The disclosure relates generally to semiconductor devices and more specifically to phase-change memory cells.
Phase-change-memory (PCM) is a type of non-volatile random-access memory. PCMs exploit the unique behavior of chalcogenide glass. One type of PCM utilizes germanium-antimony-tellurium (GST) materials. As the number of components on an integrated circuit (IC) has grown, the space allocated to individual components has shrunk. Thus, currently, many PCM cells have a small pore with a high aspect ratio in which to fill with GST materials. However, the high aspect ratio makes it difficult to fill GST material into the small pore. Furthermore, low vacuum GST deposition has a low throughput. Consequently, many PCM cells contain significant voids that are not filled with GST material. A large void may cause the PCM to fail. Additionally, because GST is formed as a crystalline structure, chemical mechanical polishing of the surface to remove excess GST material can cause removal of some of the GST from the pore.
Therefore, it would be desirable to have a method and apparatus that take into account at least some of the issues discussed above, as well as other possible issues. For example, it would be desirable to have a method and apparatus that overcome a technical problem with forming GST inside the pore such that presence of voids is reduced or eliminated.
According to one embodiment of the present invention, a method of forming a PCM cell includes forming a first layer of a first germanium-antimony-tellurium (GST) type material over at least a portion of the bottom and sides of a pore through a dielectric layer of low dielectric material to a bottom electrode. The method also includes forming a second layer of a second GST type material over the first GST type material along the bottom and sides of the pore over the bottom electrode. The first GST type material is different from the second GST type material.
According to another embodiment of the present invention, a phase-change-memory (PCM) cell includes a bottom electrode and at least one first layer over a bottom and at least portions of sides of a via situated above the bottom electrode. The first layer includes a first germanium-antimony-tellurium (GST) type material formed over the bottom electrode. The PCM cell also includes at least one second layer over the first layer. The second layer includes a second GST type material. The second GST type material is different from the first GST type material. The PCM cell also includes a dielectric fill within the sides of the via and a top electrode positioned over the first layer, second layer, and dielectric fill.
According to another embodiment of the present invention, an integrated circuit includes a plurality of logic components and a plurality of memory components. Each of the memory components includes a phase-change-memory (PCM) cell. The PCM cell includes a bottom electrode and at least one first layer over a bottom and at least portions of sides of a via situated above the bottom electrode. The first layer includes a first germanium-antimony-tellurium (GST) type material formed over the bottom electrode. The PCM cell also includes at least one second layer over the first layer. The second layer includes a second GST type material. The second GST type material is different from the first GST type material. The PCM cell also includes a dielectric fill within the sides of the via and a top electrode positioned over the first layer, second layer, and dielectric fill.
Detailed embodiments of the claimed structures and methods are disclosed herein; however, it is to be understood that the disclosed embodiments are merely illustrative of the claimed structures and methods that may be embodied in various forms. In addition, each of the examples given in connection with the various embodiments is intended to be illustrative, and not restrictive.
Further, the figures are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the methods and structures of the present disclosure.
For purposes of the description hereinafter, the terms “upper,” “lower,” “right,” “left,” “vertical,” “horizontal,” “top,” “bottom,” and derivatives thereof shall relate to the embodiments of the disclosure, as it is oriented in the drawing figures. The terms “positioned on” means that a first element, such as a first structure, is present on a second element, such as a second structure, wherein intervening elements, such as an interface structure, e.g. interface layer, may be present between the first element and the second element.
In this disclosure, when an element, such as a layer, region, or substrate is referred to as being “on” or “over” another element, the element can be directly on the other element or intervening elements can also be present. In contrast, when an element is referred to as being “directly on,” “directly over,” or “on and in direct contact with” another element, there are no intervening elements present, and the element is in contact with another element.
The processes, steps, and structures described below do not form a complete process flow for manufacturing integrated circuits. The disclosure can be practiced in conjunction with integrated circuit fabrication techniques currently used in the art, and only so much of the commonly practiced process steps are included as necessary for an understanding of the different examples of the present disclosure. The figures represent cross sections of a portion of an integrated circuit during fabrication and are not drawn to scale, but instead are drawn so as to illustrate different illustrative features of the disclosure.
With reference now to the figures and, in particular, with reference to
Because of the high aspect ratio of the pore, it is difficult to fill GST in the small pore. Furthermore, low vacuum GST deposition has a low throughput. This difficulty results in voids in the pores where GST type material is absent. Additionally, because GST type material is crystalline, it is difficult to remove the GST type material from the surface and planarize the surface, since removing GST from the surface may also pull GST type material out of the pore.
The disclosed processes provide methods to produce PCM with GST type materials that are less likely to have pores and or extraneous GST type material residing on top of the device than are prior art methods.
In an embodiment, the landing pads 416, 418 are tungsten (W) or copper (Cu). In an embodiment, the bottom electrode 420 is about 20 nm thick and is constructed from tantalum nitride (TaN). In an embodiment, the bottom electrode 420 is about 35 nm thick. In an embodiment, the bottom electrode 420 has a thickness between about 20 nm and about 35 nm. In other embodiments, the bottom electrode 420 is a metal such as, for example, W or Cu. In other embodiments, the bottom electrode 420 may be constructed from any electrical conductive material. In an embodiment, the width of the bottom electrode 420 is between about 36 nanometers (nm) and about 56 nm. In an embodiment, the SiN layer 410 is between about 20 nm thick and about 35 nm thick, the NBLOK layer 412 is about 30 nm thick, the TEOS layer 414 is about 100 nm to about 120 nm thick, the sacrificial layer 450 is about 25 nm thick, and the hard mask layer 452 is about 25 nm thick.
After the pore 422 has been formed, the hard mask layer 452 and the sacrificial layer 450 are removed.
The first GST type material layer 504 may be constructed of a mixture of GST type materials 510 as shown in
After the metal liner 502 and the first GST type material layer 504 have been deposited, then the pore 422 of device 600 in
Next, the first GST type material layer 504 above the level of the OPL in device 700 in
After removing part of the first GST type material layer 504, a second GST type material layer 706 is deposited over the top of the device 800 in
After the second GST type material layer 702 has been deposited on the device 900 shown in
Finally, a top electrode 1002 is formed over the top of the device 1000 in
In an embodiment, the top electrode 1102 is formed flush with the top surface of the dielectric layer 414 of the device 1200 as shown in
In an embodiment, the top electrode 1002 is formed on the top of the device 1300 but with the metal liner 502 omitted as shown in
In an embodiment, the top electrode 1102 is formed flush with the top surface of the dielectric layer 414 of the device 1400 but with the metal liner 502 omitted as shown in
Turning next to
The process begins by forming a landing pad, bottom electrode, NBLOK layer, and a low-k dielectric layer or TEOS layer on a semiconductor substrate (step 1500). Next, a pore is formed through the low-k dielectric layer or TEOS layer and the NBLOK over the bottom electrode (step 1502). A metal liner is then deposited over the bottom and sides of the pore and over the top of the low-k dielectric layer or TEOS layer (step 1504). A first GST type material is then deposited over the metal liner on the sides and bottom of the pore (step 1506). In an embodiment, the first GST type material is deposited by physical vapor deposition (PVD). Next, the first GST type material is chamfered to remove the first GST type material from the top of the low-k dielectric layer or TEOS layer and from the top portion of the sides of the pore such that the first GST type material covers only a lower portion or bottom portion of the pore (step 1508). A second GST type material is then deposited over the first GST type material and the metal liner (step 1510). In an embodiment, the second GST type material is deposited by PVD. Next, the remaining empty portion of the pore is filled with oxide and chemical mechanical planarization (CMP) is performed to remove the second GST type material, the metal liner, and the oxide from the top of the low-k dielectric layer or TEOS layer (step 1512). A top electrode is then formed over the top of the metal liner, second GST type material, and the oxide (step 1514). The top electrode may set flush with the top of the low-k dielectric layer or TEOS layer or may be formed above the low-k dielectric layer or TEOS layer.
The flowcharts and block diagrams in the different depicted embodiments illustrate the architecture, functionality, and operation of some possible implementations of apparatuses and methods in an illustrative embodiment. In this regard, each block in the flowcharts or block diagrams may represent at least one of a module, a segment, a function, or a portion of an operation or step. For example, one or more of the blocks may be implemented as program code, hardware, or a combination of the program code and hardware. When implemented in hardware, the hardware may, for example, take the form of integrated circuits that are manufactured or configured to perform one or more operations in the flowcharts or block diagrams. When implemented as a combination of program code and hardware, the implementation may take the form of firmware. Each block in the flowcharts or the block diagrams may be implemented using special purpose hardware systems that perform the different operations or combinations of special purpose hardware and program code run by the special purpose hardware.
In some alternative implementations of an illustrative embodiment, the function or functions noted in the blocks may occur out of the order noted in the figure. For example, in some cases, two blocks shown in succession may be performed substantially concurrently, or the blocks may sometimes be performed in the reverse order, depending upon the functionality involved. Also, other blocks may be added in addition to the illustrated blocks in a flowchart or block diagram.
For example, additional steps showing forming the floating channel or other materials for forming metal or dielectric layers may be present although not described in the flowcharts. In yet another illustrative example, one or more additional logic devices may be fabricated along with the PCM cell.
The process utilized to create the structure, results in PCM cell structures with better performance due the fact that fewer GST voids or defects are present in the PCM than occurs in prior art methods. Also, the disclosed processes result in PCM cell structures with little or no GST type material over the top of the cell and outside of the cell without removing GST type material from the cell itself.
The methods and structures that have been described above with reference to figures in the different examples, may be employed in any electrical device including integrated circuit chips. The integrated circuit chips including the disclosed structures and formed using the disclosed methods may be integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either an intermediate product, such as a motherboard, or an end product. The end product can be any product that includes integrated circuit chips, including computer products or devices having a display, a keyboard or other input device, and a processor unit.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiment. The terminology used herein was chosen to best explain the principles of the embodiment, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed here.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
Number | Name | Date | Kind |
---|---|---|---|
5825046 | Czubatyj et al. | Oct 1998 | A |
7324365 | Gruening-Von Schwerin et al. | Jan 2008 | B2 |
7422926 | Pellizzer et al. | Sep 2008 | B2 |
7807497 | Lee et al. | Oct 2010 | B2 |
7892936 | Wu et al. | Feb 2011 | B1 |
7935567 | Sandoval | May 2011 | B2 |
7943420 | Breitwisch | May 2011 | B1 |
8097873 | Muralidhar et al. | Jan 2012 | B2 |
8148197 | Marsh | Apr 2012 | B2 |
9111609 | Happ et al. | Aug 2015 | B2 |
9385310 | Zheng | Jul 2016 | B2 |
20070012956 | Gutsche | Jan 2007 | A1 |
20080017841 | Lee | Jan 2008 | A1 |
20080054244 | Lee et al. | Mar 2008 | A1 |
20100054029 | Happ | Mar 2010 | A1 |
20100203709 | Czubatyj | Aug 2010 | A1 |
20110074539 | Tsuji | Mar 2011 | A1 |
20110155993 | Chen | Jun 2011 | A1 |
20110180905 | Zheng et al. | Jul 2011 | A1 |
20120235110 | Sutou | Sep 2012 | A1 |
20140304475 | Ramanujan | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
102479922 | May 2012 | CN |
Entry |
---|
Lai et al., “A Scalable Volume-Confined Phase Change Memory Using Physical Vapor Deposition,” Symposium on VLSI Technology, Jun. 11-13, 2013, Kyoto, Japan, pp. T132-T133. |
Raoux et al., “Phase-Change Random Access Memory: A Scalable Technology,” IBM Journal of Research and Development, vol. 52, No. 4/5, Jul./Sep. 2008, pp. 465-479. |
Kim et al., “A Phase Change Memory Cell with Metallic Surfactant Layer as a Resistance Drift Stabilizer,” IEEE International Electron Devices Meeting, Dec. 9-11, 2013, Washington, DC, pp. 30.7.1-30.7.04. |
Brightsky et al., “Crystalline-as-Deposited ALD Phase Change Material Confined PCM Cell for High Density Storage Class Memory,” IEEE International Electron Devices Meeting (IEDM), 2015, pp. 3.6.1-3.6.4. |
Happ et al., “Novel One-Mask Self-Heating Pillar Phase Change Memory,” Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, Jun. 13-15, 2006, pp. 120-121. |
Raoux et al., “Phase Change Materials and Phase Change Memory,” MRS Bulletin (New Materials for Post-Si Computing), Aug. 2014, vol. 39, Issue 8, Aug. 2014 , pp. 703-710. |
Lai, “Current Status of the Phase Change Memory and Its Future,” IEEE International Electron Devices Meeting, Dec. 8-10, 2003, Washington, DC, pp. 10.1.1-10.1.4. |
Atwood et al., “Current Status of Chalcogenide Phase Change Memory,” 63rd Device Research Conference Digest, Jun. 20-22, 2005, Santa Barbara, CA, pp. 29-33. |
Number | Date | Country | |
---|---|---|---|
20200144501 A1 | May 2020 | US |