Templates including self-assembled block copolymer films

Information

  • Patent Grant
  • 9257256
  • Patent Number
    9,257,256
  • Date Filed
    Friday, November 8, 2013
    11 years ago
  • Date Issued
    Tuesday, February 9, 2016
    8 years ago
Abstract
Methods for fabricating sublithographic, nanoscale microstructures arrays including openings and linear microchannels utilizing self-assembling block copolymers, and films and devices formed from these methods are provided. In some embodiments, the films can be used as a template or mask to etch openings in an underlying material layer.
Description
TECHNICAL FIELD

Embodiments of the invention relate to methods of fabricating nanostructures by use of thin films of self-assembling block copolymers, and devices resulting from those methods.


BACKGROUND OF THE INVENTION

As the development of nanoscale mechanical, electrical, chemical and biological devices and systems increases, new processes and materials are needed to fabricate nanoscale devices and components. Optical lithographic processing methods are not able to accommodate fabrication of structures and features at the nanometer level. The use of self-assembling diblock copolymers presents another route to patterning at nanometer dimensions. Diblock copolymer films spontaneously assembly into periodic structures by microphase separation of the constituent polymer blocks after annealing, for example, by thermal annealing above the glass transition temperature of the polymer or by solvent annealing, forming ordered domains at nanometer-scale dimensions. Following self-assembly, one block of the copolymer can be selectively removed and the remaining patterned film used, for example, as an etch mask for patterning nanosized features into the underlying substrate. Since the domain sizes and periods (Lo) involved in this method are determined by the chain length of a block copolymer (MW), resolution can exceed other techniques such as conventional photolithography, while the cost of the technique is far less than electron beam (E-beam) lithography or EUV photolithography, which have comparable resolution.


The film morphology, including the size and shape of the microphase-separated domains, can be controlled by the molecular weight and volume fraction of the AB blocks of a diblock copolymer to produce lamellar, cylindrical, or spherical morphologies, among others. For example, for volume fractions at ratios greater than about 80:20 of the two blocks (AB) of a diblock polymer, a block copolymer film will microphase separate and self-assemble into a periodic spherical domains with spheres of polymer B surrounded by a matrix of polymer A. For ratios of the two blocks between about 60:40 and 80:20, the diblock copolymer assembles into periodic cylindrical domains of polymer B within a matrix of polymer A. For ratios between about 50:50 and 60:40, lamellar domains or alternating stripes of the blocks are formed. Domain size typically ranges from 5-50 nm.


Researchers have demonstrated the ability to chemically differentiate a surface such that some areas are preferentially wetting to one domain of a block copolymer and other areas are neutral wetting to both blocks. Periodic cylindrical structures have been grown in parallel and perpendicular orientations to substrates within trenches by thermal annealing cylindrical-phase block copolymers. A primary requirement for producing perpendicular cylinders is that the trench floor must be non-preferential or neutral wetting to both blocks of the copolymer. For producing parallel-oriented half-cylinders, the trench floor must by preferentially wetting by the minor copolymer block.


A film composed of periodic hexagonal close-packed cylinders, for example, can be useful in forming an etch mask to make structures in an underlying substrate for specific applications such as magnetic storage devices. However, many applications require a more complex layout of elements for forming contacts, conductive lines and/or other elements such as DRAM capacitors.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are described below with reference to the following accompanying drawings, which are for illustrative purposes only. Throughout the following views, the reference numerals will be used in the drawings, and the same reference numerals will be used throughout the several views and in the description to indicate same or like parts.



FIG. 1 illustrates a diagrammatic top plan view of a portion of a substrate at a preliminary processing stage according to an embodiment of the present disclosure. FIG. 1A is an elevational, cross-sectional view of the substrate depicted in FIG. 1 taken along line 1A-1A.



FIGS. 2 and 3 are diagrammatic top plan views of the substrate of FIG. 1 at subsequent processing steps according an embodiment of the invention. FIGS. 2A and 3A illustrate elevational, cross-sectional views of a portion of the substrate depicted in FIGS. 2 and 3 taken, respectively, along lines 2A-2A and 3A-3A. FIGS. 2B and 3B illustrate elevational, cross-sectional views of another portion of the substrate depicted in FIGS. 2-3 taken, respectively, along lines 2B-2B and 3B-3B.



FIG. 4 is a diagrammatic top plan view of a portion of a substrate at a preliminary processing stage according to another embodiment of the disclosure. FIGS. 4A and 4B are elevational, cross-sectional views of portions of the substrate depicted in FIG. 4 taken, respectively, along lines 4A-4A and 4B-4B.



FIGS. 5 and 6 illustrate diagrammatic top plan views of the substrate depicted in FIG. 4 at subsequent processing stages. FIGS. 5A and 6A are elevational, cross-sectional views of a portion of the substrates depicted in FIGS. 5 and 6, respectively, taken along lines 5A-5A and 6A-6A. FIGS. 5B and 6B are elevational, cross-sectional views of another portion of the substrate depicted in FIGS. 5 and 6, respectively, taken along lines 5B-5B and 6B-6B.



FIGS. 7 and 8 are diagrammatic top plan views of the substrate of FIG. 2 at subsequent processing steps according to another embodiment of the invention. FIGS. 7A and 8A illustrate elevational, cross-sectional views of a portion of the substrate depicted in FIGS. 7 and 8 taken, respectively, along lines 7A-7A and 8A-8A. FIGS. 7B and 8B are elevational, cross-sectional views of a portion of the substrate depicted in FIGS. 7 and 8 taken, respectively, along lines 7B-7B and 8B-8B.



FIG. 9 is a diagrammatic top plan view of the substrate of FIG. 2 at a subsequent processing step according to another embodiment of the invention to form preferential and neutral wetting surfaces. FIGS. 9A and 9B illustrate elevational, cross-sectional views of a portion of the substrate depicted in FIG. 9 taken, respectively, along lines 9A-9A and 9B-9B.



FIG. 10 is a diagrammatic top plan view of the substrate of FIG. 2 at a subsequent processing step according to another embodiment of the disclosure. FIGS. 10A and 10B depict elevational, cross-sectional view of a portion of the substrate depicted in FIG. 10 taken, respectively, along lines 10A-10A and 10B-10B.



FIG. 11 is a diagrammatic top plan view of the substrate of FIG. 2 at a subsequent processing step according to another embodiment of the invention to form roughened trench floors for a preferential wetting surface. FIGS. 11A and 11B illustrate elevational, cross-sectional views of a portion of the substrate depicted in FIG. 11 taken, respectively, along lines 11A-11A and 11B-11B.



FIGS. 12-12B and FIGS. 13-13B are diagrammatic top plan views and elevational, cross-sectional views of the substrate of FIG. 3 at subsequent stages in the fabrication of a film composed of arrays of cylindrical domains according to an embodiment of the present disclosure.



FIGS. 14 and 16 are top plan views of the substrate of FIG. 13 at subsequent processing steps according to an embodiment of the invention to form a mask and arrays of conductive contacts and lines in a substrate. FIGS. 12A, 14A and 16A are elevational, cross-sectional views of a portion of the substrate depicted in FIGS. 12, 14, and 16 taken, respectively, along lines 12A-12A to 14A-14A and 16A-16A. FIGS. 12B-14B and 16B are elevational, cross-sectional views of a portion of the substrate depicted in FIGS. 12, 14 and 16 taken, respectively, along lines 12B-12B to 14B-14B and 16B-16B.



FIGS. 15A and 15B are cross-sectional views of the substrate depicted in FIGS. 14A and 14B, respectively, at a subsequent processing stage.





DETAILED DESCRIPTION OF THE INVENTION

The following description with reference to the drawings provides illustrative examples of devices and methods according to embodiments of the invention. Such description is for illustrative purposes only and not for purposes of limiting the same.


In the context of the current application, the term “semiconductor substrate” or “semiconductive substrate” or “semiconductive wafer fragment” or “wafer fragment” or “wafer” will be understood to mean any construction comprising semiconductor material, including but not limited to bulk semiconductive materials such as a semiconductor wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure including, but not limited to, the semiconductive substrates, wafer fragments or wafers described above.


“Lo” is the inherent pitch (bulk period or repeat unit) of structures that self-assemble upon annealing from a self-assembling (SA) block copolymer or a blend of a block copolymer with one or more of its constituent homopolymers.


In embodiments of the invention, processing conditions utilize graphoepitaxy techniques that use topographical features, e.g., the sidewalls and ends of trenches, as constraints to induce the formation and registration of polymer domains of cylindrical-phase diblock copolymers in one dimension (e.g., hexagonal close-packed (honeycomb) array or single row of perpendicular cylinders) and chemically or structurally (topographically) differentiated trench floors to provide a wetting pattern to control orientation of the microphase separated and self-assembling cylindrical domains in a second dimension (e.g., parallel lines of half-cylinders or perpendicular-oriented cylinders). The trench floors are structured or composed of surface materials to provide a neutral wetting surface or preferential wetting surface to impose ordering on a block copolymer film that is then cast on top of the substrate and annealed to produce desired arrays of nanoscale cylinders.


Embodiments of the invention provide a means of generating self-assembled diblock copolymer structures wherein perpendicular cylinders are formed in some trenches and parallel-oriented half-cylinders are formed in other trenches. Control of the orientation of the cylinders is provided by the nature of the trench floor surface. Graphoepitaxy is used to provide parallel lines of half-cylinders, hexagonal close-packed arrays of perpendicular cylinders, or a single row of perpendicular cylinders within lithographically defined trenches. A desired pattern of cylinders on a substrate, e.g., a wafer, can be prepared by providing trenches having walls that are selective to one polymer block of a block copolymer and a floor composed either of a material that is block-sensitive or preferentially wetting to one of the blocks of the block copolymer in trenches where lines of parallel half-cylinders are desired, or a material that is neutral wetting to both blocks in trenches where an array of perpendicular cylinders are desired. Embodiments of the invention can be used to pattern lines and openings (holes) in the same patterning step at pre-determined locations on a substrate.


Embodiments of the invention of methods for fabricating arrays of cylinders from thin films of cylindrical-phase self-assembling (SA) block copolymers are described with reference to the figures. As shown in FIGS. 1 and 1A, a substrate 10 to be etched is provided, being silicon in the illustrated embodiment. Overlying the substrate 10 is a material layer 12. As illustrated in FIGS. 2-2B, the material layer 12 is etched to form a desired pattern of trenches shown as trenches 14a, 14b and 14c.


The trenches can be formed using a lithographic tool having an exposure system capable of patterning at the scale of Lo (10-100 nm). Such exposure systems include, for example, extreme ultraviolet (EUV) lithography, dry lithography (e.g., 248 nm, 193 nm), immersion lithography (e.g., 193 nm), and electron beam lithography, as known and used in the art. Conventional photolithography can attain about 58 nm features. A method called “pitch doubling” or “pitch multiplication” can also be used for extending the capabilities of photolithographic techniques beyond their minimum pitch, as described, for example, in U.S. Pat. No. 5,328,810 (Lowrey et al.), U.S. Pat. No. 7,115,525 (Abatchev, et al.), U.S. Patent Application Publication No. 2006/0281266 (Wells) now U.S. Pat. No. 7,396,781, issued Jul. 8, 2008, and U.S. Patent Application Publication No. 2007/0023805 (Wells), now U.S. Pat. No. 7,776,715, issued Aug. 17, 2010, the disclosures of which are incorporated by reference herein. Briefly, a pattern of lines is photolithographically formed in a photoresist layer overlying a layer of an expendable material, which in turn overlies a substrate, the expendable material layer is etched to form placeholders or mandrels, the photoresist is stripped, spacers are formed on the sides of the mandrels, and the mandrels are then removed leaving behind the spacers as a mask for patterning the substrate. Thus, where the initial photolithography formed a pattern defining one feature and one space, the same width now defines two features and two spaces, with the spaces defined by the spacers. As a result, the smallest feature size possible with a photolithographic technique is effectively decreased down to about 30 nm or more.


The trenches 14a-14c are structured with opposing sidewalls 16, opposing ends 18, a floor 20, a width (wt), a length (lt) and a depth (Dt). Trench 14c is also structured with the trench ends 18 angled to the sidewalls 16, for example, at an about 60° angle, and in some embodiments, the trench ends are slightly rounded or curved. Portions of the material layer 12 form a spacer 12a between the trenches.


The trench sidewalls 16, edges and floors influence the self-assembly of the polymer blocks and the structuring of the array of nanostructures within the trenches 14a, 14b, and 14c. The boundary conditions of the trench sidewalls 16 impose order in the x-direction (x-axis) and the ends 18 impose order in the y-direction (y-axis) to impose a structure wherein each trench contains n number of features (i.e., cylinders). Other factors that influence the formation and alignment of elements within the trench include the width (wt) of the trench, the formulation of the block copolymer to achieve the desired pitch (Lo), the thickness (t) of the block copolymer film, and the wetting nature of the trench surfaces.


Entropic forces drive the wetting of a neutral wetting surface by both blocks, and enthalpic forces drive the wetting of a preferential-wetting surface by the preferred block (e.g., the minority block). The trench sidewalls 16 and ends 18 are structured to be preferential wetting such that upon annealing, the preferred block of the block copolymer will segregate to the sidewalls and edges of the trench to assemble into a thin (e.g., ¼ pitch) interface (wetting) layer, and will self-assemble to form cylinders in the center of a polymer matrix within each trench, the cylinders being in a perpendicular orientation on neutral wetting floor surfaces and half-cylinders in a parallel orientation in relation to preferential wetting floor surfaces.


As illustrated in FIGS. 2-2B, trenches 14a are constructed with a width (wt) of about 2*Lo or less, e.g., about 1.5*Lo to about 2*Lo (e.g., about 1.75*Lo) (Lo being the inherent periodicity or pitch value of the block copolymer) for forming a 1-D array of cylinders with a center-to-center pitch of at or about Lo (e.g., a width of about 65-75 nm for a Lo value of about 36-42 nm). Trenches 14b, 14c have a width (wt) at or about an integer multiple of the Lo value or nLo where n=3, 4, 5, etc. (e.g., a width of about 120-2,000 nm for a Lo value of about 36-42 nm). The length (l) of the trenches is at or about nLo where n is an integer multiple of Lo, typically within a range of about n*10-n*100 nm (with n being the number of features or structures (i.e., cylinders)). Illustrated in FIG. 2 are trenches 14a having a length (lt) extending from one end (18) to the opposing end (18), which length is greater than the width (wt), and opposing sidewalls 16 parallel for the length (lt) of the trench. The depth (Dt) of the trenches 14a, 14c, generally over a range of about 50-500 nm. The width of the spacer 12a between adjacent trenches can vary and is generally about Lo to about nLo.


As shown in FIGS. 3-3B, the floors 20 of trenches 14a, 14c have a neutral wetting surface (layer 22) to induce formation of perpendicular cylinders within those trenches, and the floors 20 of trenches 14b are preferential wetting by one block of a self-assembling block copolymer to induce formation of parallel half-cylinders in those trenches. The application and annealing of a cylindrical-phase block copolymer material having an inherent pitch value of about Lo in the trenches will result in a single row of “n” perpendicular cylinders in trenches 14a for the length of the trenches, “n” rows or lines of half-cylinders (parallel to the sidewalls 16 and trench floor 20 and in a perpendicular orientation to the trench ends 18 as illustrated in FIGS. 13-13B) extending the length (lt) and spanning the width (wt) of trenches 14b, and a periodic hexagonal close-pack or honeycomb array of perpendicular cylinders within trench 14c. The cylindrical domains are separated by a center-to-center distance (pitch distance (p)) of at or about Lo.


For example, a block copolymer having a 35-nm pitch (Lo value) deposited into a 75-nm wide trench having a neutral wetting floor will, upon annealing, result in a zigzag pattern of 35-nm diameter perpendicular cylinders that are offset by a half distance for the length (lb) of the trench, rather than a single line of perpendicular cylinders aligned with the sidewalls down the center of the trench. As the Lo value of the copolymer is increased, for example, by forming a ternary blend by the addition of both constituent homopolymers, there is a shift from two rows to one row of the perpendicular cylinders within the center of the trench.


In some embodiments, the substrate 10 can be a material that is inherently preferential wetting to one of the blocks, and a neutral wetting surface layer 22 can be provided by applying a neutral wetting polymer (e.g., a neutral wetting random copolymer) onto the substrate 10 and then selectively removing the layer 22 to expose portions of the preferential wetting surface of the substrate 10. For example, in the use of a poly(styrene-block-methyl methacrylate) block copolymer (PS-b-PMMA), a random PS:PMMA copolymer (PS-r-PMMA) which exhibits non-preferential or neutral wetting toward PS and PMMA can be applied. The polymer layer can be affixed by grafting (on an oxide substrate) or by crosslinking (any surface) using UV radiation or thermal processing.


As shown in FIGS. 4-4B, in some embodiments, a neutral wetting layer 22′ can be formed on the substrate 10′ prior to forming the overlying material layer 12′. For example, a blanket layer 22′ of a photo-crosslinkable random copolymer (e.g., PS-r-PMMA) can be spin-coated onto the substrate 10′ and photo-crosslinked (arrows ↓↓↓) in select areas 22a′ using a reticle 24′, for example. The material layer 12′ can then be formed over layer 22′ and the trenches etched to expose the neutral wetting layer 22′ at the trench floors 20′, as depicted in FIGS. 5-5B, including crosslinked sections 22a′. As shown in FIGS. 6-6B, non-crosslinked and exposed regions of the neutral wetting layer 22′ can then be selectively removed, e.g., by a solvent rinse, to expose the substrate 10′ (e.g., silicon with native oxide) as a preferential wetting surface 20b′ in trenches 14b′, with the crosslinked neutral wetting layer 22a′ providing a neutral wetting surface 20a′ in trenches 14a′, 14c′.


In another embodiment depicted in FIGS. 7-7B, a neutral wetting random copolymer can be applied after forming the trenches, for example, as a blanket coat by spin-coating into each of the trenches 14a″-14c″ and thermally processed (↓↓↓) to flow the material into the bottom of the trenches by capillary action, which can result in crosslinking the neutral wetting polymer layer 22″. To remove the crosslinked polymer layer 22″ from selected regions, a photoresist layer 24″ can be coated over the structure, patterned and developed as shown in FIGS. 8-8B, and an oxygen (O2) dry etch (arrows ↓↓↓) can be conducted to remove the crosslinked random copolymer layer 22″ from trenches 14b″ where a preferential wetting floor is desired, by exposing the substrate 10″ (e.g., silicon with native oxide). The photoresist 24″ can then be removed, resulting in the structure shown in FIGS. 3-3B.


For example, a neutral wetting polymer (NWP) such as a random copolymer of polystyrene (PS), polymethacrylate (PMMA) with hydroxyl group(s) (e.g., 2-hydroxyethyl methacrylate (P(S-r-MMA-r-HEMA)) (e.g., about 58% PS) can be can be selectively grafted to a material layer (e.g., an oxide floor) as a layer 22″ of about 5-10 nm thick by heating at about 160° C. for about 48 hours (FIGS. 7-7B). See, for example, In et al., Langmuir, 2006, 22, 7855-7860, the disclosure of which is incorporated by reference herein. The grafted polymer can then be removed from trenches 14b″ by applying and developing a photoresist layer 24″ and etching (e.g., O2 dry etch) the exposed polymer layer 22″ to produce preferential wetting floors (e.g., substrate 10″ of silicon with native oxide) in trenches 14b″ (FIGS. 8-8B).


A surface that is neutral wetting to PS-b-PMMA can also be prepared by spin coating a blanket layer of a photo- or thermally cross-linkable random copolymer such as a benzocyclobutene- or azidomethylstyrene-functionalized random copolymer of styrene and methyl methacrylate (e.g., poly(styrene-r-benzocyclobutene-r-methyl methacrylate (PS-r-PMMA-r-BCB)). For example, such a random copolymer can comprise about 42% PMMA, about (58-x)% PS and x % (e.g., about 2-3%) of either polybenzocyclobutene or poly(para-azidomethylstyrene)). An azidomethylstyrene-functionalized random copolymer can be UV photo-crosslinked (e.g., 1-5 MW/cm^2 exposure for about 15 seconds to about 30 minutes) or thermally crosslinked (e.g., at about 170° C. for about 4 hours) to form a crosslinked polymer mat as a neutral wetting layer 22″. A benzocyclobutene-functionalized random copolymer can be thermally cross-linked (e.g., at about 200° C. for about 4 hours or at about 250° C. for about 10 minutes). The layer 22″ can be globally photo- or thermal-crosslinked (FIGS. 7-7B), masked using a patterned photoresist 24″ (FIGS. 8-8B), and the unmasked sections can be selectively removed by etching (arrows ↓↓↓) (e.g., O2 etch) to expose preferential-wetting floors 20″, e.g., substrate 10″ of silicon with native oxide, in trenches 14b″.


In other embodiments, as illustrated in FIGS. 9-9B, portions of the neutral wetting layer 22″′ in trenches 14a″′, 14c″′ can be photo-crosslinked through a reticle 24″′ (arrows ↓↓↓) and the non-crosslinked material in trenches 14b″′ can be removed, for example, using a solvent rinse, resulting in the structure shown in FIGS. 3-3B.


Referring now to FIGS. 10-10B, in another embodiment in which the substrate 10″″ is silicon (with native oxide), another neutral wetting surface for PS-b-PMMA can be provided by hydrogen-terminated silicon. For example, the floors 20″″ of trenches 14b″″ can be masked, e.g., using a patterned photoresist layer 24″, and the floors 20″″ of trenches 14a″″, 14c″″ can be selectively etched (arrows ↓↓↓), for example, with a hydrogen plasma, to remove the oxide material and form hydrogen-terminated silicon 22″, which is neutral wetting with equal affinity for both blocks of a block copolymer material such as PS-b-PMMA. H-terminated silicon can be prepared by a conventional process, for example, by a fluoride ion etch of a silicon substrate (with native oxide present, about 12-15 Å) by exposure to an aqueous solution of hydrogen fluoride (HF) and buffered HF or ammonium fluoride (NH4F), by HF vapor treatment, or by a hydrogen plasma treatment (e.g., atomic hydrogen). The photoresist layer 24″″ can then be removed, resulting in a structure as shown in FIGS. 3-3B.


In other embodiments, a neutral wetting layer (22) can be provided by grafting a random copolymer such as PS-r-PMMA selectively onto an H-terminated silicon substrate (e.g., 20″′ floor) in FIGS. 10-10B by an in situ free radical polymerization of styrene and methyl methacrylate using a di-olefinic linker such divinyl benzene which links the polymer to the surface to produce an about 10-15 nm thick film.


In other embodiments, a layer of a preferential wetting material can be applied onto the surface of the substrate exposed as the floors of trenches 14a″, 14b″, 14c″. For example, a layer of oxide or silicon nitride, etc., can be deposited as a blanket layer into the trenches 14a″, 14b″, 14c″ (e.g., as shown in FIGS. 7-7B), followed by selective removal of the material from the floor of trenches 14a″, 14c″ to expose a neutral wetting surface or, in other embodiments, a neutral wetting material (e.g., a random copolymer) can then be selectively applied onto the exposed floors of trenches 14a″, 14c″.


In yet another embodiment, the floors of the trenches can be made neutral or preferential wetting by varying the roughness of the surface of the floors of the trenches, as described, for example, in Sivaniah et al., Macromolecules 2005, 38, 1837-1849, and Sivaniah et al., Macromolecules 2003, 36, 5894-5896, the disclosure of which are incorporated by reference herein. A grooved, or periodic, grating-like substrate topography having a lateral periodicity and structure at or above a critical roughness value (e.g., qsR where qs=2π/λs, R is the (root-mean-square) vertical displacement of the surface topography about a mean horizontal plane, and λs is the lateral periodicity in the surface topography) can be provided to form a neutral wetting surface (e.g., trenches 14a, 14c) for formation of perpendicular cylinders (under conditions of a neutral wetting air surface). The floors of trenches 14b can be provided with a low surface roughness below the critical qsR, value for formation of parallel-oriented half-cylinders in those trenches. The critical roughness of the floor surface topography can also be adjusted according to the molecular weight of the block copolymer to achieve a perpendicular orientation of cylinders. The roughness of the substrate surface can be characterized using atomic force microscopy (AFM).


For example, as shown in FIGS. 11-11B, in some embodiments, the floors of trenches 14av, 14cv can be selectively etched (arrows ↓↓↓) to provide a pattern of grooves 26v at or above a critical roughness (qsR), the floors being sufficiently rough to form a neutral wetting surface to induce formation of perpendicular-oriented cylinders within those trenches. In other embodiments, a material 26v such as indium tin oxide (ITO), can be e-beam deposited (arrows ↓↓↓) onto the surface of floors 20v of trenches 14av, 14cv to form a sufficiently rough and neutral wetting surface and, in some embodiments, sputter coated onto the surface of floors 20v of trenches 14bv to form a relatively smooth and preferential wetting surface.


Referring now to FIGS. 3-3B, the sidewalls 16 and ends 18 of the trenches are preferential wetting by one block of the copolymer. The material layer 12 defining the trench surfaces can be an inherently preferential wetting material, or in other embodiments, a layer of a preferential wetting material can be applied onto the surfaces of the trenches. For example, in the use of a PS-b-PMMA block copolymer, the material layer 12 can be composed of silicon (with native oxide), oxide (e.g., silicon oxide, SiOx), silicon nitride, silicon oxycarbide, ITO, silicon oxynitride, and resist materials such as such as methacrylate-based resists, among other materials, which exhibit preferential wetting toward the PMMA block. In other embodiments, a layer of a preferential wetting material such as a polymethylmethacrylate (PMMA) polymer modified with an —OH containing moiety (e.g., hydroxyethylmethacrylate) can be applied onto the surfaces of the trenches, for example, by spin coating and then heating (e.g., to about 170° C.) to allow the terminal OH groups to end-graft to oxide sidewalls 16 and ends 18 of the trenches. Non-grafted material can be removed by rinsing with an appropriate solvent (e.g., toluene). See, for example, Mansky et al., Science, 1997, 275, 1458-1460, and In et al., Langmuir, 2006, 22, 7855-7860, the disclosures of which are incorporated by reference herein.


Referring now to FIGS. 12-12B, a cylindrical-phase self-assembling block copolymer material 28 having an inherent pitch at or about Lo (or a ternary blend of block copolymer and homopolymers blended to have a pitch at or about Lo) is then deposited, typically by spin casting or spin-coating into the trenches 14a-14c and onto the floors 20. The block copolymer material can be deposited onto the patterned surface by spin casting from a dilute solution (e.g., about 0.25-2 wt % solution) of the copolymer in an organic solvent such as dichloroethane (CH2Cl2) or toluene, for example.


The copolymer material layer 28 is deposited into the trenches 14a-14c to a thickness (t) such that during an anneal, the capillary forces pull excess material (e.g., greater than a monolayer) into the trenches 14a-14c. The resulting thickness of layer 28 in the trench is at about the Lo value of the copolymer material such that the copolymer film layer will self-assemble upon annealing to form an array of cylindrical elements, for example, perpendicular cylindrical domains having a diameter at or about 0.5 Lo (e.g., about 20 nm) over the neutral wetting surface 22 of trenches 14a, 14c, and a single layer of lines of parallel-oriented half-cylinders with a diameter at or about 0.5 Lo over the preferential wetting floor 20 of trenches 14b. The film thickness can be measured, for example, by ellipsometry. Depending on the depth (Dt) of the trenches, the cast block copolymer material 28 can fill the trenches where the trench depth is about equal to Lo (Dt˜L0), or form a thinner film over the trench floor where the trench depth (Dt) is greater than Lo (Dt>L0) as depicted. A thin film of the copolymer material 28 generally less than Lo can be deposited on the spacers 12a, this material will not self-assemble, as it is not thick enough to form structures.


Although diblock copolymers are used in the illustrative embodiment, other types of block copolymers (i.e., triblock or multiblock copolymers) can be used. Examples of diblock copolymers include poly(styrene-block-methylmethacrylate) (PS-b-PMMA), polyethyleneoxide-polyisoprene, polyethyleneoxide-polybutadiene, polyethyleleoxide-polystyrene, polyetheleneoxide-polymethylmethacrylate, polystyrene-polyvinylpyridine, polystyrene-polyisoprene (PS-b-PI), polystyrene-polybutadiene, polybutadiene-polyvinylpyridine, and polyisoprene-polymethylmethacrylate, among others. Examples of triblock copolymers include poly(styrene-block methyl methacrylate-block-ethylene oxide). An example of a PS-b-PMMA copolymer material (Lo=35 nm) is composed of about 70% PS and 30% PMMA with a total molecular weight (Mn) of 67 kg/mol, to form ˜20 nm diameter cylindrical PMMA domains in a matrix of PS.


The block copolymer material can also be formulated as a binary or ternary blend comprising a SA block copolymer and one or more homopolymers of the same type of polymers as the polymer blocks in the block copolymer, to produce blends that swell the size of the polymer domains and increase the Lo value of the polymer. The volume fraction of the homopolymers can range from 0 to about 40%. An example of a ternary diblock copolymer blend is a PS-b-PMMA/PS/PMMA blend, for example, 46K/21K PS-b-PMMA containing 40% 20K polystyrene and 20K poly(methylmethacrylate). The Lo value of the polymer can also be modified by adjusting the molecular weight of the block copolymer.


Optionally, ellipticity (“bulging”) can be induced in the structures by creating a slight mismatch between the trench and the spacer widths and the inherent pitch (Lo) of the block copolymer or ternary blend, as described, for example, by Cheng et al., “Self-assembled One-Dimensional Nanostructure Arrays,” Nano Lett., 6 (9), 2099-2103 (2006), which then reduces the stresses that result from such mismatches.


Referring now to FIGS. 13-13B, the block copolymer material layer 28 is then annealed to cause the component polymer blocks to phase separate and self-assemble according to the wetting material on the trench floors 20 and the preferential wetting surfaces of the trench sidewalls 16 and ends 18. This imposes ordering on the block copolymer film as it is annealed and the blocks self-assemble, resulting in a 1-D array of perpendicular-oriented cylinders 30 (minority block) in a matrix 34 (majority block) for the length (nLo) of each trench 14a (neutral wetting floor), parallel-oriented half-cylinder(s) 32 in the matrix 34 for the length of each trench 14b, and a hexagonal close pack array of perpendicular cylinders 30 in trench 14c. A layer 30a, 32a of the minority block wets the preferential wetting sidewalls 16 and ends 18 of the trenches 14a-14c.


The copolymer film can be thermally annealed to above the glass transition temperature of the component blocks of the copolymer material. For example, a PS-b-PMMA copolymer film can be annealed at a temperature of about 180-285° C. in a vacuum oven for about 1-24 hours to achieve the self-assembled morphology. The resulting morphologies of the block copolymer (i.e., perpendicular and parallel orientation of cylinders) can be examined, for example, using atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM).


The diameter of the perpendicular cylinders 30 and width of the half-cylinders 32 is generally about 0.5 Lo (e.g., about 20 nm). The center-to-center distance (pitch distance, p) between adjacent cylindrical domains within a trench is generally at or about Lo (e.g., about 40 nm for a 46/21 PS/PMMA block copolymer).


The hexagonal array of perpendicular cylinders 30 in trench 14c contains n rows of cylinders according to the width (wt) of the trench with the cylinders in each row being offset by about Lo (pitch distance (p) or center-to-center distance) from the cylinders in the adjacent rows. Each row contains “m” number of cylinders according to the length (lt) of the trench and the shape of the trench ends 18 (e.g., rounded, angled, curved, etc.), with some rows having greater or less than m cylinders. The perpendicular cylinders 30 are spaced apart at a pitch distance (p) at or about Lo between cylinders in the same row and an adjacent row, and at a pitch distance (p) at or about Lo*cos(π/6) or about 0.866*Lo distance between two parallel lines where one line bisects the cylinders in a given row and the other line bisects the cylinders in an adjacent row.


The annealed and ordered film may then be treated to crosslink the polymer segments (e.g., the PS matrix 34) to fix and enhance the strength of the self-assembled polymer blocks within the trenches. The polymers can be structured to inherently crosslink (e.g., upon exposure to ultraviolet (UV) radiation, including deep ultraviolet (DUV) radiation), or one or both of the polymer blocks of the copolymer material can be formulated to contain a crosslinking agent. Non-ordered material outside the trenches (e.g., on spacers 12a) may then be removed.


For example, in one embodiment, the trench regions can be selectively exposed through a reticle (not shown) to crosslink only the self-assembled films within the trenches, and optionally, a wash can then be applied with an appropriate solvent (e.g., toluene) to remove non-crosslinked portions of the film 28 (e.g., on the spacers 12a). In another embodiment, the annealed films can be crosslinked globally, a photoresist layer can be applied to pattern and expose the areas of the film outside the trench regions (e.g., over the spacers 12a), and the exposed portions of the film can be removed, for example by an oxygen (O2) plasma treatment. In other embodiments, the spacers 12a are narrow in width, for example, a width (ws) of one of the copolymer domains (e.g., about Lo) such that the non-crosslinked block copolymer material 28 on the spacers is minimal and no removal is required. Material on the spacers 12a that is generally featureless need not be removed.


After annealing and the copolymer material is ordered, the minority polymer domains can be selectively removed from the films to produce a template 39 for use in patterning the substrate 10. For example, as shown in FIGS. 14-14B, selective removal of the cylindrical domains 30, 32 (e.g., of PMMA) will produce an array of openings 36, 38 within the polymer matrix 34 (e.g., of PS), with the openings varying according to the orientation of the cylindrical domains within the trenches. Since the cylindrical domains 30 extend through the polymer matrix 34 in a perpendicular orientation from the floor 20 of the trenches 14a, 14c, only openings 36 will extend to the trench floors 20, with the majority block matrix component 34 (e.g., PS) remaining underneath the lines of half-cylinder openings 38.


As shown in FIGS. 15A and15B, the half-cylinder openings 38 can be extended to expose the underlying substrate 10 by removing the underlying matrix component 34 (e.g., PS), for example, by a plasma O2 etch. The cylindrical openings 36 generally have a diameter of about 5-50 nm and an aspect ratio of about 1:1 to about 1:2, and the lined openings (grooves) 38 have a width of about 5-50 nm and an aspect ratio of about 1:1. Resulting film 40 can then be used in patterning (arrows ↓↓) the substrate 10 to form a configuration of cylindrical openings 42 and grooves (lines) 44 (shown in phantom) extending to active areas or elements 46. The residual matrix 34 (film 40) can be removed and the openings 42, 44 filled with a material 48 e.g., a metal or conductive alloy such as Cu, Al, W, Si, and Ti3N4, among others, as shown in FIGS. 16-16B to form arrays of cylindrical contacts 50 and parallel conductive lines 52, for example, to an underlying active area, contact, or conductive line 46. The cylindrical openings 42 can also be filled with a metal-insulator-metal-stack to form capacitors with an insulating material such as SiO2, Al2O3, HfO2, ZrO2, SrTiO3, and the like. Further processing can be conducted as desired.


Methods of the disclosure provide a means of generating self-assembled diblock copolymer structures where perpendicular cylinders preferentially form on some regions on a substrate and parallel cylinders form on other regions. In some embodiments, the desired orientation is controlled by the structure of the substrate (e.g., wafer) and/or the nature of the surface material. The methods provide ordered and registered elements on a nanometer scale that can be prepared more inexpensively than by electron beam lithography or EUV photolithography. The feature sizes produced and accessible by this invention cannot be prepared by conventional photolithography. Embodiments of the invention can be used to pattern lines and openings (holes) on a substrate in the same patterning step, thus eliminating processing steps compared to conventional process flows. The described methods can be readily employed and incorporated into existing semiconductor manufacturing process flows.


Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations that operate according to the principles of the invention as described. Therefore, it is intended that this invention be limited only by the claims and the equivalents thereof. The disclosures of patents, references and publications cited in the application are incorporated by reference herein.

Claims
  • 1. A template for etching a substrate, the template comprising: cylindrical openings and half-cylindrical openings extending through a polymer matrix in an array of trenches, each trench of the array of trenches having sidewalls parallel to one another along a length of the trench, opposing ends, a floor, and a width, the polymer matrix in first trenches comprising the cylindrical openings in a perpendicular orientation to the floor of the first trenches and extending the length of the first trenches, the cylindrical openings separated at a pitch distance of about Lo, and the polymer matrix in second trenches comprising half-cylindrical openings in a parallel orientation to the floor of the second trenches and extending the length of the second trenches, the half-cylindrical openings separated at a pitch distance of about L0.
  • 2. The template of claim 1, wherein the cylindrical openings in the polymer matrix in the first trenches are in a hexagonal array.
  • 3. The template of claim 2, wherein the ends of the first trenches are rounded.
  • 4. The template of claim 2, wherein the width of each of the first trenches is about L0 or about n*L0 where n is an integer of 3 or greater.
  • 5. The template of claim 1, wherein the cylindrical openings are in a single line extending the length of the first trenches.
  • 6. The template of claim 5, wherein the width of each of the first trenches is from about 1.5*L0 to about 2*L0.
  • 7. The template of claim 1, wherein the cylindrical openings extend through the polymer matrix to the floors of the first trenches.
  • 8. The template of claim 1, wherein the polymer matrix is crosslinked and comprises a majority block of a self-assembled block copolymer.
  • 9. A template for etching a substrate, the template comprising: cylindrical openings and half-cylindrical openings extending through a polymer matrix of a majority block of a self-assembled block copolymer film within trenches in a material, each trench having sidewalls parallel to one another along a length of the trench, opposing ends, a floor, and a width, the polymer matrix in first trenches comprising the cylindrical openings perpendicular to the floor of the first trenches and extending the length of the first trenches, and separated at a pitch distance of about Lo, and the polymer matrix in second trenches comprising the half-cylindrical openings parallel to the floor of the second trenches and extending the length of the second trenches and separated at a pitch distance of about Lo.
  • 10. A template for etching a substrate, the template comprising: a self-assembled block copolymer film in first trenches in a material, the first trenches having sidewalls parallel to one another along a length of the first trenches and the self-assembled block copolymer film in the first trenches comprising cylindrical openings therein in a perpendicular orientation to a floor of the first trenches and extending the length of the first trenches;the self-assembled block copolymer film in second trenches in the material, the second trenches having sidewalls parallel to one another along a length of the second trenches and the self-assembled block copolymer film in the second trenches comprising half-cylinder openings therein in a perpendicular orientation from ends of the second trenches and in a parallel orientation to floors and to the sidewalls of the second trenches; andthe self-assembled block copolymer film in third trenches in the material, the third trenches having sidewalls parallel to one another along a length of the third trenches and the self-assembled block copolymer film in the third trenches comprising cylindrical openings therein in a perpendicular orientation to a floor of the third trenches.
  • 11. The template of claim 10, wherein the cylindrical openings in the self-assembled block copolymer film in the first trenches and the half-cylinder openings in the self-assembled block copolymer film in the second trenches extend to respective floors of the first trenches and the second trenches.
  • 12. The template of claim 10, wherein the half-cylinder openings in the self-assembled block copolymer film in the second trenches overlie the polymer matrix in the second trenches.
  • 13. The template of claim 10, wherein the cylindrical openings in the self-assembled block copolymer film in the first trenches have a center-to-center pitch at or about Lo, where Lo is the pitch value of a block copolymer of the self-assembled block copolymer film.
  • 14. The template of claim 10, wherein the third trenches comprise ends angled about 60° to the sidewalls of the third trenches.
  • 15. The template of claim 10, wherein a width of the half-cylinder openings in the self-assembled block copolymer film in the second trenches is about 0.5 Lo, where Lo is the pitch value of a block copolymer of the self-assembled block copolymer film.
  • 16. The template of claim 10, wherein the cylindrical openings in the self-assembled block copolymer film in the first trenches and in the self-assembled block copolymer film in the third trenches have a diameter of from about 5 nm to 50 nm and an aspect ratio of from about 1:1 to about 1:2.
  • 17. The template of claim 10, wherein the half-cylinder openings in the self-assembled block copolymer film in the second trenches have a width of from about 5 nm to 50 nm and an aspect ratio of about 1:1.
  • 18. The template of claim 10, wherein the cylindrical openings in the self-assembled block copolymer film in the third trenches comprise a hexagonal array of the cylindrical openings.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 12/834,097, filed Jul. 12, 2010, now U.S. Pat. No. 8,609,221 issued Dec. 17, 2013, which is a divisional of U.S. patent application Ser. No. 11/761,589, filed Jun. 12, 2007, now U.S. Pat. No. 8,404,124, issued Mar. 26, 2013, the disclosure of each of which is hereby incorporated herein in its entirety by this reference.

US Referenced Citations (383)
Number Name Date Kind
4623674 Bailey Nov 1986 A
4797357 Mura et al. Jan 1989 A
4818713 Feygenson Apr 1989 A
4877647 Klabunde Oct 1989 A
5328810 Lowrey et al. Jul 1994 A
5374367 Edamura et al. Dec 1994 A
5382373 Carlson Jan 1995 A
5482656 Hiraoka et al. Jan 1996 A
5512131 Kumar et al. Apr 1996 A
5538655 Fauteux et al. Jul 1996 A
5580700 Rahman et al. Dec 1996 A
5620850 Bamdad et al. Apr 1997 A
5622668 Thomas et al. Apr 1997 A
5772905 Chou Jun 1998 A
5834583 Hancock et al. Nov 1998 A
5849810 Mueller Dec 1998 A
5879582 Havelka et al. Mar 1999 A
5879853 Azuma Mar 1999 A
5891356 Inoue et al. Apr 1999 A
5904824 Oh et al. May 1999 A
5925259 Biebuyck et al. Jul 1999 A
5948470 Harrison et al. Sep 1999 A
5958704 Starzl et al. Sep 1999 A
6051869 Pan et al. Apr 2000 A
6111323 Carter et al. Aug 2000 A
6143647 Pan et al. Nov 2000 A
6153495 Kub et al. Nov 2000 A
6207787 Fahey et al. Mar 2001 B1
6251791 Tsai et al. Jun 2001 B1
6270946 Miller Aug 2001 B1
6309580 Chou Oct 2001 B1
6310138 Yonezawa et al. Oct 2001 B1
6312971 Amundson et al. Nov 2001 B1
6368871 Christel et al. Apr 2002 B1
6403382 Zhu et al. Jun 2002 B1
6414164 Afzali-Ardakani et al. Jul 2002 B1
6423465 Hawker et al. Jul 2002 B1
6423474 Holscher Jul 2002 B1
6503841 Criscuolo et al. Jan 2003 B1
6506660 Holmes et al. Jan 2003 B2
6517933 Soane et al. Feb 2003 B1
6518194 Winningham et al. Feb 2003 B2
6537920 Krivokapic Mar 2003 B1
6548830 Noguchi et al. Apr 2003 B1
6565763 Asakawa et al. May 2003 B1
6565764 Hiraoka et al. May 2003 B2
6566248 Wang et al. May 2003 B1
6569528 Nam et al. May 2003 B2
6573030 Fairbairn et al. Jun 2003 B1
6592764 Stucky et al. Jul 2003 B1
6630520 Bruza et al. Oct 2003 B1
6635912 Ohkubo Oct 2003 B2
6656308 Hougham et al. Dec 2003 B2
6679996 Yao Jan 2004 B1
6682660 Sucholeiki et al. Jan 2004 B2
6689473 Guire et al. Feb 2004 B2
6699797 Morris et al. Mar 2004 B1
6713238 Chou et al. Mar 2004 B1
6746825 Nealey et al. Jun 2004 B2
6767693 Okoroanyanwu Jul 2004 B1
6780492 Hawker et al. Aug 2004 B2
6781166 Lieber et al. Aug 2004 B2
6797202 Endo et al. Sep 2004 B2
6809210 Chandross Oct 2004 B2
6812132 Ramachandrarao et al. Nov 2004 B2
6825358 Afzali-Ardakani et al. Nov 2004 B2
6884842 Soane et al. Apr 2005 B2
6887332 Kagan et al. May 2005 B1
6890624 Kambe et al. May 2005 B1
6890703 Hawker et al. May 2005 B2
6908861 Sreenivasan et al. Jun 2005 B2
6911400 Colburn et al. Jun 2005 B2
6913697 Lopez et al. Jul 2005 B2
6924341 Mays et al. Aug 2005 B2
6926953 Nealey et al. Aug 2005 B2
6940485 Noolandi Sep 2005 B2
6946332 Loo et al. Sep 2005 B2
6949456 Kumar Sep 2005 B2
6952436 Wirnsberger et al. Oct 2005 B2
6957608 Hubert et al. Oct 2005 B1
6962823 Empedocles et al. Nov 2005 B2
6989426 Hu et al. Jan 2006 B2
6992115 Hawker et al. Jan 2006 B2
6995439 Hill et al. Feb 2006 B1
6998152 Uhlenbrock Feb 2006 B2
7001795 Jiang et al. Feb 2006 B2
7009227 Patrick et al. Mar 2006 B2
7030495 Colburn et al. Apr 2006 B2
7037738 Sugiyama et al. May 2006 B2
7037744 Colburn et al. May 2006 B2
7045851 Black et al. May 2006 B2
7056455 Matyjaszewski et al. Jun 2006 B2
7056849 Wan et al. Jun 2006 B2
7060774 Sparrowe et al. Jun 2006 B2
7066801 Balijepalli et al. Jun 2006 B2
7077992 Sreenivasan et al. Jul 2006 B2
7087267 Breen et al. Aug 2006 B2
7090784 Asakawa et al. Aug 2006 B2
7112617 Kim Sep 2006 B2
7115305 Bronikowski et al. Oct 2006 B2
7115525 Abatchev et al. Oct 2006 B2
7115995 Wong Oct 2006 B2
7118784 Xie Oct 2006 B1
7119321 Quinlan Oct 2006 B2
7132370 Paraschiv et al. Nov 2006 B2
7135144 Christel et al. Nov 2006 B2
7135241 Ferraris et al. Nov 2006 B2
7135388 Ryu et al. Nov 2006 B2
7135523 Ho et al. Nov 2006 B2
7151209 Empedocles et al. Dec 2006 B2
7163712 Chilkoti et al. Jan 2007 B2
7166304 Harris et al. Jan 2007 B2
7172953 Lieber et al. Feb 2007 B2
7186613 Kirner et al. Mar 2007 B2
7189430 Ajayan et al. Mar 2007 B2
7189435 Tuominen et al. Mar 2007 B2
7190049 Tuominen et al. Mar 2007 B2
7195733 Rogers et al. Mar 2007 B2
7202308 Boussand et al. Apr 2007 B2
7208836 Manning Apr 2007 B2
7252791 Wasserscheid et al. Aug 2007 B2
7259101 Zurcher et al. Aug 2007 B2
7279396 Derderian et al. Oct 2007 B2
7282240 Jackman et al. Oct 2007 B1
7291284 Mirkin et al. Nov 2007 B2
7311943 Jacobson et al. Dec 2007 B2
7326514 Dai et al. Feb 2008 B2
7332370 Chang et al. Feb 2008 B2
7332627 Chandross et al. Feb 2008 B2
7338275 Choi et al. Mar 2008 B2
7347953 Black et al. Mar 2008 B2
7368314 Ufert May 2008 B2
7407887 Guo Aug 2008 B2
7408186 Merkulov et al. Aug 2008 B2
7419772 Watkins et al. Sep 2008 B2
7470954 Lee et al. Dec 2008 B2
7514339 Yang et al. Apr 2009 B2
7521090 Cheng et al. Apr 2009 B1
7553760 Yang et al. Jun 2009 B2
7569855 Lai Aug 2009 B2
7585741 Manning Sep 2009 B2
7592247 Yang et al. Sep 2009 B2
7605081 Yang et al. Oct 2009 B2
7632544 Ho et al. Dec 2009 B2
7655383 Mela et al. Feb 2010 B2
7658773 Pinnow Feb 2010 B2
7700157 Bronikowski et al. Apr 2010 B2
7723009 Sandhu et al. May 2010 B2
7767099 Li et al. Aug 2010 B2
7888228 Blanchard Feb 2011 B2
7959975 Millward Jun 2011 B2
7964107 Millward Jun 2011 B2
8039196 Kim et al. Oct 2011 B2
8080615 Millward Dec 2011 B2
8083953 Millward et al. Dec 2011 B2
8083958 Li et al. Dec 2011 B2
8097175 Millward et al. Jan 2012 B2
8101261 Millward et al. Jan 2012 B2
8114300 Millward Feb 2012 B2
8114301 Millward et al. Feb 2012 B2
8114306 Cheng et al. Feb 2012 B2
8206601 Bosworth et al. Jun 2012 B2
8287749 Hasegawa et al. Oct 2012 B2
8294139 Marsh et al. Oct 2012 B2
8372295 Millward Feb 2013 B2
8394483 Millward Mar 2013 B2
8404124 Millward et al. Mar 2013 B2
8409449 Millward et al. Apr 2013 B2
8425982 Regner Apr 2013 B2
8426313 Millward et al. Apr 2013 B2
8445592 Millward May 2013 B2
8512846 Millward Aug 2013 B2
8513359 Millward Aug 2013 B2
8518275 Millward et al. Aug 2013 B2
8551808 Marsh et al. Oct 2013 B2
8641914 Regner Feb 2014 B2
8642157 Millward et al. Feb 2014 B2
8753738 Millward et al. Jun 2014 B2
8784974 Millward Jul 2014 B2
8785559 Millward Jul 2014 B2
8808557 Seino et al. Aug 2014 B1
8900963 Sills et al. Dec 2014 B2
20010024768 Matsuo et al. Sep 2001 A1
20010049195 Chooi et al. Dec 2001 A1
20020055239 Tuominen et al. May 2002 A1
20020084429 Craighead et al. Jul 2002 A1
20020158342 Tuominen et al. Oct 2002 A1
20020158432 Wain Oct 2002 A1
20020167117 Chou Nov 2002 A1
20030010241 Fujihira et al. Jan 2003 A1
20030034329 Chou Feb 2003 A1
20030068639 Haneder et al. Apr 2003 A1
20030077452 Guire et al. Apr 2003 A1
20030080471 Chou May 2003 A1
20030080472 Chou May 2003 A1
20030091752 Nealey et al. May 2003 A1
20030100822 Lew et al. May 2003 A1
20030108879 Klaerner et al. Jun 2003 A1
20030143375 Noguchi et al. Jul 2003 A1
20030157248 Watkins et al. Aug 2003 A1
20030178707 Abbott Sep 2003 A1
20030180522 DeSimone et al. Sep 2003 A1
20030180966 Abbott et al. Sep 2003 A1
20030185741 Matyjaszewski et al. Oct 2003 A1
20030196748 Hougham et al. Oct 2003 A1
20030218644 Higuchi et al. Nov 2003 A1
20030222048 Asakawa et al. Dec 2003 A1
20030235930 Bao et al. Dec 2003 A1
20040023287 Harnack et al. Feb 2004 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040058059 Linford et al. Mar 2004 A1
20040076757 Jacobson et al. Apr 2004 A1
20040084298 Yao et al. May 2004 A1
20040109263 Suda et al. Jun 2004 A1
20040124092 Black Jul 2004 A1
20040125266 Miyauchi et al. Jul 2004 A1
20040127001 Colburn et al. Jul 2004 A1
20040142578 Wiesner et al. Jul 2004 A1
20040159633 Whitesides et al. Aug 2004 A1
20040163758 Kagan et al. Aug 2004 A1
20040175628 Nealey et al. Sep 2004 A1
20040192013 Ryu et al. Sep 2004 A1
20040222415 Chou et al. Nov 2004 A1
20040242688 Chandross et al. Dec 2004 A1
20040254317 Hu Dec 2004 A1
20040256615 Sirringhaus et al. Dec 2004 A1
20040256662 Black et al. Dec 2004 A1
20040265548 Ho et al. Dec 2004 A1
20050008828 Libera et al. Jan 2005 A1
20050062165 Saenger et al. Mar 2005 A1
20050074706 Bristol et al. Apr 2005 A1
20050079486 Abbott et al. Apr 2005 A1
20050100830 Xu et al. May 2005 A1
20050120902 Adams et al. Jun 2005 A1
20050124135 Ayazi et al. Jun 2005 A1
20050133697 Potyrailo et al. Jun 2005 A1
20050147841 Tavkhelidze Jul 2005 A1
20050159293 Wan et al. Jul 2005 A1
20050167651 Merkulov et al. Aug 2005 A1
20050176256 Kudelka Aug 2005 A1
20050208752 Colburn et al. Sep 2005 A1
20050238889 Iwamoto et al. Oct 2005 A1
20050238967 Rogers et al. Oct 2005 A1
20050250053 Marsh et al. Nov 2005 A1
20050271805 Kambe et al. Dec 2005 A1
20050272341 Colburn et al. Dec 2005 A1
20060013956 Angelescu et al. Jan 2006 A1
20060014001 Zhang et al. Jan 2006 A1
20060024590 Sandhu Feb 2006 A1
20060030495 Gregg Feb 2006 A1
20060035387 Wagner et al. Feb 2006 A1
20060038182 Rogers et al. Feb 2006 A1
20060046079 Lee et al. Mar 2006 A1
20060046480 Guo Mar 2006 A1
20060046484 Abatchev et al. Mar 2006 A1
20060060863 Lu et al. Mar 2006 A1
20060062867 Choi et al. Mar 2006 A1
20060078681 Hieda et al. Apr 2006 A1
20060097134 Rhodes May 2006 A1
20060105562 Yi May 2006 A1
20060124467 Ho et al. Jun 2006 A1
20060128165 Theiss et al. Jun 2006 A1
20060134556 Nealey et al. Jun 2006 A1
20060137554 Kron et al. Jun 2006 A1
20060141222 Fischer et al. Jun 2006 A1
20060141245 Stellacci et al. Jun 2006 A1
20060154466 Lee et al. Jul 2006 A1
20060163646 Black et al. Jul 2006 A1
20060192283 Benson Aug 2006 A1
20060205875 Cha et al. Sep 2006 A1
20060211871 Dai Sep 2006 A1
20060217285 Destarac Sep 2006 A1
20060228635 Suleski Oct 2006 A1
20060231525 Asakawa et al. Oct 2006 A1
20060249784 Black et al. Nov 2006 A1
20060249796 Tavkhelidze Nov 2006 A1
20060254440 Choi et al. Nov 2006 A1
20060255505 Sandhu et al. Nov 2006 A1
20060257633 Inoue et al. Nov 2006 A1
20060258159 Colburn et al. Nov 2006 A1
20060278158 Tolbert et al. Dec 2006 A1
20060281266 Wells Dec 2006 A1
20060286305 Thies et al. Dec 2006 A1
20060286490 Sandhu et al. Dec 2006 A1
20060292777 Dunbar Dec 2006 A1
20070020749 Nealey et al. Jan 2007 A1
20070023247 Ulicny et al. Feb 2007 A1
20070023805 Wells et al. Feb 2007 A1
20070045562 Parekh Mar 2007 A1
20070045642 Li Mar 2007 A1
20070071881 Chua et al. Mar 2007 A1
20070072403 Sakata Mar 2007 A1
20070122749 Fu et al. May 2007 A1
20070122932 Kodas et al. May 2007 A1
20070138131 Burdinski Jun 2007 A1
20070161237 Lieber et al. Jul 2007 A1
20070175859 Black et al. Aug 2007 A1
20070181870 Libertino et al. Aug 2007 A1
20070183035 Asakawa et al. Aug 2007 A1
20070194403 Cannon et al. Aug 2007 A1
20070200477 Tuominen et al. Aug 2007 A1
20070208159 McCloskey et al. Sep 2007 A1
20070218202 Ajayan et al. Sep 2007 A1
20070222995 Lu Sep 2007 A1
20070224819 Sandhu Sep 2007 A1
20070224823 Sandhu Sep 2007 A1
20070227383 Decre et al. Oct 2007 A1
20070249117 Kang et al. Oct 2007 A1
20070272951 Lieber et al. Nov 2007 A1
20070281220 Sandhu Dec 2007 A1
20070289943 Lu et al. Dec 2007 A1
20070293041 Yang Dec 2007 A1
20080032238 Lu et al. Feb 2008 A1
20080038467 Jagannathan et al. Feb 2008 A1
20080038923 Edelstein et al. Feb 2008 A1
20080041818 Kihara et al. Feb 2008 A1
20080047930 Blanchet et al. Feb 2008 A1
20080064217 Horii Mar 2008 A1
20080073743 Alizadeh et al. Mar 2008 A1
20080078982 Min Apr 2008 A1
20080078999 Lai Apr 2008 A1
20080083991 Yang et al. Apr 2008 A1
20080085601 Park et al. Apr 2008 A1
20080093743 Yang et al. Apr 2008 A1
20080102252 Black et al. May 2008 A1
20080103256 Kim et al. May 2008 A1
20080113169 Cha et al. May 2008 A1
20080164558 Yang et al. Jul 2008 A1
20080174726 Kim Jul 2008 A1
20080176767 Millward Jul 2008 A1
20080193658 Millward Aug 2008 A1
20080217292 Millward et al. Sep 2008 A1
20080233297 de Jong et al. Sep 2008 A1
20080233323 Cheng et al. Sep 2008 A1
20080257187 Millward Oct 2008 A1
20080260941 Jin Oct 2008 A1
20080274413 Millward Nov 2008 A1
20080286659 Millward Nov 2008 A1
20080311347 Millward et al. Dec 2008 A1
20080315270 Marsh et al. Dec 2008 A1
20080318005 Millward Dec 2008 A1
20090062470 Millward et al. Mar 2009 A1
20090087664 Nealey et al. Apr 2009 A1
20090155579 Greco et al. Jun 2009 A1
20090196488 Nealey Aug 2009 A1
20090200646 Millward et al. Aug 2009 A1
20090206489 Li et al. Aug 2009 A1
20090212016 Cheng et al. Aug 2009 A1
20090218567 Mathew et al. Sep 2009 A1
20090236309 Millward et al. Sep 2009 A1
20090240001 Regner Sep 2009 A1
20090263628 Millward Oct 2009 A1
20090267058 Namdas et al. Oct 2009 A1
20090274887 Millward et al. Nov 2009 A1
20090317540 Sandhu et al. Dec 2009 A1
20100092873 Sills et al. Apr 2010 A1
20100102415 Millward et al. Apr 2010 A1
20100124826 Millward et al. May 2010 A1
20100137496 Millward et al. Jun 2010 A1
20100163180 Millward Jul 2010 A1
20100204402 Millward et al. Aug 2010 A1
20100279062 Millward et al. Nov 2010 A1
20100316849 Millward et al. Dec 2010 A1
20100323096 Sills et al. Dec 2010 A1
20110232515 Millward Sep 2011 A1
20120028471 Oyama et al. Feb 2012 A1
20120122292 Sandhu et al. May 2012 A1
20120133017 Millward et al. May 2012 A1
20120135146 Cheng et al. May 2012 A1
20120135159 Xiao et al. May 2012 A1
20120164389 Yang et al. Jun 2012 A1
20120202017 Nealey et al. Aug 2012 A1
20120211871 Russell et al. Aug 2012 A1
20120223053 Millward et al. Sep 2012 A1
20120225243 Millward Sep 2012 A1
20130285214 Millward et al. Oct 2013 A1
20130295323 Millward Nov 2013 A1
20130330668 Wu et al. Dec 2013 A1
20140060736 Millward et al. Mar 2014 A1
20140097520 Millward Apr 2014 A1
20140127626 Senzaki et al. May 2014 A1
20140272723 Somervell et al. Sep 2014 A1
20150021293 Morris et al. Jan 2015 A1
Foreign Referenced Citations (64)
Number Date Country
1562730 Jan 2005 CN
1799131 Jul 2006 CN
101013662 Aug 2007 CN
0784543 Apr 2000 EP
1416303 May 2004 EP
1906237 Apr 2008 EP
1593164 Jun 2010 EP
11080414 Mar 1999 JP
2003155365 May 2003 JP
2004335962 Nov 2004 JP
2005008882 Jan 2005 JP
2005029779 Feb 2005 JP
2006036923 Feb 2006 JP
2006055982 Mar 2006 JP
2006110434 Apr 2006 JP
2007194175 Aug 2007 JP
2008036491 Feb 2008 JP
2008043873 Feb 2008 JP
20060128378 Dec 2006 KR
20070029762 Mar 2007 KR
100771886 Nov 2007 KR
200400990 Mar 1992 TW
200633925 Oct 1994 TW
200740602 Jan 1996 TW
200802421 Feb 1996 TW
584670 Apr 2004 TW
200419017 Oct 2004 TW
200511364 Mar 2005 TW
1256110 Jun 2006 TW
1253456 Nov 2007 TW
90007575 Jul 1990 WO
9706013 Feb 1997 WO
9839645 Sep 1998 WO
9947570 Sep 1999 WO
0031183 Jun 2000 WO
0218080 Mar 2002 WO
02081372 Oct 2002 WO
03045840 Jun 2003 WO
2005122285 Dec 2005 WO
2006003592 Jan 2006 WO
2006003594 Jan 2006 WO
2006076016 Jul 2006 WO
2006078952 Jul 2006 WO
2006112887 Oct 2006 WO
2007001294 Jan 2007 WO
2007013889 Feb 2007 WO
2007024241 Mar 2007 WO
2007024323 Mar 2007 WO
2007019439 May 2007 WO
2007055041 May 2007 WO
2008055137 May 2008 WO
2008091741 Jul 2008 WO
2008096335 Aug 2008 WO
2008097736 Aug 2008 WO
2008118635 Oct 2008 WO
2008124219 Oct 2008 WO
2008130847 Oct 2008 WO
2008145268 Dec 2008 WO
2008156977 Dec 2008 WO
2009099924 Aug 2009 WO
2009102551 Aug 2009 WO
2009117238 Sep 2009 WO
2009117243 Sep 2009 WO
2009134635 Nov 2009 WO
Non-Patent Literature Citations (213)
Entry
Yu et al., Contact Printing Beyond Surface Roughness: Liquid Supramolecular Nanostamping, Advanced Materials, vol. 19, (2007), pp. 4338-4342.
Yurt et al., Scission of Diblock Copolymers into Their Constituent Blocks, Macromolecules 2006, vol. 39, No. 5, (2006), pp. 1670-1672.
Zaumseil et al., Three-Dimensional and Multilayer Nanostructures Formed by Nanotransfer Printing, Nano Letters, vol. 3, No. 9,(2003), pp. 1223-1227.
Zehner et al., Selective Decoration of a Phase-Separated Diblock Copolymer with Thiol-Passivated Gold Nanocrystals, Langmuir, vol. 14, No. 2, (Jan. 20, 1998), pp. 241-244.
Zhang et al., Highly Ordered Nanoporous Thin Films from Cleavable Polystyrene-block-poly(ethylene oxide),Adv. Mater., vol. 19, (2007), pp. 1571-1576.
Zhang et al., Phase Change Nanodot Arrays Fabricated Using a Self-Assembly Diblock Copolymer Approach, Applied Physics Letter, vol. 91, (2007), pp. 013104-013104-3.
Zhang et al., Self-Assembled Monolayers of Terminal Alkynes on Gold, J. Am. Chem. Soc., vol. 129, No. 16, (2007), pp. 4876-4877.
Zhao et al., Colloidal Subwavelength Nanostructures for Antireflection Optical Coatings, Optics Letters, vol. 30, No. 14, (Jul. 15, 2005), pp. 1885-1887.
Zhu et al., Grafting of High-Density Poly(Ethylene Glycol) Monolayers on Si(111), Langmuir, vol. 17, (2001), pp. 7798-7803.
Zhou et al., Nanoscale Metal/Self-Assembled Monolayer/Metal Heterostructures, Appl. Phys. Lett., vol. 71, No. 5, (Aug. 4, 1997), pp. 611-613.
Zhu et al., Molecular Assemblies on Silicon Surfaces via Si-O Linkages, Langmuir, vol. 16, (2000), pp. 6766-6772.
ALI et al., Properties of Self-assembled ZnO Nanostructures, Solid-State Electronics 46 (2002), 1639-1642.
Arshady et al., The Introduction of Chloromethyl Groups into Styrene-based Polymers, 1, Makromol. Chem., vol. 177, 1976, p. 2911-2918.
Asakawa et al., Fabrication of Subwavelength Structure for Improvement in Light-Extraction Efficiency of Light-Emitting Devices Using a Self-Assembled Pattern of Block Copolymer, Applied Optics, vol. 44, No. 34, (Dec. 1, 2005), pp. 7475-7482.
Bae, Joonwon, Surface Modification Using Photo-Crosslinkable Random Copolymers, Abstract submitted for the Mar. 2006 meeting of the American Physical Society, submitted Nov. 30, 2005. (Accessed via the Internet [retrieved on Apr. 5, 2010], URL: http://absimage.aps.org/image/MWS—MAR06-2005-003641.pdf).
Balsara et al., CPIMA, IRG Technical Programs, Synthesis and application of Nanostructured Materials, Leland Stanford Junior Univ., 2006, http://www.stanford.edu/group/cpima/irg/irg—1.htm.
Bang, J., The Effect of Humidity on the Ordering of Tri-block Copolymer Thin Films, Abstract submitted for the Mar. 2007 meeting of The American Physical Society, submitted Nov. 20, 2006.
Bass et al., Microcontact Printing with Octadecanethiol, Applied Surface Science, vol. 226, No. 4, (Apr. 2004), pp. 335-340.
Bearinger et al., Chemisorbed Poly(propylene sulphide)-based Copolymers Resist Biomolecular Interactions, Nature Materials 2, (2003), pp. 259-264.
Berry et al., Effects of Zone Annealing on Thin Films of Block Copolymers, National Institute of Standard and Technology, Polymers Division, Maryland, USA, (2007), 2 pages.
Berry et al., Orientational Order in Block Copolymer Films Zone Annealed Below the Order—Disorder Transition Temperature, Nano Letters vol. 7, No. (Aug. 2007), pp. 2789-2794.
Black et al., High-Capacity, Self-Assembled Metal-Oxide-Semiconductor Decoupling Capacitors, IEEE Electron Device Letters, vol. 25, No. 9, (Sep. 2004), pp. 622-624.
Black et al., Integration of Self Assembly for Semiconductor Microelectronics, IEEE 2005 Custom Integrated Circuits Conference, IBM T.J. Watson Research Center, (2005), pp. 87-91.
Black et al., Integration of Self-Assembled Diblock Copolymers for Semiconductor Capacitor Fabrication, Applied Physics Letters, vol. 79, No. 3, (2001), pp. 409-411.
Black et al., Nanometer-Scale Pattern Registration and Alignment by Directed Diblock Copolymer Self-Assembly, IEEE Transactions on Nanotechnology, vol. 3, No. 3, (Sep. 2004), pp. 412-415.
Black et al., Polymer Self Assembly in Semiconductor Microelectronics, IBM J. Res. & Dev. vol. 51, No. 5, (Sep. 2007), pp. 605-633.
Black et al., Self Assembly in Semiconductor Microelectronics: Self-Aligned Sub-Lithographic Patterning Using Diblock Copolymer Thin Films, Proc. of SPIE, vol. 6153, 615302 (2006).
Black, C. T., Polymer Self-Assembly as a Novel Extension to Optical Lithography, American Chemical Society, ACSNano, vol. 1, No. 3, (2007), pp. 147-150.
Black, C. T., Self-aligned self-assembly of multi-nanowire silicon field effect transistors, Appl. Phys. Lett., vol. 87, (2005), pp. 163116-1 through 163116-3.
Botelho et al., Diblock Copolymer Ultrathin Films Studied by High Resolution Electron Energy Loss Spectroscopy, Surface Science, 482-485 (2001), pp. 1228-1234.
Brydson et al. (chapter authors), Generic Methodologies for Nanotechnology: Classification and Fabrication, Nanoscale Science and Technology, John Wiley & Sons, Ltd., (Dec. 20, 2005), pp. 1-55.
Bulpitt et al., New Strategy for Chemical Modification of Hyaluronic Acid: Preparation of Functionalized Derivatives and Their Use in the Formation of Novel Biocompatible Hydrogels, Journal of Biomedical Materials Research, vol. 47, Issue 2, (Aug. 1999) pp. 152-169, Abstract only.
Canaria et al., Formation and Removal of Alkylthiolate Self-Assembled Monolayers on Gold in Aqueous Solutions, Lab Chip 6, (2006). pp. 289-295. Abstract only.
Candau et al, Synthesis and Characterization of Polystyrene-poly(ethylene oxide) Graft Copolymers, Polymer, vol. 18, (1977), pp. 1253-1257.
Cavicchi et al., Solvent Annealed Thin Films of Asymmetric Polyisoprene—Polylactide Diblock Copolymers, Macromolecules 2007, vol. 40, (2007), pp. 1181-1186.
Cha et al., Biomimetic Approaches for Fabricating High-Density Nanopatterned Arrays, Chem. Mater. vol. 19, (2007), pp. 839-843.
Chai et al., Assembly of Aligned Linear Metallic Patterns on Silicon, Nature Nanotechnology, vol. 2, (Aug. 2007), pp. 500-506.
Chai et al., Using Cylindrical Domains of Block Copolymers to Self-Assemble and Align Metallic Nanowires, American Chemical Society, www.acsnano.org, (2008), pp. A-M.
Chandekar et al., Template-Directed Adsorption of block Copolymers on Alkanethiol-Patterned Gold Surfaces, (circa 2006), http://www.nano.neu.edu/industry/industry—showcase/industry—day/documents/Chandekar.pdf) (Powerpoint template for scientific posters (Swarthmore College)), 1 page.
Chang, Li-Wen, Diblock Copolymer Directed Self-Assembly for CMOS Device Fabrication, Proc. of SPIE, vol. 6156, ( 2006), 615611-1 to 615611-6.
Chang, Li-Wen, Experimental Demonstration of Aperiodic Patterns of Directed Self-Assembly of Block Copolymer Lithography for Random Logic Circuit Layout, IEEE International Electron Devices Meeting (IEDM), paper 33.2, (Dec. 6-8, 2010), pp. 33.2.1-33.2.4.
Chen et al., Highly Ordered Arrays of Mesoporous Silica Nanorods with Tunable Aspect Ratios from Block Copolymer Thin Films, Advanced Materials, vol. 20, (2008), pp. 763-767.
Cheng et al., Rapid Directed Self Assembly of Lamellar Microdomains from a Block Copolymer Containing Hybrid, Applied Physics Letters, vol. 91, (2007), pp. 143106-143106-3.
Cheng et al., Self-Assembled One-Dimensional Nanostructure Arrays, Nano Letters, vol. 6, No. 9, (2006), pp. 2099-2103.
Cheng et al., Templated Self-Assembly of Block Copolymers: Effect of Substrate Topography, Adv. Mater., vol. 15, No. 19, (2003), pp. 1599-1602.
Cho et al., Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties, J. Am. Chem. Soc., vol. 128, No. 30, (2006), pp. 9935-9942.
Choi et al., Magnetorheology of Synthesized Core-Shell Structured Nanoparticle, IEEE Transactions on Magnetics, vol. 41, No. 10, (Oct. 2005), pp. 3448-3450.
Clark et al., Selective Deposition in Multilayer Assembly: SAMs as Molecular Templates, Supramolecular Science, vol. 4, (1997), pp. 141-146.
Daoulas et al., Fabrication of Complex Three-Dimensional Nanostructures from Self-Assembling Block Copolymer Materials on Two-Dimensional Chemically Patterned Templates with Mismatched Symmetry, Physical Review Letters 96, week ending Jan. 27, (2006), pp. 036104-1-3.
Darling, Directing the Self-assembly of Block Copolymers, Progress in Polymer Science, vol. 32, No. 10, (Sep. 28, 2007), pp. 1152-1204.
Desai et al., Engineered Silicon Surfaces for Biomimetic Interfaces, Business Briefing: Medical Device Manufacturing & Technology, (2002), pp. 1-4.
Edwards et al., Mechanism and Kinetics of Ordering in Diblock Copolymer Thin Films on Chemically Nanopatterned Substrates, Journal of Polymer Science: Part B Polymer Physics, vol. 43, (2005), pp. 3444-3459.
Edwards et al., Precise Control over Molecular Dimensions of Block-Copolymer Domains Using the Interfacial Energy of Chemically Nanopatterned Substrates, Advanced Mater., 16, No. 15, (Aug. 4, 2004), pp. 1315-1319.
Electronegativity—<http://www.princeton.edu/˜achaney/tmve/wiki100k/docs/Electronegativity.html> website, visited Aug. 28, 2013, 1 page.
Elisseeff et al., Photoencapsulation of Chondrocytes in Poly(ethylene oxide)-based Semi-interpenetrating Networks, Journal of Biomedical Materials Research, vol. 51, No. 2, (Aug. 2000), pp. 164-171, Abstract only.
Erlandsson et al., Metallic Zinc Reduction of Disulfide Bonds Between Cysteine Residues in Peptides and Proteins, Int'l J. Peptide Res. & Therapeutics, vol. 11, No. 4, (Dec. 2005), pp. 261-265.
Fasolka et al., Block Copolymer Thin Films: Physics and Applications, Annual Reviews Materials Res., vol. 31, (Aug. 2001), pp. 323-355.
Fasolka et al., Morphology of Ultrathin Supported Diblock Copolymer Films: Theory and Experiment, Macromolecules 2000, vol. 33, No. 15, (2000), pp. 5702-5712.
Fujita et al., Thin Silica Film with a Network Structure as Prepared by Surface Sol-Gel Transcription on the Poly (styrene-b-4-vinylpyridine) Polymer Film, Chemistry Letters, vol. 32, No. 4, (Dec. 31, 2003), pp. 352-353.
Fukunaga et al., Self-Assembly of Block Copolymer Thin Films Having a Half-Domain-Spacing Thickness: Nonequilibrium Pathways to Achieve Equilibrium Brush Layers Parallel to Substrate, Macromolecules vol. 39, (Aug. 2006), pp. 6171-6179.
Gates et al., Unconventional Nanofabrication, Annu. Rev. Mater. Res., vol. 34, (2004), pp. 339-372.
Gates, Nanofabrication with Molds & Stamps, Materials Today, (Feb. 2005), pp. 44-49.
Ge et al., Thermal Conductance of Hydrophilic and Hydrophobic Interfaces, The American Physical Society , PRL 96, (May 12, 2006), pp. 186101-1186101-4.
Gelest Inc., Silane Coupling Agents: Connecting Across Boundaries, v2.0, ( 2006), pp. 1-56.
Genua et al., Functional Patterns Obtained by Nanoimprinting Lithography and Subsequent Growth of Polymer Brushes, Nanotechnology, vol. 18, (2007), pp. 1-7.
Gillmor et al., Hydrophilic/Hydrophobic Patterned Surfaces as Templates for DNA Arrays, Langmuir 2000, vol. 16, No. 18, (2000), pp. 7223-7228.
Grubbs, Hybrid Metal-Polymer Composites from Functional Block Copolymers, J. of Polymer Sci.: Part A: Polymer Chemistry, vol. 43, Issue 19, (Oct. 1, 2005), pp. 4323-4336.
Guarini et al., Nanoscale Patterning Using Self-Assembled Polymers for Semiconductor Applications, J. Vac. Sci. Technol. B 19(6), (Nov./Dec. 2001), pp. 2784-2788.
Gudipati et al., Hyperbranched Fluoropolymer and Linear Poly(ethylene glycol) Based Amphiphilic Crosslinked Networks as Efficient Antifouling Coatings: An Insight into the Surface Compositions, Topographies, and Morphologies, Journal of Polymer Science Part A: Polymer Chemistry, vol. 42, (2004), pp. 6193-6208.
Guo et al., Synthesis and Characterization of Novel Biodegradable Unsaturated Poly(ester amide)/Poly(ethylene glycol) Diacrylate Hydrogels, Abstract only, Journal of Polymer Science Part A: Polymer Chemistry, vol. 43, Issue 17, (2005), pp. 3932-3944.
Hadziioannou, Semiconducting Block Copolymers for Self-Assembled Photovoltaic Devices, MRS Bulletin, (Jun. 2002), pp. 456-460.
Hamers, Passivation and Activation: How Do Monovalent Atoms Modify the Reactivity of Silicon Surfaces? A Perspective on the Article, “The Mechanism of Amine Formation on Si(100) Activated with Chlorine Atoms,” by C.C. Fustad, A.D. Thorsness, and A.J. Muscat, Surface Sci., vol. 600, (2006), pp. 3361-3362.
Hamley, I. W., Introduction to Block Copolymers, Developments in Block Copolymers Science and Technology, John Wiley & Sons, Ltd., (2004), pp. 1-29.
Hammond et al., Temperature Dependence of Order, Disorder, and Defects in Laterally Confined Diblock Copolymer Cylinder Monolayers, Macromolecules, American Chemical Society, vol. 38, ,(Jul. 2005), pp. 6575-6585.
Harrison et al., Layer by Layer Imaging of Diblock Copolymer Films with a Scanning Electron Microscope, Polymer, vol. 39, No. 13, (1998), pp. 2733-2744.
Hawker et al., Facile Synthesis of Block Copolymers for Nanolithographic Applications, Polymer Reprints, American Chemical Society, (2005), 2 pages.
Hawker et al., Improving the Manufacturability and Structural Control of Block Copolymer Lithography, Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA, (Sep. 10-14, 2006), 1 page, abstract only.
Hayward et al., Crosslinked Poly(styrene)-block-Poly(2-vinylpyridine) Thin Films as Swellable Templates for Mesostructured Silica and Titania, Advanced Materials, vol. 17, (2005), pp. 2591-2595.
He et al., Self-Assembly of Block Copolymer Micelles in an Ionic Liquid, J. Am. Chem. Soc., vol. 128, (2006), pp. 2745-2750.
Helmbold et al., Optical Absorption of Amorphous Hydrogenated Carbon Thin Films, Thin Solid Films, vol. 283, (1996), pp. 196-203.
Helmuth et al., High-Speed Microcontact Printing, J. Am. Chem. Soc., vol. 128, No. 29, (2006), pp. 9296-9297.
Hermans et al., Application of Solvent-Directed Assembly of Block Copolymers to the Synthesis of Nanostructured Materials with Low Dielectric Constants, Angewandte Chem. Int. Ed., vol. 45, Issue 40, (Oct. 13, 2006), pp. 6648-6652.
Horiuchi et al., Three-Dimensional Nanoscale Alignment of Metal Nanoparticles Using Block Copolymer Films as Nanoreactors, Langmuir, vol. 19, (2003), pp. 2963-2973.
Huang et al., Stretchable Gold Conductors on Elastomeric Substrates, Applied Physics Letters, vol. 82, No. 15, (Apr. 14, 2003), pp. 2404-2406.
Huang et al., Using Surface Active Random Copolymers to Control the Domain Orientation in Diblock Copolymer Thin Films, Macromolecules, vol. 31, (1998), pp. 7641-7650.
Hur et al., Nanotransfer Printing by Use of Noncovalent Surface Forces: Applications to Thin-Film Transistors That Use Single-Walled Carbon Nanotube Networks and Semiconducting Polymers, Applied Physics Letters, vol. 85, No. 23, (Dec. 6, 2004), pp. 5730-5732.
Hutchison et al., Polymerizable Living Free Radical Initiators as a Platform to Synthesize Functional Networks, Chem. Mater., vol. 17, No. 19, (2005), pp. 4789-4797.
Ikeda et al., Control of Orientation of Thin Films of Organic Semiconductors by Graphoepitaxy, NanotechJapan Bulletin—NIMS International Center for Nanotechnology Network., vol. 3, No. 3,(Dec. 17, 2010), pp. 1-23.
In et al., Side-Chain-Grafted Random Copolymer Brushes as Neutral Surfaces for Controlling the Orientation of Block Copolymer Microdomains in Thin Films, Langmuir, Department of Materials Science and Engineering and Chemical and Biological Engineering, Univ. of Wisconsin-Madison, vol. 22, No. 18, (2006), pp. 7855-7860.
International Search Report for International Application No. PCT/US20008/064973 dated Feb. 19, 2009, 6 pages.
International Written Opinion for International Application No. PCT/US20008/064973 dated Feb. 19, 2009, 7 pages.
International Preliminary Report on Patentability for International Application No. PCT/US2008/064973 dated Dec. 17, 2009, 8 pages.
Ji et al., Generalization of the Use of Random Copolymers to Control the Wetting Behaviors of Block Copolymer Films, Macromolecules, vol. 41, No. 23, (2008), pp. 9098-9103.
Ji et al., Molecular Transfer Printing Using Block Copolymers, ACS Nano, vol. 4, No. 2, (2010), pp. 599-609.
Ji et al., Preparation of Neutral Wetting Brushes for Block Copolymer Films from Homopolymer Blends, submitted to Advanced Materials, vol. 20, No. 16, (Jul. 7, 2008), pp. 3054-3060.
Jiang et al., Electrochemical Desorption of Self-Assembled Monolayers Noninvasively Releases Patterned Cells from Geometrical Confinements, J. Am. Chem. Soc., vol. 125, No. 9, (2003), pp. 2366-2367.
Johnson et al., Probing the Stability of the Disulfide Radical Intermediate of Thioredoxin Using Direct Electrochemistry, Letters in Peptide Sci., vol. 10, (2003), pp. 495-500.
Jun et al., Microcontact Printing Directly on the Silicon Surface, Langmuir, vol. 18, No. 9 (2002), pp. 3415-3417, abstract only.
Jun et al., Patterning Protein Molecules on Poly(ethylene glycol) Coated Si(111), Biomaterials, vol. 25, (2004), pp. 3503-3509.
Karim et al., Control of Ordering Kinetics and Morphology Using Zone Annealing of Thin Block Copolymer Films, Abstract submitted for the Mar. 2007 Meeting of The American Physical Society, (Nov. 20, 2006), 2 pages.
Kavakli et al., Single and Double-Layer Antireflection Coatings on Silicon, Turk J. Phys., vol. 26, (2002), pp. 349-354.
Kim et al., Epitaxial Self-assembly of Block Copolymers on Lithographically Defined Nanopatterned Substrates, Nature, vol. 424, (Jul. 24, 2003), pp. 411-414.
Kim et al., Highly Oriented and Ordered Arrays from Block Copolymers via Solvent Evaporation, Adv. Mater. 2004, 16, No. 3, (Feb. 3, 2004), pp. 226-231.
Kim et al., Hybrid Nanofabrication Processes Utilizing Diblock Copolymer Nanotemplate Prepared by Self-assembled Monolayer Based Surface Neutralization, J. Vac. Sci. Technol. vol. B26, No. 1, (Jan./Feb. 2008), pp. 189-194.
Kim et al., In Vitro Release Behavior of Dextran-methacrylate Hydrogels Using Doxorubicin and Other Model Compounds, J Biomater Appl., vol. 15, No. 1, (Jul. 2000), pp. 23-46, abstract only.
Kim et al., Novel Complex Nanostructure from Directed Assembly of Block Copolymers on Incommensurate Surface Patterns, Adv. Mater., vol. 19, (2007), pp. 3271-3275.
Kim et al., Salt Complexation in Block Copolymer Thin Films, Macromolecules 2006, vol. 39, No. 24, (2006), pp. 8473-8479.
Kim et al., Self-assembled Hydrogel Nanoparticles Composed of Dextran and Poly (ethylene glycol) Macromer, Int J Pharm., vol. 205, No. 1-2, (Sep. 15, 2000), pp. 109-116, abstract only.
Kim et al., Solvent-Induced Ordering in Thin Film Diblock Copolymer/Homopolymer Mixtures, Advanced Mater., vol. 16, No. 23-24, (Dec. 17, 2004), pp. 2119-2123.
Kim et al., Synthesis and characterization of Dextran-methacrylate Hydrogels and Structural Study by SEM, J Biomater Res.,vol. 49, No. 4, (Mar. 15, 2000), pp. 517-527, abstract only.
Knoll et al., Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers, Physical Review Letters, vol. 89, No. 3, (Jul. 15, 2002), pp. 035501-1 to 035501-4.
Krishnamoorthy et al., Block Copolymer Micelles as Switchable Templates for Nanofabrication, Languir, vol. 22, No. 8, (2006), pp. 3450-3452.
Krishnamoorthy et al., Nanopatterned Self-Assembled Monolayers by Using Diblock Copolymer Micelles as Nanometer-Scale Adsorption and Etch Masks, Advanced Materials, (2008), pp. 1-4.
Krishnamoorthy et al., Nanoscale Patterning with Block Copolymers, Materials Today, vol. 9, No. 9, (Sep. 2006), pp. 40-47.
Kuhnline et al., Detecting Thiols in a Microchip Device Using Micromolded Carbon Ink Electrodes Modified with Cobalt Phthalocyanine, Analyst, vol. 131, (2006), pp. 202-207.
La et al., Directed Assembly of Cylinder-Forming Block Copolymers into Patterned Structures to Fabricate Arrays of Spherical Domains and Nanoparticles, Chem. Mater., vol. 19, No. 18, (2007), pp. 4538-4544.
La et al., Pixelated Chemically Amplified Resists: Investigation of Material Structure on the Spatial Distribution of Photoacids and Line Edge Roughness, J. Vac. Sci. Technol. vol. B 25, No. 6, (Nov./Dec. 2007), pp. 2508-2513.
Laracuente et al., Step Structure and Surface Morphology of Hydrogen-terminated Silicon: (001) to (114), Surface Science 545, (2003), pp. 70-84.
Lentz et al., Whole Wafer Imprint Patterning Using Step and Flash Imprint Lithography: A Manufacturing Solution for Sub 100 nm Patterning, SPIE Advanced Lithography Paper, Molecular Imprints, Inc., Texas, USA, (Feb. 2007), pp. 1-10.
Li et al., A Method for Patterning Multiple Types of Cells by Using Electrochemical Desorption of Self-Assembled Monolayers within Microfluidic Channels, Angew. Chem. Int. Ed., vol. 46, (2007), pp. 1094-1096.
Li et al., Block Copolymer Patterns and Templates, Materials Today, vol. 9, No. 9, (Sep. 2006), pp. 30-39.
Li et al., Creation of Sub-20-nm Contact Using Diblock Copolymer on a 300 mm Wafer for Complementary Metal Oxide Semiconductor Applications, J. Vac. Sci. Technol., vol. B 25, No. 6, (Nov./Dec. 2007), pp. 1982-1984.
Li et al., Morphology Change of Asymmetric Diblock Copolymer Micellar Films During Solvent Annealing, ScienceDirect, Polymer 48, (2007), pp. 2434-2443.
Lin et al., A Rapid Route to Arrays of Nanostructures in Thin Films, Adv. Mater. 2002, vol. 14, No. 19, (Oct. 2, 2002), pp. 1373-1376.
Lin-Gibson et al., Structure—Property Relationships of Photopolymerizable Poly(ethylene glycol) Dimethacrylate Hydrogels, Macromolecules 2005, 38, American Chemical Society, (2005), pp. 2897-2902.
Liu et al., Pattern Transfer Using Poly(styrene-block-methyl methacrylate) Copolymer Films and Reactive Ion Etching, J. Vac. Sci. Technol. B, vol. 25, No. 6, (Nov./Dec. 2007), pp. 1963-1968.
Loo et al., Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in Plastic Electronics, Applied Physics Letters, vol. 81, No. 3, (Jul. 15, 2002), pp. 562-564.
Lopes et al., Hierarchical Self-Assembly of Metal Nanostructures on Diblock Copolymer Scaffolds, Nature, vol. 414, (Dec. 13, 2001), pp. 735-738.
Lutolf et al., Cell-Responsive Synthetic Hydrogels, Adv. Mater., vol. 15, No. 11, (Jun. 2003), pp. 888-892.
Lutolf et al., Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering, Nature Biotechnology, vol. 23, (2005), pp. 47-55, abstract only.
Lutz, 1,3-Dipolar Cycloadditions of Azides and Alkynes: A Universal Ligation Tool in Polymer and Materials Science, Angew. Chem. Int. Ed., vol. 46, (2007), pp. 1018-1025.
Malenfant et al., Self-Assembly of an Organic-Inorganic Block Copolymer for Nano-Ordered Ceramics, Nature Nanotechnology, vol. 2, (Jan. 2007), pp. 43-46.
Malkoch et al., Synthesis of Well-defined Hydrogel Networks Using Click Chemistry, Chem. Commun., The Royal Society of Chemistry, (2006), pp. 2774-2776.
Mansky et al., Controlling Polymer-Surface Interactions with Random Copolymer Brushes, Science, vol. 275, (Mar. 7, 1997), pp. 1458-1460.
Martens et al., Characterization of Hydrogels Formed from Acrylate Modified Poly(vinyl alcohol) Macromers, Polymer, vol. 41, Issue 21, (Oct. 2000), pp. 7715-7722, abstract only.
Matsuda et al., Photoinduced Prevention of Tissue Adhesion, Asaio J, vol. 38, No. 3, (Jul.-Sep. 1992), pp. M154-M157, abstract only.
Maye et al., Chemical Analysis Using Force Microscopy, Journal of Chemical Education, vol. 79, No. 2, (Feb. 2002), pp. 207-210.
Melde et al., Silica Nanostructures Templated by Oriented Block Copolymer Thin Films Using Pore-Filling and Selective-Mineralization Routes, Chem. Mater., vol. 17, No. 18, (Aug. 13, 2005), pp. 4743-4749.
Metters et al., Network Formation and Degradation Behavior of Hydrogels Formed by Michael-Type Addition Reactions, Biomacromolecules 2005, vol. 6, (2005), pp. 290-301.
Meyer et al., Controlled Dewetting Processes on Microstructured Surfaces—a New Procedure for Thin Film Microstructuring, Macromollecular Mater. Eng., vol. 276/277, (2000), pp. 44-50.
Mezzenga et al., On the Role of Block Copolymers in Self-Assembly of Dense Colloidal Polymeric Systems, Langmuir 2003, vol. 19, No. 20, (2003), pp. 8144-8147.
Mindel et al., A Study of Bredig Platinum Sols, The Chemical Laboratories of New York University, vol. 65, (Jun. 10, 1943), pp. 2112.
Naito et al., 2.5-Inch Disk Patterned Media Prepared by an Artificially Assisted Self-Assembling Method, IEEE Transactions on Magnetics, vol. 38, No. 5, (Sep. 2002), pp. 1949-1951.
Nealey et al., Self-Assembling Resists for Nanolithography, IProceedings of the IEEE International Electron Devices Meeting, IEDM Technical Digest, (2005), pp. 356-359.
Nguyen, K. T., et al., Photopolymerizable Hydrogels for Tissue Engineering Applications, Biomaterials 23, (2002), pp. 4307-4314.
Nishikubo, T., Chemical Modification of Polymers via a Phase-Transfer Catalyst or Organic Strong Base, American Chemical Society Symposium Series, (1997), pp. 214-230.
Niu et al., Selective Assembly of Nanoparticles on Block Copolymer by Surface Modification, Nanotechnology, vol. 18, (2007), pp. 1-4.
Niu et al., Stability of Order in Solvent-Annealed Block Copolymer Thin Films, Macromolecules, vol. 36, No. 7, 2003, Univ. of Nebraska, USA, pp. 2428-2440, (web release date: Mar. 13, 2003) (http://digitalcommons.uni.edu/cgi/viewcontent.cgi?article+1005&contect=chemeng—nanotechnology).
Olayo-Valles et al. Large Area Nanolithographic Templates by Selective Etching of Chemically Stained Block Copolymer Thin Films, J. Mater. Chem., vol. 14, (2004), pp. 2729-2731.
Parejo et al., Highly Efficient UV-absorbing Thin-film Coatings for Protection of Organic Materials Against Photodegradation, J. Mater. Chem., vol. 16, (2006), pp. 2165-2169.
Park et al., Block Copolymer Lithography: Periodic Arrays of 1011 Holes in 1 Square Centimeter, Science, vol. 276, No. 5317, (May 30, 1997), pp. 1401-1404.
Park et al., Block Copolymer Multiple Patterning Integrated with Conventional ArF Lithography, Soft Matter, vol. 6, (2010), pp. 120-125.
Park et al., Controlled Ordering of Block Copolymer Thin Films by the Addition of Hydrophilic Nanoparticles, Macromolecules 2007, vol. 40, No. 22, (2007), pp. 8119-8124.
Park et al., Directed assembly of lamellae-forming block copolymers using chemically and topographically patterned substrates, Advanced Materials, vol. 19, No. 4, (Feb. 2007), pp. 607-611.
Park et al., Enabling Nanotechnology with Self Assembled Block Copolymer Patterns, Polymer 44, 2003, pp. 6725-6760.
Park et al., Fabrication of Highly Ordered Silicon Oxide Dots and Stripes from Block Copolymer Thin Films, Advanced Materials, vol. 20, (2008), pp. 681-685.
Park et al., High-Aspect-Ratio Cylindrical Nanopore Arrays and Their Use for Templating Titania Nanoposts, Advanced Materials, vol. 20, (2008), pp. 738-742.
Park et al., The Fabrication of Thin Films with Nanopores and Nanogrooves from Block Copolymer Thin Films on the Neutral Surface of Self-assembled Monolayers, Nanotechnology, vol. 18, (2007), pp. 1-7.
Peng, J., et al., Development of Nanodomain and Fractal Morphologies in Solvent Annealed Block copolymer Thin Films, Macromol. Rapid Commun., vol. 28, (2007), pp. 1422-1428.
Peters et al., Combining Advanced Lithographic Techniques and Self-assembly of Thin Films of Diblock Copolymers to Produce Templates for Nanofabrication, J. Vac. Sci. Technol. B, vol. 18, No. 6, (Nov./Dec. 2000), pp. 3530-3532.
Peters et al., Morphology of Thin Films of Diblock Copolymers on Surfaces Micropatterned with Regions of Different Interfacial Energy, Macromolecules, vol. 35, No. 5, (2002), pp. 1822-1834.
Potemkin et al., Effect of the Molecular Weight of AB Diblock Copolymers on the Lamellar Orientation in Thin Films: Theory and Experiment, Macromol. Rapid Commun., (2007), 28, pp. 579-584.
Reed et al., Molecular Random Access Memory Cell, Appl. Phys. Lett., vol. 78, No. 23, (Jun. 4, 2001), pp. 3735-3737.
Resnick et al., Initial Study of the Fabrication of Step and Flash Imprint Lithography Templates for the Printing of Contact Holes, Microlith., Microfab., Microsyst., vol. 3, No. 2, (Apr. 2004), pp. 316-321.
Rogers, J. A., Slice and Dice, Peel and Stick: Emerging Methods for Nanostructure Fabrication, ACS Nano, vol. 1, No. 3, (2007), pp. 151-153.
Rozkiewicz, Dorota I., et al., ‘Click’ Chemistry by Microcontact Printing, Angew. Chem. Int. Ed., vol. 45, (Jul. 12, 2006); pp. 5292-5296, 2006.
Ruiz et al., Density Multiplication and Improved Lithography by Directed Block Copolymer Assembly, Science, vol. 321, (Aug. 15, 2008), pp. 936-939.
Ruiz et al., Induced Orientational Order in Symmetric Diblock Copolymer Thin-Films, Advanced Materials, vol. 19, No. 4, (2007), pp. 587-591.
Ryu et a., Surface Modification with Cross-Linked Random Copolymers: Minimum Effective Thickness, Macromolecules, vol. 40, No. 12, (2007), pp. 4296-4300.
Sang et al., Epitaxial Self-Assembly of Block Copolymers on Lithographically Defined Nanopatterned Substrates, Nature, vol. 24, (Jul. 24, 2003), pp. 411-414.
Saraf et al., Spontaneous Planarization of Nanoscale Phase Separated Thin Film, Applied Physics Letters, vol. 80, No. 23, (Jun. 10, 2002), pp. 4425-4427.
Sato et al., Novel Antireflective Layer Using Polysilane for Deep Ultraviolet Lithography, J. Vac. Sci. Technol. B, vol. 17, No. 6, (Nov./Dec. 1999), pp. 3398-3401.
Sawhney et al., Bioerodible Hydrogels Based on Photopolymerized Poly(ethylene glycol)-co-poly(a-hydroxy acid) Diacrylate Macromers, Macromolecules 1993, vol. 26, (1993), pp. 581-587, abstract only.
Search Report of the Taiwanese Application No. 097121922, issued Oct. 16, 2011, one page.
Segalman, R. A., Patterning with Block Copolymer Thin Films, Materials Science and Engineering R 48, (2005), pp. 191-226.
Shahrjerdi et al., Fabrication of Ni Nanocrystal Flash Memories Using a Polymeric Self-Assembly Approach, IEEE Electron Device Letters, vol. 28, No. 9, (Sep. 2007), pp. 793-796.
Sharma et al., Ultrathin Poly(ethylene glycol) Films for Silicon-based Microdevices, Applied Surface Science, vol. 206, (2003), pp. 218-229.
Sigma-Aldrich, 312-315 Tutorial regarding Materials for Lithography/Nanopatterning, http://www.sigmaaldrich.com/Area—of—Interest/Chemistry/Materials—Science/Micro—and—Nanoelectronic website, (retrieved Aug. 27, 2007), 8 pages.
Sivaniah et al., Observation of Perpendicular Orientation in Symmetric Diblock Copolymer Thin Films on Rough Substrates, Macromolecules 2003, vol. 36, (2003), pp. 5894-5896.
Sivaniah et al., Symmetric Diblock Copolymer Thin Films on Rough Substrates, Kinetics and Structure Formation in Pure Block Copolymer Thin Films, Macromolecules 2005, vol. 38, (2005), pp. 1837-1849.
Sohn et al., Fabrication of the Multilayered Nanostructure of Alternating Polymers and Gold Nanoparticles with Thin Films of Self-Assembling Diblock Copolymers, Chem. Mater., vol. 13, (2001), pp. 1752-1757.
Solak, H. H., Nanolithography with Coherent Extreme Ultraviolet Light, Journal of Physics D: Applied Physics, vol. 39, (2006), pp. R171-R188.
Srinvivasan et al., Scanning Electron Microscopy of Nanoscale Chemical Patterns, ACS Nano, vol. 1, No. 3, (2007), pp. 191-201.
Stoykovich et al., Directed Assembly of Block Copolymer Blends into Nonregular Device-Oriented Structures, Science, vol. 308, (Jun. 3, 2005), pp. 1442-1446.
Stoykovich, M. P., et al., Directed Self-Assembly of Block Copolymers for Nanolithography: Fabrication of Isolated Features and Essential Integrated Circuit Geometries, ACS Nano, vol. 1, No. 3, (2007), pp. 168-175.
Sundrani et al., Guiding Polymers to Perfection: Macroscopic Alignment of Nanoscale Domains, Nano Lett., vol. 4, No. 2, (2004), pp. 273-276.
Sundrani et al., Hierarchical Assembly and Compliance of Aligned Nanoscale Polymer Cylinders in Confinement, Langmuir 2004, vol. 20, No. 12, (2004), pp. 5091-5099.
Tadd et al, Spatial Distribution of Cobalt Nanoclusters in Block Copolymers, Langmuir, vol. 18, (2002), pp. 2378-2384.
Tang et al., Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays, Science, vol. 322, No. 5900, (Sep. 25, 2008), pp. 429-432.
Trimbach et al., Block Copolymer Thermoplastic Elastomers for Microcontact Printing, Langmuir, vol. 19, (2003), pp. 10957-10961.
Truskett et al., Trends in Imprint Lithography for Biological Applications, Trends in Biotechnology, vol. 24, No. 7, (Jul. 2006), pp. 312-315.
Tseng et al., Enhanced Block Copolymer Lithography Using Sequential Infiltration Synthesis, J. of Physical Chemistry, (Jul. 11, 2011), 16 pgs.
Van Poll et al., Self-Assembly Approach to Chemical Micropatterning of Poly(dimethylsiloxane), Angew. Chem. Int. Ed. 2007, vol. 46, (2007), pp. 6634-6637.
Wang et al., One Step Fabrication and characterization of Platinum Nanopore Electrode Ensembles formed via Amphiphilic Block Copolymer Self-assembly, Electrochimica Acta 52, (2006), pp. 704-709.
Wathier et al., Dendritic Macromers as in Situ Polymerizing Biomaterials for Securing Cataract Incisions, J. Am. Chem. Soc., vol. 126, No. 40, (2004), pp. 12744-12745, abstract only.
Winesett et al., Tuning Substrate Surface Energies for Blends of Polystyrene and Poly(methyl methacrylate), Langmuir 2003, vol. 19, (2003), pp. 8526-8535.
WIPF, Handbook of Reagents for Organic Synthesis, John Wiley & Sons Ltd., (2005), p. 320.
Wu et al., Self-Assembled Two-Dimensional Block Copolymers on Pre-patterned Templates with Laser Interference Lithography, IEEE, (2007), pp. 153-154.
Xia et al., An Approach to Lithographically Defined Self-Assembled Nanoparticle Films, Advanced Materials, vol. 18, (2006), pp. 930-933.
Xia et al., Soft Lithography, Annu. Rev. Mater. Sci., vol. 28, (1998), pp. 153-184.
Xiao et al., Graphoepitaxy of Cylinder-forming Block Copolymers for Use as Templates to Pattern Magnetic Metal Dot Arrays, Nanotechnology 16, IPO Publishing Ltd, UK (2005), pp. S324-S329.
Xu et al., Electric Field Alignment of Symmetric Diblock Copolymer Thin Films, Macromolecules, (2003), 5 pgs.
Xu et al., Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films, Macromolecules, vol. 38, (2005), pp. 2802-2805.
Xu et al., Surface-Initiated Atom Transfer Radical Polymerization from Halogen-Terminated Si(111) (Si—X, X = Cl, Br) Surfaces for the Preparation of Well-Defined Polymer—Si Hybrids, Langmuir, vol. 21, No. 8, (2005), pp. 3221-3225.
Xu et al., The Influence of Molecular Weight on Nanoporous Polymer Films, Polymer 42, Elsevier Science Ltd., (2001), pp. 9091-9095.
Yamaguchi et al., Resist-Pattern Guided Self-Assembly of Symmetric Diblock Copolymer, Journal of Photopolymer Science and Technology, vol. 19, No. 3, (2006), pp. 385-388.
Yamaguchi et al., Two-dimensional Arrangement of Vertically Oriented Cylindrical Domains of Diblock Copolymers Using Graphoepitaxy with Artificial Guiding Pattern Layout, Microprocesses and Nanotechnology, 2007, Conference date Nov. 5-8, 2007, pp. 434-435.
Yan et al., Preparation and Phase Segregation of Block Copolymer Nanotube Multiblocks, J. Am. Chem. Soc., vol. 126, No. 32, (2004), pp. 10059-10066.
Yang et al., Covalently Attached Graft Polymer Monolayer on Organic Polymeric Substrate via Confined Surface Inhibition Reaction, J. Polymer Sci.—A—Polymer Chemistry Ed., vol. 45, Issue 5, (2007), pp. 745-755.
Yang et al., Guided Self-Assembly of Symmetric Diblock Copolymer Films on Chemically Nanopatterned Substrates, Macromolecules 2000, vol. 33, No. 26, (2000), pp. 9575-9582.
Yang et al., Nanoscopic Templates Using Self-assembled Cylindrical Diblock Copolymers for Patterned Media, J. Vac. Sci. Technol. B 22(6), (Nov./Dec. 2004), pp. 3331-3334.
Li, H, W. Huck; “Ordered Block-Copolymer Assembly Using Nanoimprint Lithography”. Nano. Lett. (2004), vol. 4, No. 9, p. 1633-1636.
Cheng, J., C. Ross, H. Smith, E. Thomas; “Templated Self-Assembly of Block Copolymers: Top-Down Helps Bottom-Up”. Adv. Mater. (2006), 18, p. 2505-2521.
Related Publications (1)
Number Date Country
20140060736 A1 Mar 2014 US
Divisions (2)
Number Date Country
Parent 12834097 Jul 2010 US
Child 14075647 US
Parent 11761589 Jun 2007 US
Child 12834097 US