1. Field of the Invention
The present invention relates to a transmission line substrate having a coplanar line, and more especially to a transmission line substrate that can transmit signals over a broad band.
2. Background Art
A transmission line substrate having a coplanar line has been known (for example, refer to Japanese Patent Laid-Open No. 2000-244209). In some cases, the ground conductor of the coplanar line has two potentials. In this case, in a conventional transmission line substrate, two ground conductors having different potentials were AC-coupled.
Conventional transmission line substrates had a problem wherein electric fields around a capacitor were distorted in a high frequency of 40 GHz or higher, and frequency response characteristics were deteriorated.
To solve such a problem, it is an object of the present invention to obtain a transmission line substrate that can transmit signals over a broad band.
According to one aspect of the present invention, a transmission line substrate comprises: a dielectric substrate; a signal line formed on the upper surface of the dielectric substrate; first and second ground conductors formed on the upper surface of the dielectric substrate, field-coupled to the signal line, having potentials different from each other; a dielectric film formed between a part of the overlapping first ground conductor and a part of the second ground conductor to constitute a MIM capacitor; a capacitor connected between the first ground conductor and the second ground conductor in parallel with the dielectric film; and a resistor connected between the first ground conductor and the second ground conductor in series with the capacitor.
According to the present invention, signals can be transmitted over a broad band.
Other and further objects, features and advantages of the invention will appear more fully from the following description.
On the upper surface of a dielectric substrate 10, a signal line 12, a first ground conductor 14, and a second ground conductor 16 are formed. The first and the second ground conductors 14 and 16 are field-coupled with the signal line 12 to constitute a coplanar line. The distance between the signal line 12 and the first and the second ground conductors 14 and 16, and the thickness of the signal line 12 are constant, and the impedance is constant. The potential of the first ground conductor 14 is different from the potential of the second ground conductor 16.
In the first embodiment, a dielectric film 18 is formed between a part of the overlapping first ground conductor 14 and a part of the second ground conductor 16. A part of the overlapping first ground conductor 14, the dielectric film 18, and the second ground conductor 16 constitute a MIM (metal-insulator-metal) capacitor.
Between the first ground conductor 14 and the second ground conductor 16, a chip capacitor 20 is connected in parallel with the dielectric film 18. Between the first ground conductor 14 and the second ground conductor 16, a resistor 22 is connected in series with the chip capacitor 20. An end of the chip capacitor 20 is mounted on a pad 24 connected to the resistor 22; and the other end of the chip capacitor 20 is mounted on the second ground conductor 16.
By using a MIM capacitor for AC coupling of the first ground conductor 14 and the second ground conductor 16 as described above, the width W of the gap between the first ground conductor 14 and the second ground conductor 16 where electric fields are distorted can be made to be 50 μm or less. Therefore, the distortion of electric fields in a high frequency of 40 GHz or higher can be reduced, and the deterioration of characteristics can be suppressed.
The capacitance Cs of the MIM capacitor is expressed by:
Cs=ε×εr×S/d
where ε represents the permittivity, εr, S, and d represent the relative permittivity, the area, and the thickness of the dielectric film 18, respectively.
The impedance Zcs of the dielectric film 18 is expressed by:
Zcs=1/jωCs
where j represents the imaginary unit, and ω represents the angular frequency of alternate current.
Since the capacitance Cs of the MIM capacitor is not large, the impedance Zcs of the dielectric film 18 rises as frequency lowers, and loss increases.
To compensate the loss, in the first embodiment, a chip capacitor 20 having a large capacitance (about 0.1 μF) is connected to the dielectric film 18 in parallel. Therefore, the total impedance Zt is expressed by:
Zt=1/{jω(Cs+C1)}
when C1 represents the capacitance of the chip capacitor 20.
At low frequency, since the electrical wavelength is sufficiently long compared with the size of the chip capacitor 20, the distortion of electric fields can be ignored. However, resonance occurs between the MIM capacitor and the chip capacitor 20. Therefore, in the first embodiment, the resistor 22 is connected in series to the chip capacitor 20 to suppress the resonance.
Consequently, since the transmission line substrate according to the first embodiment can AC-couple the first ground conductor 14 and the second ground conductor 16 over a broad band from several tens of kilohertz to 40 GHz or higher, signals can be transmitted over a broad band.
On the upper surface of a dielectric substrate 10, a signal line 12, a first ground conductor 14, and a second ground conductor 16 are formed. The first and the second ground conductors 14 and 16 are field-coupled with the signal line 12 to constitute a coplanar line. The distance between the signal line 12 and the first and the second ground conductors 14 and 16, and the thickness of the signal line 12 are constant, and the impedance is constant. The potential of the first ground conductor 14 is different from the potential of the second ground conductor 16.
On the lower surface of the dielectric substrate 10, a third ground conductor 26 and a fourth ground conductor 28 are formed. The third ground conductor 26 and the fourth ground conductor 28 are connected to the first ground conductor 14 and the second ground conductor 16 by via holes 30 and 32 penetrating the dielectric substrate 10, respectively.
In the second embodiment, a dielectric film 18 is formed between a part of the overlapping first ground conductor 14 and a part of the second ground conductor 16. A part of the overlapping first ground conductor 14, a part of the dielectric film 18, and a part of the second ground conductor 16 constitute a MIM capacitor. Between the third ground conductor 26 and the fourth ground conductor 28, a resistor 22 and a chip capacitor 20 are connected in series. An end of the chip capacitor 20 is mounted on a pad 24 connected to the resistor 22; and the other end of the chip capacitor 20 are mounted on the fourth ground conductor 28.
According to the second embodiment, the equivalent effect as the effect of the first embodiment can be obtained. Moreover, by providing the resistor 22 and the chip capacitor 20 on the lower surface of the dielectric substrate 10, the size of the transmission line substrate can be reduced.
The distance d from the ends of the via holes 30 and 32 to the chip capacitor 20 is preferably ¼ of the wavelength corresponding to the transmission frequency or shorter. Thereby, resonance in the band can be suppressed. The distance d is obtained considering the width of the pad 24 on which the chip capacitor 20 is mounted, the width of the resistor 22, and the land diameters of the via holes 30 and 32.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
The entire disclosure of a Japanese Patent Application No. 2008-231070, filed on Sep. 9, 2008 including specification, claims, drawings and summary, on which the Convention priority of the present application is based, are incorporated herein by reference in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2008-231070 | Sep 2008 | JP | national |