1. Field of Invention
The present invention relates to apparatus for the surface processing of a substrate, in particular apparatus that utilises high-density plasma to aid chemical vapour deposition or etching.
2. Description of the Related Art
Chemical vapour deposition (CVD) and plasma etching are well-known processing methods used in the semiconductor and integrated circuit industry. In a standard CVD process a semiconductor wafer is placed within a specialised reaction chamber and the surface of the wafer is exposed to various chemical substances, wherein the chemical substances are injected into the reaction chamber in gaseous form or within a carrier gas. The chemical substances typically comprise one or more volatile precursors, which react with and/or decompose upon the wafer substrate to alter the surface of the semiconductor wafer and provide the necessary processing in dependence on the chemistry of the substances involved. In many processes volatile gaseous by-products are also produced, which are removed using a gas flow through the reaction chamber. Surface reactions can either add new material or etch the existing surface. Common processing operations include the deposition of layers of material upon the wafer substrate and the etching of layers of material from the wafer substrate to form device components, electrical connections, dielectrics, charge barriers and other common circuit elements.
In recent times, plasma enhancement has been incorporated into CVD systems in order to enhance the quality and/or processing rate of the surface process. These plasma-enhanced CVD (PECVD) systems generally operate by the dissociation and ionisation of gaseous chemicals to increase the reactivity of the one or more chemical precursors. This enhanced reactivity due to energetic particles in the plasma increases the processing rate and allows lower processing temperatures to be used when compared to conventional CVD systems. Plasma enhancement is particularly useful for etching processes.
The plasma can be generated in situ within the reaction chamber using a parallel plate (PP) system or generated remotely from reaction chamber and/or substrate and then transported into the reaction chamber. A standard PP system is illustrated in
With contemporary developments in the field of PECVD and plasma etching, the use of high-density (HD) plasmas is becoming increasingly viable. High-density plasma CVD (HDPCVD) or etching systems are typically those in which the generated ion or electron density is greater than 1011 cm−3. This also raises the dissociation efficiency by an order of magnitude when compared to standard parallel plate systems. These enhanced plasma properties further increase the processing rate and/or quality of HDPCVD processes and offers potential advantages of lower hydrogen content films, high quality films at lower process temperatures, void-free gap filling of high aspect ratio features, and self-planarisation when compared with conventional PECVD.
A common implementation of HDPCVD utilises an inductively coupled plasma (ICP) source comprising a plasma generation chamber encircled by an inductively coupled coil. This coil is driven with a RF supply in order to generate an electric field within the plasma generation chamber, which in turn in creates and ignites a plasma cloud. A variety of RF frequencies can be used including low frequencies (below 55 kHz), high frequencies (13.56 MHz) or microwave frequencies (where the coil is replaced with a microwave cavity) (2.45 GHz). By locating the plasma source remotely to the processing chamber, ICP systems allow high-density plasma to be generated remotely without affecting the surface processes within the processing chamber.
Two or more gases or gas mixtures are typically injected into an ICP HDPCVD system: a first gas or gas mixture is injected into the ICP generation chamber and a second gas or gas mixture is injected into the substrate reaction chamber. The generated electric field accelerates the electrons of the first gas within the plasma generation chamber, which ionises individual gas molecules and allows for the transfer of kinetic energy within individual electron-gas molecule collisions. U.S. Pat. No. 5,792,272 provides an example of a HD ICP reactor as is known in the art.
There are, however, several problems with the use of HDPCVD. In typical CVD systems process uniformity has been achieved by controlling the flow dynamics of the chemical substances in order to generate a uniform species distribution across the reaction surface of the wafer substrate. In an HDPCVD system the distribution of gases inside the processing chamber is very difficult to control as the plasma interacts with the flow dynamics of any injected gas.
E. R. Keiter and M. J. Kushner discuss the problem of gas distribution in their paper “Radical and Electron Densities in a High Plasma Density-Chemical Vapour Deposition Reactor from a Three-Dimensional Simulation” published in the IEEE Transactions on Plasma Science, Vol. 27, No. 2, April 1999.
The uniformity of thin film deposition is an important performance parameter, with current deposition processes aiming for an error of around ±3% across the diameter of the wafer substrate. This level of uniformity has been achieved in the prior art by either shaping the generated plasma using the associated RF induction coil or by using a particular arrangement of gas injectors.
EP-0870072-A1 teaches that a particular arrangement of gas injection nozzles in an annulus between the plasma source and the substrate can aid process uniformity. However, this increased uniformity is achieved through empirical adjustment of the nozzle geometry, which is cumbersome and requires complex modifications of the HDPCVD reactor apparatus. Additionally, by increasing the number of gas injection nozzles and altering the nozzle geometry complicated flow patterns can be set up within the processing chamber that can have an unpredicted effect on processing uniformity.
U.S. Pat. Nos. 5,800,621-A and 5,401,350 teach a method of adjusting the uniformity of an ICP source by configuring the arrangement of the RF induction coils. However, these methods require complicated modelling of the electric field parameters within the plasma source chamber and also typically have higher power demands and require more complicated electronic control.
Another problem that arises with the use of all CVD processes is that chemicals applied to the wafer substrate typically further coat most of the processing chamber as well. The ability to clean the chamber in situ by a plasma process is thus important for PECVD and HDPCVD systems. As many prior art techniques for improving the uniformity also complicate the processing apparatus they increase the difficulty of cleaning the chamber in situ and the ability to repair or replace components affected in this way.
Therefore, a flexible method of controlling the uniformity of a process in an ICP HDPCVD system is desired. Preferably this solution should not significantly alter the construction of such systems and allow for simply cleaning and maintenance.
According to a first aspect of the present invention there is provided a surface processing apparatus for use in the surface processing of a substrate, the surface processing apparatus comprising a plasma source; and a processing chamber in which a substrate is mounted in use, the processing chamber being operatively connected to the plasma source; the surface processing apparatus characterised by a transmission plate for the transmission of plasma in use between a plasma source and the processing chamber, the transmission plate comprising one or more apertures wherein the physical form of the one or more apertures and/or the distribution of the one or more apertures is adapted to provide a predetermined processing pattern upon the surface of the substrate.
The prior art teaches away from the use of a transmission plate because it is well known that excited and ionised plasma species are quickly quenched by contact with solid surfaces. Thus any technologies developed for use in altering generic gas flow are unsuitable for use in situations involving a plasma source and a connected processing chamber, due to the very different properties of the plasma species. Furthermore, whereas PECVD showerhead systems are designed to suppress plasma passing through the showerhead at all costs, the transmission plate is designed to allow active species to pass through the plate without significant quenching. By varying the fraction of plasma species that pass through different parts of the plate, a simple and effective means of optimising the uniformity of surface processing is provided.
By controlling the features of a transmission plate mounted between a plasma source and a processing chamber, the present invention allows the careful control of the processing upon the surface of the substrate. Typically, the transmission plate will be designed so that the physical form and/or distribution of the one or more apertures is such that a uniform processing rate is provided across the surface of the substrate. Such a plate is simple to remove and replace if different processing patterns are required or if the transmission plate needs to be cleaned and replaced. This is in contrast to the use of predetermined nozzle geometry or RF coil configurations, wherein the method of providing uniformity is intrinsically bound with the complete HDPCVD apparatus. With the present invention, a transmission plate can also be changed for use with different plasma species.
Preferably, the transmission plate comprises a plurality of circular apertures wherein the diameter of each circular aperture is greater than the thickness of the transmission plate. The ratio between the diameter of each aperture and the transmission plate thickness should typically be greater than 3:1. This then allows a transmission plate to be used without destroying the active species making up the plasma. Typically, the transmission plate will be circular in form in correspondence with a substantially cylindrical plasma source and processing chamber. In these cases the plasma source is typically axially aligned with the processing chamber, which is mounted below the plasma source.
In some embodiments the plurality of apertures are distributed in one or more concentric aperture rings upon the transmission plate, the centre(s) of the one or more concentric aperture rings being that of the transmission plate. In these cases either the angular spacing of the plurality of apertures within each concentric aperture ring or the radial spacing between each pair of concentric aperture rings is adapted to provide a predetermined processing pattern upon the surface of the substrate.
Preferably, the plasma source generates an inductively coupled plasma and comprises a plasma chamber and an RF driven inductively coupled coil. Common drive parameters for the RF source are a frequency of 13.56 MHz and a power of 1 to 3 kW.
Typically, the apparatus uses two gas or gas mixture supplies: a first gas or gas mixture supply to the plasma source and a second gas or gas mixture supply to the processing chamber. Typical surface processing of the substrate comprises deposition or removal of material on or from the surface of the substrate. In some embodiments the physical form of the one or more apertures and/or the distribution of the one or more apertures is adapted to provide a substantially uniform deposition or material removal rate across a width of the substrate.
To prevent the thermal degradation of the transmission plate, and to limit particles flaking from the transmission plate through thermal cycling, the thermal conductivity of the plate is typically greater than 100 W m-1 K-1 and the plate is thermally connected to an external chamber via a low thermal resistance path. The transmission plate can comprise either a metal or metal alloy plate. Alternatively a lower thermal conductivity material can be used with a lower thermal expansion coefficient, which can operate at higher temperatures, such as alumina ceramic. Where the transmission plate is to be used with chlorine-containing gas mixtures for etching, then alumina is preferred. It is also possible to use anodised aluminium or metal coated with a material more inert to the reactive plasma, such as plasma-sprayed alumina, to combine the beneficial effects of improved lateral heat conduction with inertness to the plasma.
According to a second aspect of the present invention there is provided a method for the fabrication of a transmission plate for use in the surface processing of a substrate mounted within a processing chamber, the transmission plate being mounted in use between a plasma source and the processing chamber and comprising one or more apertures to allow the transmission of plasma from the plasma source to the processing chamber, the method comprising the steps of:
By following this method, new transmission plates can be quickly and easily generated in response to new or different processing conditions. According to a third aspect of the present invention there is provided a method of operating the apparatus as previously defined, the method comprising:
Both gas mixtures can contain noble gases and both gas supplies may inject the same noble gas. This method further increases uniformity and the transmission plate limits the movement of undesired reactive gas species into the plasma source.
In order that the invention may be better understood, some embodiments of the invention will now be described with reference to the accompanying drawings in which:
Surrounding this plasma chamber 8 is a water-cooled radio frequency (RF) coil antenna 7 that forms an inductively coupled coil for use in generating the plasma within the plasma chamber 8. The RF coil 7 is connected to a 13.56 MHz, 3 kW RF generator via a matching unit (not shown). Effectively, the current passing through the RF coil 7 generates an RF magnetic flux along the axis of the plasma chamber 8 and this magnetic flux further induces an RF electric field inside the plasma chamber 8. The induced electric field accelerates electrons within the injected gas cloud producing high-density plasma within the plasma chamber. By controlling the inductively coupled RF coil 7, an operator can control the dissociation of the plasma and the density of the incident ions in the plasma chamber 8. The most intense plasma is represented in
An inspection port 14 may be provided to observe the substrate surface by laser interferometry, provided the transmission plate has a suitably aligned hole. The top plate 16, side cover 15 and plasma source base plate 17 form an enclosure to contain RF radiation from the RF coil 7
Below the plasma source 1 is the processing chamber 2, which is axially aligned with the plasma chamber 8. The processing chamber 2 typically comprises a substrate table 4 made from a 205 mm diameter cooled or heated lower electrode with helium assisted heat transfer. This table can be electrically grounded, or powered by a separate RF supply to control the ion impact energy at the substrate surface. A wafer substrate 3 is placed upon this substrate table 4 and can be further held in place using a modular clamping mechanism 5. The processing chamber 2 is typically kept at low pressure or within a vacuum by evacuation using a turbomolecular pump backed by a mechanical pump, via a pumping port 11 mounted beneath the substrate table 4. In this example, the pumping port 11 is a 200 mm diameter high conductance pumping port. A ring of gas nozzles is provided in an annulus 6 at the top of the processing chamber 2, through which a gas or gas mixture is injected. In processes to deposit silicon compounds, the silicon-bearing gas such as silane is included in this gas mixture. Beneficially, a noble gas such as argon forms part of this mixture.
In use plasma 13 is generated within the plasma source 1 by providing the appropriate RF current to the ICP coil. In prior art systems, the plasma source 1 is directly connected to the processing chamber 2 and ion impact energy on the wafer substrate 3 is controlled by applying an RF bias to the substrate table 4. However, as is seen in the Keiter and Kushner paper discussed within the introduction, these prior art systems generate a non-uniform processing rate upon the wafer substrate 3.
Thus to provide uniformity, a transmission plate is mounted between the plasma source 1 and the processing chamber 2 and the plasma 13 is driven through the transmission plate 12, which modifies the electron distribution in the plasma cloud. In the present invention, the interruption of the plasma flow by the transmission plate alters the configuration of the flow.
A method for generating the form and/or the arrangement of the apertures on the transmission plate will now be described in relation to the apparatus of
After the deposition rate function d(r) has been fitted then a transmission function T(r) for the transmission plate is calculated to generate a plasma transmission function through the transmission plate as a function of transmission plate radius r. Both these functions assume that the transmission plate and the substrate wafer are axially aligned. The transmission function T(r) is calculated so that d(r)×T(r)=1, i.e. the transmission function is calculated to be the inverse of the deposition rate function. Once a required transmission function T(r) has been calculated then a set of apertures can be generated or calculated to provide an actual plasma transmission distribution that best fits the transmission function T(r). This can either be done experimentally or theoretically, using standard plasma flow models and equations. For example, if the operating conditions are known then the velocity of a plasma as it moves towards the substrate table can be calculated to provide a plasma flux parameter in relation to the plasma flow. It can then be assumed that the transmission function T(r) is proportional to the plasma flux. By standard calculations the amount of aperture area per annular area of the transmission plate can be calculated and thus an aperture shape fitted to best match these area requirements.
An example of the function fitting described above is illustrated in
Transmission plate variables that can be changed include, but are not limited to, the number of apertures per unit area, the shape of the aperture, the diameter of each aperture if circular apertures are used, the major and minor axes of each aperture if elliptical apertures are used, or any combination of the above. The number of apertures per unit area can further be defined using a concentric ring arrangement as illustrated in FIGS. 2 to 5, wherein the aperture density is dependent on the radial spacing of the concentric rings 30-35 and the concentric spacing of a set of circular apertures 21.
The development of an aperture design from a transmission function will generally involve constraints on aperture form. For example, if circular apertures are used the diameter of such apertures should be greater than the thickness of the transmission plate in order to ensure the efficiency of plasma flow through the transmission plate. Through experimental tests and modelling it has been found that an aperture diameter to plate thickness ratio of at least 3:1 provides a required transmission rate and prevents the destruction and recombination of active plasma species. The fraction of gas particles transmitted through a single circular hole of radius R in a plate of thickness h without contacting the wall has been calculated, and is shown in
Examples of possible transmission plate configurations designed using this method are illustrated in FIGS. 2 to 5. Each transmission plate comprises a circular disc 20 in which there are a plurality of circular apertures 21 that allow the passage of plasma from the plasma source 1 to the processing chamber 2. By removing certain apertures 23, 24, and 26, highlighted by the dark shading in FIGS. 3 to 5, within the design process described above the resultant processing rate can be altered from that achieved with no transmission plate 12 present.
The first three concentric aperture rings 30, 31, 32 have a first uniform radial spacing 40, i.e. the distance from the centre of the circular apertures in the first outer concentric ring 30 to the centre of the circular apertures in the second concentric ring 31 is equal to the distance from the centre of the circular apertures in the second concentric ring 31 to the centre of the circular apertures in the third concentric ring 32. The inner concentric aperture rings 33, 34, 35 and the central aperture 36 have a second uniform radial spacing 41, which is greater than the first uniform radial spacing 40. The angular spacing 42 of the circular apertures in the outer three concentric aperture rings 30, 31, 32 varies with the second concentric aperture ring 31 having the highest aperture density per concentric ring. The inner concentric aperture rings 33, 34, 35 also have a varied angular spacing, with the minimum angular spacing being greater than the largest angular spacing of the outer three concentric aperture rings 30, 31, 32, and the angular spacing of the circular apertures increasing as the radius of the concentric aperture rings decreases.
Typically, the circular disc 20 is manufactured from aluminium alloy no. 6082 with a thickness of between 3 to 5 millimetres. To allow a suitable transmission rate, the diameter of the circular apertures 21 is greater than the thickness of the plate, typically for the illustrated transmission plates the ratio of aperture diameter to plate thickness is greater than 3:1. Hence, using the aluminium alloy above, the diameter of the circular apertures is between 9 and 15 mm, with the diameter of all apertures preferably greater than 9 mm. However, an aperture diameter greater than 5 mm will begin to demonstrate favourable transmission characteristics.
The effect of each transmission plate configuration illustrated in FIGS. 2 to 5 when used, with the apparatus of
The use of a transmission plate as illustrated in
When the distribution of circular apertures 21 within the circular disc 20 of the transmission plate 12 is altered by removing the central aperture 23, as conceptually illustrated in
By further altering the distribution of circular apertures 21, for example by selecting which apertures should remain in the circular disc 20 and which should be excluded, the deposition rate across the wafer can be further modified. The aperture distribution shown in
As well as or instead of selecting certain apertures to include or exclude from the transmission plate 12, the diameter of certain apertures could also be modified. For example, if the circular apertures 21 are arranged in a series of concentric circles, similar to the concentric aperture ring 24, the diameter of each set of apertures in each concentric ring could reduce as the radius of each concentric ring reduces. This would then have a similar effect to the distribution shown in
While the above distributions and arrangements have been described in relation to the deposition of material on a wafer substrate 3, it is equally possible that the apparatus can be used in the etching or removal of material from a wafer substrate. In these cases, as is known in the art, the activated plasma 13 provides a means to activate and dissociate chemical precursors, which react to remove material upon the surface of the wafer substrate 3.
A three dimensional model of the arrangement of
As the transmission plate 12 is only connected to the external chamber by three connecting points 70, the transmission plate 12 can be easily installed or removed for a variety of operations. For example, new distributions can be applied or plates can be replaced if they begin to show degradation. To clean the transmission plate 12 in situ when depositing SiOx or SiNx films, a fluorine-containing plasma can be used, which will remove any deposits that have built up upon the plate.
As discussed previously, the transmission plate 12 may need to be changed when using different processing techniques or different chemical depositions. For example the transmission plate illustrated in
In empirical observations a total deposition thickness on the substrate of at least 5 microns and up to 20 microns has been demonstrated when using the transmission plate 12 without the film flaking from the transmission plate 12.
The presence of a transmission plate also makes it possible to tailor the steps of the surface process by choosing where to inject the different process gases. It is known that gases such as silanes must not be injected into the high-density plasma, i.e. into the plasma chamber 1, as these gases dissociate readily producing material that will adhere to the next surface they contact. The transmission plate 12 helps to limit the intrusion of such gases into the HDP region, keeping the plasma source region cleaner. Further, the injection of a noble gas above the plate will stream ions and excited species towards the substrate, while injection below the plate will serve to modify the diffusion of other species without adding so much extra ion bombardment. The noble gas injected above the transmission plate may also be the same noble gas injected with the gas mixture below the transmission plate. An example of the effect of this process is shown in
In summary, the present invention has been described in relation to a number of embodiments and provides numerous advantages over the prior art including:
Number | Date | Country | Kind |
---|---|---|---|
0616131.9 | Aug 2006 | GB | national |