacattgtagtctttgatgaaatctctatggctactaattatgacttgagtgttgtcaatgctagacttcgtgcaaaacactacgtctatattgg




cgatcctgctcaattaccagccccccgcacattgctgactaaaggcacactagaaccagaatattttaattcagtgtgcagacttatgaaaacaataggtccagacatgttcct




tggaacttgtcgccgttgtcctgctgaaattgttgacactgtgagtgattagtttatgacaataagctaaaagcacacaaggataagtcagctcaatgcttcaaaatgttctaca




aaggtgttattacacatgatgtttcatctgcaatcaacagacctcaaataggcgttgtaagagaatttcttacacgcaatcctgcttggagaaaagctgtttttatctcaccttata




attcacagaacgctgtagcttcaaaaatcttaggattgcctacgcagactgttgattcatcacagggttctgaatatgactatgtcatattcacacaaactactgaaacagcaca




ctcttgtaatgtcaaccgcttcaatgtggctatcacaagggcaaaaattggcattttgtgcataatgtctgatagagatctttatgacaaactgcaatttacaagtctagaaatac




cacgtcgcaatgtggctacattacaagcagaaaatgtaactggactttttaaggactgtagtaagatcattactggtcttcatcctacacaggcacctacacacctcagcgttg




atataaagttcaagactgaaggattatgtgttgacataccaggcataccaaaggacatgacctaccgtagactcatctctatgatgggtttcaaaatgaattaccaagtcaatg




gttaccctaatatgtttatcacccgcgaagaagctattcgtcacgttcgtgcgtggattggctttgatgtagagggctgtcatgcaactagagatgctgtgggtactaacctac




ctctccagctaggattttctacaggtgttaacttagtagctgtaccgactggttatgttgacactgaaaataacacagaattcaccagagttaatgcaaaacctccaccaggtg




accagtttaaacatcttataccactcatgtataaaggcttgccaggaatgtagtgcgtattaagatagtacaaatgctcagtgatacactgaaaggattgtcagacagagtcg




tgttcgtcctttgggcgcatggctttgagcttacatcaatgaagtactttgtcaagattggacctgaaagaacgtgttgtctgtgtgacaaacgtgcaacttgatttctacttcat




cagatacttatgcctgctggaatcattctgtgggttttgactatgtctataacccatttatgattgatgttcagcagtggggctttacgggtaaccttcagagtaaccatgaccaa




cattgccaggtacatggaaatgcacatgtggctagttgtgatgctatcatgactagatgtttagcagtccatgagtgctttgttaagcgcgttgattggtctgttgaataccctatt




ataggagatgaactgagggttaattctgcttgcagaaaagtacaacacatggttgtgaagtctgcattgcttgctgataagtttccagttcttcatgacattggaaatccaaagg




ctatcaagtgtgtgcctcaggctgaagtagaatggaagttctacgatgctcagccatgtagtgacaaagcttacaaaatagaggaactcttctattcttatgctacacatcacg




ataaattcactgatggtgtttgtttgttttggaattgtaacgttgatcgttacccagccaatgcaattgtgtgtaggtttgacacaagagtcttgtcaaacttgaacttaccaggctg




tgatggtggtagtttgtatgtgaataagcatgcattccacactccagctttcgataaaagtgcatttactaatttaaagcaattgcctttatttactattctgatagtccttgtgagtc




tcatggcaaacaagtagtgtcggatattgattatgttccactcaaatctgctacgtgtattacacgatgcaatttaggtggtgctgtttgcagacaccatgcaaatgagtaccga




cagtacttggatgcatataatatgatgatttctgctggatttagcctatggatttacaaacaatttgatacttataacctgtggaatacatttaccaggttacagagtttagaaaatg




tggcttataatgttgttaataaaggacactttgatggacacgccggcgaagcacctgtttccatcattaataatgctgtttacacaaaggtagatggtattgatgtggagatcttt




gaaaataagacaacacttcctgttaatgttgcatttgagctttgggctaagcgtaacattaaaccagtgccagagattaagatactcaataatttgggtgttgatatcgctgctaa




tactgtaatctgggactacaaaagagaagccccagcacatgtatctacaataggtgtctgcacaatgactgacattgccaagaaacctactgagagtgcttgttcttcacttac




tgtcttgtttgatggtagagtggaaggacaggtagacctttttagaaacgcccgtaatggtgttttaataacagaaggttcagtcaaaggtctaacaccttcaaagggaccag




cacaagctagcgtcaatggagtcacattaattggagaatcagtaaaaacacagtttaactactttaagaaagtagacggcattattcaacagttgcctgaaacctactttactc




agagcagagacttagaggattttaagcccagatcacaaatggaaactgactttctcgagctcgctatggatgaattcatacagcgatataagctcgagggctatgccttcga




acacatcgtttatggagatttcagtcatggacaacttggcggtcttcatttaatgataggcttagccaagcgctcacaagattcaccacttaaattagaggattttatccctatgg




acagcacagtgaaaaattacttcataacagatgcgcaaacaggttcatcaaaatgtgtgtgttctgtgattgatcttttacttgatgactttgtcgagataataaagtcacaagatt




tgtcagtgatttcaaaagtggtcaaggttacaattgactatgctgaaatttcattcatgattggtgtaaggatggacatgttgaaaccttctacccaaaactacaagcaagtcaa




gcgtggcaaccaggtgttgcgatgcctaacttgtacaagatgcaaagaatgcttcttgaaaagtgtgaccttcagaattatggtgaaaatgctgttataccaaaaggaataat




gatgaatgtcgcaaagtatactcaactgtgtcaatacttaaatacacttactttagctgtaccctacaacatgagagttattcactttggtgctggctctgataaaggagttgcac




caggtacagagtgctcagacaatggttgccaactggcacactacttgtcgattcagatcttaatgacttcgtctccgacgcagattctactttaattggagactgtgcaacagt




acatacggctaataaatgggaccttattattagcgatatgtatgaccctaggaccaaacatgtgacaaaagagaatgactctaaagaagggtttttcacttatctgtgtggattt




ataaagcaaaaactagccagggtggttctatagctgtaaagataacagagcattcttggaatgctgacctttacaagcttatgggccatttctcatggtggacagcttttgtta




caaatgtaaatgcatcatcatcggaagcatttttaattggggctaactatcttggcaagccgaaggaacaaattgatggctataccatgcatgctaactacattttctggagga




acacaaatcctatccagttgtcttcctattcactctttgacatgagcaaatttcctcttaaattaagaggaactgctgtaatgtctcttaaggagaatcaaatcaatgatatgatttat




tctcttctggaaaaaggtaggcttatcattagagaaaacaacagagttgtggtttcaagtgatattcttgttaacaactaaacgaacatgtttattttcttattatttcttactctcact




agtggtagtgaccttgaccggtgcaccacttttgatgatgttcaagctcctaattacactcaacatacttcatctatgaggggggtttactatcctgatgaaatttttagatcagac




actctttatttaactcaggatttatttcttccattttattctaatgttacagggtttcatactattaatcatacgtttggcaaccctgtcataccttttaaggatggtatttattttgctgcca




cagagaaatcaaatgttgtccgtggttgggtttttggttctaccatgaacaacaagtcacagtcggtgattattattaacaattctactaatgttgttatacgagcatgtaactttga




attgtgtgacaaccctttctttgctgtttctaaacccatgggtacacagacacatactatgatattcgataatgcatttaattgcactttcgagtacatatctgatgccttttcgcttga




tgtttcagaaaagtcaggtaattttaaacacttacgagagtttgtgtttaaaaataaagatgggtttctctatgtttataagggctatcaacctatagatgtagttcgtgatctacctt




ctggttttaacactttgaaacctatttttaagttgcctcttggtattaacattacaaattttagagccattcttacagccttttcacctgctcaagacatttggggcacgtcagctgca




gcctatt-ttgttggctatttaaagccaactacatttatgctcaagtatgatgaaaatggtacaatcacagatgctgttgattgttctcaaaatccacttgctgaactcaaatgctctg




ttaagagctttgagattgacaaaggaatttaccagacctctaatttcagggttgttccctcaggagatgttgtgagattccctaatattacaaacttgtgtccttttggagaggtttt




taatgctactaaattcccttctgtctatgcatgggagagaaaaaaaatttctaattgtgttgctgattactctgtgctctacaactcaacatttttttcaacctttaagtgctatggcgt




ttctgccactaagttgaatgatctttgcttctccaatgtctatgcagattcttttgtagtcaagggagatgatgtaagacaaatagcgccaggacaaactggtgttattgctgatta




taattataaattgccagatgatttcatgggttgtgtccttgcttggaatactaggaacattgatgctacttcaactggtaattataattataaatataggtatcttagacatggcaag




cttaggccattgagagagacatatctaatgtgcctttctcccctgatggcaaaccttgcaccccacctgctcttaattgttattggccattaaatgattatggtttttacaccacta




ctggcattggctaccaaccttacagagttgtagtactttatttgaacttttaaatgcaccggccacggtttgtggaccaaaattatccactgaccttattaagaaccagtgtgtca




attttaattttaatggactcactggtactggtgtgttaactccttcttcaaagagatttcaaccatttcaacaatttggccgtgatgtttctgatttcactgattccgttcgagatccta




aaacatctgaaatattagacatttcaccttgcgcttttgggggtgtaagtgtaattacacctggaacaaatgcttcatctgaagttgctgttctatatcaagatgttaactgcactg




atgtttctacagcaattcatgcagatcaactcacaccagcttggcgcatatattctactggaaacaatgtattccagactcaagcaggctgtcttataggagctgagcatgtcg




acacttcttatgagtgcgacattcctattggagaggcatttgtgctagttaccatacagtttattattacgtagtactagccaaaaatctattgtggcttatactatgtattaggtg




ctgatagttcaattgcttactctaataacaccattgctatacctactaacttttcaattagcattactacagaagtaatgcctgtttctatggctaaaacctccgtagattgtaatatgt




acatctgcggagattctactgaatgtgctaatttgcttctccaatatggtagcttttgcacacaactaaatcgtgcactctcaggtattgctgctgaacaggatcgcaacacacg




tgaagtgttcgctcaagtcaaacaaatgtacaaaaccccaactttgaaatattttggtggttttaatttttcacaaatattacctgaccctctaaagccaactaagaggtcttttatt




gaggacttgctctttaataaggtgacactcgctgatgctggcttcatgaagcaatatggcgaatgcctaggtgatattaatgctagagatctcatttgtgcgcagaagttcaat




ggacttacagtgttgccacctctgctcactgatgatatgattgctgcctacactgctgctctagttagtggtactgccactgctggatggacatttggtgctggcgctgctcttc




aaataccttttgctatgcaaatggcatataggttcaatggcattggagttacccaaaatgttctctatgagaaccaaaaacaaatcgccaaccaatttaacaaggcgattagtc




aaattcaagaatcacttacaacaacatcaactgcattgggcaagctgcaagacgttgttaaccagaatgctcaagcattaaacacacttgttaaacaacttagctctaattttgg




tgcaatttcaagtgtgctaaatgatatcctttcgcgacttgataaagtcgaggcggaggtacaaattgacaggttaattacaggcagacttcaaagccttcaaacctatgtaac




acaacaactaatcagggctgctgaaatcagggcttctgctaatcttgctgctactaaaatgtctgagtgtgttcttggacaatcaaaaagagttgacttttgtggaaagggcta




ccaccttatgtccttcccacaagcagccccgcatggtgttgtcttcctacatgtcacgtatgtgccatcccaggagaggaacttcaccacagcgccagcaatttgtcatgaag




gcaaagcatacttccctcgtgaaggtgtttttgtgtttaatggcacttcttggtttattacacagaggaacttatttctccacaaataattactacagacaatacatttgtctcagga




aattgtgatgtcgttattggcatcattaacaacacagtttatgatcctctgcaacctgagcttgactcattcaaagaagagctggacaagtacttcaaaaatcatacatcaccag




atgttgatcttggcgacatttcaggcattaacgcttctgtcgtcaacattcaaaaagaaattgaccgcctcaatgaggtcgctaaaaatttaaatgaatcactcattgaccttcaa




gaattgggaaaatatgagcaatatattaaatggccttggtatgtttggctcggcttcattgctggactaattgccatcgtcatggttacaatcttgattgttgcatgactagttgtt




gcagttgcctcaagggtgcatgctcttgtggttcttgctgcaagtttgatgaggatgactctgagccagttctcaagggtgtcaaattacattacacataaacgaacttatggat




ttgtttatgagattttttactcttagatcaattactgcacagccagtaaaaattgacaatgcttctcctgcaagtactgttcatgctacagcaacgataccgctacaagcctcactc




cattcggatggcttgttattggcgttgcatttcttgctgtttttcagagcgctaccaaaataattgcgctcaataaaagatggcagctagccattataagggcttccagttcattt




gcaatttactgctgctatttgttaccatctattcacatatttgcttgtcgctgcaggtatggaggcgcaatttttgtacctctatgccttgatatattttctacaatgcatcaacgcat




gtagaattattatgagatgttggctttgttggaagtgcaaatccaagaacccattactttatgatgccaactactttgtttgctggcacacacataactatgactactgtataccat




ataacagtgtcacagatacaattgtcgttactgaaggtgacggcatttcaacaccaaaactcaaagaagactaccaaattggtggttattctgaggataggcactcaggtgtt




aaagactatgtcgttgtacatggctatttcaccgaagtttactaccagcttgagtctacacaaattactacagacactggtattgaaaatgctacattcttcatctttaacaagctt




gttaaagacccaccgaatgtgcaaatacacacaatcgacggctcttcaggagttgctaatccagcaatggatccaatttatgatgagccgacgacgactactagcgtgcctt




tgtaagcacaagaaagtgagtacgaacttatgtactcattcgtttcggaagaaacaggtacgttaatagttaatagcgtacttctttttcttgattcgtggtattcttgctagtcac




actagccatccttactgcgcttcgattgtgtgcgtactgctgcaatattgttaacgtgagtttagtaaaaccaacggtttacgtctactcgcgtgttaaaaatctgaactcttctga




aggagttcctgatcttctggtctaaacgaactaactattattattattctgtttggaactttaacattgcttatcatggcagacaacggtactattaccgttgaggagcttaaacaac




tcctggaacaatggaacctagtaataggtttcctattcctagcctggattatgttactacaatttgcctattctaatcggaacaggtttttgtacataataaagcttgttttcctctgg




ctcttgtggccagtaacacttgcttgttttgtgcttgctgctgtctacagaattaattgggtgactggcgggattgcgattgcaatggcttgtattgtaggcttgatgtggcttagc




tacttcgttgcttccttcaggctgtttgctcgtacccgctcaatgtggtcattcaacccagaaacaaacattcttctcaatgtgcctctccgggggacaattgtgaccagaccgc




tcatggaaagtgaacttgtcattggtgctgtgatcattcgtggtcacttgcgaatggccggacactccctagggcgctgtgacattaaggacctgccaaaagagatcactgt




ggctacatcacgaacgattcttattacaaattaggagcgtcgcagcgtgtaggcactgattcaggttttgctgcatacaaccgctaccgtattggaaactataaattaaataca




gaccacgccggtagcaacgacaatattgattgctagtacagtaagtgacaacagatgtttcatcttgttgacttccaggttacaatagcagagatattgattatcattatgagg




actttcaggattgctatttggaatcttgacgttataataagttcaatagtgagacaattatttaagcctctaactaagaagaattattcggagttagatgatgaagaacctatggag




ttagattatccataaaacgaacatgaaaattattctcttcctgacattgattgtatttacatcttgcgagctatatcactatcaggagtgtgttagaggtacgactgtactactaaaa




gaaccttgcccatcaggaacatacgagggcaattcaccatttcaccctcttgctgacaataaatttgcactaacttgcactagcacacactttgatttgcttgtgctgacggta




ctcgacatacctatcagctgcgtgcaagatcagtttcaccaaaacttttcatcagacaagaggaggttcaacaagagctctactcgccactttttctcattgttgctgctctagta




tttttaatactttgcttcaccattaagagaaagacagaatgaatgagctcactttaattgacttctatttgtgctttttagcctttctgctattccttgttttaataatgcttattatattttg




gttttcactcgaaatccaggatctagaagaaccttgtaccaaagtctaaacgaacatgaaacttctcattgttttgacttgtatttactatgcagttgcatatgcactgtagtacagc




gctgtgcatctaataaacctcatgtgcttgaagatccttgtaaggtacaacactaggggtaatacttatagcactgcttggctttgtgctctaggaaaggttttaccttttcataga




tggcacactatggttcaaacatgcacacctaatgttactatcaactgtcaagatccagaggtggtgcgcttatagctaggtgttggtaccttcatgaaggtcaccaaactgct




gcatttagagacgtacttgttgttttaaataaacgaacaaattaaaatgtctgataatggaccccaatcaaaccaacgtagtgccccccgcattacatttggtggacccacaga




ttcaactgacaataaccagaatggaggacgcaatggggcaaggccaaaacagcgccgaccccaaggtttacccaataatactgcgtcttggttcacagctctcactcagc




atggcaaggaggaacttagattccctcgaggccagggcgttccaatcaacaccaatagtggtccagatgaccaaattggctactaccgaagagctacccgacgagttcgt




ggtggtgacggcaaaatgaaagagctcagccccagatggtacttctattacctaggaactggcccagaagcttcacttccctacggcgctaacaaagaaggcatcgtatg




ggttgcaactgagggagccttgaatacacccaaagaccacattggcacccgcaatcctaataacaatgctgccaccgtgctacaacttcctcaaggaacaacattgccaa




aaggatctacgcagagggaagcagaggcggcagtcaagcctcttctcgctcctcatcacgtagtcgcggtaattcaagaaattcaactcctggcagcagtaggggaaat




tctcctgctcgaatggctagcggaggtggtgaaactgccctcgcgctattgctgctagacagattgaaccagcttgagagcaaagtttctggtaaaggccaacaacaacaa




ggccaaactgtcactaagaaatctgctgctgaggcatctaaaaagcctcgccaaaaacgtactgccacaaaacagtacaacgtcactcaagcatttgggagacgtggtcc




agaacaaacccaaggaaatttcggggaccaagacctaatcagacaaggaactgattacaaacattggccgcaaattgcacaatttgctccaagtgcctctgcattctttgga




atgtcacgcattggcatggaagtcacaccttcgggaacatggctgacttatcatggagccattaaattggatgacaaagatccacaattcaaagacaacgtcatactgctga




acaagcacattgacgcatacaaaacattcccaccaacagagcctaaaaaggacaaaaagaaaaagactgatgaagctcagcctttgccgcagagacaaaagaagcag




cccactgtgactatatcctgcggctgacatggatgatttctccagacaacttcaaaattccatgagtggagcttctgctgattcaactcaggcataaacactcatgatgacca




cacaaggcagatgggctatgtaaacgttttcgcaattccgtttacgatacatagtctactcttgtgcagaatgaattctcgtaactaaacagcacaagtaggtttagttaacttta




atctcacatagcaatctttaatcaatgtgtaacattagggaggacttgaaagagccaccacattttcatcgaggccacgcggagtacgatcgagggtacagtgaataatgct




agggagagctgcctatatggaagagccctaatgtgtaaaattaattttagtagtgctatccccatgtgattttaatagcttcttaggagaatgacaaaaaaaaaaaaaaaaaaa




aaaaa





2409
MERS-CoV
gatttaagtgaatagcttggctatctcacttcccctcgttctcttgcagaactttgattttaacgaacttaaataaaagccctgttgtttagcgtatcgttgcacttgtctggtgggat



genome
tgtggcattaatttgcctgctcatctaggcagtggacatatgctcaacactgggtataattctaattgaatactatttttcagttagagcgtcgtgtctcttgtacgtctcggtcaca



(Genbank
atacacggtttcgtccggtgcgtggcaattcggggcacatcatgtctttcgtggctggtgtgaccgcgcaaggtgcgcgcggtacgtatcgagcagcgctcaactctgaaa



Accession
aacatcaagaccatgtgtctctaactgtgccactctgtggttcaggaaacctggttgaaaaactttcaccatggttcatggatggcgaaaatgcctatgaagtggtgaaggcc



No.
atgttacttaaaaaggagccacttctctatgtgcccatccggctggctggacacactagacacctcccaggtcctcgtgtgtacctggttgagaggctcattgcttgtgaaaat



NC_
ccattcatggttaaccaattggcttatagctctagtgcaaatggcagcctggttggcacaactttgcagggcaagcctattggtatgttcttcccttatgacatcgaacttgtcac



019843.3)
aggaaagcaaaatattctcctgcgcaagtatggccgtggtggttatcactacaccccattccactatgagcgagacaacacctcttgccctgagtggatggacgattttgag




gcggatcctaaaggcaaatatgcccagaatctgcttaagaagttgattggcggtgatgtcactccagttgaccaatacatgtgtggcgttgatggaaaacccattagtgccta




cgcatttttaatggccaaggatggaataaccaaactggctgatgttgaagcggacgtcgcagcacgtgctgatgacgaaggcttcatcacattaaagaacaatctatataga




ttggtttggcatgttgagcgtaaagacgttccatatcctaagcaatctatttttactattaatagtgtggtccaaaaggatggtgttgaaaacactcctcctcactattttactcttgg




atgcaaaattttaacgctcaccccacgcaacaagtggagtggcgtttctgacttgtccctcaaacaaaaactcctttacaccttctatggtaaggagtcacttgagaacccaac




ctacatttaccactccgcattcattgagtgtggaagttgtggtaatgattcctggcttacagggaatgctatccaagggtttgcctgtggatgtggggcatcatatacagctaat




gatgtcgaagtccaatcatctggcatgattaagccaaatgctcttctttgtgctacttgcccctttgctaagggtgatagctgttcttctaattgcaaacattcagttgctcagttgg




ttagttacctttctgaacgctgtaatgttattgctgattctaagtccttcacacttatattggtggcgtagcttacgcctactttggatgtgaggaaggtactatgtactttgtgccta




gagctaagtctgttgtctcaaggattggagactccatctttacaggctgtactggctcttggaacaaggtcactcaaattgctaacatgttcttggaacagactcagcattccct




taactttgtgggagagttcgttgtcaacgatgttgtcctcgcaattctctctggaaccacaactaatgttgacaaaatacgccagcttctcaaaggtgtcacccttgacaagttg




cgtgattatttagctgactatgacgtagcagtcactgccggcccattcatggataatgctattaatgttggtggtacaggattacagtatgccgccattactgcaccttatgtagt




tctcactggcttaggtgagtcctttaagaaagttgcaaccataccgtataaggtttgcaactctgttaaggatactctggcttattatgctcacagcgtgttgtacagagtttttcct




tatgacatggattctggtgtgtcatcctttagtgaactactttttgattgcgttgatattcagtagcttctacctattttttagtccgcatcttgcaagataagactggcgactttatgt




ctacaattattacttcctgccaaactgctgttagtaagcttctagatacatgttttgaagctacagaagcaacatttaacttcttgttagatttggcaggattgttcagaatctttctcc




gcaatgcctatgtgtacacttcacaagggtttgtggtggtcaatggcaaagtttctacacttgtcaaacaagtgttagacttgcttaataagggtatgcaacttttgcatacaaag




gtctcctgggctggttctaaaatcattgctgttatctacagcggcagggagtctctaatattcccatcgggaacctattactgtgtcaccactaaggctaagtccgttcaacaag




atcttgacgttatt-ttgcctggtgagttttccaagaagcagttaggactgctccaacctactgacaattctacaactgttagtgttactgtatccagtaacatggttgaaactgttgt




gggtcaacttgagcaaactaatatgcatagtcctgatgttatagtaggtgactatgtcattattagtgaaaaattgtttgtgcgtagtaaggaagaagacggatttgccttctacc




ctgcttgcactaatggtcatgctgtaccgactctctttagacttaagggaggtgcacctgtaaaaaaagtagcctttggcggtgatcaagtacatgaggttgctgctgtaagaa




gtgttactgtcgagtacaacattcatgctgtattagacacactacttgcttcttctagtcttagaacctttgttgtagataagtctttgtcaattgaggagtttgctgacgtagtaaag




gaacaagtctcagacttgcttgttaaattactgcgtggaatgccgattccagattttgatttagacgattttattgacgcaccatgctattgctttaacgctgagggtgatgcatcc




tggtcttctactatgatcttctctcttcaccccgtcgagtgtgacgaggagtgttctgaagtagaggcttcagatttagaagaaggtgaatcagagtgcatttctgagacttcaa




ctgaacaagttgacgtttctcatgagacttctgacgacgagtgggctgctgcagttgatgaagcgttccctctcgatgaagcagaagatgttactgaatctgtgcaagaaga




agcacaaccagtagaagtacctgttgaagatattgcgcaggttgtcatagctgacaccttacaggaaactcctgttgtgcctgatactgttgaagtcccaccgcaagtggtg




aaacttccgtctgcacctcagactatccagcccgaggtaaaagaagttgcacctgtctatgaggctgataccgaacagacacagaatgttactgttaaacctaagaggttac




gcaaaaagcgtaatgttgaccattgtccaattttgaacataaggttattacagagtgcgttaccatagttttaggtgacgcaattcaagtagccaagtgctatggggagtctgt




gttagttaatgctgctaacacacatcttaagcatggcggtggtatcgctggtgctattaatgcggcttcaaaaggggctgtccaaaaagagtcagatgagtatattctggctaa




agggccgttacaagtaggagattcagttctcttgcaaggccattctctagctaagaatatcctgcatgtcgtaggcccagatgcccgcgctaaacaggatgtttctctccttag




taagtgctataaggctatgaatgcatatcctcttgtagtcactcctcttgtttcagcaggcatatttggtgtaaaaccagctgtgtcttttgattatcttattagggaggctaagact




agagttttagtcgtcgttaattcccaagatgtctataagagtcttaccatagttgacattccacagagtttgactttttcatatgatgggttacgtggcgcaatacgtaaagctaaa




gattatggttttactgtttttgtgtgcacagacaactctgctaacactaaagttcttaggaacaagggtgttgattatactaagaagtttcttacagttgacggtgtgcaatattattg




ctacacgtctaaggacactttagatgatatcttacaacaggctaataagtagttggtattatatctatgcctttgggatatgtgtctcatggtttagacttaatgcaagcagggag




tgtcgtgcgtagagttaacgtgccctacgtgtgtctcctagctaataaagagcaagaagctattttgatgtctgaagacgttaagttaaacccttcagaagattttataaagcac




gtccgcactaatggtggttacaattcttggcatttagtcgagggtgaactattggtgcaagacttacgcttaaataagctcctgcattggtctgatcaaaccatatgctacaagg




atagtgtgttttatgttgtaaagaatagtacagcttttccatttgaaacactttcagcatgtcgtgcgtatttggattcacgcacgacacagcagttaacaatcgaagtcttagtga




ctgtcgatggtgtaaattttagaacagtcgttctaaataataagaacacttatagatcacagcttggatgcgttttattaatggtgctgatatttctgacaccattcctgatgagaa




acagaatggtcacagtttatatctagcagacaatttgactgctgatgaaacaaaggcgcttaaagagttatatggccccgttgatcctactttcttacacagattctattcactta




aggctgcagtccatgggtggaagatggttgtgtgtgataaggtacgttctctcaaattgagtgataataattgttatcttaatgcagttattatgacacttgatttattgaaggaca




ttaaatttgttatacctgactacagcatgcatttatgaaacataagggcggtgattcaactgacttcatagccctcattatggcttatggcaattgcacatttggtgaccagatg




atgcctctcggttacttcataccgtgcttgcaaaggctgagttatgctgttctgcacgcatggtttggagagagtggtgcaatgtctgtggcataaaagatgttgttctacaagg




cttaaaagcttgttgttacgtgggtgtgcaaactgttgaagatctgcgtgctcgcatgacatatgtatgccagtgtggtggtgaacgtcatcggcaattagtcgaacacacca




ccccctggttgctgctctcaggcacaccaaatgaaaaattggtgacaacctccacggcgcctgattttgtagcatttaatgtctttcagggcattgaaacggctgttggccatt




atgttcatgctcgcctgaagggtggtcttattttaaagtttgactaggcaccgttagcaagacttcagactggaagtgcaaggtgacagatgtacttttccccggccaaaaat




acagtagcgattgtaatgtcgtacggtattctttggacggtaatttcagaacagaggttgatcccgacctatctgctttctatgttaaggatggtaaatactttacaagtgaacca




cccgtaacatattcaccagctacaattttagctggtagtgtctacactaatagctgccttgtatcgtctgatggacaacctggcggtgatgctattagtttgagttttaataaccttt




tagggtttgattctagtaaaccagtcactaagaaatacacttactccttcttgcctaaagaagacggcgatgtgttgttggctgagtttgacacttatgaccctatttataagaatg




gtgccatgtataaaggcaaaccaattctttgggtcaataaagcatcttatgatactaatcttaataagttcaatagagctagtttgcgtcaaatttttgacgtagcccccattgaac




tcgaaaataaattcacacctttgagtgtggagtctacaccagttgaacctccaactgtagatgtggtagcacttcaacaggaaatgacaattgtcaaatgtaagggtttaaata




aacctttcgtgaaggacaatgtcagtttcgttgctgatgattcaggtactcccgttgttgagtatctgtctaaagaagacctacatacattgtatgtagaccctaagtatcaagtc




attgtcttaaaagacaatgtactttcttctatgcttagattgcacaccgttgagtcaggtgatattaacgttgttgcagcttccggatctttgacacgtaaagtgaagttactattta




gggcttcattttatttcaaagaatttgctacccgcactttcactgctaccactgctgtaggtagttgtataaagagtgtagtgcggcatctaggtgttactaaaggcatattgaca




ggctgttttagttttgccaagatgttatttatgcttccactagcttactttagtgattcaaaactcggcaccacagaggttaaagtgagtgattgaaaacagccggcgttgtgac




aggtaatgttgtaaaacagtgttgcactgctgctgttgatttaagtatggataagttgcgccgtgtggattggaaatcaaccctacggttgttacttatgttatgcacaactatggt




attgttgtcttctgtgtatcacttgtatgtcttcaatcaggtcttatcaagtgatgttatgtttgaagatgcccaaggtttgaaaaagttctacaaagaagttagagcttacctagga




atctcttctgcttgtgacggtcttgcttcagcttatagggcgaattcctttgatgtacctacattctgcgcaaaccgttctgcaatgtgtaattggtgcttgattagccaagattcca




taactcactacccagctcttaagatggttcaaacacatcttagccactatgttcttaacatagattggttgtggtttgcatttgagactggtttggcatacatgctctatacctcggc




cttcaactggttgttgttggcaggtacattgcattatttctttgcacagacttccatatttgtagactggcggtcatacaattatgctgtgtctagtgccttctggttattcacccacat




tccaatggcgggtttggtacgaatgtataatttgttagcatgcctttggcttttacgcaagttttatcagcatgtaatcaatggttgcaaagatacggcatgcttgctctgctataa




gaggaaccgacttactagagttgaagcttctaccgttgtagtggtggaaaacgtacgttttatatcacagcaaatggcggtatttcattctgtcgtaggcataattggaattgt




gtggattgtgacactgcaggtgtggggaataccttcatctgtgaagaagtcgcaaatgacctcactaccgccctacgcaggcctattaacgctacggatagatcacattatta




tgtggattccgttacagttaaagagactgttgttcagtttaattatcgtagagacggtcaaccattctacgagcggtttcccctctgcgcttttacaaatctagataagttgaagtt




caaagaggtagtaaaactactactggtatacctgaatacaactttatcatctacgactcatcagatcgtggccaggaaagtttagctaggtctgcatgtgtttattattctcaagt




cttgtgtaaatcaattcttttggttgactcaagtttggttacttctgttggtgattctagtgaaatcgccactaaaatgtttgattcctttgttaatagtttcgtctcgctgtataatgtca




cacgcgataagttggaaaaacttatctctactgctcgtgatggcgtaaggcgaggcgataacttccatagtgtcttaacaacattcattgacgcagcacgaggccccgcag




gtgtggagtctgatgttgagaccaatgaaattgttgactctgtgcagtatgctcataaacatgacatacaaattactaatgagagctacaataattatgtaccctcatatgttaaa




cctgatagtgtgtctaccagcgatttaggtagtctcattgattgtaatgcggcttcagttaaccaaattgtcttgcgtaattctaatggtgcttgcatttggaacgctgctgcatata




tgaaactctcggatgcacttaaacgacagattcgcattgcatgccgtaagtgtaatttagctttccggttaaccacctcaaagctacgcgctaatgataatatcttatcagttaga




ttcactgctaacaaaattgttggtggtgctcctacatggtttaatgcgttgcgtgactttacgttaaagggttatgttcttgctaccattattgtgtttctgtgtgctgtactgatgtatt




tgtgtttacctacattttctatggcacctgttgaattttatgaagaccgcatcttggactttaaagttcttgataatggtatcattagggatgtaaatcctgatgataagtgattgcta




ataagcaccggtccttcacacaatggtatcatgagcatgttggtggtgtctatgacaactctatcacatgcccattgacagttgcagtaattgctggagttgctggtgctcgcat




tccagacgtacctactacattggcttgggtgaacaatcagataattttattgtttctcgagtctttgctaatacaggcagtgtttgctacactcctatagatgagataccctataag




agtttctctgatagtggttgcattcttccatctgagtgcactatgtttagggatgcagagggccgtatgacaccatactgccatgatcctactgttttgcctggggcttttgcgtac




agtcagatgaggcctcatgttcgttacgacttgtatgatggtaacatgtttattaaatttcctgaagtagtatttgaaagtacacttaggattactagaactctgtcaactcagtact




gccggttcggtagttgtgagtatgcacaagagggtgtttgtattaccacaaatggctcgtgggccatttttaatgaccaccatcttaatagacctggtgtctattgtggctctgat




tttattgacattgtcaggcggttagcagtatcactgttccagcctattacttatttccaattgactacctcattggtcttgggtataggtttgtgtgcgttcctgactttgctcttctatt




atattaataaagtaaaacgtgatttgcagattacacccagtgtgctgtaattgctgttgttgctgctgttcttaatagcttgtgcatctgctttgttacctctataccattgtgtatagt




accttacactgcattgtactattatgctacattctattttactaatgagcctgcatttattatgcatgtttcttggtacattatgttcgggcctatcgttcccatatggatgacctgcgtc




tatacagttgcaatgtgattagacacttcttctgggttttagcttattttagtaagaaacatgtagaagtttttactgatggtaagcttaattgtagtttccaggacgctgcctctaat




atctttgttattaacaaggacacttatgcagctcttagaaactctttaactaatgatgcctattcacgatttttggggttgtttaacaagtataagtacttctctggtgctatggaaac




agccgcttatcgtgaagctgcagcatgtcatcttgctaaagccttacaaacatacagcgagactggtagtgatcttctttaccaaccacccaactgtagcataacctaggcgt




gttgcaaagcggtttggtgaaaatgtcacatcccagtggagatgttgaggcttgtatggttcaggttacctgcggtagcatgactcttaatggtctttggcttgacaacacagt




ctggtgcccacgacacgtaatgtgcccggctgaccagttgtctgatcctaattatgatgccttgttgatttctatgactaatcatagtttcagtgtgcaaaaacacattggcgctc




cagcaaacttgcgtgttgttggtcatgccatgcaaggcactcttttgaagttgactgtcgatgttgctaaccctagcactccagcctacacttttacaacagtgaaacctggcg




cagcatttagtgtgttagcatgctataatggtcgtccgactggtacattcactgttgtaatgcgccctaactacacaattaagggttcctttctgtgtggttcttgtggtagtgttgg




ttacaccaaggagggtagtgtgatcaatttctgttacatgcatcaaatggaacttgctaatggtacacataccggttcagcatttgatggtactatgtatggtgcctttatggata




aacaagtgcaccaagttcagttaacagacaaatactgcagtgttaatgtagtagcttggctttacgcagcaatacttaatggttgcgcttggtttgtaaaacctaatcgcactag




tgttgtttcttttaatgaatgggctcttgccaaccaattcactgaatttgttggcactcaatccgttgacatgttagctgtcaaaacaggcgttgctattgaacagctgattatgcg




atccaacaactgtatactgggttccagggaaagcaaatccttggcagtaccatgttggaagatgaattcacacctgaggatgttaatatgcagattatgggtgtggttatgca




gagtggtgtgagaaaagttacatatggtactgcgcattggttgtttgcgacccttgtctcaacctatgtgataatcttacaagccactaaatttactttgtggaactacttgtttga




gactattcccacacagttgttcccactcttatttgtgactatggccttcgttatgttgttggttaaacacaaacacacctttttgacacttttcttgttgcctgtggctatttgtttgactt




atgcaaacatagtctacgagcccactactcccatttcgtcagcgctgattgcagttgcaaattggcttgcccccactaatgcttatatgcgcactacacatactgatattggtgt




ctacattagtatgtcacttgtattagtcattgtagtgaagagattgtacaacccatcactttctaactttgcgttagcattgtgcagtggtgtaatgtggttgtacacttatagcattg




gagaagcctcaagccccattgcctatctggtttttgtcactacactcactagtgattatacgattacagtctttgttactgtcaaccttgcaaaagtttgcacttatgccatctttgct




tactcaccacagcttacacttgtgtttccggaagtgaagatgatacttttattatacacatgtttaggtttcatgtgtacttgctattttggtgtcttctctcttttgaaccttaagcttag




agcacctatgggtgtctatgactttaaggtctcaacacaagagttcagattcatgactgctaacaatctaactgcacctagaaattcttgggaggctatggctctgaactttaag




ttaataggtattggcggtacaccttgtataaaggttgctgctatgcagtctaaacttacagatcttaaatgcacatctgtggttctcctctctgtgctccaacagttacacttagag




gctaatagtagggcctgggctttctgtgttaaatgccataatgatatattggcagcaacagaccccagtgaggctttcgagaaattcgtaagtctctttgctactttaatgactttt




tctggtaatgtagatcttgatgcgttagctagtgatatttttgacactcctagcgtacttcaagctactctttctgagttttcacacttagctacctttgctgagttggaagctgcgca




gaaagcctatcaggaagctatggactaggtgacacctcaccacaagttcttaaggctttgcagaaggctgttaatatagctaaaaacgcctatgagaaggataaggcagt




ggcccgtaagttagaacgtatggctgatcaggctatgacttctatgtataagcaagcacgtgctgaagacaagaaagcaaaaattgtcagtgctatgcaaactatgttgtttg




gtatgattaagaagctcgacaacgatgttcttaatggtatcatttctaacgctaggaatggttgtatacctcttagtgtcatcccactgtgtgcttcaaataaacttcgcgttgtaat




tcctgacttcaccgtaggaatcaggtagtcacatatccctcgcttaactacgctggggctttgtgggacattacagttataaacaatgtggacaatgaaattgttaagtcttca




gatgttgtagacagcaatgaaaatttaacatggccacttgttttagaatgcactagggcatccacttctgccgttaagttgcaaaataatgagatcaaaccttcaggtctaaaaa




ccatggttgtgtctgcgggtcaagagcaaactaactgtaatactagttccttagcttattacgaacctgtgcagggtcgtaaaatgctgatggctcttctttctgataatgcctat




ctcaaatgggcgcgtgttgaaggtaaggacggatttgtcagtgtagagctacaacctccttgcaaattcttgattgcgggaccaaaaggacctgaaatccgatatctctatttt




gttaaaaatcttaacaaccttcatcgcgggcaagtgttagggcacattgctgcgactgttagattgcaagctggttctaacaccgagtttgcctctaattcctcggtgttgtcact




tgttaacttcaccgttgatcctcaaaaagcttatctcgatttcgtcaatgcgggaggtgccccattgacaaattgtgttaagatgcttactcctaaaactggtacaggtatagcta




tatctgttaaaccagagagtacagctgatcaagagacttatggtggagcttcagtgtgtactattgccgtgcgcatatagaacatcctgatgtactggtgtttgtaaatataag




ggtaagtttgtccaaatccctgctcagtgtgtccgtgaccctgtgggattttgtttgtcaaataccccctgtaatgtctgtcaatattggattggatatgggtgcaattgtgactcg




cttaggcaagcagcactgccccaatctaaagattccaattttttaaacgagtccggggttctattgtaaatgcccgaatagaaccctgttcaagtggtttgtccactgatgtcgt




ctttagggcatttgacatctgcaactataaggctaaggttgctggtattggaaaatactacaagactaatacttgtaggtttgtagaattagatgaccaagggcatcatttagact




cctattttgtcgttaagaggcatactatggagaattatgaactagagaagcactgttacgacttgttacgtgactgtgatgctgtagctccccatgatttcttcatctttgatgtag




acaaagttaaaacacctcatattgtacgtcagcgtttaactgagtacactatgatggatcttgtatatgccctgaggcactttgatcaaaatagcgaagtgcttaaggctatctta




gtgaagtatggttgctgtgatgttacctactttgaaaataaactctggtttgattttgttgaaaatcccagtgttattggtgtttatcataaacttggagaacgtgtacgccaagcta




tcttaaacactgttaaattttgtgaccacatggtcaaggctggtttagtcggtgtgctcacactagacaaccaggaccttaatggcaagtggtatgattttggtgacttcgtaatc




actcaacctggttcaggagtagctatagttgatagctactattcttatttgatgcctgtgctctcaatgaccgattgtctggccgctgagacacatagggattgtgattttaataaa




ccactcattgagtggccacttactgagtatgattttactgattataaggtacaactattgagaagtactttaaatattgggatcagacgtatcacgcaaattgcgttaattgtactg




atgaccgttgtgtgttacattgtgctaatttcaatgtattgtttgctatgaccatgcctaagacttgtttcggacccatagtccgaaagatctttgttgatggcgtgccatttgtagta




tcttgtggttatcactacaaagaattaggtttagtcatgaatatggatgttagtaccatagacataggctctctcttaaggagttgatgatgtatgccgctgatccagccatgca




cattgcctcctctaacgcttttcttgatttgaggacatcatgttttagtgtcgctgcacttacaactggtttgacttttcaaactgtgcggcctggcaattttaaccaagacttctatg




atttcgtggtatctaaaggtttctttaaggagggctcttcagtgacgctcaaacattttttctttgctcaagatggtaatgctgctattacagattataattactattcttataatctgcc




tactatgtgtgacatcaaacaaatgttgttctgcatggaagttgtaaacaagtacttcgaaatctatgacggtggttgtcttaatgcttctgaagtggttgttaataatttagacaa




gagtgctggccatccttttaataagtttggcaaagctcgtgtctattatgagagcatgtcttaccaggagcaagatgaactttttgccatgacaaagcgtaacgtcattcctacc




atgactcaaatgaatctaaaatatgctattagtgctaagaatagagctcgcactgttgcaggcgtgtccatacttagcacaatgactaatcgccagtaccatcagaaaatgctt




aagtccatggctgcaactcgtggagcgacttgcgtcattggtactacaaagttctacggtggctgggatttcatgcttaaaacattgtacaaagatgttgataatccgcatctta




tgggttgggattaccctaagtgtgatagagctatgcctaatatgtgtagaatcttcgcttcactcatattagctcgtaaacatggcacttgttgtactacaagggacagattttatc




gcttggcaaatgagtgtgctcaggtgctaagcgaatatgttctatgtggtggtggttactacgtcaaacctggaggtaccagtagcggagatgccaccactgcatatgccaa




tagtgtctttaacattttgcaggcgacaactgctaatgtcagtgcacttatgggtgctaatggcaacaagattgttgacaaagaagttaaagacatgcagtttgatttgtatgtca




atgtttacaggagcactagcccagaccccaaatttgttgataaatactatgatttcttaataagcacttttctatgatgatactgtctgatgacggtgtcgtttgctataatagtgat




tatgcagctaagggttacattgctggaatacagaattttaaggaaacgctgtattatcagaacaatgtctttatgtctgaagctaaatgctgggtggaaaccgatctgaagaaa




gggccacatgaattctgttcacagcatacgattatattaaggatggcgacgatggttacttccttccttatccagacccttcaagaattttgtctgccggttgattgtagatgat




atcgttaagactgacggtacactcatggtagagcggtttgtgtctttggctatagatgcttaccctctcacaaagcatgaagatatagaataccagaatgtattctgggtctactt




acagtatatagaaaaactgtataaagaccttacaggacacatgcttgacagttattctgtcatgctatgtggtgataattctgctaagttttgggaagaggcattctatagagatc




tctatagttcgcctaccactttgcaggctgtcggttcatgcgttgtatgccattcacagacttccctacgctgtgggacatgcatccgtagaccatttctctgctgtaaatgctgc




tatgatcatgttatagcaactccacataagatggttttgtctgtttctccttacgtttgtaatgcccctggttgtggcgtttcagacgttactaagctatatttaggtggtatgagcta




cttttgtgtagatcatagacctgtgtgtagttttccactttgcgctaatggtcttgtattcggcttatacaagaatatgtgcacaggtagtccttctatagttgaatttaataggttggc




tacctgtgactggactgaaagtggtgattacacccttgccaatactacaacagaaccactcaaactttttgctgctgagactttacgtgccactgaagaggcgtctaagcagt




cttatgctattgccaccatcaaagaaattgttggtgagcgccaactattacttgtgtgggaggctggcaagtccaaaccaccactcaatcgtaattatgtttttactggttatcat




ataaccaaaaatagtaaagtgcagctcggtgagtacattttcgagcgcattgattatagtgatgctgtatcctacaagtctagtacaacgtataaactgactgtaggtgacatct




tcgtacttacctctcactctgtggctaccttgacggcgcccacaattgtgaatcaagagaggtatgttaaaattactgggttgtacccaaccattacggtacctgaagagttcg




caagtcatgttgccaacttccaaaaatcaggttatagtaaatatgtcactgttcagggaccacctggcactggcaaaagtcattttgctatagggttagcgatttactaccctac




agcacgtgttgtttatacagcatgttcacacgcagctgttgatgattgtgtgaaaaagcttttaaatatttgaacattgctaaatgttcccgtatcattcctgcaaaggcacgtgtt




gagtgctatgacaggtttaaagttaatgagacaaattctcaatatttgtttagtactattaatgactaccagaaacttctgccgatattctggtggttgatgaggttagtatgtgca




ctaattatgatattcaattattaatgcacgtattaaagctaagcacattgtctatgtaggagatccagcacagttgccagctcctaggactttgttgactagaggcacattggaa




ccagaaaatttcaatagtgtcactagattgatgtgtaacttaggtcctgacatatttttaagtatgtgctacaggtgtcctaaggaaatagtaagcactgtgagcgctcttgtcta




caataataaattgttagccaagaaggagctttcaggccagtgctttaaaatactctataagggcaatgtgacgcatgatgctagctctgccattaatagaccacaactcacatt




tgtgaagaattttattactgccaatccggcatggagtaaggcagtctttatttcgccttacaattcacagaatgctgtgtctcgttcaatgctgggtcttaccactcagactgttga




ttcctcacagggttcagaataccagtacgttatcttctgtcaaacagcagatacggcacatgctaacaacattaacagatttaatgttgcaatcactcgtgcccaaaaaggtatt




ctttgtgttatgacatctcaggcactctttgagtccttagagtttactgaattgtatttactaattacaagctccagtctcagattgtaactggcctttttaaagattgctctagagaa




acttctggcctctcacctgcttatgcaccaacatatgttagtgttgatgacaagtataagacgagtgatgagctttgcgtgaatcttaatttacccgcaaatgtcccatactctcgt




gttatttccaggatgggctttaaactcgatgcaacagttcctggatatcctaagcttttcattactcgtgaagaggctgtaaggcaagttcgaagctggataggcttcgatgttg




agggtgctcatgcttcccgtaatgcatgtggcaccaatgtgcctctacaattaggattttcaactggtgtgaactttgttgttcagccagttggtgttgtagacactgagtgggg




taacatgttaacgggcattgctgcacgtcctccaccaggtgaacagtttaagcacctcgtgcctcttatgcataagggggctgcgtggcctattgttagacgacgtatagtgc




aaatgttgtcagacactttagacaaattgtctgattactgtacgtttgtttgttgggctcatggctttgaattaacgtctgcatcatacttttgcaagataggtaaggaacagaagt




gttgcatgtgcaatagacgcgctgcagcgtactcttcacctctgcaatcttatgcctgctggactcattcctgcggttatgattatgtctacaaccctttctttgtcgatgttcaaca




gtggggttatgtaggcaatcttgctactaatcacgatcgttattgctctgtccatcaaggagctcatgtggcttctaatgatgcaataatgactcgttgtttagctattcattcttgtt




ttatagaacgtgtggattgggatatagagtatccttatatctcacatgaaaagaaattgaattcctgttgtagaatcgttgagcgcaacgtcgtacgtgctgctcttcttgccggt




tcatttgacaaagtctatgatattggcaatcctaaaggaattcctattgttgatgaccagtggttgattggcattattttgatgcacagcccttgaccaggaaggtacaacagct




tttctatacagaggacatggcctcaagatttgctgatgggctctgcttattttggaactgtaatgtaccaaaatatcctaataatgcaattgtatgcaggtttgacacacgtgtgc




attctgagttcaatttgccaggttgtgatggcggtagtttgtatgttaacaagcacgcttttcatacaccagcatatgatgtgagtgcattccgtgatctgaaacctttaccattctt




ttattattctactacaccatgtgaagtgcatggtaatggtagtatgatagaggatattgattatgtacccctaaaatctgcagtagtattacagcttgtaatttagggggcgctgtt




tgtaggaagcatgctacagagtacagagagtatatggaagcatataatcttgtactgcatcaggtttccgcctttggtgttataagacctttgatatttataatctctggtctactt




ttacaaaagttcaaggtttggaaaacattgatttaatgttgttaaacaaggccattttattggtgttgagggtgaactacctgtagctgtagtcaatgataagatcttcaccaaga




gtggcgttaatgacatttgtatgtttgagaataaaaccactttgcctactaatatagcttttgaactctatgctaagcgtgctgtacgctcgcatcccgatttcaaattgctacaca




atttacaagcagacatttgctacaagttcgtcctttgggattatgaacgtagcaatatttatggtactgctactattggtgtatgtaagtacactgatattgatgttaattcagctttg




aatatatgttttgacatacgcgataattgttcattggagaagttcatgtctactcccaatgccatctttatttctgatagaaaaatcaagaaatacccttgtatggtaggtcctgatta




tgcttacttcaatggtgctatcatccgtgatagtgatgttgttaaacaaccagtgaagttctacttgtataagaaagtcaataatgagtttattgatcctactgagtgtatttacactc




agagtcgctcttgtagtgacttcctacccattctgacatggagaaagactttctatcttttgatagtgatgttttcattaagaagtatggcttggaaaactatgatttgagcacgt




agtctatggagacttctctcatactacgttaggcggtcttcacttgcttattggtttatacaagaagcaacaggaaggtcatattattatggaagaaatgctaaaaggtagctca




actattcataactattttattactgagactaacacagcggcttttaaggcggtgtgttctgttatagatttaaagcttgacgactttgttatgattttaaagagtcaagaccttggcgt




agtatccaaggttgtcaaggttcctattgacttaacaatgattgagtttatgttatggtgtaaggatggacaggttcaaaccttctaccctcgactccaggcttctgcagattgga




aacctggtcatgcaatgccatccctctttaaagttcaaaatgtaaaccttgaacgttgtgagcttgctaattacaagcaatctattcctatgcctcgcggtgtgcacatgaacatc




gctaaatatatgcaattgtgccagtatttaaatacttgcacattagccgtgcctgccaatatgcgtgttatacattttggcgctggttctgataaaggtatcgctcctggtacctca




gttttacgacagtggcttcctacagatgccattattatagataatgatttaaatgagttcgtgtcagatgctgacataactttatttggagattgtgtaactgtacgtgtcggccaa




caagtggatcttgttatttccgacatgtatgatcctactactaagaatgtaacaggtagtaatgagtcaaaggctttattctttacttacctgtgtaacctcattaataataatcttgct




cttggtgggtctgttgctattaaaataacagaacactcttggagcgttgaactttatgaacttatgggaaaatttgcttggtggactgttttctgcaccaatgcaaatgcatcctca




tctgaaggattcctcttaggtattaattacttgggtactattaaagaaaatatagatggtggtgctatgcacgccaactatatattttggagaaattccactcctatgaatctgagta




cttactcactttttgatttatccaagtttcaattaaaattaaaaggaacaccagttcttcaattaaaggagagtcaaattaacgaactcgtaatatctctcctgtcgcagggtaagtt




acttatccgtgacaatgatacactcagtgtttctactgatgttcttgttaacacctacagaaagttacgttgatgtagggccagattctgttaagtagcttgtattgaggttgatat




acaacagactttattgataaaacttggcctaggccaattgatgtttctaaggctgacggtattatataccctcaaggccgtacatattctaacataactatcacttatcaaggtct




ttttccctatcagggagaccatggtgatatgtatgtttactctgcaggacatgctacaggcacaactccacaaaagttgtttgtagctaactattctcaggacgtcaaacagtttg




ctaatgggtttgtcgtccgtataggagcagctgccaattccactggcactgttattattagcccatctaccagcgctactatacgaaaaatttaccctgatttatgctgggttctt




cagttggtaatttctcagatggtaaaatgggccgcttcttcaatcatactctagttcttttgcccgatggatgtggcactttacttagagctttttattgtattctagagcctcgctct




ggaaatcattgtcctgctggcaattcctatacttatttgccacttatcacactcctgcaacagattgttctgatggcaattacaatcgtaatgccagtctgaactcttttaaggagt




attttaatttacgtaactgcacctttatgtacacttataacattaccgaagatgagattttagagtggtttggcattacacaaactgctcaaggtgttcacctcttctcatctcggtat




gttgatttgtacggcggcaatatgtttcaatttgccaccttgcctgtttatgatactattaagtattattctatcattcctcacagtattcgttctatccaaagtgatagaaaagcttgg




gctgccttctacgtatataaacttcaaccgttaactttcctgttggatttttctgttgatggttatatacgcagagctatagactgtggttttaatgatttgtcacaactccactgctca




tatgaatccttcgatgttgaatctggagtttattcagtttcgtctttcgaagcaaaaccttctggctcagttgtggaacaggctgaaggtgttgaatgtgatttttcacctcttctgtc




tggcacacctcctcaggtttataatttcaagcgtttggtttttaccaattgcaattataatcttaccaaattgattcacttttttctgtgaatgattttacttgtagtcaaatatctccagc




agcaattgctagcaactgttattcttcactgattttggattacttttcatacccacttagtatgaaatccgatctcagtgttagttctgctggtccaatatcccagtttaattataaaca




gtccttttctaatcccacatgtttgattttagcgactgttcctcataaccttactactattactaagcctcttaagtacagctatattaacaagtgctctcgtcttattctgatgatcgta




ctgaagtacctcagttagtgaacgctaatcaatactcaccagtgtatccattgtcccatccactgtgtgggaagacggtgattattataggaaacaactatctccacttgaagg




tggtggctggcttgttgctagtggctcaactgttgccatgactgagcaattacagatgggctttggtattacagttcaatatggtacagacaccaatagtgtttgccccaagctt




gaatttgctaatgacacaaaaattgcctctcaattaggcaattgcgtggaatattccctctatggtgtttcgggccgtggtgtttttcagaattgcacagctgtaggtgttcgaca




gcagcgctttgtttatgatgcgtaccagaatttagttggctattattctgatgatggcaactactactgtttgcgtgcttgtgttagtgttcctgtttctgtcatctatgataaagaaac




taaaacccacgctactctatttggtagtgttgcatgtgaacacatttcttctaccatgtctcaatactcccgttctacgcgatcaatgcttaaacggcgagattctacatatggccc




ccttcagacacctgttggttgtgtcctaggacttgttaattcctctttgttcgtagaggactgcaagttgcctcttggtcaatctctctgtgctcttcctgacacacctagtactctca




cacctcgcagtgtgcgctctgttccaggtgaaatgcgcttggcatccattgatttaatcatcctattcaggttgatcaacttaatagtagttattttaaattaagtatacccactaat




ttttcctttggtgtgactcaggagtacattcagacaaccattcagaaagttactgttgattgtaaacagtacgtttgcaatggtttccagaagtgtgagcaattactgcgcgagta




tggccagttttgttccaaaataaaccaggctctccatggtgccaatttacgccaggatgattctgtacgtaatttgtttgcgagcgtgaaaagctctcaatcatctcctatcatac




caggttttggaggtgactttaatttgacacttctagaacctgtttctatatctactggcagtcgtagtgcacgtagtgctattgaggatttgctatttgacaaagtcactatagctga




tcctggttatatgcaaggttacgatgattgcatgcagcaaggtccagcatcagctcgtgatcttatttgtgctcaatatgtggctggttacaaagtattacctcctcttatggatgt




taatatggaagccgcgtatacttcatctttgcttggcagcatagcaggtgttggctggactgctggcttatcctcctttgctgctattccatttgcacagagtatcttttataggtta




aacggtgttggcattactcaacaggttattcagagaaccaaaagcttattgccaataagtttaatcaggctctgggagctatgcaaacaggcttcactacaactaatgaagct




tttcagaaggttcaggatgctgtgaacaacaatgcacaggctctatccaaattagctagcgagctatctaatacttttggtgctatttccgcctctattggagacatcatacaac




gtcttgatgttctcgaacaggacgcccaaatagacagacttattaatggccgtttgacaacactaaatgatttgttgcacagcagcttgttcgttccgaatcagctgactttcc




gctcaattggctaaagataaagtcaatgagtgtgtcaaggcacaatccaagcgttctggattttgcggtcaaggcacacatatagtgtcctttgttgtaaatgcccctaatggc




ctttacttcatgcatgttggttattaccctagcaaccacattgaggttgtttctgcttatggtattgcgatgcagctaaccctactaattgtatagcccctgttaatggctactttatt




aaaactaataacactaggattgttgatgagtggtcatatactggctcgtccttctatgcacctgagcccattacctcccttaatactaagtatgttgcaccacaggtgacatacc




aaaacatttctactaacctccctcctcctcttctcggcaattccaccgggattgacttccaagatgagttggatgagtttttcaaaaatgttagcaccagtatacctaattttggttc




cctaacacagattaatactacattactcgatcttacctacgagatgttgtacttcaacaagttgttaaagccdtaatgagtcttacatagaccttaaagagcttggcaattatact




tattacaacaaatggccgtggtacatttggcttggtttcattgctgggcttgttgccttagctctatgcgtcttcttcatactgtgctgcactggttgtggcacaaactgtatggga




aaacttaagtgtaatcgttgttgtgatagatacgaggaatacgacctcgagccgcataaggttcatgttcactaattaacgaactattaatgagagttcaaagaccacccactc




tcttgttagtgttttcactctctatttggtcactgcatcctcaaaacctctctatgtacctgagcattgtcagaattattctggttgcatgcttagggcttgtattaaaactgcccaag




ctgatacagaggtattatacaaattttcgaattgacgtcccatctgcagaatcaactggtactcaatcagtttctgtcgatcttgagtcaacttcaactcatgatggtcctaccg




aacatgttactagtgtgaatattttgacgttggttactcagttaattaacgaactctatggattacgtgtactgcttaatcaaatttggcagaagtaccttaactcaccgtatacta




cttgtttgtacatccctaaacccacagctaagtatacacctttagttggcacttcattgcaccctgtgctgtggaactgtcagctatcctttgctggttatactgaatctgctgttaat




tctacaaaagattggccaaacaggacgcagctcagcgaatcgcttggttgctacataaggatggaggaatccctgatggatgttccctctacctccggcactcaagtttatt




cgcgcaaagcgaggaagaggagccattaccaactaagaaactgcgctacgttaagcgtagattttctcttctgcgccatgaagaccttagtgttattgtccaaccaacaca




ctatgtcagggttacattttcagaccccaacatgtggtatctacgttcgggtcatcatttacactcagttcacaattggcttaaaccttatggcggccaacctgtttctgagtacca




tattactctagattgctaaatctcactgatgaagatttagctagagatttttcacccattgcgctattttgcgcaatgtcagatttgagctacatgagttcgccttgctgcgcaaa




actcttgttcttaatgcatcagagatctactgtgctaacatacatagatttaagcctgtgtatagagttaacacggcaatccctactattaaggattggcttctcgttcagggatttt




ccdttaccatagtggcctccattacatatgtcaatctctaaattgcatgcactggatgatgttactcgcaattacatcattacaatgccatgctttagaacttaccdcaacaaat




gtttgttactcctttggccgtagatgttgtctccatacggtcttccaatcagggtaataaacaaattgttcattcttatcccattttacatcatccaggattttaacgaactatggcttt




ctcggcgtctttatttaaacccgtccagctagtcccagtttctcctgcatttcatcgcattgagtctactgactctattgttttcacatacattcctgctagcggctatgtagctgatt




agctgtcaatgtgtgtctcattcccctattattactgctacgtcaagatacttgtcgtcgcagcattatcagaactatggttctctatttccttgttctgtataactttttattagccattg




tactagtcaatggtgtacattatccaactggaagttgcctgatagccttcttagttatcctcataatactttggtttgtagatagaattcgtttctgtctcatgctgaattcctacattc




cactgtttgacatgcgttcccactttattcgtgttagtacagtttcttctcatggtatggtccctgtaatacacaccaaaccattatttattagaaacttcgatcagcgttgcagctgt




tctcgttgtttttatttgcactcttccacttatatagagtgcacttatattagccgttttagtaagattagcctagtttctgtaactgacttctccttaaacggcaatgtttccactgttttc




gtgcctgcaacgcgcgattcagttcctcttcacataatcgccccgagctcgcttatcgtttaagcagctctgcgctactatgggtcccgtgtagaggctaatccattagtctctc




tttggacatatggaaaacgaactatgttaccdttgtccaagaacgaatagggttgttcatagtaaactttttcatttttaccgtagtatgtgctataacactcttggtgtgtatggct




ttccttacggctactagattatgtgtgcaatgtatgacaggcttcaataccctgttagttcagcccgcattatacttgtataatactggacgttcagtctatgtaaaattccaggata




gtaaaccccctctaccacctgacgagtgggtttaacgaactccttcataatgtctaatatgacgcaactcactgaggcgcagattattgccattattaaagactggaactttgc




atggtccctgatctttctcttaattactatcgtactacagtatggatacccatcccgtagtatgactgtctatgtctttaaaatgtttgttttatggctcctatggccatcttccatggc




gctatcaatatttagcgccgtttatccaattgatctagatcccagataatctctggcattgtagcagctgtttcagctatgatgtggatttcctactttgtgcagagtatccggctg




tttatgagaactggatcatggtggtcattcaatcctgagactaattgccttttgaacgttccatttggtggtacaactgtcgtacgtccactcgtagaggactctaccagtgtaac




tgctgttgtaaccaatggccacctcaaaatggctggcatgcatttcggtgcttgtgactacgacagacttcctaatgaagtcaccgtggccaaacccaatgtgctgattgcttt




aaaaatggtgaagcggcaaagctacggaactaattccggcgttgccatttaccatagatataaggcaggtaattacaggagtccgcctattacggcggatattgaacttgca




ttgcttcgagcttaggctctttagtaagagtatcttaattgattttaacgaatctcaatttcattgttatggcatcccctgctgcacctcgtgctgtttcctttgccgataacaatgata




taacaaatacaaacctatctcgaggtagaggacgtaatccaaaaccacgagctgcaccaaataacactgtctcttggtacactgggcttacccaacacgggaaagtccctc




ttacctttccacctgggcagggtgtacctcttaatgccaattctacccctgcgcaaaatgctgggtattggcggagacaggacagaaaaattaataccgggaatggaattaa




gcaactggctcccaggtggtacttctactacactggaactggacccgaagcagcactcccattccgggctgttaaggatggcatcgtttgggtccatgaagatggcgccac




tgatgctccttcaacttttgggacgcggaaccctaacaatgattcagctattgttacacaattcgcgcccggtactaagcttcctaaaaacttccacattgaggggactggagg




caatagtcaatcatcttcaagagcctctagcttaagcagaaactcttccagatctagttcacaaggttcaagatcaggaaactctacccgcggcacttctccaggtccatctg




gaatcggagcagtaggaggtgatctactttaccttgatcttctgaacagactacaagcccttgagtctggcaaagtaaagcaatcgcagccaaaagtaatcactaagaaag




atgctgctgctgctaaaaataagatgcgccacaagcgcacttccaccaaaagtttcaacatggtgcaagcttttggtcttcgcggaccaggagacctccagggaaactttg




gtgatcttcaattgaataaactcggcactgaggacccacgttggccccaaattgctgagcttgctcctacagccagtgcttttatgggtatgtcgcaatttaaacttacccatca




gaacaatgatgatcatggcaaccctgtgtacttccttcggtacagtggagccattaaacttgacccaaagaatcccaactacaataagtggttggagcttcttgagcaaaata




ttgatgcctacaaaaccttccctaagaaggaaaagaaacaaaaggcaccaaaagaagaatcaacagaccaaatgtctgaacctccaaaggagcagcgtgtgcaaggta




gcatcactcagcgcactcgcacccgtccaagtgttcagcctggtccaatgattgatgttaacactgattagtgtcactcaaagtaacaagatcgcggcaatcgtttgtgtttgg




caaccccatctcaccatcgcttgtccactcttgcacagaatggaatcatgttgtaattacagtgcaataaggtaattataacccatttaattgatagctatgctttattaaagtgtgt




agctgtagagagaatgttaaagactgtcacctctgcttgattgcaagtgaacagtgccccccgggaagagctctacagtgtgaaatgtaaataaaaaatagctattattcaatt




agattaggctaattagatgatttgcaaaaaaaaaaaa





2410
hCoV-
attgtgagcgatttgcgtgcgtgcatcccgcttcactgatctcttgttagatattttgtaatctaaactttataaaaacatccactccctgtaatctatgcttgtgggcgtagattttt



OC43
catagtggtgtttatattcatttctgctgttaacagattcagccagggacgtgttgtatcctaggcagtggcccgcccataggtcacaatgtcgaagatcaacaaatacggtct



genome
cgaactacactgggctccagaatttccatggatgtttgaggacgcagaggagaagttggataaccctagtagttcagaggtggatatgatttgctccaccactgcgcaaaa



(Genbank
gctggaaacagacggaatttgtcctgaaaatcatgtgatggtggattgtcgccgacttcttaaacaagagtgttgtgtgcagtctagcctaatacgtgaaattgttatgaatgc



Accession
aagtccatatgatttggaggtgctacttcaagatgattgcagtcccgtgaagcagttttggttacaacccccttaggtatgtctttagaggcatgctatgtgagaggttgtaatc



No.
ctaaaggatggaccatgggtttgtttcggcgtagaagtgtgtgtaacactggtcgttgcactgttaataagcatgtggcctatcagttatatatgattgatcctgcaggtgtctgt



NC_
cttggtgcaggtcaattcgtgggttgggtcatacccttagcctttatgcctgtgcaatcccggaaatttattgttccatgggttatgtacttgcgtaagcgtggcgaaaagggtg



006213.1)
cttacaataaagatcatggacgtggcggttttggacatgtttatgattttaaagttgaagatgcttatgaccaggtgcatgatgagcctaagggtaagttttctaagaaggcttat




gctttaattagagggtatcgtggtgttaaaccacttctctatgtagaccagtatggttgtgattatactggtagtcttgcagatggcttagaggcttatgctgataagacattgcaa




gaaatgaaggcattatttcctacttggagtcaggaactcctttttgatgtaattgtggcatggcatgttgtgcgtgatccacgttatgttatgagattgcagagtgctgctactata




cgtagtgttgcatatgttgctaatcctactgaagacttgtgtgatggttctgttgttataaaagaacctgtgcatgtttatgcagatgactctattattttacgtcaatataatttagttg




acattatgagtcatttttatatggaggcagatacagttgtaaatgctttttatggtgttgctttgaaagattgcggttttgttatgcagtttggttacattgattgcgaacaagactcgt




gtgattttaaaggttggattcctggtaacatgatagatggttttgcttgcaccacttgtggtcatgtttatgaagtaggtgatttgatggcacaatcttcaggtgttttgcctgttaac




cctgtattgcatactaagagtgcagcaggctatggtggttttggttgtaaagattcttttactctgtatggccaaactgtagtttattttggaggttgtgtgtattggagtccagcac




gtaatatatggattcctatattaaaatcctagttaagtcatatgacagtttggtttatactggagttttaggttgcaaggctattgtaaaggaaacaaatctcatttgcaaagctttg




taccttgattatgttcaacacaagtgtggcaatttacaccaacgggagttgctaggtgtttcagatgtgtggcataaacaattgctattaaatagaggtgtttataaacctctgtta




gagaatattgattattttaatatgcggcgcgctaaatttagtttagaaacttttactgtttgtgcagatggctttatgccttttcttttagatgatttagttccacgcgcatattatttggc




agtaagtggtcaagcattttgtgattatgcagataaactttgccatgccgttgtgtctaagagtaaagagttacttgatgtgtctctggattattaggtgcagctatacattatttg




aattctaagattgttgatttggctcaacattttagtgattttggaacaagtttcgtttctaaaattgttcatttattaagacttttactactagcactgctcttgcatttgcatgggttttat




ttcatgttttgcatggtgcttatatagtagtggagagtgatatatattttgttaaaaacattcctcgttatgctagtgctgttgcacaagcatttcagagtgttgctaaagttgtactg




gactctttaagagttacttttattgatggcctttcttgttttaagattggacgtagaagaatttgtctttcaggcagaaaaatttatgaagttgagcgtggcttgttacattcatccca




attgccattagatgtttatgatttaaccatgcctagtcaagttcagaaagccaagcaaaaacctatttatttaaaaggttctggttctgatttttcattagcggatagtgtagttgaa




gttgttacaacttcacttacaccatgtggttattctgaaccacctaaagttgcagctaaaatttgcattgtggataatgtttatatggccaaggctggtgacaaatattaccctgttg




tggttgatgatcatgttggactcttggatcaagcatggagagttccttgtgctggaaggcgtgttacatttaaggaacagcctacagtaaaggagattataagcatgcctaag




attattaaggttttttatgagcttgacaacgattttaatactattttaaatactgcgtgtggagtgtttgaagtggatgatactgttgatatggaggaattttatgctgtggtgattgat




gccatagaagagaaactttaccatgtaaggagcttgaaggtgtaggtgctaaagttagtgcctttttacagaaattagaggataatcccctatttttatttgatgaggctggcg




aggaagttcttgctcctaaattgtattgtgcctttacagctcctgaagatgatgactttcttgaggaaagtgatgttgaagaagatgatgtagaaggtgaggaaactgatttaac




tgtcacaagtgctggacagccttgtgttgctagtgaacaggaggagtcttctgaagtcttagaggacactttggatgatggtccaagtgtggagacatctgattcacaagttg




aagaagatgtagaaatgtcggattttgttgatcttgaatctgtgattcaggattatgaaaatgtttgttttgagttttatactacagagccagaatttgttaaagttttgggtctgtatg




tgcctaaagcaactcgcaacaattgctggttgcgatcagttttggcagtgatgcagaaattgccctgtcaatttaaagataaaaatttgcaggatctttgggtgttatacaagca




acagtatagtcagttgtttgttgataccttggttaataagatacctgctaatattgtacttccacaaggtggttatgttgctgattttgcatattggtttttaaccttatgtgattggcag




tgtgttgcatactggaaatgcattaaatgtgatttagctcttaagcttaaaggcttggatgctatgttcttttatggtgatgttgtttcacatatatgcaagtgtggtgagtctatggta




cttattgatgttgatgtgccatttacagcccactttgctcttaaagataagttgttttgtgcatttattactaagcgtattgtgtataaagcagcttgtgttgtggatgttaatgatagtc




attctatggctgttgttgatggtaaacaaattgatgatcatcgtatcactagtattactagtgataagtttgattttattattgggcatggtatgtcattttcaatgactacttttgaaatt




gcccaattgtatggttcttgtataacacctaatgtgtgttttgttaaaggtgatataattaaagtatctaagcttgttaaagcagaagttgttgtaaaccctgctaatggccatatgg




cacatggtggtggtgttgcaaaagctattgcagtagcagctggacagcagtttgttaaagagactaccgatatggttaagtctaaaggagtttgtgctactggagattgttatg




tactacagggggcaaattatgtaaaactgtgcttaatgttgttggacctgatgcgagaacacagggtaaacaaagttatgtattgttagagcgtgtttataaacatcttaacaa




ctatgactgtgttgttacaactttgatctcagctggtatatttagtgtgccttctgatgtgtctttaacatatctacttggtactgctaagaaacaagttgttcttgttagcaataatcaa




gaggattttgatcttatttctaagtgtcagataactgctgttgagggcactaagaaattggcagcgcgtctttatttaatgttggacgttccattgtttacgaaacagatgctaata




agttgattttaatcaatgacgttgcatttgtttcgacatttaatgttttacaggatgttttatccttaagacatgatatagcacttgatgatgatgcacgaaccttcgttcagagcaat




gttgatgttgtacctgagggttggcgtgttgtcaataagttttatcaaattaatggtgttagaaccgttaagtattttgagtgtactggaggcatagatatatgcagccaggataa




agtttttggttatgtacagcagggtatttttaataaggctactgttgctcaaattaaagccttgtttttggataaagtggacatcttgctaactgttgatggtgttaatttcactaatag




gtttgtgcctgttggtgaaagttttggtaagagtctaggaaatgtgttttgtgatggagttaatgtcacgaagcataagtgtgatataaattataaaggtaaagtctttttccagttt




gataatctttctagtgaagatttaaaggctgtaagaagttcctttaattttgatcagaaggaattgcttgcctattacaacatgcttgttaattgttttaagtggcaggttgttgttaat




ggtaagtatttcacttttaagcaagctaataacaattgttttgttaatgtttcttgcttaatgctccagagtttgcatctgacatttaaaattgttcaatggcaagaggcatggcttga




atttcgttctggccgccctgctagatttgtagctttggttttggccaaaggtgggtttaaatttggagatcctgctgattctagagatttcttgcgtgttgtgtttagtcaagttgattt




gactggggcaatatgtgattttgaaattgcatgtaaatgtggtgtaaagcaggaacagcgtactggtaggacgctgttatgcattttggtacattgagtcgtgaagatcttga




gattggttataccgtggactgttcttgcggtaaaaagctaattcattgtgtacgatttgatgtaccatttttaatttgcagtaatacacctgctagtgtaaaattacctaagggtgta




ggaagtgcaaatatttttataggtgataaggttggtcattatgttcatgttaagtgtgaacaatcttatcagctttatgatgcttctaatgttaagaaggttacagatgttactggca




agttgtcagattgtctgtatcttaaaaatttgaaacaaacttttaaatcggtgttaaccacctattatttggatgatgttaagaaaattgagtataaacctgacttgtcacaatattatt




gtgacggaggtaagtattatactcagcgtattattaaagcccaatttaaaacattcgagaaagtagatggtgtgtatactaattttaaattgataggacacaccgtagtgacag




tcttaatgctaagttgggttttgatagctctaaagagtttgttgaatataagattactgagtggccaacagctacaggtgatgtggtgttggctactgatgatttgtatgttaagag




atatgagaggggttgtattacttttggtaaacctgttatatggttaagccatgagaaagcttccctcaattattaacatattttaatagaccttcattggttgatgataataaatttga




tgttttaaaagtggatgatgttgacgatggtggtgacagctcagagagtggtgccaaagaaaccaaagaaatcaacattattaagttaagtggtgttaaaaaaccatttaagg




ttgaagatagtgtcattgttaatgatgatactagtgaaaccaaatatgttaagagtttgtctattgttgatgtgtatgatatgtggcttacaggttgtaagtatgttgttagaactgct




aatgattgagcagagcagttaacgtacctacaatacgtaagtttataaaatttggtatgactcttgttagtataccaattgatttgttaaatttaagagagattaagcctgctgtta




atgtggttaaagagtgcgaaataaaatttctgtatgattaatt-ttattaaatggctttttgtcttattatttggctggattaaaatatccgctgataataaagtaatctacaccacag




aaattgcatcaaagcttacgtgtaagcttgtagctttagcttttaaaaatgcatttttgacatttaagtggagtatggttgctagaggtgcttgcattatagcgactatatttctattgt




ggtttaattttatatatgccaatgtaatttttagtgatttttatttgcctaaaatcggtttcttgccgacttttgttggtaagattgcacagtggattaagaacacttttagtcttgtaacta




tttgtgatctatattccattcaggatgtgggttttaagaatcagtattgtaatggaagtattgcatgtcagttctgcttggcaggatttgatatgttagataattataaagccattgat




gtagtacagtatgaagctgataggagagcatttgttgattatacaggtgtgttaaagattgtcattgaattgatagttagttacgccctgtatacggcatggttttatccattgtttg




cccttatcagtattcagatcttgaccacttggctgcctgagctttttatgcttagtacattacattggagttttaggttgctggtggctttagctaatatgttaccagcacatgtgttta




tgaggttttatattattattgcctcttttattaagctctttagcttgtttaggcatgttgcctatggttgtagtaaatctggttgtttgttttgttacaagaggaatcgtagtctacgtgtta




aatgtagtactatcgttggtggcatgatacgctattacgatgttatggctaatggtggcactggcttttgttcaaaacatcaatggaattgcattgattgtgattcttataaaccag




gtaatacttttattactgttgaggccgctcttgatctatctaaggaattgaaacggcccattcagcctacagatgttgcttatcatacggttactgatgttaagcaagttggttgttc




tatgcgcttgttctatgatcgtgatggacagcgcacatatgatgatgttaatgctagtttgtttgtggattatagtaatttgctacattctaaggttaagagtgtgcctaatatgcatg




ttgtggtagtggaaaatgatgctgataaagccaattttctgaatgctgctgtattttatgcacagtctttgtttagacctattttaatggttgataaaaatctgataactactgctaac




actggtacgtctgttacagaaactatgtttgatgtttatgtggatacatttttgtctatgtttgatgtggataaaaagagtcttaatgattaatagcaactgcgcattatctataaaa




cagggtacgcagatttataaagttttggatacctttttaagctgtgctcgtaaaagttgttctattgattcagatgttgatactaagtgtttagctgattctgtcatgtctgctgtatcg




gcaggtcttgaattgacggatgaaagttgtaataacttggtgccaacatatttgaagagtgacaacattgtggcagctgatttaggtgttctgattcaaaattctgcaaagcatg




tgcagggtaatgttgctaaaatagctggtgtttcctgtatatggtctgtggatgcttttaatcagtttagttctgatttccagcataaattgaagaaagcatgttgtaaaactggtttg




aaactgaagcttacttataataagcagatggctaatgtctctgttttaactacaccattagtcttaaagggggtgcagtttttagttattttgtttatgtgtgttttgtgttgagtttggt




ctgttttattggactgtggtgcttaatgcccacttacacagtacacaaatcagattttcagcttcccgtttatgccagttataaagttttagataatggtgttattagagatgttagcg




ttgaagatgtttgtttcgctaacaaatttgaacaatttgatcaatggtatgagtctacatttggtctaagttattatagtaacagtatggcttgtcccattgttgttgctgtaatagatc




aggattttggctctacagtgtttaatgtccctaccaaagtgttacgatatggttatcatgtgttgcactttattacacatgcactttctgctgatggagtgcagtgttatacgccaca




tagtcaaatatcgtattctaatttttatgctagtggctgtgtgattcctctgcttgcactatgtttacaatggccgatggtagtccacaaccttattgttatacagaggggcttatgc




aaaatgcttactgtatagttcattggtacctcacgtgcggtataatcttgctaatgctaaaggttttatccgttttccagaagtgttgcgagaagggcttgtacgtatcgtgcgta




ctcgttctatgtcgtattgcagagttggattatgtgaggaagctgatgagggtatatgattaattttaatggttcttgggtgcttaataatgattattatagatcattgcctgggacc




ttttgtggtagagatgtttttgatttaatttatcagctatttaaaggtttagcacagcctgtggattttttggcattgactgctagttccattgctggtgctatactcgctgtaattgttgt




tttggtgttttattacctaataaagcttaaacgtgatttggtgattacaccagtgttgtttttgttaacgtgattgtgtggtgtgtaaattttatgatgctttttgtgtttcaagtttacccc




atactttcttgtgtatatgctatttgttatttttatgccacgattatttcccttcggagataagtgtgataatgcacttacaatggctagttatgtatggcactattatgcctttatggtttt




gtttgctatatatagctgttgttgtttcaaatcatgctttttgggtattttcttactgcagaaagcttggtacttctgttcgtagtgatggtacatttgaagaaatggctctcactactttt




atgattacaaaagattcttattgtaagcttaagaattctttgtctgatgttgatttaatagatatttgagtttgtataataaatataggtattacagcggtaaaatggatactgctgcat




atagggaggctgcttgctctcagttggctaaagcaatggacacatttaccaataataatggtagtgatgtgctttaccaaccgcctactgcttccgtctcaacttcattcttgcaa




tctggtattgtgaaaatggtaaatcctacttctaaggtagaaccatgtgttgtcagtgttacctatggtaatatgacattgaatggtttatggttggatgacaaggtctactgtccc




agacatgtaatatgttctgcttcagatatgactaatccagattatacaaatttgttgtgtagagtaacatcaagtgattttactgtattgtttgatcgtctaagccttacagtgatgtct




tatcaaatgcggggttgtatgcttgttcttacagtgaccdgcaaaattctcgtacgccaaaatatacatttggtgtggttaaacctggtgagacttttactgttttagctgcttata




acggcaaaccacaaggagcctttcatgtaactatgcgtagtagttataccattaagggttcctttttatgcggatcttgtggatctgttggttatgtaataatgggtgattgtgtta




aatttgtttatatgcatcaattggagcttagtactggttgtcatactggtactgacttcaatggggatttttatggtccttataaggatgctcaggttgttcagttgctcattcaggatt




atatacaatctgttaattttgtagcatggctttatgctgctatacttaacaattgtaattggtttgtacaaagtgataagtgttctgtagaagattttaatgtgtgggctctgtccaatg




gatttagccaagttaaatctgaccttgttatagatgctttagcttctatgactggtgtgtctttggaaacactgttggctgctattaagcgtcttaagaatggtttccaaggacgtca




gattatgggtagttgctcttttgaggatgaattgacacctagcgatgtttatcaacaactcgctggtatcaagttacaatcaaaacgcactagattgtttaaaggcactgtttgttg




gattatggcttctacatttttgtttagttgcataattacagcatttgtgaaatggactatgtttatgtatgtaactactaatatgtttagtattacgttttgtgcactttgtgttataagtttg




gccatgttgttggttaagcataagcatctttatttgactatgtatataactcctgtgctttttacactgttgtataacaactatttggttgtgtacaagcatacatttagaggctatgtct




atgcatggctatcatattatgttccatcagttgagtacacttatactgatgaagttatttatggcatgttattgcttgtaggaatggtattgttacattacgtagcattaaccatgattt




gttttcttttataatgtttgttggtcgtttgatttctgttttctctttgtggtacaagggttctaacttagaggaagaaattcttcttatgttggcttccctttttggtacttacacatggaca




acagttttatctatggctgtagcaaaggttattgctaagtgggttgctgtgaatgtcttgtatttcacagatatacctcaaattaagatagtgatttgtgctatttgtttattggttatat




tattagctgttattggggcttgttttccttgatgaacagtttgtttagaatgcctttgggtgtttataattataaaatttcagtacaggaattaagatatatgaatgctaatggattgcg




ccctcctaagaatagttttgaagcccttatgcttaattttaagagttgggtattggaggtgttccaatcattgaagtatctcaatttcaatcaaaattgactgatgtcaaatgtgcta




atgtcgtcttgcttaattgcttgcaacatttgcatgttgcttctaattctaagttgtggcattattgtagcactttgcacaatgaaatacttgccacttcggatctgagtgttgatttga




aaagcttgctcagttattaattgttttgtttgctaatccagctgctgtggatagcaagtgcctgactagtattgaagaagtttgcgatgattacgcaaaggacaatactgttttgca




ggctttacagagtgaatttgttaatatggctagcttcgttgaatatgaagttgctaagaaaaatcttgatgaggcgcgttttagtggttctgctaatcaacagcagttaaaacagc




tagagaaagcctgtaatattgctaaatctgcttatgaacgcgaccgtgctgtagcaaaaaagttggagcgtatggctgatttggctctcactaatatgtataaagaagctagaa




ttaatgataagaagagtaaggttgtttctgccttgcaaactatgctttttagtatggtgcgtaagttagataatcaagctctgaattcaatattagataacgctgtgaagggttgtgt




accattgaatgcaataccttcattggcagcaaatactctgaatataattgtaccagataaaagtgtttatgaccaggtagttgataatgtctatgttacctatgcgggtaatgtatg




gcagattcaaactatccaggattcagatggtacaaataagcagttgaatgagatatctgatgattgtaactggccactagttattattgcaaatcggtataatgaggtatctgct




actgttttgcaaaataatgaattaatgcctgctaagttgaaaattcaggttgttaatagtggtccagatcagacttgtaatacacctactcaatgttactataataatagtaacaatg




ggaagattgtttatgctatacttagtgatgttgatggtcttaagtatacaaaaattcttaaagatgatggcaattttgttgttttggagttagatcctccttgtaaatttactgttcaaga




tgctaaaggtcttaaaattaagtacctttattttgtaaaaggttgtaacacactagcaagaggctgggttgttggtacaatttcttctacagttagattgcaagctggaactgctac




tgaatatgcttccaactcatctatattgtattatgtgcgttttctgtagatcctaagaaaacgtatttagattttatacaacaaggaggaacacctattgccaattgtgttaaaatgtt




gtgtgaccatgctggtaccggtatggccattactgttaaacccgatgctaccactagtcaggattcatatggtggtgcgtctgtttgtatatattgccgcgcacgagttgaaca




cccagatgttgatgggttgtgcaaattacgcggcaagtttgtacaagtgcctgtaggtataaaagatcctgtgtcttatgttttgacacatgatgtttgtcgagtttgtggattttg




gcgggatggaagttgttcatgtgttagcactgacactactgttcaatcaaaagatactaattttttaaacgggttcggggtacgagtgtagatgcccgtctcgtaccctgcgcc




agtggtttatctactgatgtacaattaagggcatttgatatttacaatgctagtgttgctggcattggtttacatttaaaagttaattgttgccgttttcagcgtgttgatgagaacgg




tgataaattagatcagttattgttgttaagaggacagatctgactatatataatagagagatgaaatgctatgagcgtgtaaaagattgtaagtttgtggctgaacacgatttctt




tacatttgatgtagaaggtagtcgtgtgccacacattgtacgcaaggatttaacaaagtatactatgttggatctttgctatgcattgcgacattttgatcgcaatgattgcatgct




gctttgtgacattctctctatatatgctggttgtgaacaatcctactttactaagaaggattggtatgattttgttgaaaatcctgatattattaatgtgtataaaaagctaggacctat




ttttaatagagccctagttagcgctactgagtttgcggacaaattggtggaggtaggcttagtaggcgttttaacacttgataatcaagatttaaatggtaaatggtatgattttg




gtgactatgttattgcagccccaggatgtggtgttgctatagcagattcttattattcttatatcatgcctatgctgaccatgtgtcatgcattggattgcgaattgtatgtgaataat




gcttatagactatttgatcttgtacagtatgattttactgattacaagcttgaattgtttaataagtattttaagcactggagtatgccatatcatcctaacactgttgattgtcaggat




gatcggtgtattatacattgtgctaattttaacatactttttagtatggttttacctaatacatgttttgggcctcttgttaggcaaatttttgtggatggtgtgccttttgttgtttcaattg




gctaccattataaagaacttggtattgtgatgaatatggatgtggatacacatcgttatcgcttgtctttaaaagacttgatttatatgctgctgatccagctttgcatgtagcttct




gctagtgcattgtatgatttacgcacttgctgttttagtgttgccgctataacaagcggtgtaaaatttcaaacagttaaacctggtaattttaatcaggatttttatgattttgttttaa




gtaaaggcctgcttaaagagggtagctcagttgatctgaagcactttttattacacaggatggtaatgctgctattactgattataattattataagtataatttgcccaccatggt




ggacattaagcagttgttgtttgttttggaagttgtttataagtattttgagatttatgatggtgggtgtataccggcatcacaagtcattgttaataattatgataagagtgctggct




atccatttaacaaatttggaaaagccaggctctattatgaagcattatcatttgaggaacaggatgaaatttacgcttatactaagcgtaatgtcctgccaacacttactcaaatg




aatttgaaatatgctattagtgctaagaatagagcccgcactgttgctggtgtttccatacttagtactatgactggcagaatgtttcatcaaaaatgtttgaaaagtatagcagct




acacgtggtgttcctgtagttataggcaccactaaattttatggtggctgggatgatatgttacgccgccttattaaagatgttgacaatcctgtacttatgggttgggattatcct




aagtgtgatcgtgctatgccaaacctactacgtattgttagtagtttggtattagcccgaaaacatgagacatgttgttcgcaaagcgataggttttatcgacttgcgaatgaat




gcgcacaagttttgagtgaaattgttatgtgtggtggctgttattatgttaagcctggtggcactagtagtggtgatgcaactactgcttttgctaattcagtctttaacatatgtca




agagtttcagccaatgtatgtgccttaatgtcatgcaatggcaataagattgaagatcttagtatacgtgctcttcagaagcgcttatactcacatgtgtatagaagtgataagg




ttgattcaacctttgtcacagaatattatgaatttttaaataagcattttagtatgatgattttgagtgatgatggggttgtgtgttataattctgattatgcgtccaaagggtatattgc




taatataagtgcctttcaacaggtattatattatcaaaataacgtttttatgtcagaatccaaatgttgggttgaacatgacataaataatggacctcatgaattctgttcacaacac




acaatgcttgtaaagatggatggtgacgatgtctaccttccatatcctaatcctagtcgtatattaggagaggatgttttgtagatgatttgttaaagactgatagtgttcttttaat




agaacgatttgtaagtcttgcaatagatgcttatccacttgtgtatcatgaaaatgaagaataccaaaaggtttttcgtgtttatttggcgtatataaagaagttgtacaatgacct




gggtaatcagatcttggatagctacagtgttattttaagtacttgtgatggacaaaagttcactgatgagtccttttacaagaacatgtatttaagaagtgcagttatgcagagtg




ttggagcttgcgtggtctgctcttctcaaacatcattacgttgtggcagttgcatcagaaagcctcttctttgctgcaagtgttgttatgatcatgttatggcgactgatcataaata




tgtcttgagtgtttcaccatatgtgtgtaatgcaccaggatgtgatgtaaatgatgttaccaaattgtatctaggtggtatgtcatattattgtgaagaccataagccacaatattca




ttcaagttggtaatgaatggtaggtttttggtctatataaacaatcttgtacaggatctccgtacatagacgattttaatcgtatagctagttgtaaatggaccgatgtggatgatt




acatactagctaatgaatgtacagagcgcttgaaattgtttgctgcagaaacgcaaaaggcaaccgaggaagcctttaagcagagttatgcatcagcaacaatacaagaga




ttgttagtgagcgcgaattgattctctcttgggagattggaaaagttaagccaccacttaataaaaattatgtttttactggctaccattttactaaaaatggtaagacagttttagg




tgagtatgtttttgataagagtgagttgactaatggtgtgtattatcgcgccacaaccacttataagctatctgtaggagatgtttttgttttaacctctcattcagtagctaatttaa




gtgctcctacgcttgttccgcaggagaattatagtagtattagatttgctagtgtttatagtgtgcttgagacgtttcagaacaatgttgttaattatcaacacattggtatgaaacg




ttactgcaccgtgcaaggacctcctggtacagggaagtcacatcttgctattggtcttgctgtattctattgtacagcacgtgttgtatacacagcggccagccatgcagctgtt




gacgcattgtgtgaaaaagcatataaatttttgaatataaatgattgcactcgtattgttccggccaaggtcagggtggagtgctatgataagtttaaaattaatgacaccactc




gtaagtatgtgtttactaccataaatgcattacctgagatggtgactgatattgttgttgtagatgaagttagtatgcttaccaattatgagctttctgttattaatgctcgtattcgcg




ctaagcattatgtttatattggtgatcctgctcaattgccagcaccacgtgtgttattgagcaagggtacacttgaacctaaatattttaacactgttactaagctcatgtgttgctt




agggccagacatttttcttggtacatgttatagatgtcctaaggaaatcgttgatacagtgtccgccttggtttatgaaaataagcttaaggctaagaatgagagtagttcattgt




gttttaaggtctattataagggcgttacaacacatgaaagttctagtgctgtaaatatgcagcagatttatttgattaataagtttttgaaggctaaccattgtggcataaagctgt




ttttattagcccatataatagtcagaactttgcagctaagcgtgttttgggtttacaaacccaaaccgtggattctgctcaaggttctgaatatgattatgttatatattcacagact




gcagaaacagcgcattctgtaaatgttaatcgcttcaatgttgctattactcgagccaagaaaggtattctttgtgttatgagtaatatgcagttgtttgaagcattacagtttacta




cattgaccttagataaagtgccacaggccgtcgaaactaaagttcaatgtagtactaatttatttaaagattgtagcaagagttatagcggttatcacccagctcatgctccttca




tttttggcagtagatgacaaatataaggcaactggcgatttagccgtgtgtcttggtattggtgattctgctgttacatattcaagattaatatcactcatgggttttaaattggatgt




tacccttgatgggtattgtaagctttttataactaaagaagaagagttaaacgcgtgcgtgcctgggttggctttgatgctgaaggtgctcatgccacgcgtgatagcattgg




gacaaatttcccacttcaattaggattttccacaggaattgattttgttgtggaagccactggtttgtttgctgatagagatggttacagctttaaaaaggctgtggcgaaagctc




ctcctggtgaacaatttaagcacctcatccattgatgacgagaggtcatcgctgggatgttgttagacctagaatagtacaaatgtttgcagatcatttaattgatctgtctgatt




gtgttgtgctagttacatgggcagccaactttgagctcacttgtaccgctactttgcaaaagtagggcgtgagatttcttgtaatgtatgcactaaacgtgccacagtttacaat




tctagaactggttactatggttgttggcgccatagtgttacatgtgattacttgtataatccacttattgttgatattcaacagtggggatatattggttattatcaagtaatcatgatt




tatattgtagtgtccataaaggagcacatgttgcttcctctgatgctataatgacacggtgtttggccgtttatgattgatttgcaataatattaattggaatgtggagtatcccatc




atttcaaatgagttaagtattaatacctcttgtagggtcttgcagcgtgtgattcttaaagctgccatgctctgcaacagatatactttgtgttatgatattggcaacccaaaagcg




attgcctgtgtcaaagattttgattttaagttctatgatgcccaaccaattgttaagtctgttaagactcttttgtattatttgaggcacataaggactcttttaaagacggtttgtgta




tgttttggaactgtaatgtggataagtatccaccgaatgcagttgtatgtagatttgacactagagtgttgaataatttaaatcttcctggctgtaatggaggtagtttgtatgttaat




aaacatgcattccacactaaaccattgctagggcagcctttgagcatttgaagcctatgccattcttctattattcagatacgccttgtgtgtatatggatggcatggatgctaa




gcaggttgattatgtacctttgaaatctgccacgtgcatcacaagatgcaatttaggtggtgcagtttgtttaaaacatgctgaagagtatcgtgagtacttagagtcttacaata




cagctactacagcaggttttactttttgggtctataagacatttgatttttataatttgtggaatacgttcaccaagctacaaagcttggagaatgttgtatataatttagtcaagact




ggtcattatacaggacaggctggtgaaatgccttgtgccattataaatgataaagttgtggctaagatcgataaggaggatgttgtcatttttattaataatacaacataccctac




taatgtggccgttgaattatttgccaagcgcagtgttcgacaccacccagagcttaagctctttagaaatttaaatatagacgtgtgttggaagcacgtcatttgggattatgct




agagaaagtatattttgcagtaatacctatggtgtctgcatgtatacagatttaaagttcattgataaattgaatgtcctttttgatggtcgtgataatggtgctcttgaagcttttaa




acgttctaataatggcgtttacatttccacgacaaaagttaagagtctttcgatgataagaggtccaccgcgtgctgaattaaatggcgtagtggtggacaaggttggagaca




ctgattgtgtgttttattttgctgtgcgtaaagaaggtcaggatgtcatcttcagccaattcgacagcctgggagtcagctctaaccagagcccacaaggtaatctggggagt




aatggtaaacccggtaatgtcggtggtaatgatgactgtcaatctctactatctttacacaaagccgtgttattagctcttttacatgtcgtactgatatggaaaaagattttatag




ctttagatcaagatgtgtttattcagaagtatggtttggaggactatgcctttgaacacattgtttatggtaacttcaaccagaagattattggtggtttgcatttgttaataggcttg




taccgaagacagcaaacttccaatctggttgttcaggagtttgtttcatatgactccagcatacactcttattttatcactgacgagaagagtggtggtagtaagagtgtttgcac




tgttatagatattttgttggatgattttgtggctcttgttaagtcacttaatcttaattgtgtgagtaaggttgttaatgttaatgttgattttaaagattttcagtttatgattggtgtaac




gatgagaaagttatgactttctatcctcgtttgcaagctgcatctgactggaagcctggttattctatgcctgtattatataagtatttgaattctccaatggaaagagttagtctct




ggaattatgggaagccagttactttgcctacaggctgtatgatgaatgttgctaagtatactcagttatgtcaatatctgaatactacaacattagctgtacctgttaatatgcga




gttttgcatttaggtgcaggttcagaaaaaggagtagcaccgggttctgcagttcttaggcagtggttgcctgctggtactattcttgtagataacgatttatacccatttgttagt




gacagtgtcgctacatattttggggattgtataactttaccattgattgtcaatgggatttgataatttctgatatgtatgaccctattactaagaacataggggagtacaatgtga




gtaaagatggtttctttacatacatttgtcatatgattcgagacaagttagctctgggtggcagtgttgctataaaaataacagagttttcttggaatgcagaattatataagttaat




ggggtattttgcattttggactgtgttttgcacaaatgcaaatgcttcttctagtgaaggatttttaattggcataaattatttgtgtaagcccaaggttgagatagatggaaatgtta




tgcatgccaattatttgttttggagaaattccacagtttggaacgggggtgcttatagcctgtttgatatggctaaattcccgcttaagttggctggtactgccgtaataaatttaa




gagcagaccagattaatgatatggtttattcccttcttgaaaagggtaaactacttattagagatacaaataaagaagt-tttcgttggtgacagtttggttaatgtaatctaaacttt




aaaaatggctgtcgcttatgcagacaagcctaatcattttatcaattttccacttacccattttcagggttttgtgttaaattataaaggtttacaatttcaaattctcgatgaaggagt




ggattgtaaaatacaaacagcgccacacattagtcttactatgctggacatacagcctgaagactataaaagtgttgatgtcgctattcaagaagttattgatgatatgcattgg




ggtgatggttttcagattaaatttgagaatcctcacatcctaggaagatgcatagttttagatgttaaaggtgtagaagaattgcatgacgatttagttaattacattcgtgataaa




ggttgtgttgctgaccaatccaggaaatggattggccattgcaccatagctcaactcacggatgcagcactgtccattaaggaaaatgttgattttataaacagcatgcaattc




aattataaaatcaccatcaacccctcatcaccggctagacttgaaatagttaagctcggtgctgaaaagaaagatggtttttatgaaaccatagttagtcactggatgggaatt




cgttttgaatacacatcacccactgataagctagctatgattatgggttattgttgtttagatgtggtacgtaaagagctagaagaaggcgatcttcccgagaatgatgatgatg




cttggtttaagctatcgtaccattatgaaaacaattcttggttcttccgacatgtctacaggaaaagttttcatttccgtaaggcttgtcaaaatttagattgtaattgtttggggtttt




atgaatcttcagttgaagaatattaaactcagtgaaaatgtttttgcttcctagatttattctagttagctgcataattggtagcttaggtttttacaaccctcctaccaatgttgtttcg




catgtaaatggagattggtttttatttggtgacagtcgttcagattgtaatcatattgttaatatcaacccccataattattcttatatggaccttaatcctgttctgtgtgattctggta




aaatatcatctaaagctggcaactccatttttaggagttttcactttaccgatttttataattacacaggcgaaggtcaacaaattattttttatgagggtgttaattttacgccttatc




atgcctttaaatgcaaccgttctggtagtaatgatatttggatgcagaataaaggcttgttttatactcaggtttataagaatatggctgtgtatcgcagccttacttttgttaatgta




ccatatgtttataatggctccgcacaagctacagctctttgtaaatctggtagtttagtccttaataaccctgcatatatagctcctcaagctaactctggggattattattataagg




ttgaagctgatttttatttgtcaggttgtgacgagtatatcgtaccactttgtatttttaacggcaagtttttgtcgaatacaaagtattatgatgatagtcaatattattttaataaaga




cactggtgttatttatggtctcaattctacagaaaccattaccactggttttgatcttaattgttattatttagttttaccctctggtaattatttagccatttcaaatgagctattgttaac




tgttcctacgaaagcaatctgtcttaataagcgtaaggattttacgcctgtacaggttgttgattcgcggtggaacaatgccaggcagtctgataacatgacggcggttgcttg




tcaacctccgtactgttattttcgtaattctactaccaactatgttggtgtttatgatattaatcatggagatgctggttttactagcatacttagtggtttgttatataattcaccttgttt




ttcgcagcaaggcgtttttaggtatgataatgttagcagtgtctggcctctctacccctatggcagatgtcccactgctgctgatattaatatccctgatttacccatttgtgtgtat




gatccgctaccagttattttgcttggcattcttttgggcgttgcgattgtaattattgtagttttgttgttatattttatggtggataatgttactaggctgcatgatgcttagaccataat




ctaaacatgtttttgatacttttaatttccttaccaacggcttttgctgttataggagatttaaagtgtacttcagataatattaatgataaagacaccggtcctcctcctataagtact




gatactgttgatgttactaatggtttgggtacttattatgttttagatcgtgtgtatttaaatactacgttgtttcttaatggttattaccctacttcaggttccacatatcgtaatatggc




actgaagggaagtgtactattgagcagactatggtttaaaccaccatttattctgattttattaatggtatttttgctaaggtcaaaaataccaaggttattaaagatcgtgtaatgt




atagtgagttccctgctataactataggtagtacttttgtaaatacatcctatagtgtggtagtacaaccacgtacaatcaattcaacacaggatggtgataataaattacaaggt




cttttagaggtctctgtttgccagtataatatgtgcgagtacccacaaacgatttgtcatcctaacctgggtaatcatcgcaaagaactatggcatttggatacaggtgttgtttc




ctgtttatataagcgtaatttcacatatgatgtgaatgctgattatttgtattttcatttttatcaagaaggtggtactttttatgcatattttacagacactggtgttgttactaagtttttg




tttaatgtttatttaggcatggcgctttcacactattatgtcatgcctctgacttgtaatagtaagcttactttagaatattgggttacacctdcacttctagacaatatttactcgcttt




caatcaagatggtattatttttaatgctgttgattgtatgagtgattttatgagtgagattaagtgtaaaacacaatctatagcaccacctactggtgtttatgaattaaacggttaca




ctgttcagccaatcgcagatgtttaccgacgtaaacctaatcttcccaattgcaatatagaagcttggcttaatgataagtcggtgccctctccattaaattgggaacgtaagac




attttcaaattgtaattttaatatgagcagcctgatgtcttttattcaggcagactcatttacttgtaataatattgatgctgctaagatatatggtatgtgtttttccagcataactatag




ataagtttgctatacccaatggcaggaaggttgacctacaattgggtaatttgggctatttgcagtcatttaactatagaattgatactactgcaacaagttgtcagttgtattata




atttacctgctgctaatgtttctgttagcaggtttaatccttctacttggaataagagatttggttttatagaagattctgtttttaagcctcgacctgcaggtgttcttactaatcatga




tgtagtttatgcacaacactgtttcaaagctcctaaaaatttctgtccgtgtaaattgaatggttcgtgtgtaggtagtggtcctggtaaaaataatggtataggcacttgtcctgc




aggtactaattatttaacttgtgataatttgtgcactcctgatcctattacatttacaggtacttataagtgcccccaaactaaatctttagttggcataggtgagcactgttcgggt




cttgctgttaaaagtgattattgtggaggcaattcttgtacttgccgaccacaagcatttttgggttggtctgcagactcttgtttacaaggagacaagtgtaatatttttgctaattt




tattttgcatgatgttaatagtggtcttacttgttctactgatttacaaaaagctaacacagacataattcttggtgtttgtgttaattatgacctctatggtattttaggccaaggcatt




tttgttgaggttaatgcgacttattataatagttggcagaaccttttatatgattctaatggtaatctctacggttttagagactacataacaaacagaacttttatgattcgtagttgc




tatagcggtcgtgtttctgcggcctttcacgctaactcttccgaaccagcattgctatttcggaatattaaatgcaactacgtttttaataatagtcttacacgacagctgcaaccc




attaactattttgatagttatcttggttgtgttgtcaatgcttataatagtactgctatttctgttcaaacatgtgatctcacagtaggtagtggttactgtgtggattactctaaaaaca




gacgaagtcgtggagcgattaccactggttatcggtttactaattttgagccatttactgttaattcagtaaacgatagtttagaacctgtaggtggtttgtatgaaattcaaatac




cttcagagtttactataggtaatatggtggagtttattcaaacaagctctcctaaagttactattgattgtgctgcatttgtctgtggtgattatgcagcatgtaaatcacagttggtt




gaatatggtagtttctgtgataacattaatgccatactcacagaagtaaatgaactacttgacactacacagttgcaagtagctaatagtttaatgaatggtgttactcttagcact




aagcttaaagatggcgttaatttcaatgtagacgacatcaatttttcccctgtattaggttgtctaggcagcgaatgtagtaaagcttccagtagatctgctatagaggatttactt




tttgataaagtaaagttatctgatgtcggttttgttgaggcttataataattgtacaggaggtgccgaaattagggacctcatttgtgtgcaaagttataaaggcatcaaagtgttg




cctccactgctctcagaaaatcagatcagtggatacactttggctgccacctctgctagtctatttcctccttggacagcagcagcaggtgtaccattttatttaaatgttcagtat




cgcattaatgggcttggtgtcaccatggatgtgctaagtcaaaatcaaaagcttattgctaatgcatttaacaatgccctttatgctattcaggaagggttcgatgcaactaattc




tgattagttaaaattcaagctgttgttaatgcaaatgctgaagctcttaataacttattgcaacaactctctaatagatttggtgctataagtgcttctttacaagaaattctatctag




acttgatgctcttgaagcggaagctcagatagatagacttattaatggtcgtcttaccgctcttaatgcttatgtttctcaacagcttagtgattctacactggtaaaatttagtgca




gcacaagctatggagaaggttaatgaatgtgtcaaaagccaatcatctaggataaatttctgtggtaatggtaatcatattatatcattagtgcagaatgctccatatggtttgta




ttttatccactttagttatgtccctactaagtatgtcacagcgagggttagtcctggtctgtgcattgctggtgatagaggtatagctcctaagagtggttattttgttaatgtaaata




atacttggatgtacactggtagtggttactactaccctgaacctataactgaaaataatgttgttgttatgagtacctgcgctgttaattatactaaagcgccgtatgtaatgctga




acacttcaatacccaaccttcctgattttaaggaagagttggatcaatggtttaaaaatcaaacatcagtggcaccagatttgtcacttgattatataaatgttacattcttggacc




tacaagttgaaatgaataggttacaggaggcaataaaagtcttaaatcagagctacatcaatctcaaggacattggtacatatgaatattatgtaaaatggccttggtatgtatg




gatttaatctgccttgctggtgtagctatgcttgttttactattcttcatatgctgttgtacaggatgtgggactagttgttttaagaaatgtggtggttgttgtgatgattatactgga




taccaggagttagtaatcaaaacttcacatgacgactaagttcgtattgattcattgcactgatacttgttagatattttgcaatctagcatttgttaaagttcttaaggccacgc




cctattaatggacatttggagacctgagaagaaatatctccgttatattaacggttttaatgtctcagaattagaagatgcttgttttaaatttaactatcaatttcctaaagtaggat




attgtagagttcctagtcatgcttggtgccgtaatcaaggtagattttgtgctacattcactattatggtaaatccaaacattatgataaatattttggagtaataaatggtttcaca




gcattcgctaatactgtagaggatgctgttaacaaactggttttcttagctgttgactttattacctggcgcagacaggagttaaatgtttatggctgatgcttatcttgcagacac




tgtgtggtatgtggggcaaataatttttatagttgccatttgtttattggttacaatagttgtagtggcatttttggcaacttttaaattgtgtattcaactttgcggtatgtgtaatacct




tagtactgtccccttctatttatgtgtttaatagaggtaggcagttttatgagttttacaatgatgtaaaaccaccagtccttgatgtggatgacgtttaggtaatccaaacattatg




agtagtaaaactacaccagcaccagtttatatctggactgctgatgaagctattaaattcctaaaggaatggaatttttattgggtattatactactttttattacaatcatattgca




atttggatatacaagtcgcagtatgtttgtttatgttattaagatgattattttgtggcttatgtggccccttactataatcttaactattttcaattgcgtatacgcattgaataatgtgt




atcttggcctttctatagtttttaccatagtggccattattatgtggattgtgtattttgtgaatagtatcaggttgtttattagaactggaagtttttggagtttcaacccagaaacaaa




caacttgatgtgtatagatatgaaaggaacaatgtatgttaggccgataattgaggactatcatactctgacggtcacaataatacgcggccatctttacattcaaggtataaaa




ctaggtactggctattattggcagatttgccagcttatatgactgttgctaaggttacacacctgtgcacatataagcgtggttttcttgacaggataagcgatactagtggtttt




gctgtttatgttaagtccaaagtcggtaattaccgactgccatcaacccaaaagggttctggcatggacaccgcattgttgagaaataatatctaaattttaaggatgtatttac




tcctggtaagcaatccagtagtagagcgtcctctggaaatcgttctggtaatggcatcctcaagtgggccgatcagtccgaccagtttagaaatgttcaaaccaggggtaga




agagctcaacccaagcaaactgctacctctcagcaaccatcaggagggaatgttgtaccctactattcttggttctctggaattactcagtttcaaaagggaaaggagtttga




gtttgtagaaggacaaggtgtgcctattgcaccaggagtcccagctactgaagctaaggggtactggtacagacacaacagacgttatttaaaacagccgatggcaacc




agcgtcaactgctgccacgatggtatttttactatctgggaacaggaccgcatgctaaagaccagtacggcaccgatattgacggagtctactgggtcgctagcaaccagg




ctgatgtcaataccccggctgacattgtcgatcgggacccaagtagcgatgaggctattccgactaggtttccgcctggcacggtactccctcagggttactatattgaagg




ctcaggaaggtctgctcctaattccagatctacttcgcgcacatccagcagagcctctagtgcaggatcgcgtagtagagccaattctggcaatagaacccctacctctggt




gtaacacctgacatggctgatcaaattgctagtcttgttctggcaaaacttggcaaggatgccactaaacctcagcaagtaactaagcatactgccaaagaagtcagacaga




aaattttgaataagccccgccagaagaggagccccaataaacaatgcactgttcagcagtgttttggtaagagaggccctaatcagaattttggtggtggagaaatgttaaa




acttggaactagtgacccacagttccccattcttgcagaactcgcacccacagctggtgcgtttttattggatcaagattagagttggccaaagtgcagaatttatctgggaat




cctgacgagccccagaaggatgtttatgaattgcgctataacggcgcaattaggtttgacagtacactttcaggttttgagaccataatgaaggtgctgaatgagaatttgaat




gcctatcaacaacaagatggtatgatgaatatgagtccaaaaccacagcgtcagcgtggtcataagaatggacaaggagaaaatgataatataagtgttgcagtgcccaa




aagccgcgtgcagcaaaataagagtagagagttgactgcagaggacatcagccttcttaagaagatggatgagccctatactgaagacacctcagaaatataagagaat




gaaccttatgtcggcatctggtggtaacccctcgcagaaaagtcgagataaggcactctctatcagaatggatgtcttgctgctataatagatagagaaggttatagcagact




atagattaattagttgaaagttttgtgttgtaatgtatagtgttggagaaagtgaaagacttgcggaagtaattgccgacaagtgcccaagggaagagccagcatgttaagtta




ccacccagtaattagtaaatgaatgaagttaattatggccaattggaagaatcacaaaaaaaaaaaaaaaaaaaaaaaaaaaa
















TABLE 4







Biological Assay Results for Assessed siNA











SARS-CoV-2 nanoluc
pSiCHECK-2 reporter
pSiCHECK-2 reporter assay Cos-7 at



hACE-2 A549 assay
assay Cos-7
least 50% inhibition



A: <0.1 nM EC50;
A: <0.2 nM EC50;
yes (y)/no (n)/undetermimed (u).



B: 0.1-1.0 nM EC50;
B: 0.2-1.0 nM EC50;
siRNAs w/>70% inhib. were followed


siNA Name
C: >1 nM EC50
C: >1 nM EC50
up w/EC50 (hACE-2 A549 assay)





ds-siNA-006


n


ds-siNA-007


n


ds-siNA-008


n


ds-siNA-009


n


ds-siNA-010


u


ds-siNA-011

B
y


ds-siNA-012


y


ds-siNA-013


n


ds-siNA-014


n


ds-siNA-015


n


ds-siNA-016


n


ds-siNA-017


n


ds-siNA-018

B
y


ds-siNA-019


y


ds-siNA-020


y


ds-siNA-021


y


ds-siNA-022


n


ds-siNA-023


n


ds-siNA-024


n


ds-siNA-025


u


ds-siNA-026


u


ds-siNA-027


y


ds-siNA-028


n


ds-siNA-029


n


ds-siNA-030

B
y


ds-siNA-031


n


ds-siNA-032


n


ds-siNA-033


u


ds-siNA-034


u


ds-siNA-035


n


ds-siNA-036


y


ds-siNA-037


n


ds-siNA-038


n


ds-siNA-039

A
y


ds-siNA-040

A
y


ds-siNA-041


y


ds-siNA-042


n


ds-siNA-043


n


ds-siNA-044


n


ds-siNA-045


n


ds-siNA-046


y


ds-siNA-047


y


ds-siNA-048


y


ds-siNA-049


n


ds-siNA-050


n


ds-siNA-051

B
y


ds-siNA-052


y


ds-siNA-053


n


ds-siNA-054


n


ds-siNA-055


n


ds-siNA-056


n


ds-siNA-057


u


ds-siNA-058


u


ds-siNA-059


u


ds-siNA-060


y


ds-siNA-061

B
y


ds-siNA-062

B
y


ds-siNA-063


n


ds-siNA-064


y


ds-siNA-065


y


ds-siNA-066


n


ds-siNA-067

B
y


ds-siNA-068


n


ds-siNA-069


n


ds-siNA-070


n


ds-siNA-071


n


ds-siNA-072


n


ds-siNA-073


n


ds-siNA-074


n


ds-siNA-075

C
y


ds-siNA-076


y


ds-siNA-077


n


ds-siNA-078


n


ds-siNA-079


u


ds-siNA-080


n


ds-siNA-081

A
y


ds-siNA-082

B
y


ds-siNA-083

B
y


ds-siNA-084


y


ds-siNA-085


y


ds-siNA-086


n


ds-siNA-087

A
y


ds-siNA-088


y


ds-siNA-089

B
y


ds-siNA-090


n


ds-siNA-091


n


ds-siNA-092


n


ds-siNA-093


n


ds-siNA-094


n


ds-siNA-095
B
B
y


ds-siNA-096


y


ds-siNA-097


n


ds-siNA-098


y


ds-siNA-099


n


ds-siNA-100


n


ds-siNA-101


n


ds-siNA-102


n


ds-siNA-103


n


ds-siNA-104


n


ds-siNA-105


u


ds-siNA-106

B
y


ds-siNA-107


y


ds-siNA-108


y


ds-siNA-109


n


ds-siNA-110


n


ds-siNA-111


n


ds-siNA-112


n


ds-siNA-113


y


ds-siNA-114


y


ds-siNA-115

B
y


ds-siNA-116


y


ds-siNA-117


n


ds-siNA-118


n


ds-siNA-119


y


ds-siNA-120


u


ds-siNA-121


u


ds-siNA-122


y


ds-siNA-123


n


ds-siNA-124


n


ds-siNA-125

B
y


ds-siNA-126


n


ds-siNA-127


n


ds-siNA-128


u


ds-siNA-129


u


ds-siNA-130


n


ds-siNA-131


y


ds-siNA-132


n


ds-siNA-133


n


ds-siNA-134

A
y


ds-siNA-135

A
y


ds-siNA-136


y


ds-siNA-137


n


ds-siNA-138


n


ds-siNA-139


n


ds-siNA-140


n


ds-siNA-141


n


ds-siNA-142


y


ds-siNA-143


y


ds-siNA-144


n


ds-siNA-145


n


ds-siNA-146

B
y


ds-siNA-147


n


ds-siNA-148


n


ds-siNA-149


n


ds-siNA-150

C
y


ds-siNA-151


n


ds-siNA-152


u


ds-siNA-153


u


ds-siNA-154


u


ds-siNA-155


y


ds-siNA-156

B
y


ds-siNA-157

B
y


ds-siNA-158


n


ds-siNA-159


y


ds-siNA-160


y


ds-siNA-161


n


ds-siNA-162

B
y


ds-siNA-163


n


ds-siNA-164


y


ds-siNA-165


y


ds-siNA-166


y


ds-siNA-167


y


ds-siNA-168


n


ds-siNA-169


n


ds-siNA-170
C
B
y


ds-siNA-171


y


ds-siNA-172


y


ds-siNA-173

B
y


ds-siNA-174


u


ds-siNA-175


y


ds-siNA-176
C
A
y


ds-siNA-177

A
y


ds-siNA-178

B
y


ds-siNA-179

B
y


ds-siNA-180

B
y


ds-siNA-181


y


ds-siNA-182


y


ds-siNA-183

A
y


ds-siNA-184

B
y


ds-siNA-185


n


ds-siNA-186


n


ds-siNA-187


n


ds-siNA-188


n


ds-siNA-189


n


ds-siNA-190


y


ds-siNA-191


y


ds-siNA-192


y


ds-siNA-193
B
B
y


ds-siNA-194


n


ds-siNA-195


n


ds-siNA-196
A
B


ds-siNA-197
B
B


ds-siNA-198
B
A


ds-siNA-199
A
B


ds-siNA-217

A


ds-siNA-218

A


ds-siNA-219

A


ds-siNA-220

A


ds-siNA-221

A


ds-siNA-222

A








Claims
  • 1. A short interfering nucleic acid (siNA) molecule comprising: (a) a sense strand comprising a first nucleotide sequence, wherein the first nucleotide sequence is 15 to 30 nucleotides in length and comprises a nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% identical to an RNA corresponding to of any one of SEQ ID NOs: 1-1203 and 2411-3392; and(b) an antisense strand comprising a second nucleotide sequence, wherein the second nucleotide sequence is 15 to 30 nucleotides in length and comprises a nucleotide sequence that is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% complementary to the first nucleotide sequence.
  • 2. The siNA molecule of claim 1, wherein the first nucleotide sequence is identical to an RNA corresponding to 15 to 30 nucleotides within positions 190-216, 233-279, 288-324, 455-477, 626-651, 704-723, 3352-3378, 5384-5403, 6406-6483, 7532-7551, 9588-9606, 10484-10509, 11609-11630, 11834-11853, 12023-12045, 12212-12234, 12401-12420, 12839-12867, 12885-12924, 12966-12990, 13151-13176, 13363-13386, 13388-13416, 13458-13416, 13458-13520, 13762-13790, 14290-14312, 14404-14429, 14500-14531, 14623-14642, 14650-14687, 14698-14717, 14722-14748, 14750-14777, 14821-14846, 14854-14873, 14875-14903, 14962-14990, 14992-15020, 15055-15140, 15172-15200, 15310-15332, 15346-15367, 15496-15518, 15622-15644, 15838-15869, 15886-15905, 15985-16010, 16057-16079, 16186-16205, 16430-16448, 16822-16865, 16954-16976, 17008-17042, 17080-17111, 17137-17156, 17269-17289, 17530-17549, 17563-17582, 17680-17699, 17746-17765, 17857-17876, 17956-17975, 18100-18122, 18196-18218, 19618-19639, 19783-19802, 19831-19850, 20107-20130, 20776-20795, 21502-21524, 24302-24325, 24446-24465, 24620-24651, 24662-24684, 25034-25057, 25104-25128, 25364-25387, 25502-25530, 26191-26227, 26232-26267, 26269-26330, 26332-26394, 26450-26481, 26574-26600, 27003-27064, 27093-27111, 27183-27212, 27382-27407, 27511-27533, 27771-27818, 28270-28296, 28397-28434, 28513-28546, 28673-28692, 28706-28726, 28744-28794, 28799-28827, 28946-28972, 28976-29034, 29144-29172, 29174-29196, 29228-29259, 29285-29305, 29342-29394, 29444-29463, 29543-29566, 29598-29630, 29652-29687, 29689-29731, 29733-29757.
  • 3. The siNA molecule of claim 1, wherein the second nucleotide sequence is complementary to an RNA corresponding to 15 to 30 nucleotides within positions 190-216, 233-279, 288-324, 455-477, 626-651, 704-723, 3352-3378, 5384-5403, 6406-6483, 7532-7551, 9588-9606, 10484-10509, 11609-11630, 11834-11853, 12023-12045, 12212-12234, 12401-12420, 12839-12867, 12885-12924, 12966-12990, 13151-13176, 13363-13386, 13388-13416, 13458-13416, 13458-13520, 13762-13790, 14290-14312, 14404-14429, 14500-14531, 14623-14642, 14650-14687, 14698-14717, 14722-14748, 14750-14777, 14821-14846, 14854-14873, 14875-14903, 14962-14990, 14992-15020, 15055-15140, 15172-15200, 15310-15332, 15346-15367, 15496-15518, 15622-15644, 15838-15869, 15886-15905, 15985-16010, 16057-16079, 16186-16205, 16430-16448, 16822-16865, 16954-16976, 17008-17042, 17080-17111, 17137-17156, 17269-17289, 17530-17549, 17563-17582, 17680-17699, 17746-17765, 17857-17876, 17956-17975, 18100-18122, 18196-18218, 19618-19639, 19783-19802, 19831-19850, 20107-20130, 20776-20795, 21502-21524, 24302-24325, 24446-24465, 24620-24651, 24662-24684, 25034-25057, 25104-25128, 25364-25387, 25502-25530, 26191-26227, 26232-26267, 26269-26330, 26332-26394, 26450-26481, 26574-26600, 27003-27064, 27093-27111, 27183-27212, 27382-27407, 27511-27533, 27771-27818, 28270-28296, 28397-28434, 28513-28546, 28673-28692, 28706-28726, 28744-28794, 28799-28827, 28946-28972, 28976-29034, 29144-29172, 29174-29196, 29228-29259, 29285-29305, 29342-29394, 29444-29463, 29543-29566, 29598-29630, 29652-29687, 29689-29731, 29733-29757, or 29770-29828 of SEQ ID NO: 2407.
  • 4. The siNA molecule of claim 1, wherein the sense strand comprises a nucleotide sequence identical to an RNA corresponding to any one of SEQ ID NOs: 1-1203 and 2411-3392.
  • 5. The siNA molecule of claim 1, wherein the antisense strand comprises a nucleotide sequence identical to an RNA corresponding to any one of SEQ ID NOs: 1204-2406 and 3393-4374 and (b) a sense strand.
  • 6. The siNA of claim 1, wherein the sense strand comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and the nucleotide at position 3, 5, 7, 8, 9, 10, 11, 12, 14, 17, and/or 19 from the 5′ end is a 2′-fluoro nucleotide; and the antisense strand comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide.
  • 7. The siNA of claim 1, wherein the sense strand comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and at least one modified nucleotide is a 2′-fluoro nucleotide; and the antisense strand comprises 15 or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide, wherein at least one modified nucleotide is a 2′-O-methyl nucleotide and the nucleotide at position 2, 5, 6, 8, 10, 14, 16, 17, and/or 18 from the 5′ end is a 2′-fluoro nucleotide.
  • 8. The siNA of claim 1, wherein the sense strand comprises 16, 17, 18, 19, 20, 21, 22, 23, or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide.
  • 9. The siNA of claim 1, wherein 70%, 75%, 80%, 85%, 90%, 95% or 100% of the nucleotides in the sense strand are modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide.
  • 10. The siNA of claim 1, wherein: (i) at least 2, 3, 4, 5, or 6 modified nucleotides of the sense strand are 2′-fluoro nucleotides;(ii) no more than 10, 9, 8, 7, 6, 5, 4, 3, or 2 modified nucleotides of the sense strand are 2′-fluoro nucleotides;(iii) at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 modified nucleotides of the sense strand sequence are 2′-O-methyl nucleotides; and/or(iv) no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 modified nucleotides of the sense strand are 2′-O-methyl nucleotides.
  • 11. The siRNA of claim 1, wherein the antisense strand comprises 16, 17, 18, 19, 20, 21, 22, 23, or more modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide.
  • 12. The siNA of claim 1, wherein 70%, 75%, 80%, 85%, 90%, 95% or 100% of the nucleotides in the antisense strand are modified nucleotides independently selected from a 2′-O-methyl nucleotide and a 2′-fluoro nucleotide.
  • 13. The siNA of claim 1, wherein: (i) at least 2, 3, 4, 5, or 6 modified nucleotides of the antisense strand are 2′-fluoro nucleotides;(ii) no more than 10, 9, 8, 7, 6, 5, 4, 3, or 2 modified nucleotides of the antisense strand are 2′-fluoro nucleotides;(iii) at least 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, or 22 modified nucleotides of the antisense strand sequence are 2′-O-methyl nucleotides; and/or(iv) no more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, or 2 modified nucleotides of the antisense strand are 2′-O-methyl nucleotides.
  • 14. The siNA of claim 1, wherein the sense strand and/or the antisense strand comprise one or more phosphorothioate internucleoside linkage(s).
  • 15. The siNA of claim 1, wherein the siNA further comprises a phosphorylation blocker and/or a 5′-stabilized end cap.
  • 16. The siNA of claim 1, wherein the sense strand further comprises a TT sequence adjacent to the first nucleotide sequence.
  • 17. The siNA of claim 1, wherein at least one end of the siNA is a blunt end.
  • 18. The siNA of claim 1, wherein at least one end of the siNA comprises an overhang, wherein the overhang comprises at least one nucleotide.
  • 19. The siNA of claim 1, wherein at both ends of the siNA comprise an overhang, wherein the overhang comprises at least one nucleotide.
  • 20. The siNA of claim 1, wherein the sense strand and/or the antisense strand comprises one or more modified nucleotides.
  • 21. The siNA of claim 1, wherein the sense strand and/or the antisense strand further comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more phosphorothioate internucleotide linkages.
  • 22-23. (canceled)
  • 24. The siNA of claim 20, wherein the modified nucleotides are independently selected from 2′-O-methyl nucleotides and 2′-fluoro nucleotides.
  • 25. The siNA of claim 0, wherein at least one 2′-fluoro nucleotide or 2′-O-methyl nucleotide is a 2′-fluoro or 2′-O-methyl nucleotide mimic of Formula (V):
  • 26. The siNA of claim 1, wherein the sense strand and/or antisense strand comprises at least one modified nucleotide selected from
  • 27. The siNA of claim 1, wherein the ds-siNA further comprises a phosphorylation blocker and/or a 5′-stabilized end cap.
  • 28. The siNA of claim 0, wherein the phosphorylation blocker has the structure of Formula (IV):
  • 29. The siNA of claim 0, wherein R4 is —OCH3 or —N(CH2CH2)2O.
  • 30. The siNA of claim 26, wherein the phosphorylation blocker is attached to the 5′ end of the sense strand.
  • 31. The siNA of claim 0, wherein the phosphorylation blocker is attached to the 5′ end of the sense strand via one or more linkers independently selected from a phosphodiester linker, phosphorothioate linker, and phosphorodithioate linker.
  • 32. The siNA of claim 0, wherein the 5′-stabilized end cap is a 5′ vinylphosphonate.
  • 33. The siNA of claim 32, wherein the 5′ vinylphosphonate is selected from a 5′-(E)-vinyl phosphonate or 5′-(Z)-vinyl phosphonate.
  • 34. The siNA of claim 32, wherein the 5′-vinylphosphonate is a deuterated vinyl phosphonate.
  • 35. The siNA of claim 34, wherein the deuterated vinylphosphonate is a mono-deuterated vinylphosphonate or a di-deuterated vinylphosphonate.
  • 36. The siNA of claim 0, wherein the 5′-stabilized end cap has the structure of Formula (Ia):
  • 37. The siNA of claim 0, wherein R1 is an aryl.
  • 38. The siNA of claim 0, wherein the aryl is a phenyl.
  • 39. The siNA of claim 26, wherein the 5′-stabilized end cap has the structure of Formula (Ib):
  • 40. The siNA of claim 26, wherein the 5′-stabilized end cap is selected from the group consisting of Formula (1) to Formula (15), Formula (9X) to Formula (12X), and Formula (9Y) to Formula (12Y):
  • 41. The siNA of claim 26, wherein the 5′-stabilized end cap is selected from the group consisting of Formulas (1A)-(15A), Formulas (9B)-(12B), Formulas (9AX)-(12AX), Formulas (9AY)-(12AY), Formulas (9BX)-(12BX), and Formulas (9BY)-(12BY):
  • 42. The siNA of any of claim 26, wherein the 5′-stabilized end cap is attached to the 5′ end of the antisense strand.
  • 43. The siNA of claim 42, wherein the 5′-stabilized end cap is attached to the 5′ end of the antisense strand via one or more linkers independently selected from a phosphodiester linker, phosphorothioate linker, phosphoramidite (HEG) linker, triethylene glycol (TEG) linker, or phosphorodithioate linker.
  • 44. The siNA molecule of claim 1, wherein the sense strand consists of 21 nucleotides.
  • 45. The siNA molecule of claim 44, wherein 2′-O-methyl nucleotides are at positions 18-21 from the 5′ end of the sense strand.
  • 46. The siNA molecule of claim 1, wherein the antisense strand consists of 23 nucleotides.
  • 47. The siNA molecule of claim 46, wherein 2′-O-methyl nucleotides are at positions 18-23 from the 5′ end of the antisense strand.
  • 48. An siNA selected from ds-siNA-005; ds-siNA-006; ds-siNA-007; ds-siNA-008; ds-siNA-009; ds-siNA-010; ds-siNA-011; ds-siNA-012; ds-siNA-013; ds-siNA-014; ds-siNA-015; ds-siNA-016; ds-siNA-017; ds-siNA-018; ds-siNA-019; ds-siNA-020; ds-siNA-021; ds-siNA-022; ds-siNA-023; ds-siNA-024; ds-siNA-025; ds-siNA-026; ds-siNA-027; ds-siNA-028; ds-siNA-029; ds-siNA-030; ds-siNA-031; ds-siNA-032; ds-siNA-033; ds-siNA-034; ds-siNA-035; ds-siNA-036; ds-siNA-037; ds-siNA-038; ds-siNA-039; ds-siNA-040; ds-siNA-041; ds-siNA-042; ds-siNA-043; ds-siNA-044; ds-siNA-045; ds-siNA-046; ds-siNA-047; ds-siNA-048; ds-siNA-049; ds-siNA-050; ds-siNA-051; ds-siNA-052; ds-siNA-053; ds-siNA-054; ds-siNA-055; ds-siNA-056; ds-siNA-057; ds-siNA-058; ds-siNA-059; ds-siNA-060; ds-siNA-061; ds-siNA-062; ds-siNA-063; ds-siNA-064; ds-siNA-065; ds-siNA-066; ds-siNA-067; ds-siNA-068; ds-siNA-069; ds-siNA-070; ds-siNA-071; ds-siNA-072; ds-siNA-073; ds-siNA-074; ds-siNA-075; ds-siNA-076; ds-siNA-077; ds-siNA-078; ds-siNA-079; ds-siNA-080; ds-siNA-081; ds-siNA-082; ds-siNA-083; ds-siNA-084; ds-siNA-085; ds-siNA-086; ds-siNA-087; ds-siNA-088; ds-siNA-089; ds-siNA-090; ds-siNA-091; ds-siNA-092; ds-siNA-093; ds-siNA-094; ds-siNA-095; ds-siNA-096; ds-siNA-097; ds-siNA-098; ds-siNA-099; ds-siNA-100; ds-siNA-101; ds-siNA-102; ds-siNA-103; ds-siNA-104; ds-siNA-105; ds-siNA-106; ds-siNA-107; ds-siNA-108; ds-siNA-109; ds-siNA-110; ds-siNA-111; ds-siNA-112; ds-siNA-113; ds-siNA-114; ds-siNA-115; ds-siNA-116; ds-siNA-117; ds-siNA-118; ds-siNA-119; ds-siNA-120; ds-siNA-121; ds-siNA-122; ds-siNA-123; ds-siNA-124; ds-siNA-125; ds-siNA-126; ds-siNA-127; ds-siNA-128; ds-siNA-129; ds-siNA-130; ds-siNA-131; ds-siNA-132; ds-siNA-133; ds-siNA-134; ds-siNA-135; ds-siNA-136; ds-siNA-137; ds-siNA-138; ds-siNA-139; ds-siNA-140; ds-siNA-141; ds-siNA-142; ds-siNA-143; ds-siNA-144; ds-siNA-145; ds-siNA-146; ds-siNA-147; ds-siNA-148; ds-siNA-149; ds-siNA-150; ds-siNA-151; ds-siNA-152; ds-siNA-153; ds-siNA-154; ds-siNA-155; ds-siNA-156; ds-siNA-157; ds-siNA-158; ds-siNA-159; ds-siNA-160; ds-siNA-161; ds-siNA-162; ds-siNA-163; ds-siNA-164; ds-siNA-165; ds-siNA-166; ds-siNA-167; ds-siNA-168; ds-siNA-169; ds-siNA-170; ds-siNA-171; ds-siNA-172; ds-siNA-173; ds-siNA-174; ds-siNA-175; ds-siNA-176; ds-siNA-177; ds-siNA-178; ds-siNA-179; ds-siNA-180; ds-siNA-181; ds-siNA-182; ds-siNA-183; ds-siNA-184; ds-siNA-185; ds-siNA-186; ds-siNA-187; ds-siNA-188; ds-siNA-189; ds-siNA-190; ds-siNA-191; ds-siNA-192; ds-siNA-193; ds-siNA-194; ds-siNA-195; ds-siNA-196; ds-siNA-197; ds-siNA-198; ds-siNA-199; ds-siNA-200; ds-siNA-201; ds-siNA-202; ds-siNA-203; ds-siNA-204; ds-siNA-205; ds-siNA-206; ds-siNA-207; ds-siNA-208; ds-siNA-209; ds-siNA-210; ds-siNA-211; ds-siNA-212; ds-siNA-213; ds-siNA-214; ds-siNA-215; ds-siNA-216; ds-siNA-217; ds-siNA-218; ds-siNA-219; ds-siNA-220; ds-siNA-221; and ds-siNA-222.
  • 49. The siNA of claim 48, wherein the siNA is selected from ds-siNA-196 (sense and antisense respectively comprising SEQ ID NOs: 4578 and 4800), ds-siNA-197 (sense and antisense respectively comprising SEQ ID NOs: 4579 and 4801), ds-siNA-198 (sense and antisense respectively comprising SEQ ID NOs: 4580 and 4802), ds-siNA-199 (sense and antisense respectively comprising SEQ ID NOs: 4581 and 4803), ds-siNA-217 (sense and antisense respectively comprising SEQ ID NOs: 4599 and 4821), ds-siNA-218 (sense and antisense respectively comprising SEQ ID NOs: 4600 and 4822), ds-siNA-219 (sense and antisense respectively comprising SEQ ID NOs: 4601 and 4823), ds-siNA-220 (sense and antisense respectively comprising SEQ ID NOs: 4602 and 4824), ds-siNA-221 (sense and antisense respectively comprising SEQ ID NOs: 4603 and 4825), and ds-siNA-222 (sense and antisense respectively comprising SEQ ID NOs: 4604 and 4826).
  • 50. The siNA of claim 48, wherein the siNA is selected from ds-siNA-196 (sense and antisense respectively comprising SEQ ID NOs: 4578 and 4800), ds-siNA-197 (sense and antisense respectively comprising SEQ ID NOs: 4579 and 4801), ds-siNA-198 (sense and antisense respectively comprising SEQ ID NOs: 4580 and 4802), and ds-siNA-199 (sense and antisense respectively comprising SEQ ID NOs: 4581 and 4803).
  • 51. The siNA of claim 48, wherein the siNA is selected from, ds-siNA-217 (sense and antisense respectively comprising SEQ ID NOs: 4599 and 4821), ds-siNA-218 (sense and antisense respectively comprising SEQ ID NOs: 4600 and 4822), ds-siNA-219 (sense and antisense respectively comprising SEQ ID NOs: 4601 and 4823), ds-siNA-220 (sense and antisense respectively comprising SEQ ID NOs: 4602 and 4824), ds-siNA-221 (sense and antisense respectively comprising SEQ ID NOs: 4603 and 4825), and ds-siNA-222 (sense and antisense respectively comprising SEQ ID NOs: 4604 and 4826).
  • 52. A pharmaceutical composition comprising at least one siNA according to claim 1 and a pharmaceutically acceptable carrier or diluent.
  • 53. A pharmaceutical composition comprising at least one siNA according to claim 48 and a pharmaceutically acceptable carrier or diluent.
  • 54-55. (canceled)
  • 56. A method of treating a disease caused by a β-coronavirus in a subject in need thereof, comprising administering the subject at least one siNA according to claim 1.
  • 57-75. (canceled)
  • 76. A method of treating a β-coronavirus-caused disease in a subject in need thereof, comprising administering the subject at least one siNA of claim 48.
  • 77-83. (canceled)
CROSS-REFERENCE STATEMENT

This application claims priority to U.S. Provisional Application No. 63/008,273, filed Apr. 10, 2020, the disclosure of which is hereby incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
63008273 Apr 2020 US