BRIEF DESCRIPTIONS OF THE DRAWINGS
The present invention will be better understood from the following detailed description of the preferred embodiment according to the present invention, taken in con junction with the accompanying drawings, in which
FIG. 1 is the perspective view showing the preferred embodiment according to the present invention;
FIG. 2 is the view showing the specific curves of thermal resistances;
FIG. 3 is the view showing the curves of one-dimensional material thermal resistances.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The following description of the preferred embodiment is provided to understand the features and the structures of the present invention.
Please refer to FIG. 1, which is a perspective view showing a preferred embodiment according to the present invention. As shown in the figure, the present invention is a structure of a heat dissipated submount 1, comprising a submount 11 and a cooling device 12, where the submount 11 has at least one heat source 111 at a side; and the cooling device 12 is cove red at another side of the sub mount 11 not adjacent to the heat source 111.
The submount 11 is a heat pipe, a heat spreader or a micro heat pipe made of a material of high thermal conductivity, such as silicon carbide, aluminum nitride, aluminum, copper or diamond. The material has a thermal conductivity between 1 watt per meter per kelvin (W/mK) and 2000 W/mK. The submount 11 has a square bottom or a circular bottom; the side length or diameter of the submount 11 is smaller than 5 centimeter; and the submount 11 has a ratio of height to the side length or the diameter between 0.05 and 0.45.
The heat source 111 at the side of the submount 11 is an electric chip or a light-emitting diode; the heat source 111 is square or circular; and there are a plurality of heat sources 111 in an array arrangement.
The cooling device 12 is a plurality of heat dissipated fins, a water cooler or a thermoelectric cooler. Thus, a novel structure of a heat dissipated submount is obtained.
Please refer to FIG. 2 and FIG. 3, which are views showing curves of some specific thermal resistances and curves of one-dimensional material thermal resistances. As shown in the figures, a heat source and a submount are square and a ratio of a contact area between the heat source and the sub mount is 4/9. In FIG. 2, there are a first curve 21 for a spreading thermal resistance of 0.01 Biot number; a second curve 22 for an internal thermal resistance of 0.01 Biot number; a third curve 23 for a spreading thermal resistance of 10000 Biot number; a fourth curve 24 for an internal thermal resistance of 10000 Biot number; and a fifth curve 25 for a one-dimensional material thermal resistance. As shown in the figure, the one-dimensional material thermal resistance of the submount has a coupling effect to the spreading thermal resistance of the submount. In FIG. 3, there are a first material thermal resistance curve 31 for a submount having a thickness of 0.1 millimeter (mm) and a thermal conductivity of 160 W/mK; a second material thermal resistance curve 32 for a submount having a thickness of 1 mm and a thermal conductivity of 160 W/m K; a third material thermal resistance curve 33 for a submount having a thickness of 0.1 mm and a thermal conductivity of 400 W/m K; and a fourth material thermal resistance curve 34 for a submount having a thickness of 1 mm and a thermal conductivity of 400 W/mK. As shown in the figure, when the side length of the electrical component is becoming smaller, the thermal resistance of the submount is dramatically increased. In the present invention, a ratio of height to side length is set between 0.05 and 0.45. And, according to the above two figures, the present invention effectively diminishes a spreading thermal resistance and obtains a low internal thermal resistance.
To sum up the present invention is a structure of a heat dissipated sub mount, which effectively diminishes a spreading thermal resistance of a submount and obtains a characteristic of high heat density dissipating.
The preferred embodiment herein disclosed is not intended to unnecessarily limit the scope of the invention. Therefore, simple modifications or variations belonging to the equivalent of the scope of the claims and the instructions disclosed herein for a patent are all within the scope of the present invention.