The invention relates generally to minimally-invasive instruments and systems, such as manually or robotically steerable catheter instrument systems, and more particularly to systems and methods for mapping and displaying intra-body tissue compliance.
Robotic interventional systems and devices are well suited for use in performing minimally invasive medical procedures, as opposed to conventional techniques wherein the patient's body cavity is open to permit the surgeon's hands access to internal organs. Currently known minimally invasive procedures for the treatment of cardiac and other disease conditions use manually or robotically actuated instruments which may be inserted transcutaneously into body spaces such as the thorax or peritoneum, transcutaneously or percutaneously into lumens such as the blood vessels, through natural orifices and/or lumens such as the mouth and/or upper gastrointestinal tract, etc.
For example, many conventional minimally-invasive cardiac diagnostic and/or interventional techniques involve accessing the right atrium of the heart percutaneously with a catheter or catheter system by way of the inferior vena cava. When controlling an elongate instrument, such as a catheter, in any one of these applications, the physician operator can push on the proximal end of the catheter and attempt to feel the distal end make contact with pertinent tissue structures, such as the walls of the heart. Some experienced physicians attempt to determine or gauge the approximate force being applied to the distal end of a catheter due to contact with tissue structures or other objects, such as other instruments, prostheses, or the like, by interpreting the loads they tactically sense at the proximal end of the inserted catheter with their fingers and/or hands. Such an estimation of the force, however, is quite challenging and imprecise given the generally compliant nature of many minimally-invasive instruments, associated frictional loads, dynamic positioning of the instrument versus nearby tissue structures, and other factors.
The methods of detecting contact of the instrument tip with a body surface can be used in combination with localization techniques to generate a graphic, geometric map of a body structure, such as a body lumen or cavity. For example, U.S. Pat. No. 5,391,199, to Ben-Haim et al., describes that a geometric mapping of a body lumen or cavity can be performed using a manual catheter by sensing contact with a plurality of locations on the surface(s) of the lumen or cavity and using localization sensors to determine position coordinates of the instrument tip at each of the plurality of locations. This data is then used to construct a geometric map of the body lumen or cavity. U.S. Pat. No. 5,391,199, is hereby incorporated by reference herein in its entirety.
U.S. patent application Ser. No. 11/678,001, which is hereby incorporated by reference herein in its entirety, discloses robotically-navigated interventional systems including (and methods using) the capability to sense force between a distal end of a working instrument (e.g., an ablation catheter) carried in a working lumen of a robotically controlled guide instrument and the surface of an internal body cavity or lumen (referred to collectively as a “body space”). The system not only detects contact between the instrument and the surface, but also measures the magnitude of the force, also called the load. Such systems and methods can also be used to detect contact with tissue structures due to the change in the sensed force.
Embodiments of the present invention are directed to the use of a robotically-controlled instrument system for generating a geometric mapping of an area of internal body tissue (e.g., the wall of a heart chamber), which depicts or is otherwise is correlated to tissue compliance, or a characteristic related to the tissue compliance. In various embodiments, a graphic image or model of the area of body tissue can be generated and/or displayed, with regions of the area differentiated based upon the measured tissue compliance or a characteristic of the tissue that is determined based upon the measured tissue compliance. By way of non-limiting example, the tissue compliance may be used to determine tissue type, such as bone, soft tissue, myocardial wall, etc. In one embodiment, a graphically rendered image of the map depicts a geometric map of the tissue area (e.g., a chamber of the heart), with corresponding respective tissue types displayed in a different color, shade, or other demarcation as determined from their respective compliance.
In one embodiment, a robotically-controlled instrument system includes an elongate flexible guide instrument coupled to an instrument driver. The guide instrument defines a working lumen or channel through which an electrophysiology (e.g., mapping and/or ablation) catheter may be positioned through a proximal end opening of the guide instrument in communication with the working lumen. The catheter is inserted through the length of the guide instrument lumen, until a distal end of the catheter extends out of a distal opening of the guide instrument in communication with the lumen. The guide instrument is inserted into a patient's body (the catheter may be inserted into the guide instrument before or after it has been inserted into the body), with a bendable distal end portion of the guide instrument positioned in a selected anatomical workspace to be mapped (or for which a wall portion or other tissue structure is to be mapped). The distal end portion of the guide instrument is maneuvered within the workspace, with the distal end of the catheter periodically contacting a tissue structure or surface within or bordering the workspace. A force sensor or sensing apparatus is coupled to a proximal end of the catheter (i.e., proximal of the guide instrument), and senses a force (or “load”) met by the catheter when it comes into contact with the tissue wall or structure. In alternate embodiments, the force sensor may take on numerous different configurations and can be positioned at various locations along the catheter (e.g., built into the tip, or a strain gage provided in a wall of the catheter), such as a load sensor, pressure sensor or other suitable sensor located at or near the distal end of the guide catheter. The force sensor generates force signals responsive to the force applied to the distal end of the guide catheter when it contacts a tissue surface.
The instrument system further includes or is otherwise operatively coupled with a localization (or “position determining”) system for determining the relative position of the distal end of the catheter as it contacts a tissue surface or structure. The position determining system generates position signals which are responsive to the position of the catheter as it is moved to a plurality of locations on an area of body tissue. The position determining system may be any suitable system, including without limitation, localization systems such as those which use magnetic sensors and antenna, open loop or closed loop position systems, shape sensing system such as Bragg fiber optic systems, etc.
The position determining system and force sensor are operatively coupled to a suitable processor (e.g., a system controller or associated computer), a well as associated signal conditioning electronics (collectively, “computer assembly”), with is preferably coupled to a graphic display. The computer assembly is configured to receive and process the position data to generate a geometric map of a tissue surface or other structure based on the localization data provided by the position determining system. The computer assembly is also configured to receive and process the force signals and to calculate a relative compliance of the tissue being contacted by the distal end of the catheter at each of the contact locations. The computer assembly can then generate and display a geometric map correlated with the tissue compliance of the tissue at various regions of the area of tissue of interest.
The method of mapping an area of body tissue with the robotic instrument system is fairly straightforward. The guide instrument is introduced into a patient's body. Then, the distal end of the guide catheter is robotically maneuvered into contact with a plurality of locations on an area of body tissue at an interventional procedure site. The robotic instrument system may maneuver the distal end to the plurality of locations in an automated manner (e.g., moving around the heart chamber or other anatomical space and automatically collecting position data and tissue compliance data needed to render a map). Alternatively, a physician may drive the catheter by giving commands to the robotic instrument system to go to a particular location, and then to move the distal end of the guide catheter into contact with a plurality of locations on the body tissue. This may be with an organ such as the patient's heart or kidney, or other body lumen such as an artery, or any other body structure. As the distal end of the catheter is moved in to contact with each location on the body tissue, the force on the tip and the deflection of the tissue due to the force is sensed by the system in order to determine the tissue compliance of the tissue at each location. At substantially the same time, the position of each of the locations on the body tissue is also determined. This data is then used to generate a geometric map of the body tissue which is representative of the tissue compliance of the tissue. Further, the tissue compliance may be used to determine other tissue characteristics such as the type of tissue, condition of the tissue, or other characteristic. For example, one region of the tissue may be very elastic or squishy which may be indicative of soft tissue, while another region may be more firm, indicative of muscle tissue or bone. Then, the generated map can show a graphic image of the area of body tissue with the regions of different tissue characteristics demarcated, such as being shown in different shades, colors, cross-hatching, labels or other suitable graphic indication.
The map may then be used in planning and performing a surgical procedure (including diagnosis and treatment procedures), with the same robotic instrument system or other surgical instruments.
The drawings illustrate the design and utility of illustrated embodiments of the invention, in which similar elements are referred to by common reference numerals.
Embodiments of the present invention are directed to robotic instrument systems and methods of their use for creating a geometric map of an area of body tissue which displays an image of the area of body tissue with tissue compliance or related characteristics at various regions of the map superimposed thereon. One illustrative embodiment a robotic instrument system (32) according to the present invention is shown in
The robotic instrument system (32) includes an operator control station (2) located remotely from an operating table (22), and a robotic catheter assembly (10).
The control station (2) comprises a user interface (8) that is operatively connected to the robotic catheter assembly (10). A physician or other user (12) interacts with the user interface (8) to operate the robotic catheter assembly (10). The user interface (8) is connected to the robotic catheter assembly (10) via a cable (14) or the like, thereby providing one or more communication links capable of transferring signals between the operator control station (2) and the robotic catheter assembly (10). Alternatively, the user interface (8) may be located in a geographically remote location and communication is accomplished, at least in part, over a wide area network such as the Internet. Of course the user interface (8) may also be connected to the robotic catheter assembly (10) via a local area network or even wireless network that is not located at a geographically remote location.
The control station (2) also comprises a display (4) that is used to display various aspects of the robotic instrument system (2). For example, an image of the working instrument and guide instrument (described in further detail below) may be displayed in real time on the display (4) to provide the physician (12) with the current orientation of the various devices as they are positioned, for example, within a body lumen or region of interest. The control station (2) further comprises a computer assembly (6), which may comprise a personal computer or other type of computer work station for performing the data processing operations disclosed herein.
The robotic catheter assembly (10) is coupled to the operating table (22) by an instrument driver mounting brace (26). The robotic catheter assembly (10) comprises a robotic instrument driver (16), a working catheter (18), and a guide catheter (30) (also referred to herein as an instrument guide catheter, guide catheter, robotic guide instrument, robotic guide catheter, or the like). The instrument driver mounting brace (26) of the depicted embodiment is a relatively simple, arcuate-shaped structural member configured to position the instrument driver (16) above a patient (not shown) lying on the table (22).
Referring further to
The guide catheter (30) is mounted via a base (24) carrying the ditherer (50). The ditherer (50) is coupled to the working catheter (18) that is dithered back-and-forth relative to the guide catheter (30). The guide catheter (30) is coupled to a housing (42) that mechanically and electrically couples the guide catheter (30) to a robotically-controlled manipulator. For example, the guide catheter (30) may be coupled to a robotically controlled instrument driver such as, for instance, the DA VINCI surgical system sold by Intuitive Surgical, Inc. of Sunnyvale, Calif.
Referring back to
The system (32) further comprises a position determining system (70) for determining the position of the distal end (20) of the working catheter (18). The position determining system (70) may be any suitable localization system, such as the electromagnetic localization sensing systems available from Biosense, Inc., Ascension Technologies, or St. Jude Medical, which are capable of sensing the locations of a plurality of sensors (72) located on the catheter (18). The position determining system (70) is in operable communication with a computer assembly (6) of the operator control station (2) through the communication link (14). The computer assembly (6) may comprise conditioning electronics for conditioning the force signals from the force sensor system (34) and the position signals from the position determining system (70).
Turning now to
In the embodiment illustrated in
By “dithering” the working catheter (18) with respect to the guide catheter (30), the repeated cyclic motion may be utilized to overcome frictional challenges normally complicating the measurement, from a proximal location, of loads at the distal end (20) of the working catheter (18) when in contact with a surface. In one embodiment, the dithering motion may be applied on a proximal region of the working catheter (18) as is illustrated in
To release this relatively tight coupling and facilitate proximal measurement of forces applied to the distal end (22) of the working catheter (18), dithering motion may be used to effectively break loose this frictional coupling. In one embodiment, such as the one illustrated in
While the embodiment illustrated in
The issues presented by the frictional forces and other complexities associated with a force sensor located at the proximal end (22) of the working catheter (18) may be eliminated by locating the force sensor at or near the distal end (20) of the working catheter (18).
The working catheter (18) of
As briefly discussed above, the computer assembly (6) is configured to receive and process the force signals from the force sensor system (34) and the position signals from the position determining system (70). It should be understood that the computer assembly (6) may comprise one or more computers, signal conditioning electronics, and other displays and peripherals. The computer assembly (6) is also configured to process the force signals and position signals to generate a geometric map of an area of body tissue correlated to the tissue compliance of the tissue or other characteristic of the body tissue related to its tissue compliance. As an example, as the working catheter (18) is robotically maneuvered within a patient's body at an area of interest, the distal end (20) is moved into contact with the plurality of locations on the area of body tissue. The computer assembly (6) receives the position signals and force signals and determines the force on the tip, the deflection of the tissue and the position of the location on the area of body tissue at each of the plurality of locations. The computer assembly (6) is further configured to generate a geometric map of the area of body tissue using the position determined for each location, and to also correlate the tissue compliance at each location and superimpose the tissue compliance on the geometric map. Regions of different compliance may be superimposed on the mapping in different colors, shades or other suitable representation. The computer assembly (6) may also be configured to relate the measured compliance of the different regions of the area of tissue to other tissue characteristics, such as tissue type, tissue condition (necrosed, healthy, diseased, etc.) or other characteristic of interest.
The robotic instrument system (32) may maneuver the distal end to the plurality of locations in an automated manner in response to a programmed path or target (e.g., moving around the heart chamber or other anatomical space and automatically collecting position data and tissue compliance data needed to render a map). Alternatively, a physician may drive the working catheter (18) by giving commands to the robotic instrument system (32) to move the working catheter (18) to a particular location, and then to move the distal end (20) of the working catheter (18) into contact with a plurality of locations.
As an example, the human heart is composed of three primary types of tissue: the myocardium which is the muscular tissue of the heart; the endocardium which is the inner lining of the heart; and the epicardium which is a connective tissue layer around the heart. These tissues have inherently differing elastic properties, e.g. the myocardium tissue is firmer than the endocardium tissue. Accordingly, to map a patient's heart, the working catheter (18) can be advanced into the heart of a patient, the distal end (20) is then contacted with a plurality of locations within the heart, and a map can be generated showing an image of the different structures of the heart.
While multiple embodiments and variations of the many aspects of the invention have been disclosed and described herein, such disclosure is provided for purposes of illustration only. Many combinations and permutations of the disclosed system are useful in minimally invasive surgery, and the system is configured to be flexible. Thus, it should be understood that the invention generally, as well as the specific embodiments described herein, are not limited to the particular forms or methods disclosed, but also cover all modifications, equivalents and alternatives falling within the scope of the appended claims.
The present application claims the benefit under 35 U.S.C. § 119 to U.S. Provisional Patent Application Ser. No. 60/926,020, filed on Apr. 23, 2007. The foregoing application is hereby incorporated by reference into the present application in its entirety.
Number | Date | Country | |
---|---|---|---|
60926020 | Apr 2007 | US |