The semiconductor integrated circuit (IC) industry has experienced rapid growth. Technological advances in IC materials and design have produced generations of ICs where each generation has smaller and more complex circuits than the previous generation. However, these advances have increased the complexity of processing and manufacturing ICs and, for these advances to be realized, similar developments in IC processing and manufacturing are needed.
In the course of integrated circuit evolution, functional density (i.e., the number of interconnected devices per chip area) has generally increased while geometry size (i.e., the smallest component (or line) that can be created using a fabrication process) has decreased. This scaling down process generally provides benefits by increasing production efficiency and lowering associated costs. Such scaling-down also produces a relatively high power dissipation value, which may be addressed by using low power dissipation devices such as complementary metal-oxide-semiconductor (CMOS) devices.
During the scaling trend, various materials have been implemented for the gate electrode and gate dielectric for CMOS devices. There has been a desire to fabricate these devices with a metal material for the gate electrode and a high-k dielectric for the gate dielectric. However, an n-type MOS device (NMOS) and a p-type MOS device (PMOS) require different work functions for their respective gate electrode. Several approaches have been implemented to achieve N and P work functions, simultaneously, for the metal gates. One approach uses additional metal and/or cap layers for the gate stack to achieve both N and P work functions. Although this approach has been satisfactory for its intended purpose, it has not been satisfactory in all respects. For example, the approach increases the complexity of the gate stack in NMOS and PMOS devices, and thus increases the difficulty of patterning the gate stack.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the invention. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Various features may be arbitrarily drawn in different scales for simplicity and clarity.
Illustrated in
Referring to
The semiconductor device 200 may further include an isolation structure 204 such as a shallow trench isolation (STI) feature formed in the substrate 202 for isolating active regions 206 and 208 in the substrate. The isolation structure 204 may be formed of silicon oxide, silicon nitride, silicon oxynitride, fluoride-doped silicate (FSG), and/or a low k dielectric material known in the art. The active region 206 may be configured for an N-type metal-oxide-semiconductor transistor device (referred to as NMOS) and the active region 208 may be configured for a P-type MOS transistor device (referred to as PMOS). It is understood the semiconductor device 200 may be formed by complementary MOS (referred to as CMOS) technology processing, and thus some processes are not described in detail herein. The semiconductor device 200 may further include an interfacial layer 210 formed over the substrate 202. The interfacial layer 210 may include a grown silicon oxide layer having a thickness ranging from about 5 to 10 angstrom (A). The semiconductor device 200 may further include a high-k dielectric layer 212 formed on the interfacial layer 210. The high-k dielectric layer 212 may include hafnium oxide (HfO2). Alternatively, the high-k dielectric layer 212 may optionally include other high k dielectric materials such as hafnium silicon oxide (HfSiO), hafnium silicon oxynitride (HfSiON), hafnium tantalum oxide (HfTaO), hafnium titanium oxide (HfTiO), hafnium zirconium oxide (HfZrO), and combinations thereof.
The high-k dielectric layer 212 may be formed by atomic layer deposition (ALD) or other suitable technique. Additionally, a capping layer may be formed on the high-k dielectric layer 212, or may be formed between the high-k dielectric layer 212 and interfacial layer 210, or may be formed on and underneath the high-k dielectric layer 212. The capping layer may include lanthanum oxide (LaO), aluminum oxide (Al2O3), or other suitable material. In some embodiments, the capping layer may be used to tune a work function of a metal layer (for the gate electrode) for properly performing as an NMOS transistor device and a PMOS transistor device, respectively.
The method 100 continues with block 120 in which a metal layer may be formed over the high-k dielectric layer. The metal layer 214 may have a first work function such as an N-metal work function. For example, the metal layer 214 may include various metals, such as TiN, TaC, or TaN, having the N-metal work function. The metal layer 214 may be formed by various deposition techniques such as chemical vapor deposition (CVD), physical vapor deposition (PVD or sputtering), plating, or other suitable technique. The method 100 continues with block 130 in which a hard mask layer 216 may be formed over the metal layer 214. The hard mask layer 216 may include silicon oxide, silicon oxynitride, silicon nitride, or other suitable material.
The method 100 continues with block 140 in which the hard mask layer 216 may be patterned to protect a portion of the metal layer 214 in the NMOS region 206. The hard mask 216 may be patterned by first forming a patterned photoresist layer 218 over the hard mask layer 216, and then dry or wet etching to remove a portion of the hard mask layer 216 in the PMOS region 208. The patterned photoresist layer 218 may be formed by photolithography, immersion lithography, or other suitable process known in the art. For example, the photolithography process may include spin coating, soft-baking, exposure, post-baking, developing, rinsing, drying, and other suitable process. Referring also to
Referring also to
In another embodiment, the treatment 225 may include an implantation process. For example, the implantation process may include 0 implantation with the following process conditions: implant energy ranging from 1 to 5 KeV, implant concentration ranging from about 1E15 to 1E16 atoms/cm3, and implant tilt angle of about 7 degrees. In another example, the implantation process may include Al implantation with the following process conditions: implant energy ranging from about 1 to 5 KeV, implant concentration ranging from about 1E15 to 1E16 atoms/cm3, and implant tilt angle of about 7 degrees. In some embodiments, the Al concentration in TiN for N-metal work function may be n-TiAlN having 30% [N] and 17.5% [Al], and for P-metal work function may be p-TiAlN having 50% [N] and 12.5% [Al]. Also, a combination of a plasma process and an implantation process may be used. It is understood that the various parameters and concentrations disclosed above are examples, and that these parameters and concentrations may be tuned for optimization depending on the process tools and the operating environment without departing from the spirit and scope of the present disclosure.
Referring also to
Referring also to
It is understood that the semiconductor device 200 may undergo further CMOS or MOS technology processing to form various features known in the art. For example, gate sidewall spacers may be formed on both sides of the gate stacks 281, 282 by a deposition and etching process. The gate spacers may include a suitable dielectric material such as silicon nitride, silicon oxide, silicon carbide, silicon oxynitride, or combinations thereof. In another example, source and drain regions (referred to as S/D regions) may be formed in the substrate 202 using ion implantation or diffusion with suitable dopants (depending on the configuration of the device such as NMOS and PMOS) and located proximate to each end of the gate stacks 281, 282 (the high-k gate dielectric and metal gate electrode), respectively. In still another example, various contacts/vias and multilayer interconnect features (e.g., metal layers and interlayer dielectric) may be formed on the substrate 202 and configured to connect the various features or structures of the semiconductor device 200.
The present invention achieves different advantages in various embodiments. For example, the present disclosed method provides a simple and cost-effective single metal layer that performs both N-metal work function and P-metal work function for NMOS and PMOS devices, respectively. Accordingly, patterning the gate structures for NMOS and PMOS devices becomes easier since the corresponding gate stacks have a similar composition and thickness. Accordingly, performance of the NMOS and PMOS transistor devices may become more reliable and predictable. Also, the methods disclosed herein are compatible with current CMOS technology process flow, and thus can easily be integrated with current processing equipment and device technologies. It is understood that different embodiments disclosed herein offer several different advantages, and that no particular advantage is necessarily required for all embodiments.
Thus, the present disclosure provide a method of fabricating a semiconductor device that includes forming a gate dielectric over a semiconductor substrate, forming a capping layer over or under the gate dielectric, forming a metal layer over the capping layer, the metal layer having a first work function, treating a portion of the metal layer such that a work function of the portion of the metal layer changes from the first work function to a second work function, and forming a first metal gate from the untreated portion of the metal layer having the first work function and forming a second metal gate from the treated portion of the metal layer having the second work function.
Also provided is a semiconductor device that includes a semiconductor substrate, an isolation structure formed in the substrate for isolating a first active region and a second active region, a first transistor formed in the first active region, the first transistor having a high-k gate dielectric, a first capping layer formed over or under the high-k gate dielectric, and a metal gate with a first work function formed over the first capping layer, and a second transistor formed in the second active region, the second transistor having the high-k gate dielectric, a second capping layer formed over or under the high-k gate dielectric, and a metal gate with a second work function formed over the second capping layer. The metal gates of the first transistor and the second transistor are formed from at least a single metal layer having the first work function and the second work function.
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description that follows. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure. For example, although the embodiments have been described in a gate first process, the methods disclosed herein are also applicable in a gate last process or a hybrid process that includes both gate first and gate last processes. Further, it is understood that the semiconductor devices disclosed herein are not limited to a specific transistor and may include other active and passive devices such as a finFET transistor, a high voltage transistor, a bipolar junction transistor (BJT), a capacitor, a resistor, a diode, a fuse, or combinations thereof.
This is a continuation of U.S. application Ser. No. 14/013,960, filed on Aug. 29, 2013, which is a divisional of U.S. application Ser. No. 12/492,889, filed on Jun. 26, 2009, now issued U.S. Pat. No. 8,524,588, which claims priority to U.S. Provisional Application Ser. No. 61/089,674 filed on Aug. 18, 2008. The entire disclosure of each of the applications above is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5783478 | Chau et al. | Jul 1998 | A |
6255698 | Gardner et al. | Jul 2001 | B1 |
6265258 | Liang et al. | Jul 2001 | B1 |
6291282 | Wilk et al. | Sep 2001 | B1 |
6319826 | Chen et al. | Nov 2001 | B1 |
6335534 | Suguro et al. | Jan 2002 | B1 |
6423619 | Grant et al. | Jul 2002 | B1 |
6458695 | Lin et al. | Oct 2002 | B1 |
6483151 | Wakabayashi et al. | Nov 2002 | B2 |
6506676 | Park et al. | Jan 2003 | B2 |
6653698 | Lee et al. | Nov 2003 | B2 |
6831343 | Hu | Dec 2004 | B2 |
6835639 | Rotondaro et al. | Dec 2004 | B2 |
7033888 | Pan et al. | Apr 2006 | B2 |
7226826 | Alshareef et al. | Jun 2007 | B2 |
7368796 | Hu | May 2008 | B2 |
7391085 | Ichihara | Jun 2008 | B2 |
7564102 | Yoshihara | Jul 2009 | B2 |
7648884 | Min et al. | Jan 2010 | B2 |
20020001906 | Park | Jan 2002 | A1 |
20020008261 | Nishiyama | Jan 2002 | A1 |
20030003645 | Besser et al. | Jan 2003 | A1 |
20040132296 | Lin et al. | Jul 2004 | A1 |
20040245578 | Park et al. | Dec 2004 | A1 |
20050148137 | Brask | Jul 2005 | A1 |
20060097318 | Li | May 2006 | A1 |
20060180870 | Ichihara | Aug 2006 | A1 |
20070026621 | Cho | Feb 2007 | A1 |
20070037335 | Chambers et al. | Feb 2007 | A1 |
20070037372 | Kavalieros et al. | Feb 2007 | A1 |
20070059874 | Moumen et al. | Mar 2007 | A1 |
20070138559 | Bohr | Jun 2007 | A1 |
20070178633 | Adetutu | Aug 2007 | A1 |
20070257302 | Kang et al. | Nov 2007 | A1 |
20080029822 | Tsuchiya | Feb 2008 | A1 |
20080128822 | Koyama | Jun 2008 | A1 |
20090032963 | Tran | Feb 2009 | A1 |
20090057750 | Takashima | Mar 2009 | A1 |
20090162983 | Park | Jun 2009 | A1 |
20090179279 | Basker | Jul 2009 | A1 |
20090263961 | Kher | Oct 2009 | A1 |
20100068876 | Lin et al. | Mar 2010 | A1 |
20140001566 | Lin et al. | Jan 2014 | A1 |
20150228730 | Yang | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
1243336 | Feb 2000 | CN |
200742075 | Jul 1996 | TW |
Entry |
---|
Chinese Patent Office, office action dated Dec. 29, 2010; Application No. 200910166788.2, 4 pages. |
Taiwan Patent Office, office action dated Oct. 18, 2012, Application No. 10121114350, 8 pages. |
Park et al., “Robust Ternary Metal Gate Electrodes for Dual Gate CMOS Devices”, IEEE, Technical Digest, International Electron Devices Meeting (IEDM'01), Dec. 2-5, 2001, pp. 30.6.1-30.6.4. Dec. 2, 2001. |
Number | Date | Country | |
---|---|---|---|
20180247937 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
61089674 | Aug 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12492889 | Jun 2009 | US |
Child | 14013960 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14013960 | Aug 2013 | US |
Child | 15961935 | US |