Systems and methods for recommending rules for routing calls

Information

  • Patent Grant
  • 12271848
  • Patent Number
    12,271,848
  • Date Filed
    Tuesday, October 29, 2019
    5 years ago
  • Date Issued
    Tuesday, April 8, 2025
    a month ago
Abstract
In one embodiment, an entity such as a company may desire to use agents associated with a contact center to handle calls for the company. The company may identify customer categories for the calls such as technical support and billing. Rather than have the company create the rules that are used to select agents to handle calls for each category, the contact center may use historical call data, such as performance metrics and customer satisfaction survey information, to recommend rules to the company for each category. The recommended rules may also be based on the specific industry, field, or sector associated with the company.
Description
BACKGROUND

In a contact center calls are received and routed to available agents. One common way to route calls to agents, is to place agents in different queues that each correspond to a different call topic or subject matter. For example, agents that that are to handle technical support calls may be placed in the technical support queue and agents that are to handle billing questions may be placed in the billing queue. When a call is received with a billing question the next agent in the billing queue is selected to handle the call.


However, there are drawbacks associated with this approach. In particular, using agent queues may result in an inefficient use of agent resources. For example, a contact center may receive many billing related calls and therefore the billing queue may be full. However, there may be many agents in the technical support queue who would be able to handle the calls, but because they are not in the billing queue they are idle.


SUMMARY

In one embodiment, an entity such as a company may desire to use agents associated with a contact center to handle calls for the company. The company may identify customer categories for the calls such as technical support and billing. Rather than have the company create the rules that are used to select agents to handle calls for each category, the contact center may use historical call data, such as historical performance metrics and historical customer satisfaction survey information, to recommend rules to the company for each customer category. The recommended rules may also be based on the specific industry, field, or sector associated with the company.


Other systems, methods, features and/or advantages will be or may become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features and/or advantages be included within this description and be protected by the accompanying claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The components in the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding parts throughout the several views.



FIG. 1 is an illustration of an example system architecture;



FIG. 2 is an illustration of an example agent routing platform;



FIG. 3 is an illustration of an example method for recommending rules for routing calls to agents for a plurality of customer categories;



FIG. 4 is an illustration of an example method for recommending a rule for routing calls to agents; and



FIG. 5 illustrates an example computing device.





DETAILED DESCRIPTION

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure. While implementations will be described within a cloud-based contact center, it will become evident to those skilled in the art that the implementations are not limited thereto.



FIG. 1 is an example system architecture 100, and illustrates example components, functional capabilities and optional modules that may be included in a cloud-based contact center infrastructure solution. Customers 110 interact with a contact center 150 using voice, email, text, and web interfaces in order to communicate with agent(s) 120 through a network 130 and one or more of text or multimedia channels. The agent(s) 120 may be remote from the contact center 150 and handle communications with customers 110 on behalf of an enterprise. The agent(s) 120 may utilize devices, such as but not limited to, work stations, desktop computers, laptops, telephones, a mobile smartphone and/or a tablet. Similarly, customers 110 may communicate using a plurality of devices, including but not limited to, a telephone, a mobile smartphone, a tablet, a laptop, a desktop computer, or other. For example, telephone communication may traverse networks such as a public switched telephone networks (PSTN), Voice over Internet Protocol (VoIP) telephony (via the Internet), a Wide Area Network (WAN) or a Large Area Network. The network types are provided by way of example and are not intended to limit types of networks used for communications.


Agent(s) 120 and customers 110 may communicate with each other and with other services over the network 130. For example, a customer calling on telephone handset may connect through the PSTN and terminate on a private branch exchange (PBX). A video call originating from a tablet may connect through the network 130 terminate on the media server. A smartphone may connect via the WAN and terminate on an interactive voice response (IVR)/intelligent virtual agent (IVA) components. IVR are self-service voice tools that automate the handling of incoming and outgoing calls. Advanced IVRs use speech recognition technology to enable customers to interact with them by speaking instead of pushing buttons on their phones. IVR applications may be used to collect data, schedule callbacks and transfer calls to live agents. IVA systems are more advanced and utilize artificial intelligence (AI), machine learning (ML), advanced speech technologies (e.g., natural language understanding (NLU)/natural language processing (NLP)/natural language generation (NLG)) to simulate live and unstructured cognitive conversations for voice, text and digital interactions. In yet another example, Social media, email, SMS/MMS, IM may communicate with their counterpart's application (not shown) within the contact center 150.


The contact center 150 itself be in a single location or may be cloud-based and distributed over a plurality of locations. The contact center 150 may include servers, databases, and other components. In particular, the contact center 150 may include, but is not limited to, a routing server, a SIP server, an outbound server, a reporting/dashboard server, automated call distribution (ACD), a computer telephony integration server (CTI), an email server, an IM server, a social server, a SMS server, and one or more databases for routing, historical information and campaigns.


The ACD is used by inbound, outbound and blended contact centers to manage the flow of interactions by routing and queuing them to the most appropriate agent. Within the CTI, software connects the ACD to a servicing application (e.g., customer service, CRM, sales, collections, etc.), and looks up or records information about the caller. CTI may display a customer's account information on the agent desktop when an interaction is delivered. Campaign management may be performed by an application to design, schedule, execute and manage outbound campaigns. Campaign management systems are also used to analyze campaign effectiveness.


For inbound SIP messages, the routing server may use statistical data from reporting/dashboard information and a routing database to the route SIP request message. A response may be sent to the media server directing it to route the interaction to a target agent 120. The routing database may include: customer relationship management (CRM) data; data pertaining to one or more social networks (including, but not limited to network graphs capturing social relationships within relevant social networks, or media updates made by members of relevant social networks); agent skills data; data extracted from third party data sources including cloud-based data sources such as CRM; or any other data that may be useful in making routing decisions.


The integration of real-time and non-real-time communication services may be performed by unified communications (UC)/presence sever. Real-time communication services include Internet Protocol (IP) telephony, call control, instant messaging (IM)/chat, presence information, real-time video and data sharing. Non-real-time applications include voicemail, email, SMS and fax services. The communications services are delivered over a variety of communications devices, including IP phones, personal computers (PCs), smartphones and tablets. Presence provides real-time status information about the availability of each person in the network, as well as their preferred method of communication (e.g., phone, email, chat and video).


Recording applications may be used to capture and play back audio and screen interactions between customers and agents. Recording systems should capture everything that happens during interactions and what agents do on their desktops. Surveying tools may provide the ability to create and deploy post-interaction customer feedback surveys in voice and digital channels. Typically, the IVR/IVA development environment is leveraged for survey development and deployment rules. Reporting/dashboards are tools used to track and manage the performance of agents, teams, departments, systems and processes within the contact center. Reports are presented in narrative, graphical or tabular formats. Reports can be created on a historical or real-time basis, depending on the data collected by the contact center applications. Dashboards typically include widgets, gadgets, gauges, meters, switches, charts and graphs that allow role-based monitoring of agent and contact center performance. Unified messaging (UM) applications include various messaging and communications media (voicemail, email, SMS, fax, video, etc.) stored in a common repository and accessed by users via multiple devices through a single unified interface.


In order to improve the routing of calls to agents 120, the calls (or other communications) received by the contact center 150 may be routed to agents 120 by an agent routing platform 140. While shown in FIG. 1 as separate from the contact center 150, depending on the embodiment the agent routing platform 140 may be part of the contact center 150.


The agent routing platform 140 may route calls to agents 120 based on attributes associated with each agent 120, and one or more rules. As used herein an attribute may be a skill or characteristic associated with an agent 120. Examples of attributes may include language attributes (e.g., what languages that the agent speaks), work-related attributes (e.g., the agent 120 is trained to answer calls related to technical support, or billing, returns, shipping, etc.), and attributes representing any accolades or achievements that the agent 120 may have received (e.g., has the agent 120 been rewarded for providing excellent service). In some embodiments, each attribute may be associated with a proficiency score.


A rule for routing a call may specify a plurality of required attributes and may provide a minimum proficiency score for one or more of the specified attributes. For example, a sample rule may specify that an agent 120 have an attribute of “technical support” and an attribute of “speaks Chinese” with a proficiency level greater than or equal to four. A call associated with such a rule may only be routed to an agent 120 that has the attribute “technical support” and speaks Chinese with a proficiency level that is greater than or equal to four.


In some embodiments, the agent routing platform 140 may associate rules with customer categories and may route calls according to the customer category associated with a call or customer. Examples of customer categories may include the language spoken by a customer, the country associated with a customer, the type of service requested by the customer (e.g., tech support or billing), and a priority associated with the customer (e.g., is the customer a VIP?).



FIG. 2 is an illustration of an example agent routing platform 140. As shown the agent routing platform 140 includes various modules including a category engine 220, a routing engine 230, and a recommendation engine 240. More or fewer modules may be supported by the agent routing platform 140. Depending on the embodiment, each of the agent routing platform 140, category engine 220, routing engine 230, and recommendation engine 240 may be implemented together or separately by one or more general purpose computing devices such as the computing system 500 illustrated with respect to FIG. 5.


The category engine 220 may receive calls from customers 110 for a particular entity or company and may associate the call with a customer category 215. As used herein a customer category may be a set of characteristics that are associated with a customer 110 of a call. The characteristics may include country of origin (i.e., what country is the call coming from), language (i.e., what language is spoken by the customer 110), call topic or purpose (i.e., what type of help is the customer seeking), and customer priority 110 (e.g., is the customer a VIP or does the customer pay for support). Other types of characteristics may be supported.


Depending on the embodiment, the customer engine 220 may determine the customer category for a call using call information indicating the country of origin associated with the call and other call routing information provided by the contact center 150. The category engine 220 may further determine the customer category using IVR information associated with the call. For example, the customer may have selected an option indicating the language that they speak (e.g., English or Spanish) and the type of information that they are seeking (e.g., tech support vs. billing). Depending on the embodiment, the received call may include a customer number or identifier provided by the contact center 150 that may be used to determine the priority or VIP status of the caller and/or the customer category.


The routing engine 230 may, for each customer category 215, route calls associated with the customer category 215 to one or more agents 120 based on one or more rules 225 associated with the customer category 215 and one or more attributes associated with each agent 120. The routing engine 230 may select a call for a customer category 215 and may retrieve one or more rules 225 associated with the customer category 215. The routing engine 230 may retrieve the one or more rules 225 from a rule storage associated with the agent routing platform 140 and/or the contact center 150. Depending on the embodiment, if no rules 225 are associated with the customer category, the routing engine 230 may route the call to any available agent 120. Alternatively, the routing engine 230 may select an agent 120 using a default or catchall rule 225. The default rule 225 may be set by a user or administrator, for example.


After retrieving the rules 225, the routing engine 230 may determine agents 120 that have attributes 235 that satisfy the rules 225. The routing engine 230 may retrieve the attributes 235 associated with each available agent 120 (i.e., an agent 120 that is not currently on a call or otherwise unavailable) and may determine available agents 120 that satisfy the rules 225. The routing engine 130 may then route the call to one of the determined agents 120.


The routing engine 230 may continuously select calls and may route the selected calls to agents 120 that have attributes 235 that satisfy the rules 225 associated with the categories 215. In some implementations, each category 215 may have an instance of the routing engine 230 that routes calls to agents 120 based on the rules 225 associated with that category 215.


The recommendation engine 240 may monitor one or more performance metrics 245 associated with each customer category 215 or the entire contact center 150. A performance metric 245 may be any metric that can be used to measure the performance or overall success of routing calls to agents 120 and/or maintaining call quality. Example performance metrics 245 may include average handling time (i.e., the average amount of time that it takes for a received call to be completed by an agent 120), average wait time (i.e., the average amount of time that a call waits to be received by an agent 120), service level, abandon rate (i.e., the number of calls that are abandoned before they are handled by an agent 120), and average customer satisfaction (i.e., an average based on responses to customer satisfaction surveys). Other performance metrics 245 may be supported.


In some embodiments, the performance metrics 245 may be based on a computer analysis of the calls between the customers 110 and the agents 120. For example, a model trained on a variety of previous agent 120 and customer 110 calls (e.g., trained using the audio data or transcripts of the calls) may generate scores or ratings for each call of the customer category 215 after it is handled by an agent 120.


In some embodiments, the recommendation engine 240 may use the performance metrics 145 to generate historical performance data 255. The historical performance data 255 may include data collected about each category 215 or entity over time including, but not limited to, the number of calls associated with the category 215, the agents 120 that handled calls for the category 215 including their associated attributes 235 and proficiency levels, rules 225 used to route calls for the category 215, and the various performance metrics 245 that were observed for the category 215. The performance metrics 245 may include performance metrics 245 related to the performance of calls associated with the category 215 (e.g., average hold time and abandonment rate) and performance metrics 245 related to the agents 120 that handled calls for the category 215 (e.g., customer satisfaction surveys).


Depending on the embodiment, the historical performance data 255 may be used to train a model that can predict the performance metrics 245 based on criteria such as the available agents 120 and associated attributes 235, the rules 225, a sector or business, and a current call volume received by the contact center 150, for example.


The recommendation engine 240 may further be configured to recommend rules 225 to associate with a customer category 215 based on historical performance data 225. For example, an entity, such as a corporation or company, may begin using the contact center 150 to handle calls for the entity. The entity may desire to have customer categories 215 corresponding to different business divisions (e.g., technical support and billing), different languages, and different counties of origin. The entity may further desire to have customer categories 215 corresponding to different languages or countries of its customers 110.


After the entity creates or selects its customer categories 215, the recommendation engine 240 may use the historical performance data 255 to recommend, for each customer category 215, a rule 225 that may be used by the entity to select agents 120 to handle calls associated with the customer category. As described above, the historical performance data 255 may include the rules 225 (including attributes 235 and proficiency levels) used for various customer categories 215 of the contact center 150 as well as the measured performance metrics 245 for the customer categories 215 over time.


In some implementations, the recommendation engine 240, when determining a rule 225 to recommend for a customer category, may consider the historical performance data 255 associated with similar customer categories. In addition, the recommendation engine 240 may determine the sector (e.g., business type or industry) associated with the entity. The recommendation engine 240 may then consider the historical performance data 255 associated with customer categories 215 that are associated with other entities in the same general sector.


In some implementations, the recommendation engine 240 may use the model trained using the historical performance data 245 to recommend a rule 225 for each customer category 215 proposed by the entity. The model may be used to predict the performance metrics 235 for a category 215, and associated rules 225, based on factors such as the sector associated with the entity, and the number of agents 120 assigned to the contact center 150. The recommendation engine 240 may then recommend a rule 255 for a customer category 215 that has the highest predicted performance metrics 235 for the customer category 215 and sector.


For example, when an entity determines to use a contact center 150 to handle calls for the entity, the recommendation engine 240 may present an administrator associated with the entity with a GUI through which the administrator may create customer categories. Depending on the embodiment, the recommendation engine 240 may initially recommend customer categories 215 based on the customer categories 215 used by other entities in the same or similar sector. Thus, if the entity is a clothing retailer, the recommendation engine 240 may recommend similar customer categories 215 as used by other entities that are also retailers.


After selecting one or more of the customer categories in the GUI (or after creating their own customer categories), the recommendation engine 240 may use the model and/or the historical performance data 255 to recommend a rule 225 for each of the customer categories 215. Continuing the above example, where the entity is a retailer and the customer categories are “returns” and “orders”, the recommendation engine 240 may retrieve historical performance data 255 associated other retail entities and customer categories that are similar to “returns” and “orders”. The recommendation engine 240 may then use the historical performance data 255 to determine rules 225, and combinations of attributes 235, that were associated with high performance metrics 245 for customer categories similar to “returns” and “orders”.


The recommendation engine 240 may present the determined rule 255 for each customer category 215 to the administrator in the GUI. Each determined rule 255 may be presented with its associated attributes 235 and predicted performance metrics 245. The administrator may then accept each of the presented rules 225 or may modify the attributes 235 of a recommended rule 225 using tools provided in the GUI. If the administrator changes an attribute 235 of a rule 225, the recommendation engine 240 may display re-predicted performance metrics 245 for the rule 225 based on the changed attribute 235. The administrator may then use the GUI to associate the presented, or modified, rules 225 with the customer category 215. The agent routing platform 140 may then begin routing calls to agents 120 for the entity based on the rules 225 associated with the customer categories 215.



FIG. 3 is an illustration of an example method 300 for determining a rule 225 for a plurality of customer categories for a contact center 150 based on historical performance data 255. The method 300 may be implemented by the agent routing platform 140.


At 310, a plurality of customer categories for a contact center is received. The customer categories may be received by the recommendation engine 240 of the agent routing platform 140. The contact center 150 may be associated with an entity such as a company or corporation.


At 315, a sector associated with the contact center is determined. The sector may be determined by the recommendation engine 240. The sector may be the industry or field associated with the entity that is using the contact center 150 to handle calls.


At 320, for each customer category, a rule for selecting agents based on the determined sector is determined. The rule 225 for selecting agents 120 for a contact center 150 may be determined by the recommendation engine 240. In some implementations, the determination may be a recommendation that is based on historical performance data 255 that was collected about other customer categories 215 and the rules 225 that were used to route calls to agents 120 for those customer categories 215. The historical performance data 255 may be limited to historical performance data 255 that was collected about customer categories 215 of entities that are associated with the same, or similar, sector as the determined sector.


At 325, for each customer category, the determined rule is associated with the customer category. The determined rule 225 may be associated with the customer category 215 by the category engine 220 of the agent routing platform 140.


At 330, a call is received. The call may be received by the routing engine 230 from a customer 110. The customer 110 may have called the contact center 150.


At 335, a customer category associated with the call is determined. The customer category 215 may be determined by the routing engine 230. The customer category may be determined by information associated with the call and/or customer 110 such as country of origin, language spoken, and purpose of call, for example.


At 340, an agent of a plurality of agents is selected to handle the call using the rule associated with the customer category. The agent 120 may be selected by the routing engine 230 using the rule 225 associated with the customer category 215.


At 345, the call is routed to the selected agent. The call may be routed to the agent 120 by the routing engine 230.



FIG. 4 is an illustration of an example method 400 for determining a rule 225 for a customer category for a contact center based on historical performance data 255. The method 400 may be implemented by the agent routing platform 140.


At 410, a customer category for a contact center is received. The customer category 215 may be received by the recommendation engine 240 through a GUI, for example. The customer category 215 may be provided by an entity that will use the contact center to handle calls for the entity. The entity may be a company or business, for example. The entity may be associated with a particular industry or sector of the economy such as clothing, computer or technology, healthcare, etc.


At 415, historical performance data associated with the customer category is retrieved. The historical performance data 255 may be a collection of performance metrics 245 recorded over time for the received customer category 215. The historical performance data 255 may have been collected from different entities than the entity that provided the customer category 215 through the GUI. The historical performance data 255 may further include the various rules 235 and agents 120 that were used when the various performance metrics 245 were recorded.


At 420, a rule for selecting agents based on the retrieved historical performance data is determined. The rule 235 may be determined by the recommendation engine 240. The recommendation engine 240 may use the historical performance data 255 to select or create a rule 225 that will likely to be successful for the entity with respect to the customer category 215. The rule 225 may be used by the routing engine 230 to select agents 120 to handle calls associated with the customer category 215. Each rule 225 may include a plurality of attributes 235. The recommendation engine 240 may use the historical performance engine 255 to select the attributes 235 that are most associated with performance metrics 245 that satisfy or exceed relayed performance metric thresholds. The recommendation engine 240 may further consider information such as the number of agents 120 that are associated with the contact center 150 and/or the entity.


Depending on the embodiment, the recommendation engine 240 may use the historical performance data 255 to train a model that can predict the performance metrics 245 for rules 225 based on factors such as the attributes 235 associated with the rules 255, the attributes 235 associated with each agent 120, the number of agents 120, and the associated sector. The recommendation engine 230 may then use the model to recommend or determine a rule 225 for the entity.


At 425, the determined rule is presented. The determined rule 225 may be presented to the entity in the GUI.


At 430, an instruction to use the determined rule is received. The instruction may be received by the recommendation engine 240 from the entity through the GUI.


At 435, the determined rule is associated with the customer category. The determined rule 225 may be associated with the customer category 215 by the category engine 220 of the agent routing platform 140.



FIG. 5 shows an exemplary computing environment in which example embodiments and aspects may be implemented. The computing system environment is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality.


Numerous other general purpose or special purpose computing system environments or configurations may be used. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use include, but are not limited to, personal computers, servers, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, network personal computers (PCs), minicomputers, mainframe computers, embedded systems, distributed computing environments that include any of the above systems or devices, and the like.


Computer-executable instructions, such as program modules, being executed by a computer may be used. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. Distributed computing environments may be used where tasks are performed by remote processing devices that are linked through a communications network or other data transmission medium. In a distributed computing environment, program modules and other data may be located in both local and remote computer storage media including memory storage devices.


With reference to FIG. 5, an exemplary system for implementing aspects described herein includes a computing device, such as computing device 500. In its most basic configuration, computing device 500 typically includes at least one processing unit 502 and memory 504. Depending on the exact configuration and type of computing device, memory 504 may be volatile (such as random access memory (RAM)), non-volatile (such as read-only memory (ROM), flash memory, etc.), or some combination of the two. This most basic configuration is illustrated in FIG. 5 by dashed line 506.


Computing device 500 may have additional features/functionality. For example, computing device 500 may include additional storage (removable and/or non-removable) including, but not limited to, magnetic or optical disks or tape. Such additional storage is illustrated in FIG. 5 by removable storage 508 and non-removable storage 510.


Computing device 500 typically includes a variety of tangible computer readable media. Computer readable media can be any available tangible media that can be accessed by device 500 and includes both volatile and non-volatile media, removable and non-removable media.


Tangible computer storage media include volatile and non-volatile, and removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Memory 504, removable storage 508, and non-removable storage 510 are all examples of computer storage media. Tangible computer storage media include, but are not limited to, RAM, ROM, electrically erasable program read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computing device 500. Any such computer storage media may be part of computing device 500.


Computing device 500 may contain communications connection(s) 512 that allow the device to communicate with other devices. Computing device 500 may also have input device(s) 514 such as a keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s) 516 such as a display, speakers, printer, etc. may also be included. All these devices are well known in the art and need not be discussed at length here.


It should be understood that the various techniques described herein may be implemented in connection with hardware or software or, where appropriate, with a combination of both. Thus, the methods and apparatus of the presently disclosed subject matter, or certain aspects or portions thereof, may take the form of program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other machine-readable storage medium wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the presently disclosed subject matter. In the case of program code execution on programmable computers, the computing device generally includes a processor, a storage medium readable by the processor (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. One or more programs may implement or utilize the processes described in connection with the presently disclosed subject matter, e.g., through the use of an application programming interface (API), reusable controls, or the like. Such programs may be implemented in a high level procedural or object-oriented programming language to communicate with a computer system. However, the program(s) can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language and it may be combined with hardware implementations.


Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims
  • 1. A method for associating communication routing rules with customer categories, the communication routing rules being used in a contact center to handle communications for an entity that is using the contact center to manage communications, the method comprising: receiving a plurality of customer categories for a contact center by a computing device;determining, by a computing device, a business sector associated with the entity that is using the contact center to manage communications;for each customer category of the plurality of customer categories, a computing device determining a specific communication routing rule for selecting agents of a plurality of agents to handle communications associated with the customer category based on historical performance data associated with other entities in the same business sector;for each customer category, a computing device recommending the specific communication routing rule for the customer category;for each customer category receiving an instruction to use the specific communication routing rule for the customer category in response to the recommending the specific communication routing rule; andfor each customer category, associating the specific communication routing rule with the customer category in a memory device of an agent routing platform to thereby apply the specific communication routing rule for routing communications in the customer category.
  • 2. The method of claim 1, further comprising: receiving a communication;determining a customer category associated with the communication;selecting an agent of the plurality of agents to handle the communication using the specific communication routing rule associated with the customer category; androuting the communication to the selected agent.
  • 3. The method of claim 2, wherein the customer category is determined based one or more of a language spoken by a customer associated with the call, a country associated with the customer, and a priority associated with the customer.
  • 4. The method of claim 1, wherein determining the specific communication routing rule for selecting agents of a plurality of agents to handle calls associated with the customer category based on the determined business sector comprises: retrieving historical performance data associated with the business sector and customer category.
  • 5. The method of claim 1, wherein the specific communication routing rule comprises a plurality of attributes.
  • 6. The method of claim 1, further comprising determining the plurality of customer categories based on the business sector.
  • 7. A system for associating communication routing rules with customer categories, the communication routing rules being used in a contact center to handle communications for an entity that is using the contact center to manage communications, the system comprising: at least one processor; anda non-transitory computer readable medium comprising instructions that, when executed by the at least one processor, cause the system to: receive a plurality of customer categories for a contact center;determine a business sector associated with he the entity that is using the contact center to manage communications;for each customer category of the plurality of customer categories, determine a specific communication routing rule for selecting agents of a plurality of agents to handle communications associated with the customer category based on historical performance data associated with other entities in the same business sectorfor each customer category, recommend the specific communication routing rule for the customer category;for each customer category receive an instruction to use the specific communication routing rule for the customer category in response to the recommending the specific communication routing rule; andfor each customer category, associate the specific communication routing rule with the customer category in a memory device of an agent routing platform to thereby apply the specific communication routing rule for routing communications in the customer category.
  • 8. The system of claim 7, further comprising instructions that, when executed by the at least one processor, cause the system to: receive a communication;determine a customer category associated with the communication;select an agent of the plurality of agents to handle the communication using the specific communication routing rule associated with the customer category; androute the communication to the selected agent.
  • 9. The system of claim 8, wherein the customer category is determined based one or more of a language spoken by a customer associated with the call, a country associated with the customer, and a priority associated with the customer.
  • 10. The system of claim 7, wherein determining the rule for selecting agents of a plurality of agents to handle communications associated with the customer category based on the determined business sector comprises: retrieving historical performance data associated with the business sector and customer category.
  • 11. The system of claim 7, wherein the specific communication routing rule comprises a plurality of attributes.
  • 12. The system of claim 7, further comprising determining the plurality of customer categories based on the business sector.
  • 13. A non-transitory computer-readable medium comprising instructions that, when executed by at least one processor, cause a computer system to: receive a plurality of customer categories for a contact center;determine a business sector associated with an entity that is using the contact center to manage communications;for each customer category of the plurality of customer categories, determine a specific communication routing rule for selecting agents of a plurality of agents to handle communications associated with the customer category based on historical performance data associated with other entities in the determined business sector;for each customer category, recommend the specific communication routing rule for the customer category;for each customer category receive an instruction to use the specific communication routing rule for the customer category in response to the recommending the specific communication routing rule; andfor each customer category of the plurality of customer categories, associate the specific communication routing rule with the customer category in a memory device of an agent routing platform to thereby apply the specific communication routing rule for routing communications in the customer category.
  • 14. The non-transitory computer-readable medium of claim 13, further comprising instructions that, when executed by the at least one processor, cause the computer system to: receive a communication;determine a customer category associated with the communication;select an agent of the plurality of agents to handle the communication using the specific communication routing rule associated with the customer category; androute the communication to the selected agent.
  • 15. The non-transitory computer-readable medium of claim 14, wherein the customer category is determined based one or more of a language spoken by a customer associated with the communication, a country associated with the customer, and a priority associated with the customer.
  • 16. The non-transitory computer-readable medium of claim 13, wherein determining the rule for selecting agents of a plurality of agents to handle communications associated with the customer category based on the determined business sector comprises: retrieving historical performance data associated with the business sector and customer category.
  • 17. The non-transitory computer-readable medium of claim 13, wherein the specific communication routing rule comprises a plurality of attributes.
US Referenced Citations (468)
Number Name Date Kind
5862203 Wulkan et al. Jan 1999 A
5970124 Csaszar et al. Oct 1999 A
6100891 Thorne Aug 2000 A
6128415 Hultgren et al. Oct 2000 A
6163607 Bogart et al. Dec 2000 A
6230197 Beck et al. May 2001 B1
6263057 Silverman Jul 2001 B1
6411687 Bohacek et al. Jun 2002 B1
6587831 O'Brien Jul 2003 B1
6639982 Stuart et al. Oct 2003 B1
6754333 Flockhart et al. Jun 2004 B1
6970829 Leamon Nov 2005 B1
7023979 Wu et al. Apr 2006 B1
7076047 Brennan et al. Jul 2006 B1
7110525 Heller et al. Sep 2006 B1
7209475 Shaffer et al. Apr 2007 B1
7274787 Schoeneberger Sep 2007 B1
7343406 Buonanno et al. Mar 2008 B1
7372952 Wu et al. May 2008 B1
7409336 Pak et al. Aug 2008 B2
7426268 Walker et al. Sep 2008 B2
7466334 Baba Dec 2008 B1
7537154 Ramachandran May 2009 B2
7634422 Andre et al. Dec 2009 B1
7657263 Chahrouri Feb 2010 B1
7672845 Beranek et al. Mar 2010 B2
7676034 Wu et al. Mar 2010 B1
7698163 Reed et al. Apr 2010 B2
7752159 Nelken et al. Jul 2010 B2
7774790 Jirman et al. Aug 2010 B1
7788286 Nourbakhsh et al. Aug 2010 B2
7853006 Fama et al. Dec 2010 B1
7864946 Fama et al. Jan 2011 B1
7869998 Di et al. Jan 2011 B1
7949123 Flockhart et al. May 2011 B1
7953219 Freedman et al. May 2011 B2
7966369 Briere et al. Jun 2011 B1
8060394 Woodings et al. Nov 2011 B2
8073129 Kalavar Dec 2011 B1
8116446 Kalavar Feb 2012 B1
8135125 Sidhu et al. Mar 2012 B2
8160233 Keren et al. Apr 2012 B2
8223951 Edelhaus et al. Jul 2012 B1
8229761 Backhaus et al. Jul 2012 B2
8243896 Rae Aug 2012 B1
8300798 Wu et al. Oct 2012 B1
8369338 Peng et al. Feb 2013 B1
8370155 Byrd et al. Feb 2013 B2
8391466 Noble, Jr. Mar 2013 B1
8447279 Peng et al. May 2013 B1
8488769 Noble et al. Jul 2013 B1
8526576 Deich Sep 2013 B1
8583466 Margulies et al. Nov 2013 B2
8594306 Laredo et al. Nov 2013 B2
8635226 Chang et al. Jan 2014 B2
8671020 Morrison et al. Mar 2014 B1
8688557 Rose et al. Apr 2014 B2
8738739 Makar et al. May 2014 B2
8767948 Riahi et al. Jul 2014 B1
8811597 Hackbarth et al. Aug 2014 B1
8861691 De et al. Oct 2014 B1
8898219 Ricci Nov 2014 B2
8898290 Siemsgluess Nov 2014 B2
8909693 Frissora et al. Dec 2014 B2
8935172 Noble et al. Jan 2015 B1
9020142 Kosiba et al. Apr 2015 B2
9026431 Moreno et al. May 2015 B1
9082094 Etter et al. Jul 2015 B1
9100483 Snedden Aug 2015 B1
9117450 Cook et al. Aug 2015 B2
9123009 Etter et al. Sep 2015 B1
9137366 Medina et al. Sep 2015 B2
9152737 Micali et al. Oct 2015 B1
9160853 Daddi et al. Oct 2015 B1
9185222 Govindarajan et al. Nov 2015 B1
9237232 Williams et al. Jan 2016 B1
9280754 Schwartz et al. Mar 2016 B1
9286413 Coates et al. Mar 2016 B1
9300801 Warford et al. Mar 2016 B1
9319524 Webster Apr 2016 B1
9386152 Riahi et al. Jul 2016 B2
9426291 Ouimette et al. Aug 2016 B1
9514463 Grigg et al. Dec 2016 B2
9609131 Placiakis et al. Mar 2017 B2
9674361 Ristock et al. Jun 2017 B2
9679265 Schwartz et al. Jun 2017 B1
9787840 Neuer et al. Oct 2017 B1
9823949 Ristock et al. Nov 2017 B2
9883037 Lewis et al. Jan 2018 B1
9894478 Deluca et al. Feb 2018 B1
9930181 Moran et al. Mar 2018 B1
9955021 Liu Apr 2018 B1
RE46852 Petrovykh May 2018 E
9998596 Dunmire et al. Jun 2018 B1
10009465 Fang et al. Jun 2018 B1
10038788 Khalatian Jul 2018 B1
10079939 Bostick et al. Sep 2018 B1
10115065 Fama et al. Oct 2018 B1
10154138 Te et al. Dec 2018 B2
10194027 Daddi et al. Jan 2019 B1
10235999 Naughton et al. Mar 2019 B1
10242019 Shan et al. Mar 2019 B1
10276170 Gruber et al. Apr 2019 B2
10331402 Spector et al. Jun 2019 B1
10380246 Clark et al. Aug 2019 B2
10440180 Jayapalan et al. Oct 2019 B1
10445742 Prendki et al. Oct 2019 B2
10460728 Anbazhagan et al. Oct 2019 B2
10497361 Rule et al. Dec 2019 B1
10554590 Cabrera-Cordon et al. Feb 2020 B2
10554817 Sullivan et al. Feb 2020 B1
10572879 Hunter et al. Feb 2020 B1
10601992 Dwyer et al. Mar 2020 B2
10636425 Naughton et al. Apr 2020 B2
10718031 Wu et al. Jul 2020 B1
10742806 Kotak Aug 2020 B2
10750019 Petrovykh et al. Aug 2020 B1
10783568 Chandra et al. Sep 2020 B1
10803865 Naughton et al. Oct 2020 B2
10812654 Wozniak Oct 2020 B2
10812655 Adibi et al. Oct 2020 B1
10827069 Paiva Nov 2020 B1
10827071 Adibi et al. Nov 2020 B1
10839432 Konig et al. Nov 2020 B1
10841425 Langley et al. Nov 2020 B1
10855844 Smith et al. Dec 2020 B1
10861031 Sullivan et al. Dec 2020 B2
10878479 Wu et al. Dec 2020 B2
10943589 Naughton et al. Mar 2021 B2
11017176 Ayers et al. May 2021 B2
11089158 Holland et al. Aug 2021 B1
20010008999 Bull Jul 2001 A1
20010024497 Campbell Sep 2001 A1
20020029272 Weller Mar 2002 A1
20020034304 Yang Mar 2002 A1
20020038420 Collins et al. Mar 2002 A1
20020067823 Walker et al. Jun 2002 A1
20020143599 Nourbakhsh et al. Oct 2002 A1
20020169664 Walker et al. Nov 2002 A1
20020174182 Wilkinson et al. Nov 2002 A1
20030007621 Graves et al. Jan 2003 A1
20030009520 Nourbakhsh et al. Jan 2003 A1
20030032409 Hutcheson et al. Feb 2003 A1
20030061068 Curtis et al. Mar 2003 A1
20030112927 Brown et al. Jun 2003 A1
20030126136 Omoigui Jul 2003 A1
20030167167 Gong Sep 2003 A1
20040044585 Franco Mar 2004 A1
20040044664 Cash et al. Mar 2004 A1
20040078257 Schweitzer et al. Apr 2004 A1
20040098274 Dezonno et al. May 2004 A1
20040103051 Reed et al. May 2004 A1
20040162724 Hill et al. Aug 2004 A1
20040162753 Vogel et al. Aug 2004 A1
20040174980 Knott et al. Sep 2004 A1
20050033957 Enokida Feb 2005 A1
20050043986 McConnell et al. Feb 2005 A1
20050063365 Mathew et al. Mar 2005 A1
20050071178 Beckstrom et al. Mar 2005 A1
20050226220 Kilkki et al. Oct 2005 A1
20050271198 Chin et al. Dec 2005 A1
20060153357 Acharya et al. Jul 2006 A1
20060166669 Claussen Jul 2006 A1
20060188086 Busey et al. Aug 2006 A1
20060215831 Knott et al. Sep 2006 A1
20060229931 Fligler et al. Oct 2006 A1
20060256953 Pulaski et al. Nov 2006 A1
20060277108 Altberg et al. Dec 2006 A1
20070016565 Evans et al. Jan 2007 A1
20070036334 Culbertson et al. Feb 2007 A1
20070038499 Margulies et al. Feb 2007 A1
20070041519 Erhart et al. Feb 2007 A1
20070061183 Seetharaman et al. Mar 2007 A1
20070078725 Koszewski et al. Apr 2007 A1
20070121902 Stoica et al. May 2007 A1
20070121903 Moore, Jr. May 2007 A1
20070136284 Cobb et al. Jun 2007 A1
20070155411 Morrison Jul 2007 A1
20070157021 Whitfield Jul 2007 A1
20070160188 Sharpe et al. Jul 2007 A1
20070162296 Altberg et al. Jul 2007 A1
20070198329 Lyerly et al. Aug 2007 A1
20070201636 Gilbert et al. Aug 2007 A1
20070263810 Sterns Nov 2007 A1
20070265990 Sidhu et al. Nov 2007 A1
20070269031 Honig et al. Nov 2007 A1
20070287430 Hosain et al. Dec 2007 A1
20080002823 Fama et al. Jan 2008 A1
20080043976 Maximo et al. Feb 2008 A1
20080095355 Mahalaha Apr 2008 A1
20080126957 Tysowski et al. May 2008 A1
20080205620 Odinak et al. Aug 2008 A1
20080254774 Lee Oct 2008 A1
20080255944 Shah et al. Oct 2008 A1
20080300955 Hamilton et al. Dec 2008 A1
20090018996 Hunt et al. Jan 2009 A1
20090080411 Lyman et al. Mar 2009 A1
20090086945 Buchanan et al. Apr 2009 A1
20090110182 Knight, Jr. Apr 2009 A1
20090171164 Jung et al. Jul 2009 A1
20090228264 Williams et al. Sep 2009 A1
20090234710 Belgaied et al. Sep 2009 A1
20090234732 Zorman et al. Sep 2009 A1
20090245479 Surendran Oct 2009 A1
20090285384 Pollock et al. Nov 2009 A1
20090306981 Cromack et al. Dec 2009 A1
20090307052 Mankani et al. Dec 2009 A1
20100106568 Grimes Apr 2010 A1
20100114646 McIlwain et al. May 2010 A1
20100189250 Williams et al. Jul 2010 A1
20100211515 Woodings et al. Aug 2010 A1
20100250196 Lawler et al. Sep 2010 A1
20100266115 Fedorov et al. Oct 2010 A1
20100266116 Stolyar et al. Oct 2010 A1
20100274618 Byrd et al. Oct 2010 A1
20100287131 Church Nov 2010 A1
20100293033 Hall et al. Nov 2010 A1
20100299268 Guha et al. Nov 2010 A1
20110014932 Estevez Jan 2011 A1
20110022461 Simeonov Jan 2011 A1
20110071870 Gong Mar 2011 A1
20110077994 Segev et al. Mar 2011 A1
20110116618 Zyarko May 2011 A1
20110125697 Erhart et al. May 2011 A1
20110216897 Laredo et al. Sep 2011 A1
20110264581 Clyne Oct 2011 A1
20110267985 Wilkinson et al. Nov 2011 A1
20110288897 Erhart et al. Nov 2011 A1
20120046996 Shah et al. Feb 2012 A1
20120051537 Chishti Mar 2012 A1
20120084217 Kohler et al. Apr 2012 A1
20120087486 Guerrero et al. Apr 2012 A1
20120095835 Makar et al. Apr 2012 A1
20120109830 Vogel May 2012 A1
20120257116 Hendrickson et al. Oct 2012 A1
20120265587 Kinkead et al. Oct 2012 A1
20120290373 Ferzacca et al. Nov 2012 A1
20120300920 Fagundes Nov 2012 A1
20120321073 Flockhart et al. Dec 2012 A1
20130023235 Fan et al. Jan 2013 A1
20130073361 Silver Mar 2013 A1
20130085785 Rogers et al. Apr 2013 A1
20130090963 Sharma et al. Apr 2013 A1
20130124361 Bryson May 2013 A1
20130136252 Kosiba et al. May 2013 A1
20130223608 Flockhart et al. Aug 2013 A1
20130236002 Jennings et al. Sep 2013 A1
20130304581 Soroca et al. Nov 2013 A1
20140012603 Scanlon et al. Jan 2014 A1
20140039944 Humbert et al. Feb 2014 A1
20140079195 Srivastava et al. Mar 2014 A1
20140099916 Mallikarjunan et al. Apr 2014 A1
20140101261 Wu et al. Apr 2014 A1
20140136346 Teso May 2014 A1
20140140494 Zhakov May 2014 A1
20140143018 Nies et al. May 2014 A1
20140143249 Cazzanti et al. May 2014 A1
20140161241 Baranovsky Jun 2014 A1
20140177819 Vymenets et al. Jun 2014 A1
20140200988 Kasskoet et al. Jul 2014 A1
20140219438 Brown Aug 2014 A1
20140233719 Vyemenets et al. Aug 2014 A1
20140254790 Shaffer et al. Sep 2014 A1
20140257908 Steiner et al. Sep 2014 A1
20140270138 Uba et al. Sep 2014 A1
20140270142 Bischoff et al. Sep 2014 A1
20140278605 Borucki et al. Sep 2014 A1
20140278649 Guerinik et al. Sep 2014 A1
20140279045 Shottan Sep 2014 A1
20140279050 Makar et al. Sep 2014 A1
20140314225 Riahi et al. Oct 2014 A1
20140335480 Asenjo et al. Nov 2014 A1
20140372171 Martin et al. Dec 2014 A1
20140379424 Shroff Dec 2014 A1
20150010134 Erel et al. Jan 2015 A1
20150012278 Metcalf et al. Jan 2015 A1
20150016600 Desai et al. Jan 2015 A1
20150023484 Ni et al. Jan 2015 A1
20150030151 Bellini et al. Jan 2015 A1
20150030152 Waxman et al. Jan 2015 A1
20150066632 Gonzalez et al. Mar 2015 A1
20150071418 Shaffer et al. Mar 2015 A1
20150078538 Jain Mar 2015 A1
20150100473 Manoharan et al. Apr 2015 A1
20150127400 Chan et al. May 2015 A1
20150127441 Feldman et al. May 2015 A1
20150127677 Wang et al. May 2015 A1
20150172463 Quast et al. Jun 2015 A1
20150213454 Vedula Jul 2015 A1
20150256677 Konig et al. Sep 2015 A1
20150262188 Franco Sep 2015 A1
20150262208 Bjontegard et al. Sep 2015 A1
20150281445 Kumar et al. Oct 2015 A1
20150281449 Milstein et al. Oct 2015 A1
20150281450 Shapiro et al. Oct 2015 A1
20150281454 Milstein Oct 2015 A1
20150287410 Mengibar et al. Oct 2015 A1
20150295788 Witzman et al. Oct 2015 A1
20150296081 Jeong Oct 2015 A1
20150339446 Sperling et al. Nov 2015 A1
20150339620 Esposito et al. Nov 2015 A1
20150339769 Deoliveira et al. Nov 2015 A1
20150347900 Bell et al. Dec 2015 A1
20150350429 Kumar et al. Dec 2015 A1
20150350440 Steiner et al. Dec 2015 A1
20150350443 Kumar et al. Dec 2015 A1
20160026629 Clifford et al. Jan 2016 A1
20160034260 Ristock et al. Feb 2016 A1
20160034995 Williams et al. Feb 2016 A1
20160036981 Hollenberg Feb 2016 A1
20160036983 Korolev et al. Feb 2016 A1
20160042419 Singh Feb 2016 A1
20160042749 Hirose Feb 2016 A1
20160055499 Hawkins et al. Feb 2016 A1
20160057284 Nagpal Feb 2016 A1
20160080567 Hooshiari et al. Mar 2016 A1
20160085891 Ter et al. Mar 2016 A1
20160112867 Martinez Apr 2016 A1
20160124937 Elhaddad May 2016 A1
20160125456 Wu et al. May 2016 A1
20160134624 Jacobson et al. May 2016 A1
20160140627 Moreau et al. May 2016 A1
20160150086 Pickford et al. May 2016 A1
20160155080 Gnanasambandam et al. Jun 2016 A1
20160173692 Wicaksonoet et al. Jun 2016 A1
20160180381 Kaiser et al. Jun 2016 A1
20160191699 Agrawal et al. Jun 2016 A1
20160191709 Pullamplavil et al. Jun 2016 A1
20160191712 Bouzid Jun 2016 A1
20160234386 Wawrzynowicz Aug 2016 A1
20160247165 Ryabchun et al. Aug 2016 A1
20160300573 Carbune et al. Oct 2016 A1
20160335576 Peng Nov 2016 A1
20160358611 Abel Dec 2016 A1
20160378569 Ristock et al. Dec 2016 A1
20160381222 Ristock et al. Dec 2016 A1
20170004178 Ponting et al. Jan 2017 A1
20170006135 Siebel et al. Jan 2017 A1
20170006161 Riahi et al. Jan 2017 A9
20170024762 Swaminathan Jan 2017 A1
20170032436 Disalvo et al. Feb 2017 A1
20170068436 Auer et al. Mar 2017 A1
20170068854 Markiewicz et al. Mar 2017 A1
20170098197 Yu et al. Apr 2017 A1
20170104875 Im et al. Apr 2017 A1
20170111505 McGann et al. Apr 2017 A1
20170132536 Goldstein et al. May 2017 A1
20170148073 Nomula et al. May 2017 A1
20170155766 Kumar et al. Jun 2017 A1
20170169325 McCord Jun 2017 A1
20170207916 Luce et al. Jul 2017 A1
20170220966 Wang Aug 2017 A1
20170286774 Gaidon Oct 2017 A1
20170316386 Joshi et al. Nov 2017 A1
20170323344 Nigul et al. Nov 2017 A1
20170337578 Chittilappilly et al. Nov 2017 A1
20170344754 Kumar et al. Nov 2017 A1
20170344988 Cusden et al. Nov 2017 A1
20170359421 Stoops Dec 2017 A1
20180018705 Tognetti Jan 2018 A1
20180032997 Gordon et al. Feb 2018 A1
20180053401 Martin et al. Feb 2018 A1
20180054464 Zhang et al. Feb 2018 A1
20180061256 Elchik et al. Mar 2018 A1
20180077250 Prasad et al. Mar 2018 A1
20180114234 Fighel Apr 2018 A1
20180121766 McCord et al. May 2018 A1
20180137555 Clausse et al. May 2018 A1
20180150749 Wu et al. May 2018 A1
20180165062 Yoo et al. Jun 2018 A1
20180165723 Wright et al. Jun 2018 A1
20180174198 Wilkinson et al. Jun 2018 A1
20180189273 Campos et al. Jul 2018 A1
20180190144 Corelli et al. Jul 2018 A1
20180198917 Ristock et al. Jul 2018 A1
20180248818 Zucker et al. Aug 2018 A1
20180260857 Kar et al. Sep 2018 A1
20180286000 Berry et al. Oct 2018 A1
20180293327 Miller et al. Oct 2018 A1
20180293532 Singh et al. Oct 2018 A1
20180300641 Donn et al. Oct 2018 A1
20180309801 Rathod Oct 2018 A1
20180349858 Walker Dec 2018 A1
20180361253 Grosso Dec 2018 A1
20180365651 Sreedhara et al. Dec 2018 A1
20180367672 Ristock et al. Dec 2018 A1
20180372486 Farniok et al. Dec 2018 A1
20190013017 Kang et al. Jan 2019 A1
20190028587 Unitt et al. Jan 2019 A1
20190028588 Shinseki Jan 2019 A1
20190037077 Konig et al. Jan 2019 A1
20190042988 Brown et al. Feb 2019 A1
20190043106 Talmor et al. Feb 2019 A1
20190108834 Nelson et al. Apr 2019 A1
20190130329 Fama et al. May 2019 A1
20190132443 Munns et al. May 2019 A1
20190147045 Kim May 2019 A1
20190172291 Naseath Jun 2019 A1
20190180095 Ferguson et al. Jun 2019 A1
20190182383 Shaev et al. Jun 2019 A1
20190197568 Li et al. Jun 2019 A1
20190205389 Tripathi et al. Jul 2019 A1
20190236205 Jia et al. Aug 2019 A1
20190238680 Narayanan et al. Aug 2019 A1
20190253553 Chishti Aug 2019 A1
20190287517 Green et al. Sep 2019 A1
20190295027 Dunne et al. Sep 2019 A1
20190306315 Portman et al. Oct 2019 A1
20190335038 Alonso et al. Oct 2019 A1
20190342450 Kulkarni et al. Nov 2019 A1
20190349477 Kotak et al. Nov 2019 A1
20190377789 Jegannathan et al. Dec 2019 A1
20190378076 O'Gorman et al. Dec 2019 A1
20190386917 Malin Dec 2019 A1
20190392357 Surti et al. Dec 2019 A1
20190394333 Jiron et al. Dec 2019 A1
20200007680 Wozniak Jan 2020 A1
20200012697 Fan et al. Jan 2020 A1
20200012992 Chan et al. Jan 2020 A1
20200019893 Lu Jan 2020 A1
20200050996 Generes et al. Feb 2020 A1
20200118215 Rao et al. Apr 2020 A1
20200119936 Balasaygun et al. Apr 2020 A1
20200125919 Liu et al. Apr 2020 A1
20200126126 Briancon et al. Apr 2020 A1
20200134492 Copeland Apr 2020 A1
20200134648 Qi et al. Apr 2020 A1
20200154170 Wu et al. May 2020 A1
20200175478 Lee et al. Jun 2020 A1
20200193335 Sekhar et al. Jun 2020 A1
20200193983 Choi et al. Jun 2020 A1
20200211120 Wang et al. Jul 2020 A1
20200218766 Yaseen et al. Jul 2020 A1
20200219500 Bender et al. Jul 2020 A1
20200242540 Rosati et al. Jul 2020 A1
20200250557 Kishimoto et al. Aug 2020 A1
20200257996 London Aug 2020 A1
20200280578 Hearty et al. Sep 2020 A1
20200280635 Barinov Sep 2020 A1
20200285936 Sen Sep 2020 A1
20200329154 Baumann Oct 2020 A1
20200336567 Dumaine et al. Oct 2020 A1
20200351375 Lepore et al. Nov 2020 A1
20200357026 Liu Nov 2020 A1
20200364507 Berry Nov 2020 A1
20200365148 Ji et al. Nov 2020 A1
20210004536 Adibi et al. Jan 2021 A1
20210005206 Adibi et al. Jan 2021 A1
20210056481 Wicaksono et al. Feb 2021 A1
20210067627 Delker et al. Mar 2021 A1
20210081869 Zeelig et al. Mar 2021 A1
20210081955 Zeelig et al. Mar 2021 A1
20210082417 Zeelig et al. Mar 2021 A1
20210082418 Zeelig et al. Mar 2021 A1
20210084149 Zeelig et al. Mar 2021 A1
20210089762 Rahimi et al. Mar 2021 A1
20210091996 McConnell et al. Mar 2021 A1
20210105361 Bergher Apr 2021 A1
20210124843 Vass et al. Apr 2021 A1
20210125275 Adibi et al. Apr 2021 A1
20210133763 Adibi et al. May 2021 A1
20210133765 Adibi et al. May 2021 A1
20210134282 Adibi et al. May 2021 A1
20210134283 Adibi et al. May 2021 A1
20210134284 Adibi et al. May 2021 A1
20210136204 Adibi et al. May 2021 A1
20210136205 Adibi et al. May 2021 A1
20210136206 Adibi et al. May 2021 A1
Foreign Referenced Citations (5)
Number Date Country
1418519 May 2004 EP
2006037836 Apr 2006 WO
2012024316 Feb 2012 WO
2015099587 Jul 2015 WO
2019142743 Jul 2019 WO
Non-Patent Literature Citations (35)
Entry
Aksin et al., “The Modern Call Center: A Multi-Disciplinary Perspective on Operations Management Research”, Production and Operations Management, 2007, vol. 16, No. 6, pp. 665-688.
An et al,, Towards Automatic Persona Generation Using Social Media Aug. 2016, IEEE 4th International conference on Future Internet of Things and Cloud Workshops (FiCloudW), 2 pages.
Bean-Mellinger, Barbara., “What Is the Difference Between Marketing and Advertising?”, available on Feb. 12, 2019, retrieved from https://smallbusiness.chron .com/difference-between-marketing-advertising-2504 7 .html, Feb. 12, 2019, 6 pages.
Buesing et al., “Getting the Best Customer Service from your IVR: Fresh eyes on an old problem,” [online] Mckinsey and Co., published on Feb. 1, 2019, available at: < https://www.nnckinsey.conn/business-functions/operations/our-insights/ getting-the-best-customer-service-from-your-ivr-fresh-eyes . . . (Year: 2019).
Business Wire, “Rockwell SSD announces Call Center Simulator”, Feb. 4, 1997, 4 pages.
Chiu et al., “A multi-agent infrastructure for mobile workforce management in a service oriented enterprise”, Proceedings of the 38th annual Hawaii international conference on system sciences, IEEE, 2005, pp. 10.
dictionary.com, “Marketing”, URL: https://www.dictionary.com/browse/marketing, Apr. 6, 2019, 7 pages.
Diimitrios et al., “An overview of workflow management: From process modeling to workflow automation infrastructure,” Distributed and parallel Databases, 1995, vol. 3, No. 2 pp. 119-153.
Ernst et al. “An Annotated Bibliography of Personnel Scheduling and Rostering”, CSIRO Mathematical and Information Sciences, 2003, 155 pages.
Ernst et al., “Staff scheduling and rostering: A review of applications, methods and models,” European Journal of Operational Research, 2004, vol. 153, pp. 3-27.
Fan et al., “Demystifying Big Data Analytics for Business Intelligence Through the Lens of Marketing Mix”, Big Data Research, vol. 2, Issue 1, Mar. 2015, 16 pages.
Federal Register, vol. 72, No. 195, Oct. 10, 2007, pp. 57526-57535.
Federal Register, vol. 75, No. 169, Sep. 1, 2010, pp. 53643-53660.
Federal register, vol. 79, No. 241 issued on Dec. 16, 2014, p. 74629, col. 2, Gottschalk v. Benson.
Federal Register, vol. 84, No. 4, Jan. 7, 2019, pp. 50-57.
Federal Register, vol. 84, No. 4, Jan. 7, 2019, p. 53-55.
Feldman et al., “Staffing of Time-Varying Queues to Achieve Time-Stable Performance”, Management Science, Feb. 2008, vol. 54, No. 2, Call Center Management, pp. 324-338.
Fukunaga et al., “Staff Scheduling for Inbound Call Centers and Customer Contact Centers”, AI Magazine, Winter, vol. 23, No. 4, 2002, pp. 30-40.
Gaietto, Molly., “What is Customer DNA?”,—NGDATA Product News, Oct. 27, 2015, 10 pages.
Grefen et al., “A reference architecture for workflow management systems”, Data & Knowledge Engineering, 1998, vol. 27, No. 1, pp. 31-57.
https://www.uspto.gov/patent/laws-and-regulations/examination-policy/examination- guidelines-training-materials-view-ksr, signed Aug. 20, 2010.
Huang et al., “Agent-based workflow management in collaborative product development on the Internet.” Computer-Aided Design; 2000; vol. 32; pp. 133-144.
Janarthanam, “Hands on Chatbots and conversational UI development: Build chatbots and voice user interfaces with Chatfuel, Dialogflow, Microsoft Bot Framework, Twilio, and Alexa Skills” Dec. 2017.
Mandelbaum et al., “Staffing Many-Server Queues with Impatient Customers: Constraint Satisfaction in Call center”, Operations Research, Sep.-Oct. 2009, vol. 57, No. 5 (Sep.-Oct. 2009), pp. 1189-1205.
Mehrotra et al., “Call Center Simulation Modeling: Methods, Challenges, and Opportunities” Proceedings of the 2003 Winter Simulation Conference, vol. 1, 2003, pp. 135-143.
Myers et al., “At the Boundary of Workflow and AI”, Proc. AAAI 1999 Workshop on Agent-Based Systems in The Business Context, 1999, 09 pages.
Nathan, Steams., “Using skills-based routing to the advantage of your contact center”, Customer Inter@ction Solutions, Technology Marketing Corporation, May 2001, vol. 19 No. 11, pp. 54-56.
Niven, “Can music with prosocial lyrics heal the working world? A field intervention in a call center.” Journal of Applied Social Psychology, 2015; 45(3), 132-138. doi:10.1111/jasp.12282 ).
On Hold Marketing, “Growing Your Business with Customized on-Hold Messaging” (Published on Apr. 5, 2018 at https://adhq.com/about/ad-news/growing-your-business-with-customized-on-hold-messaging) (Year: 2018).
Ponn et al., “Correlational Analysis between Weather and 311 Service Request Volume”, eil.mie.utoronto.ca., 2017, 16 pages.
Twin, Alexandra., “Marketing”, URL: https://www.investopedia.com/lerms/m/marketing.asp, Mar. 29, 2019, 5 pages.
U.S. Appl. No. 16/668,214, Non-Final Office Action mailed Nov. 10, 2021.
U.S. Appl. No. 16/668,215, Non-Final Office Action mailed Dec. 7, 2021.
Van Den Bergh et al. “Personnel scheduling: A literature review”, European journal of operational research, 2013, vol. 226, No. 3 pp. 367-385.
Zhang et al., “A Bayesian approach for modeling and analysis of call center arrivals”, 2013 Winter Simulations conference (WSC), ieeexplore_ieee.org, pp. 713-723.
Related Publications (1)
Number Date Country
20210125116 A1 Apr 2021 US