High quality medical sensing and imaging data has become increasingly beneficial in the diagnoses and treatment of a variety of medical conditions. The conditions can be associated with the digestive system, the cardio-circulatory system, and can include injuries to the nervous system, cancer, and the like. To date, most electronic systems that could be used to gather such sensing or imaging data have been rigid and inflexible. These rigid electronics are not ideal for many applications, such as in biomedical devices. Most of biological tissue is soft and curved. The skin and organs are delicate and far from two-dimensional.
Other potential applications of electronics systems, such as for gathering data in non-medical systems, also can be hampered by rigid electronics.
The Inventors have recognized that the inflexibility of electronic systems in use are not ideal for many applications.
In view of the foregoing, various examples described herein are directed generally to systems, apparatus and methods for providing strain isolation in a conformable electronic system. The systems, methods and apparatus described herein provide effective, compact, and complex systems that include stretchable and/or flexible interconnects in electrical communication with more rigid device components.
In an example, buffer structures are described that effectively redistributes the strain that might normally act at or near an edge of the more rigid device component or on a junction region between the stretchable and/or flexible interconnects and the more rigid device components.
In an example, a system, apparatus and method is provided that is based on thin device islands, including integrated circuitry (IC) chips and/or stretchable and/or flexible interconnects that are encapsulated in an encapsulant.
In an example, a system, apparatus and method is provided that includes a device component, at least one conductive stretchable and/or flexible interconnect in electrical communication with the device component, the at least one conductive stretchable and/or flexible interconnect forming the electrical communication with the device component at a junction region, a buffer structure, and an encapsulant encapsulating at least the device component and the junction region. The buffer structure overlaps with at least a portion of the junction region. The buffer structure has a higher value of Young's modulus than the encapsulant.
In an example, a system, apparatus and method is provided that includes a device component, at least one conductive stretchable and/or flexible interconnect in electrical communication with the device component, the at least one conductive stretchable and/or flexible interconnect forming the electrical communication with the device component at a junction region, a first buffer structure disposed over the device component, a second buffer structure disposed below the device component, and an encapsulant encapsulating at least the device component and the junction region. The first buffer structure and the second buffer structure overlap with at least a portion of the junction region. The first buffer structure and the second buffer structure have a higher value of Young's modulus than the encapsulant.
In an example, a system, apparatus and method is provided that includes a device component, a flexible base, the device component being disposed on, or at least partially embedded in, the flexible base, at least one conductive stretchable and/or flexible interconnect in electrical communication with the device component, the at least one conductive stretchable and/or flexible interconnect forming the electrical communication with the device component at a junction region, a buffer structure, and an encapsulant encapsulating at least the device component and the junction region. The buffer structure overlaps with at least a portion of the flexible base. The flexible base has a higher value of Young's modulus than the encapsulant. The buffer structure has a higher value of Young's modulus than the encapsulant.
The following publications, patents, and patent applications are hereby incorporated herein by reference in their entirety:
Kim et al., “Stretchable and Foldable Silicon Integrated Circuits,” Science Express, Mar. 27, 2008, 10.1126/science.1154367;
Ko et al., “A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, Aug. 7, 2008, vol. 454, pp. 748-753;
Kim et al., “Complementary Metal Oxide Silicon Integrated Circuits Incorporating Monolithically Integrated Stretchable Wavy Interconnects,” Applied Physics Letters, Jul. 31, 2008, vol. 93, 044102;
Kim et al., “Materials and Noncoplanar Mesh Designs for Integrated Circuits with Linear Elastic Responses to Extreme Mechanical Deformations,” PNAS, Dec. 2, 2008, vol. 105, no. 48, pp. 18675-18680;
Meitl et al., “Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nature Materials, January, 2006, vol. 5, pp. 33-38;
U.S. Patent Application publication no. 2010 0002402-A1, published Jan. 7, 2010, filed Mar. 5, 2009, and entitled “STRETCHABLE AND FOLDABLE ELECTRONIC DEVICES;”
U.S. Patent Application publication no. 2010 0087782-A1, published Apr. 8, 2010, filed Oct. 7, 2009, and entitled “CATHETER BALLOON HAVING STRETCHABLE INTEGRATED CIRCUITRY AND SENSOR ARRAY;”
U.S. Patent Application publication no. 2010 0116526-A1, published May 13, 2010, filed Nov. 12, 2009, and entitled “EXTREMELY STRETCHABLE ELECTRONICS;”
U.S. Patent Application publication no. 2010 0178722-A1, published Jul. 15, 2010, filed Jan. 12, 2010, and entitled “METHODS AND APPLICATIONS OF NON-PLANAR IMAGING ARRAYS;” and
U.S. Patent Application publication no. 2010 027119-A1, published Oct. 28, 2010, filed Nov. 24, 2009, and entitled “SYSTEMS, DEVICES, AND METHODS UTILIZING STRETCHABLE ELECTRONICS TO MEASURE TIRE OR ROAD SURFACE CONDITIONS.”
Kim, D. H. et al. (2010). Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Materials, 9, 511-517.
Omenetto, F. G. and D. L. Kaplan. (2008). A new route for silk. Nature Photonics, 2, 641-643.
Omenetto, F. G., Kaplan, D. L. (2010). New opportunities for an ancient material. Science, 329, 528-531.
Halsed, W. S. (1913). Ligature and suture material. Journal of the American Medical Association, 60, 1119-1126.
Masuhiro, T., Yoko, G., Masaobu, N., et al. (1994). Structural changes of silk fibroin membranes induced by immersion in methanol aqueous solutions. Journal of Polymer Science, 5, 961-968.
Lawrence, B. D., Cronin-Golomb, M., Georgakoudi, I., et al. (2008). Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules, 9, 1214-1220.
Demura, M., Asakura, T. (1989). Immobilization of glucose oxidase with Bombyx mori silk fibroin by only stretching treatment and its application to glucose sensor. Biotechnololgy and Bioengineering, 33, 598-603.
Wang, X., Zhang, X., Castellot, J. et al. (2008). Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses. Biomaterials, 29, 894-903.
U.S. patent application Ser. No. 12/723,475 entitled “SYSTEMS, METHODS, AND DEVICES FOR SENSING AND TREATMENT HAVING STRETCHABLE INTEGRATED CIRCUITRY,” filed Mar. 12, 2010.
U.S. patent application Ser. No. 12/686,076 entitled “Methods and Applications of Non-Planar Imaging Arrays,” filed Jan. 12, 2010.
U.S. patent application Ser. No. 12/636,071 entitled “Systems, Methods, and Devices Using Stretchable or Flexible Electronics for Medical Applications,” filed Dec. 11, 2009.
U.S. Patent Application publication no 2012-0065937-A1, published Mar. 15, 2012, and entitled “METHODS AND APPARATUS FOR MEASURING TECHNICAL PARAMETERS OF EQUIPMENT, TOOLS AND COMPONENTS VIA CONFORMAL ELECTRONICS.”
U.S. patent application Ser. No. 12/616,922 entitled “Extremely Stretchable Electronics,” filed Nov. 12, 2009.
U.S. patent application Ser. No. 12/575,008 entitled “Catheter Balloon Having Stretchable Integrated Circuitry and Sensor Array,” filed on Oct. 7, 2009.
U.S. patent application Ser. No. 13/336,518 entitled “Systems, Methods, and Devices Having Stretchable Integrated Circuitry for Sensing and Delivering Therapy,” filed Dec. 23, 2011.
It should be appreciated that all combinations of the foregoing concepts and additional concepts described in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. It also should be appreciated that terminology explicitly employed herein that also may appear in any disclosure incorporated by reference should be accorded a meaning most consistent with the particular concepts disclosed herein.
The skilled artisan will understand that the figures, described herein, are for illustration purposes only, and that the drawings are not intended to limit the scope of the disclosed teachings in any way. In some instances, various aspects or features may be shown exaggerated or enlarged to facilitate an understanding of the inventive concepts disclosed herein (the drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the teachings). In the drawings, like reference characters generally refer to like features, functionally similar and/or structurally similar elements throughout the various figures.
Following below are more detailed descriptions of various concepts related to, and embodiments of, an apparatus and systems for embedding thinned chips in a flexible polymer. It should be appreciated that various concepts introduced above and described in greater detail below may be implemented in any of numerous ways, as the disclosed concepts are not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes.
As used herein, the term “includes” means includes but is not limited to, the term “including” means including but not limited to. The term “based on” means based at least in part on. As used herein, the term “disposed on” or “disposed above” is defined to encompass “at least partially embedded in.”
With respect to substrates or other surfaces described herein in connection with various examples of the principles herein, any references to “top” surface and “bottom” surface are used primarily to indicate relative position, alignment and/or orientation of various elements/components with respect to the substrate and each other, and these terms do not necessarily indicate any particular frame of reference (e.g., a gravitational frame of reference). Thus, reference to a “bottom” of a substrate or a layer does not necessarily require that the indicated surface or layer be facing a ground surface. Similarly, terms such as “over,” “under,” “above,” “beneath” and the like do not necessarily indicate any particular frame of reference, such as a gravitational frame of reference, but rather are used primarily to indicate relative position, alignment and/or orientation of various elements/components with respect to the substrate (or other surface) and each other. The terms “disposed on” “disposed in” and “disposed over” encompass the meaning of “embedded in,” including “partially embedded in.” In addition, reference to feature A being “disposed on,” “disposed between,” or “disposed over” feature B encompasses examples where feature A is in contact with feature B, as well as examples where other layers and/or other components are positioned between feature A and feature B.
A system, apparatus and method described herein provides strain isolation in a conformable electronic system. In order to create effective, compact, and durable systems, buffer structures are described herein that can be used to reduce a strain that can be exerted near a junction region between a stretchable and/or flexible interconnect or flexible interconnect and a device island when the conformable electronic system is subjected to stretching or torsion. The buffer structures according to the principles described herein are comprised of a material having elastic properties that can effectively redistribute the strain acting on the junction region between stretchable and/or flexible interconnects and rigid device islands in a device structure. For example, the stain isolation structure can be used to create a gradient in local rigidity that effectively redistributes the strain away from the junction region between the stretchable and/or flexible interconnects and the rigid device islands.
In an example system, apparatus and method according to the principles described herein, the buffer structures can be used to facilitate reduction in the concentration of the stress or strain at the junction region, i.e., the transition region from a more rigid component (such as but not limited to a device island) to a more compliant component (such as but not limited to a stretchable and/or flexible interconnect).
In an example system, apparatus and method according to the principles described herein, the buffer structure can have a curved conformation that minimize the stress or strain concentration at or near the sharp edge of integrated circuit (IC) chips. For example, the strain relief structure can be formed in a disk conformation, a torus conformation, or other closed curve conformation.
The example buffer structures can be disposed above and/or below the junction region between a more rigid component (such as but not limited to a device island) to a more compliant component (such as but not limited to a stretchable and/or flexible interconnect). The dimensions of the buffer structures are configured such that at least a portion of the buffer structures overlaps the device component and at least a portion of the buffer structure overlaps the junction region between the device component and the compliant component.
In an example, the device component can be disposed on or in a flexible base, the flexible base being formed of a material having elastic properties. In this example, at least a portion of the buffer structures overlaps the device component and at least a portion of the buffer structure overlaps the junction region between the device component and the compliant component.
An example system, apparatus and method according to the principles described herein can provide a platform of complex device integration and can be applied to many different kinds of stretchable electronic devices.
An example system, apparatus and method described herein includes at least .one strain relief structure that is independent of chip geometry, compatible with conventional semiconductor processes, and provides ease of fabrication.
In any example system, apparatus and method described herein, the buffer structure can be either disposed on the surface of the flexible base (including an elastomer substrate), including being at least partially embedded in the flexible base (including an elastomer substrate).
In an example, the inner dimension of the hollow portion of the buffer structure 511 can be positioned to overlap with a portion of the device component proximate the junction region 508, and the outer dimension of the buffer structure 511 can be positioned to overlap with the junction region 508.
In an example, the buffer structure 511 can be formed as an annular structure. In this example, the inner diameter of the annular buffer structure can be positioned to overlap with a portion of the flexible base, and wherein the outer diameter of the annular buffer structure is positioned to overlap with the junction region.
In the example apparatus of
In any example apparatus according to the principles described herein, the buffer structure, including any one or more of buffer structures 511, 711, 711-a, 711-b, 811, 811-a, and 811-b, can be formed to have a substantially cylindrical conformation or to have a substantially polygonal prism conformation.
In any example apparatus according to the principles described herein, the buffer structure, including any one or more of buffer structures 511, 711, 711-a, 711-b, 811, 811-a, and 811-b, can be formed to have an irregular structure. As shown in
Any example apparatus described herein can be formed as a multi-layer apparatus that includes multi-layer arrangement of the device components and the compliant components. In this example, the multi-layer apparatus can include at least one buffer structure that is positioned relative to the junction region between at least one device component and at least one compliant structure according to the principles of any of the examples described herein. Where the multi-layer apparatus includes a device component disposed on or at least partially embedded in a flexible base, the multi-layer apparatus can include at least one buffer structure that is positioned relative to the junction region between at least one device component and at least one compliant structure according to the principles of any of the examples described herein. In various examples, the multi-layer apparatus can include two, three, four or more buffer structures, each of which is positioned in an example multi-layer apparatus relative to a device component, a junction region, a flexible substrate, a stretchable, and/or a flexible interconnect according to the principles of any of the examples described herein. In any of the examples that include two or more buffer structures, at least two of the buffer structures can be disposed relative to each other such that a central point of the first buffer structure approximately coincides with a central point of the second buffer structure, or at least two of the buffer structures can be disposed relative to each other such that a central point of the first buffer structure is displaced relative to a central point of the second buffer structure.
In another example, the buffer structures described herein can be disposed in an example apparatus that includes multiple interconnections between device components.
In any of the example apparatus according to the principles described herein, the stretchable and/or flexible interconnects can be formed from a conductive material. In any of the examples described herein, the conductive material can be but is not limited to a metal, a metal alloy, a conductive polymer, or other conductive material. In an example, the metal or metal alloy of the coating may include but is not limited to aluminum, stainless steel, or a transition metal (including copper, silver, gold, platinum, zinc, nickel, titanium, chromium, or palladium, or any combination thereof) and any applicable metal alloy, including alloys with carbon. In other non-limiting example, suitable conductive materials may include a semiconductor-based conductive material, including a silicon-based conductive material, indium tin oxide or other transparent conductive oxide, or Group III-IV conductor (including GaAs). The semiconductor-based conductive material can be doped.
In any of the example apparatus according to the principles described herein, the intersection structure, the flexible base, and/or the encapsulant can be formed from any material having elastic properties, subject to the described relationship of elastic properties required for each apparatus. For example, intersection structure, the flexible base, and/or the encapsulant can be formed from a polymer or polymeric material. Non-limiting examples of applicable polymers or polymeric materials include, but are not limited to, a polyimide, a polyethylene terephthalate (PET), a silicone, or a polyeurethane. Other non-limiting examples of applicable polymers or polymeric materials include plastics, elastomers, thermoplastic elastomers, elastoplastics, thermostats, thermoplastics, acrylates, acetal polymers, biodegradable polymers, cellulosic polymers, fluoropolymers, nylons, polyacrylonitrile polymers, polyamide-imide polymers, polyarylates, polybenzimidazole, polybutylene, polycarbonate, polyesters, polyetherimide, polyethylene, polyethylene copolymers and modified polyethylenes, polyketones, poly(methyl methacrylate, polymethylpentene, polyphenylene oxides and polyphenylene sulfides, polyphthalamide, polypropylene, polyurethanes, styrenic resins, sulphone based resins, vinyl-based resins, or any combinations of these materials. In an example, a polymer or polymeric material herein can be a UV curable polymer, or a silicone such as but not limited to ECOFLEX® (BASF, Florham Park, N.J.).
In various examples, the flexible base and the buffer structure can be formed from the same polymer or polymeric material, or from different polymers or polymeric materials. In an example, the encapsulant can be a silicone such as but not limited to ECOFLEX® (BASF, Florham Park, N.J.).
For applications in biomedical devices, the encapsulant should be biocompatible. The stretchable and/or flexible interconnects can be embedded in a polyimide that also acts as a mechanical reinforcement.
In any of the example structures described herein, the stretchable and/or flexible interconnects can have a thickness of about 0.1 μm, about 0.3 μm, about 0.5 μm, about 0.8 μm, about 1 μm, about 1.5 μm, about 2 μm or greater. The buffer structure and/or flexible base can have a thickness of about 5 μm, about 7.5 μm, about 9 μm, about 12 μm or greater. In any example herein, the encapsulant can have a thickness of about 100 μm, about 125 μm, about 150 μm, about 175 μm, about 200 μm, about 225 μm, about 250 μm, about 300 μm or greater.
The example apparatus described herein can be fabricated using any technique in the art. For example, the conductive materials of the stretchable and/or flexible interconnects can be fabricated using evaporation, sputtering, or other deposition technique, and then patterned according to the desired conformation. The flexible base, the buffer structure, and/or the encapsulant can be formed using, e.g., spin-coating or casting and using a mask or a mold to define the desired shape of the component.
While various inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be examples and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that inventive embodiments may be practiced otherwise than as specifically described. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
The above-described embodiments of the invention may be implemented in any of numerous ways. For example, some embodiments may be implemented using hardware, software or a combination thereof. When any aspect of an embodiment is implemented at least in part in software, the software code may be executed on any suitable processor or collection of processors, whether provided in a single device or computer or distributed among multiple devices/computers.
Also, the technology described herein may be embodied as a method, of which at least one example has been provided. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.”
As used herein in the specification, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc
This application is a continuation of U.S. application Ser. No. 14/947,558, filed Nov. 20, 2015, now allowed, which is a continuation of U.S. application Ser. No. 13/843,873, filed Mar. 15, 2013, now U.S. Pat. No. 9,226,402, which claims priority to and the benefit of U.S. Provisional Application No. 61/658,140, filed Jun. 11, 2012, and U.S. Provisional Application No. 61/768,939, filed on Feb. 25, 2013, each of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3716861 | Root | Feb 1973 | A |
3805427 | Epstein | Apr 1974 | A |
3838240 | Schelhorn | Sep 1974 | A |
4278474 | Blakeslee | Jul 1981 | A |
4304235 | Kaufman | Dec 1981 | A |
4416288 | Freeman | Nov 1983 | A |
4658153 | Brosh | Apr 1987 | A |
5018005 | Lin | May 1991 | A |
5272375 | Belopolsky | Dec 1993 | A |
5306917 | Black | Apr 1994 | A |
5326521 | East | Jul 1994 | A |
5331966 | Bennett | Jul 1994 | A |
5360987 | Shibib | Nov 1994 | A |
5454270 | Brown | Oct 1995 | A |
5471982 | Edwards | Dec 1995 | A |
5473512 | Degani | Dec 1995 | A |
5491651 | Janic | Feb 1996 | A |
5548481 | Salisbury | Aug 1996 | A |
5567975 | Walsh | Oct 1996 | A |
5580794 | Allen | Dec 1996 | A |
5617870 | Hastings | Apr 1997 | A |
5811790 | Endo | Sep 1998 | A |
5817008 | Rafert | Oct 1998 | A |
5907477 | Tuttle | May 1999 | A |
6063046 | Allum | May 2000 | A |
6265090 | Nishide | Jul 2001 | B1 |
6282960 | Samuels | Sep 2001 | B1 |
6343514 | Smith | Feb 2002 | B1 |
6387052 | Quinn | May 2002 | B1 |
6410971 | Otey | Jun 2002 | B1 |
6421016 | Phillips | Jul 2002 | B1 |
6455931 | Hamilton | Sep 2002 | B1 |
6567158 | Falcial | May 2003 | B1 |
6626940 | Crowley | Sep 2003 | B2 |
6641860 | Kaiserman | Nov 2003 | B1 |
6775906 | Silverbrook | Aug 2004 | B1 |
6784844 | Boakes | Aug 2004 | B1 |
6965160 | Cobbley | Nov 2005 | B2 |
6987314 | Yoshida | Jan 2006 | B1 |
7062309 | Ryu | Jun 2006 | B2 |
7259030 | Daniels | Aug 2007 | B2 |
7265298 | Maghribi | Sep 2007 | B2 |
7302751 | Hamburgen | Dec 2007 | B2 |
7337012 | Maghribi | Feb 2008 | B2 |
7487587 | Vanfleteren | Feb 2009 | B2 |
7491892 | Wagner | Feb 2009 | B2 |
7521292 | Rogers | Apr 2009 | B2 |
7557367 | Rogers | Jul 2009 | B2 |
7618260 | Daniel | Nov 2009 | B2 |
7622367 | Nuzzo | Nov 2009 | B1 |
7727228 | Abboud | Jun 2010 | B2 |
7739791 | Brandenburg | Jun 2010 | B2 |
7759167 | Vanfleteren | Jul 2010 | B2 |
7815095 | Fujisawa | Oct 2010 | B2 |
7960246 | Flamand | Jun 2011 | B2 |
7982296 | Nuzzo | Jul 2011 | B2 |
8097926 | De Graff | Jan 2012 | B2 |
8198621 | Rogers | Jun 2012 | B2 |
8207473 | Axisa | Jun 2012 | B2 |
8217381 | Rogers | Jul 2012 | B2 |
8372726 | De Graff | Feb 2013 | B2 |
8389862 | Arora | Mar 2013 | B2 |
8431828 | Vanfleteren | Apr 2013 | B2 |
8440546 | Nuzzo | May 2013 | B2 |
8536667 | De Graff | Sep 2013 | B2 |
8552299 | Rogers | Oct 2013 | B2 |
8618656 | Oh | Dec 2013 | B2 |
8664699 | Nuzzo | Mar 2014 | B2 |
8679888 | Rogers | Mar 2014 | B2 |
8729524 | Rogers | May 2014 | B2 |
8754396 | Rogers | Jun 2014 | B2 |
8865489 | Rogers | Oct 2014 | B2 |
8886334 | Ghaffari | Nov 2014 | B2 |
8905772 | Rogers | Dec 2014 | B2 |
9012784 | Arora | Apr 2015 | B2 |
9082025 | Fastert | Jul 2015 | B2 |
9105555 | Rogers | Aug 2015 | B2 |
9105782 | Rogers | Aug 2015 | B2 |
9119533 | Ghaffari | Sep 2015 | B2 |
9123614 | Graff | Sep 2015 | B2 |
9159635 | Elolampi | Oct 2015 | B2 |
9168094 | Lee | Oct 2015 | B2 |
9171794 | Rafferty | Oct 2015 | B2 |
9186060 | De Graff | Nov 2015 | B2 |
9226402 | Hsu | Dec 2015 | B2 |
9247637 | Hsu | Jan 2016 | B2 |
9289132 | Ghaffari | Mar 2016 | B2 |
9295842 | Ghaffari | Mar 2016 | B2 |
9324733 | Rogers | Apr 2016 | B2 |
9372123 | Li | Jun 2016 | B2 |
9408305 | Hsu | Aug 2016 | B2 |
20010012918 | Swanson | Aug 2001 | A1 |
20010021867 | Kordis | Sep 2001 | A1 |
20020026127 | Balbierz | Feb 2002 | A1 |
20020082515 | Campbell | Jun 2002 | A1 |
20020094701 | Biegelsen | Jul 2002 | A1 |
20020113739 | Howard | Aug 2002 | A1 |
20020128700 | Cross, Jr. | Sep 2002 | A1 |
20020145467 | Minch | Oct 2002 | A1 |
20020151934 | Levine | Oct 2002 | A1 |
20020158330 | Moon | Oct 2002 | A1 |
20030017848 | Engstrom | Jan 2003 | A1 |
20030045025 | Coyle | Mar 2003 | A1 |
20030097165 | Krulevitch | May 2003 | A1 |
20030120271 | Burnside | Jun 2003 | A1 |
20030162507 | Vatt | Aug 2003 | A1 |
20030214408 | Grajales | Nov 2003 | A1 |
20030236455 | Swanson | Dec 2003 | A1 |
20040006264 | Mojarradi | Jan 2004 | A1 |
20040085469 | Johnson | May 2004 | A1 |
20040092806 | Sagon | May 2004 | A1 |
20040106334 | Suzuki | Jun 2004 | A1 |
20040135094 | Niigaki | Jul 2004 | A1 |
20040138558 | Dunki-Jacobs | Jul 2004 | A1 |
20040149921 | Smyk | Aug 2004 | A1 |
20040178466 | Merrill | Sep 2004 | A1 |
20040192082 | Wagner | Sep 2004 | A1 |
20040201134 | Kawai | Oct 2004 | A1 |
20040203486 | Shepherd | Oct 2004 | A1 |
20040221370 | Hannula | Nov 2004 | A1 |
20040243204 | Maghribi | Dec 2004 | A1 |
20050021103 | DiLorenzo | Jan 2005 | A1 |
20050029680 | Jung | Feb 2005 | A1 |
20050067293 | Naito | Mar 2005 | A1 |
20050070778 | Lackey | Mar 2005 | A1 |
20050096513 | Ozguz | May 2005 | A1 |
20050113744 | Donoghue | May 2005 | A1 |
20050139683 | Yi | Jun 2005 | A1 |
20050171524 | Stern | Aug 2005 | A1 |
20050203366 | Donoghue | Sep 2005 | A1 |
20050248312 | Cao | Nov 2005 | A1 |
20050285262 | Knapp | Dec 2005 | A1 |
20060003709 | Wood | Jan 2006 | A1 |
20060038182 | Rogers | Feb 2006 | A1 |
20060071349 | Tokushige | Apr 2006 | A1 |
20060084394 | Engstrom | Apr 2006 | A1 |
20060106321 | Lewinsky | May 2006 | A1 |
20060128346 | Yasui | Jun 2006 | A1 |
20060154398 | Qing | Jul 2006 | A1 |
20060160560 | Josenhans | Jul 2006 | A1 |
20060248946 | Howell | Nov 2006 | A1 |
20060257945 | Masters | Nov 2006 | A1 |
20060264767 | Shennib | Nov 2006 | A1 |
20060270135 | Chrysler | Nov 2006 | A1 |
20060286785 | Rogers | Dec 2006 | A1 |
20070027514 | Gerber | Feb 2007 | A1 |
20070031283 | Davis | Feb 2007 | A1 |
20070108389 | Makela | May 2007 | A1 |
20070113399 | Kumar | May 2007 | A1 |
20070123756 | Kitajima | May 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20080036097 | Ito | Feb 2008 | A1 |
20080046080 | Vanden Bulcke | Feb 2008 | A1 |
20080074383 | Dean | Mar 2008 | A1 |
20080096620 | Lee | Apr 2008 | A1 |
20080139894 | Szydlo-Moore | Jun 2008 | A1 |
20080157235 | Rogers | Jul 2008 | A1 |
20080188912 | Stone | Aug 2008 | A1 |
20080193749 | Thompson | Aug 2008 | A1 |
20080204021 | Leussler | Aug 2008 | A1 |
20080211087 | Mueller-Hipper | Sep 2008 | A1 |
20080237840 | Alcoe | Oct 2008 | A1 |
20080259576 | Johnson | Oct 2008 | A1 |
20080262381 | Kolen | Oct 2008 | A1 |
20080287167 | Caine | Nov 2008 | A1 |
20080313552 | Buehler | Dec 2008 | A1 |
20090000377 | Shipps | Jan 2009 | A1 |
20090001550 | Li | Jan 2009 | A1 |
20090015560 | Robinson | Jan 2009 | A1 |
20090017884 | Rotschild | Jan 2009 | A1 |
20090048556 | Durand | Feb 2009 | A1 |
20090088750 | Hushka | Apr 2009 | A1 |
20090107704 | Vanfleteren | Apr 2009 | A1 |
20090154736 | Lee | Jun 2009 | A1 |
20090184254 | Miura | Jul 2009 | A1 |
20090204168 | Kallmeyer | Aug 2009 | A1 |
20090215385 | Waters | Aug 2009 | A1 |
20090225751 | Koenck | Sep 2009 | A1 |
20090261828 | Nordmeyer-Massner | Oct 2009 | A1 |
20090273909 | Shin | Nov 2009 | A1 |
20090283891 | Dekker | Nov 2009 | A1 |
20090291508 | Babu | Nov 2009 | A1 |
20090294803 | Nuzzo | Dec 2009 | A1 |
20090322480 | Benedict | Dec 2009 | A1 |
20100002402 | Rogers | Jan 2010 | A1 |
20100059863 | Rogers | Mar 2010 | A1 |
20100072577 | Nuzzo | Mar 2010 | A1 |
20100073669 | Colvin | Mar 2010 | A1 |
20100075527 | McIntire | Mar 2010 | A1 |
20100087782 | Ghaffari | Apr 2010 | A1 |
20100090781 | Yamamoto | Apr 2010 | A1 |
20100090824 | Rowell | Apr 2010 | A1 |
20100116526 | Arora | May 2010 | A1 |
20100117660 | Douglas | May 2010 | A1 |
20100178722 | De Graff | Jul 2010 | A1 |
20100245011 | Chatzopoulos | Sep 2010 | A1 |
20100271191 | De Graff | Oct 2010 | A1 |
20100298895 | Ghaffari | Nov 2010 | A1 |
20100317132 | Rogers | Dec 2010 | A1 |
20100321161 | Isabell | Dec 2010 | A1 |
20100327387 | Kasai | Dec 2010 | A1 |
20110011179 | Gustafsson | Jan 2011 | A1 |
20110034912 | De Graff | Feb 2011 | A1 |
20110051384 | Kriechbaum | Mar 2011 | A1 |
20110054583 | Litt | Mar 2011 | A1 |
20110098583 | Pandia | Apr 2011 | A1 |
20110101789 | Salter | May 2011 | A1 |
20110121822 | Parsche | May 2011 | A1 |
20110140897 | Purks | Jun 2011 | A1 |
20110175735 | Forster | Jul 2011 | A1 |
20110184320 | Shipps | Jul 2011 | A1 |
20110215931 | Callsen | Sep 2011 | A1 |
20110218756 | Callsen | Sep 2011 | A1 |
20110218757 | Callsen | Sep 2011 | A1 |
20110220890 | Nuzzo | Sep 2011 | A1 |
20110263950 | Larson | Oct 2011 | A1 |
20110277813 | Rogers | Nov 2011 | A1 |
20110284268 | Palaniswamy | Nov 2011 | A1 |
20110306851 | Wang | Dec 2011 | A1 |
20120016258 | Webster | Jan 2012 | A1 |
20120051005 | Vanfleteren | Mar 2012 | A1 |
20120052268 | Axisa | Mar 2012 | A1 |
20120065937 | De Graff | Mar 2012 | A1 |
20120074546 | Chong | Mar 2012 | A1 |
20120087216 | Keung | Apr 2012 | A1 |
20120091594 | Landesberger | Apr 2012 | A1 |
20120092178 | Callsen | Apr 2012 | A1 |
20120092222 | Kato | Apr 2012 | A1 |
20120101413 | Beetel | Apr 2012 | A1 |
20120101538 | Ballakur | Apr 2012 | A1 |
20120108012 | Yasuda | May 2012 | A1 |
20120126418 | Feng | May 2012 | A1 |
20120157804 | Rogers | Jun 2012 | A1 |
20120172697 | Urman | Jul 2012 | A1 |
20120178367 | Matsumoto | Jul 2012 | A1 |
20120226130 | De Graff | Sep 2012 | A1 |
20120244848 | Ghaffari | Sep 2012 | A1 |
20120256308 | Helin | Oct 2012 | A1 |
20120316455 | Rahman | Dec 2012 | A1 |
20120327608 | Rogers | Dec 2012 | A1 |
20130041235 | Rogers | Feb 2013 | A1 |
20130099358 | Elolampi | Apr 2013 | A1 |
20130100618 | Rogers | Apr 2013 | A1 |
20130116520 | Roham | May 2013 | A1 |
20130118255 | Callsen | May 2013 | A1 |
20130150693 | D'angelo | Jun 2013 | A1 |
20130185003 | Carbeck | Jul 2013 | A1 |
20130192356 | De Graff | Aug 2013 | A1 |
20130200268 | Rafferty | Aug 2013 | A1 |
20130211761 | Brandsma | Aug 2013 | A1 |
20130214300 | Lerman | Aug 2013 | A1 |
20130215467 | Fein | Aug 2013 | A1 |
20130225965 | Ghaffari | Aug 2013 | A1 |
20130237150 | Royston | Sep 2013 | A1 |
20130245388 | Rafferty | Sep 2013 | A1 |
20130274562 | Ghaffari | Oct 2013 | A1 |
20130313713 | Arora | Nov 2013 | A1 |
20130316442 | Meurville | Nov 2013 | A1 |
20130316487 | De Graff | Nov 2013 | A1 |
20130316645 | Li | Nov 2013 | A1 |
20130320503 | Nuzzo | Dec 2013 | A1 |
20130321373 | Yoshizumi | Dec 2013 | A1 |
20130328219 | Chau | Dec 2013 | A1 |
20140001058 | Ghaffari | Jan 2014 | A1 |
20140012160 | Ghaffari | Jan 2014 | A1 |
20140012242 | Lee | Jan 2014 | A1 |
20140022746 | Hsu | Jan 2014 | A1 |
20140039290 | De Graff | Feb 2014 | A1 |
20140097944 | Fastert | Apr 2014 | A1 |
20140110859 | Rafferty | Apr 2014 | A1 |
20140140020 | Rogers | May 2014 | A1 |
20140188426 | Fastert | Jul 2014 | A1 |
20140191236 | Nuzzo | Jul 2014 | A1 |
20140216524 | Rogers | Aug 2014 | A1 |
20140240932 | Hsu | Aug 2014 | A1 |
20140249520 | Ghaffari | Sep 2014 | A1 |
20140303452 | Ghaffari | Oct 2014 | A1 |
20140303680 | Donnelly | Oct 2014 | A1 |
20140340857 | Hsu | Nov 2014 | A1 |
20140374872 | Rogers | Dec 2014 | A1 |
20140375465 | Fenuccio | Dec 2014 | A1 |
20150001462 | Rogers | Jan 2015 | A1 |
20150019135 | Kacyvenski | Jan 2015 | A1 |
20150025394 | Hong | Jan 2015 | A1 |
20150035680 | Li | Feb 2015 | A1 |
20150069617 | Arora | Mar 2015 | A1 |
20150099976 | Ghaffari | Apr 2015 | A1 |
20150100135 | Ives | Apr 2015 | A1 |
20150194817 | Lee | Jul 2015 | A1 |
20150237711 | Rogers | Aug 2015 | A1 |
20150241288 | Keen | Aug 2015 | A1 |
20150260713 | Ghaffari | Sep 2015 | A1 |
20150272652 | Ghaffari | Oct 2015 | A1 |
20150286913 | Fastert | Oct 2015 | A1 |
20150320472 | Ghaffari | Nov 2015 | A1 |
20150335254 | Fastert | Nov 2015 | A1 |
20150342036 | Elolampi | Nov 2015 | A1 |
20160027834 | de Graff | Jan 2016 | A1 |
20160045162 | De Graff | Feb 2016 | A1 |
20160081192 | Hsu | Mar 2016 | A1 |
20160086909 | Garlock | Mar 2016 | A1 |
20160095652 | Lee | Apr 2016 | A1 |
20160099214 | Dalal | Apr 2016 | A1 |
20160099227 | Dalal | Apr 2016 | A1 |
20160111353 | Rafferty | Apr 2016 | A1 |
20160135740 | Ghaffari | May 2016 | A1 |
20160213262 | Ghaffari | Jul 2016 | A1 |
20160213424 | Ghaffari | Jul 2016 | A1 |
20160228640 | Pindado | Aug 2016 | A1 |
20160232807 | Ghaffari | Aug 2016 | A1 |
20160240061 | Li | Aug 2016 | A1 |
20160249174 | Patel | Aug 2016 | A1 |
20160256070 | Murphy | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
0585670 | Mar 1994 | EP |
0779059 | Jun 1997 | EP |
1808124 | Jul 2007 | EP |
2259062 | Dec 2010 | EP |
05-087511 | Apr 1993 | JP |
2005-0052212 | Mar 2005 | JP |
2009-170173 | Jul 2009 | JP |
WO 2010042653 | Apr 2010 | TK |
WO 9938211 | Jul 1999 | WO |
WO 03021679 | Mar 2003 | WO |
WO 2005122285 | Dec 2005 | WO |
WO 2007003019 | Jan 2007 | WO |
WO 2007024983 | Mar 2007 | WO |
WO 2007116344 | Oct 2007 | WO |
WO 2007136726 | Nov 2007 | WO |
WO 2008030960 | Mar 2008 | WO |
WO 2009111641 | Sep 2009 | WO |
WO 2009114689 | Sep 2009 | WO |
WO 2010036807 | Apr 2010 | WO |
WO 2010042957 | Apr 2010 | WO |
WO 2010046883 | Apr 2010 | WO |
WO 2010056857 | May 2010 | WO |
WO 2010081137 | Jul 2010 | WO |
WO 2010082993 | Jul 2010 | WO |
WO 2010102310 | Sep 2010 | WO |
WO 2010132552 | Nov 2010 | WO |
WO 2011003181 | Jan 2011 | WO |
WO 2011041727 | Apr 2011 | WO |
WO 2011084450 | Jul 2011 | WO |
WO 2011084709 | Jul 2011 | WO |
WO 2011124898 | Oct 2011 | WO |
WO 2011127331 | Oct 2011 | WO |
WO 2012125494 | Sep 2012 | WO |
WO 2012166686 | Dec 2012 | WO |
WO 2013010171 | Jan 2013 | WO |
WO 2013022853 | Feb 2013 | WO |
WO 2013033724 | Mar 2013 | WO |
WO 2013034987 | Mar 2013 | WO |
WO 2013049716 | Apr 2013 | WO |
WO 2013052919 | Apr 2013 | WO |
WO 2013170032 | Nov 2013 | WO |
WO 2014007871 | Jan 2014 | WO |
WO 2014058473 | Apr 2014 | WO |
WO 2014059032 | Apr 2014 | WO |
WO 2014106041 | Jul 2014 | WO |
WO 2014110176 | Jul 2014 | WO |
WO 2014130928 | Aug 2014 | WO |
WO 2014130931 | Aug 2014 | WO |
WO 2014186467 | Nov 2014 | WO |
WO 2014197443 | Dec 2014 | WO |
WO 2014205434 | Dec 2014 | WO |
WO 2014021039 | Feb 2015 | WO |
WO 2015054312 | Apr 2015 | WO |
WO 2015077559 | May 2015 | WO |
WO 2015080991 | Jun 2015 | WO |
WO 2015102951 | Jul 2015 | WO |
WO 2015103483 | Jul 2015 | WO |
WO 2015103580 | Jul 2015 | WO |
WO 201512758 | Aug 2015 | WO |
WO 2015127458 | Aug 2015 | WO |
WO 2015134588 | Sep 2015 | WO |
WO 2015138712 | Sep 2015 | WO |
WO 2016048888 | Mar 2016 | WO |
WO 2016054512 | Apr 2016 | WO |
WO 2016057318 | Apr 2016 | WO |
WO 2016081244 | May 2016 | WO |
WO 2016127050 | Aug 2016 | WO |
WO 2016134306 | Aug 2016 | WO |
Entry |
---|
Carvalhal et al., “Electrochemical Detection in a Paper-Based Separation Device”, Analytical Chemistry, vol. 82, No. 3, (1162-1165) (4 pages) (Jan. 7, 2010). |
Demura et al., “Immobilization of Glucose Oxidase with Bombyx mori Silk Fibroin by Only Stretching Treatment and its Application to Glucose Sensor,” Biotechnology and Bioengineering, vol. 33, 598-603 (6 pages) (1989). |
Ellerbee et al., “Quantifying Colorimetric Assays in Paper-Based Microfluidic Devices by Measuring the Transmission of Light through Paper,” Analytical Chemistry, vol. 81, No. 20 8447-8452, (6 pages) (Oct. 15, 2009). |
Halsted, “Ligature and Suture Material,” Journal of the American Medical Association, vol. LX, No. 15, 1119-1126, (8 pages) (Apr. 12, 1913). |
Kim et al., “Complementary Metal Oxide Silicon Integrated Circuits Incorporating Monolithically Integrated Stretchable Wavy Interconnects,” Applied Physics Letters, vol. 93, 044102-044102.3 (3 pages) (Jul. 31, 2008). |
Kim et al., “Dissolvable Films of Silk Fibroin for Ultrathin Conformal Bio-Integrated Electronics,” Nature, 1-8 (8 pages) (Apr. 18, 2010). |
Kim et al., “Materials and Noncoplanar Mesh Designs for Integrated Circuits with Linear Elastic Responses to Extreme Mechanical Deformations,” PNAS, vol. 105, No. 48, 18675-18680 (6 pages) (Dec. 2, 2008). |
Kim et al., “Stretchable and Foldable Silicon Integrated Circuits,” Science, vol. 320, 507-511 (5 pages) (Apr. 25, 2008). |
Kim et al., “Electrowetting on Paper for Electronic Paper Display,” ACS Applied Materials & Interfaces, vol. 2, No. 11, (3318-3323) (6 pages) (Nov. 24, 2010). |
Ko et al., “A Hemispherical Electronic Eye Camera Based on Compressible Silicon Optoelectronics,” Nature, vol. 454, 748-753 (6 pages) (Aug. 7, 2008). |
Lawrence et al., “Bioactive Silk Protein Biomaterial Systems for Optical Devices,” Biomacromolecules, vol. 9, 1214-1220 (7 pages) (Nov. 4, 2008). |
Meitl et al., “Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp,” Nature, vol. 5, 33-38 (6 pages) (Jan. 2006). |
Omenetto et al., “A New Route for Silk,” Nature Photonics, vol. 2, 641-643 (3 pages) (Nov. 2008). |
Omenetto et al., “New Opportunities for an Ancient Material,” Science, vol. 329, 528-531 (5 pages) (Jul. 30, 2010). |
Siegel et al., “Foldable Printed Circuit Boards on Paper Substrates,” Advanced Functional Materials, vol. 20, No. 1, 28-35, (8 pages) (Jan. 8, 2010). |
Tsukada et al., “Structural Changes of Silk Fibroin Membranes Induced by Immersion in Methanol Aqueous Solutions,” Journal of Polymer Science, vol. 32, 961-968 (8 pages) (1994). |
Wang et al., “Controlled Release From Multilayer Silk Biomaterial Coatings to Modulate Vascular Cell Responses” Biomaterials, 29, 894-903 (10 pages) (Nov. 28, 2008). |
Wikipedia, “Ball bonding” article [online]. Cited in PCT/US2015/051210 search report dated Mar. 1, 2016 with the following information “Jun. 15, 2011 [retrieved on Nov. 15, 2015}. Retrieved Dec. 18, 29 from the Internet: <URL: https://web.archive.org/web/20110615221003/http://en.wikipedia.org/wiki/Ball—bonding>., entire document, especially para 1, 4, 5, 6,” 2 pages, last page says (“last modified on May 11, 2011”). |
International Search Report, PCT/US2014/017968, dated Mar. 13, 2015 (2 pages). |
Frederick et al., “Stretchable Electronics Technology for Large Area Applications: Fabrication and Mechanical Characterization,” IEEE Transactions on Components, Packaging and Manufacturing Technology, IEEE, USA, vol. 3, No. 2 (7 pages) (Oct. 13, 2011). |
Jones et al., “Strechable Interconnects for Elastic Electronic Surfaces,” Proceedings of the IEEE, IEEE, New York, US, vol. 93, No. 8 (9 pages) (Aug. 1, 2005). |
Number | Date | Country | |
---|---|---|---|
20160309594 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61658140 | Jun 2012 | US | |
61768939 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14947558 | Nov 2015 | US |
Child | 15194995 | US | |
Parent | 13843873 | Mar 2013 | US |
Child | 14947558 | US |