The present disclosure relates to making a sub-10 nanometer silicide source/drain for Schottky junction source/drain FETs in ETSOI (extremely thin silicon-on-insulator) which requires resistance to agglomeration at high temperatures (e.g. temperatures of about 600° Celsius or more).
More generally, the present disclosure relates to electrical contacts for use in semiconductor devices, and more particularly to a method of fabricating an epitaxial Ni silicide film used in such contacts that is resistant to agglomeration at high temperatures (e.g. temperatures of about 600° Celsius or more). Agglomeration resistance allows for the production of thinner metal silicide contacts that are necessary for reducing the dimensions of electronic devices.
Current semiconductor technology uses silicides as contacts to the source/drain (S/D) regions and gate electrodes of the devices that are fabricated upon a Si substrate in CMOS transistors. Silicides are metal compounds that are thermally stable and provide for low electrical resistivity at the interface between the Si and the silicide film.
Schottky FETs may have relatively low parasitic resistance and gate-to-drain parasitic capacitance clue to the lack of raised source/drain regions as well as abrupt source/drain junctions. A Schottky barrier height (SBH) at the source/drain junction approaching zero is needed to achieve a competitive current drive in Schottky FET devices. To obtain good electrostatic control for a Schottky FET with an extremely scaled gate length (<30 nanometers), the Schottky FET is fabricated on an extremely thin SOI substrate where the Si available for silicidation is less than about 10 nanometers. Moreover, a 600° Celsius drive-in anneal is required to diffuse implanted dopants (e.g., As for n-FETs) to the silicide/Si channel interface to achieve a sub-100 meV SBH at the S/D Schottky junction. Therefore, it would be desirable to make a silicide source/drain which is resistant to agglomeration at 600° Celsius that can also be fabricated on an extremely thin SOI substrate where the Si available for silicidation is less than about 10 nanometers.
Silicide formation typically requires depositing a transition metal such as Ni, Co or Ti, onto a wafer. Following deposition, the structure is then subjected to an annealing step using conventional processes such as rapid thermal annealing. During thermal annealing, the deposited metal reacts with the Si it is in direct contact with to form a metal silicide.
The term “agglomerate” is used herein to denote that a thin Ni silicide film (e.g. a film having a thickness of less than about 10 nanometers) tends to gather into masses or clusters at temperatures on the order of about 600° Celsius or higher. The agglomeration problem is not limited to Ni silicides. It typically occurs for various thin films other than NiSi and is worst for low melting point materials. Agglomeration is driven by a minimization of surface energy for the same volume of material and occurs for any thin film if the temperature is high enough for diffusion to allow the thin film to take a lower energy configuration. At a given temperature, agglomeration is more important for low melting point material as diffusion typically start around ⅔ of the melting point.
The term “substantially non-agglomerated” is used herein to denote that the resistivity of the epitaxial Ni silicide film remains below 100 microOhms-centimeter at a temperature above 600° Celsius.
Agglomeration is particularly problematic because the manufacture of a functioning device would benefit from processing steps after contact formation where the silicide temperature could withstand 600° Celsius. For instance, interface modification via dopants-segregation is one of the most promising ways to enable the use of one silicide for both types (p-FETs and n-FETs) of Schottky devices. However, to diffuse n-type dopants (e.g. As and/or P) into the silicide/Si interface and maximize the modification of the interface, at least 600° Celsius is needed. Currently, Ni—Pt silicides are used for advanced devices wherein Pt helps limit agglomeration of the silicide contact. However, even Ni—Pt silicides containing 5% or 10% Pt experience agglomeration at temperatures of about 600° Celsius when their thickness is less than about 10 nanometers.
In view of the above, it would be highly desirable to provide a thin Ni silicide contact in a Si-containing material that exhibits thermal stability at high temperatures (e.g. temperatures at or above 600° Celsius), while being easily fabricated utilizing well-known CMOS processing steps.
The present disclosure provides an epitaxial Ni silicide film for use as an electrical contact to Si and a method for forming an epitaxial Ni silicide film which typically has a thickness of about 10 nanometers or less, and more typically having a thickness of about 3 to about 8 nanometers. The method of the present disclosure forms epitaxial Ni silicide films without experiencing problems associated with the prior art. The epitaxial Ni silicide films of the present disclosure, which do not contain Pt, demonstrate enhanced thermal stability compared to thicker silicides. Moreover, the epitaxial Ni silicide films of the present disclosure exhibit enhanced thermal stability compared to the Ni monosilicide phase containing Pt which is the current solution in the manufacturing state of the art CMOS technology.
One aspect of the present disclosure is an electrical contact to Si comprising an epitaxial Ni silicide film having a thickness of less than about 10 nanometers and wherein the epitaxial Ni silicide film is substantially non-agglomerated (e.g. the resistivity of the epitaxial Ni silicide film remains below 100 microOhms-centimeter) at a temperature above 600° Celsius. The electrical contacts of the present disclosure remain substantially non-agglomerated at high temperatures (e.g. temperatures at or above about 600° Celsius) and exhibit enhanced thermal stability.
A second aspect of the present disclosure is related to a method of making an electrical contact to Si comprising:
The above method facilitates the formation of an epitaxial Ni silicide film having enhanced thermal stability that is resistant to agglomeration at high temperatures (e.g. temperatures above about 600° Celsius). The above method also facilitates the formation of an electrical contact that is ideal for very small devices when the amount of Si for consumption during the silicidation process is limited.
Another aspect of the present disclosure relates to a Schottky contact to Si comprising an epitaxial Ni silicide film having a thickness of between about 3 nanometers and about 10 nanometers wherein the epitaxial. Ni silicide film is substantially non-agglomerated at a temperature above about 600° Celsius and wherein the Si is either undoped or is doped with a segregated impurity layer at a concentration above about 1E19/centimeter3 between the interface between the Si and the epitaxial Ni silicide film. Again, the resulting epitaxial Ni silicide film exhibits superior thermal stability and remains substantially non-agglomerated at high temperatures (e.g. temperatures at or above about 600° Celsius up to about 900° Celsius).
The Schottky contact of the present disclosure comprises a concentration of impurity of between about 5E21/centimeter3 and about 1E17/centimeter3 at the interface between the Si and the epitaxial Ni silicide film. The impurity of the present disclosure may comprise one or more of B, P, As, In, Se, S, Al, Mg, F, or C. An impurity comprising at least one of P, B, or As is even more typical.
One advantage to the Schottky transistors of the present disclosure is that one type of silicide can be employed for both pMOS and nMOS FETs due to the enhanced thermal stability of the epitaxial. Ni silicide films at the high temperatures (e.g. temperatures at or above about 600° Celsius) required to diffuse dopants (As or P) at the silicide/Si interface of nMOS FETs.
Yet another aspect of the present disclosure relates to field effect transistors and Schottky transistors comprising at least one electrical contact of the present disclosure. Schottky transistors of the present disclosure are advantageous because they exhibit reduced S/D parasitic resistance and have an abrupt junction. Schottky transistors comprising at least one electrical contact of the present disclosure wherein the Si is extremely thin SOI (about 10 nanometers or less) are also contemplated by the present disclosure. Finally, the instant disclosure further contemplates CMOS structures comprising the field effect and Schottky transistors of the present disclosure.
Schottky contacts of the present disclosure can be made according to a method comprising:
The impurity utilized in this method comprises at least one of B, P, As, In, Se, S, Al, Mg, F, or C and more typically P, B, or As.
An electrical contact to Si comprising extremely thin silicon-on-insulator (ETSOI) is also provided for by the instant disclosure. In this embodiment, the Si available for silicidation in the source/drain areas is typically less than about 20 nanometers thick and often even less than about 10 nanometers thick.
An electrical contact to Si, wherein the Si is an extremely thin silicon-on-insulator (ETSOI), can be made by a method comprising:
The epitaxial Ni silicide films of the present disclosure are ideal for use in ETSOI Schottky devices because even though the films are typically less than or equal to about 10 nanometers thick (or more typically, less than or equal to about 8 nanometers thick), they remain substantially non-agglomerated at high temperatures (e.g. temperatures at or above about 600° Celsius). The thickness of the epitaxial Ni silicide films of the present disclosure vary depending on Ni thickness deposited. For instance, deposition of 2 nanometers or 4 nanometers of pure Ni produces an epitaxial Ni silicide film of about 5.5 or about 83 nanometers, respectively. The thickness of the epitaxial Ni silicide film produced depends on the thickness of pure Ni that is deposited.
The present disclosure, which is directed to an electrical contact to a Si-containing material comprising an epitaxial Ni silicide film (typically having a thickness of about 10 nanometers or less and more typically of about 8 nanometers or less), and to a method of making the electrical contacts, will now be described in greater detail by referring to the drawings that accompany the present application. It is noted that in the accompanying drawings, like reference numerals are used for describing like and/or corresponding elements.
Reference is first made to
Next, in
In accordance with the next step of the present application, See
Following the formation of the electrical contact a selective etch process is utilized to remove the blanket of unreacted Ni film. It is more typical to use a selective wet etching process. However, other conventional etch processes such as reactive-ion etching (RIE), ion beam etching, or plasma etching can be used. The final thickness of the non-agglomerated epitaxial Ni silicide contact is typically less than about 10 nanometers. The aforementioned silicide formation is compatible with conventional semiconductor processing steps that are well-known within the art and can be utilized to produce, for example, CMOS devices.
In reference to
Still other objects and advantages of the present disclosure will become readily apparent by those skilled in the art from the preceding detailed description, wherein it is shown and described preferred embodiments, simply by way of illustration of the best mode contemplated. As will be realized the disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, without departing from the disclosure. Accordingly, the description is to be regarded as illustrative in nature and not as restrictive.
The term “comprising” (and its grammatical variations) as used herein is used in the inclusive sense of “having” or “including” and not in the exclusive sense of “consisting only of.” The term “consisting essentially of” as used herein is intended to refer to including that which is explicitly recited along with what does not materially affect the basic and novel characteristics of that recited or specified. The terms “a” and “the” as used herein are understood to encompass the plural as well as the singular.
Number | Name | Date | Kind |
---|---|---|---|
4174422 | Matthews et al. | Nov 1979 | A |
4707197 | Hensel et al. | Nov 1987 | A |
5336637 | Nowak | Aug 1994 | A |
5356837 | Geiss et al. | Oct 1994 | A |
5463254 | Iyer et al. | Oct 1995 | A |
6190979 | Radens et al. | Feb 2001 | B1 |
6413859 | Cabral, Jr. et al. | Jul 2002 | B1 |
6534871 | Maa et al. | Mar 2003 | B2 |
6716708 | Cabral, Jr. et al. | Apr 2004 | B2 |
6780694 | Doris et al. | Aug 2004 | B2 |
6828630 | Park et al. | Dec 2004 | B2 |
6858903 | Natzle et al. | Feb 2005 | B2 |
6881635 | Chidambarrao et al. | Apr 2005 | B1 |
6974737 | Snyder et al. | Dec 2005 | B2 |
7071518 | Parthasarathy et al. | Jul 2006 | B2 |
7119012 | Carruthers et al. | Oct 2006 | B2 |
7183169 | Waite et al. | Feb 2007 | B1 |
7202123 | Pan | Apr 2007 | B1 |
7221024 | Chidambarrao et al. | May 2007 | B1 |
7238567 | Xiong | Jul 2007 | B2 |
7271486 | Cabral, Jr. et al. | Sep 2007 | B2 |
7419907 | Detavernier et al. | Sep 2008 | B2 |
7446025 | Cohen et al. | Nov 2008 | B2 |
7498640 | Cabral, Jr. et al. | Mar 2009 | B2 |
7544610 | Cabral, Jr. et al. | Jun 2009 | B2 |
7566629 | Booth, Jr. et al. | Jul 2009 | B2 |
7589381 | Kinoshita et al. | Sep 2009 | B2 |
7652332 | Cartier et al. | Jan 2010 | B2 |
20050275033 | Zhu et al. | Dec 2005 | A1 |
20060220113 | Tamura et al. | Oct 2006 | A1 |
20070267762 | Yu et al. | Nov 2007 | A1 |
20090134388 | Yamauchi et al. | May 2009 | A1 |
20090283841 | Yeh et al. | Nov 2009 | A1 |
20090311836 | Cartier et al. | Dec 2009 | A1 |
Entry |
---|
J. Kedzierski, et al., “Complementary silicide source/drain thin-body MOSFETs for the 20nm gate length regime,” IEEE, 2000, pp. 1-4. |
R. Das, et al., Studies on the Electrical Characteristics of Ni and NiPt-alloy Silicided Schottky Diodes, 2006, pp. 1-5. |
Daniel Lentz, “Epitaxial Deposition,”(PowerPoint Presentation Slides) Penn State University, Mar. 29, 2007, pp. 1-7. |
A. Hsiung, et al., “50 nm Schottky Barrier CMOS with Conventional Silicide,” 2002, pp. 1-4. |
P. Lim, et al., “Dopant Segregated Schottky (DSS) Source/Drain for Germanium P-MOSFETs with Metal Gate/High-k Dielectric Stack,” 2009, (1 page). |
Zhang, et al., “Morphological stability and specific resistivity of sub-10 nm silicide films of Ni1-xPtx on Si substrate,” Applied Physics Letters, 96, 2010, pp. 1-3. |
Number | Date | Country | |
---|---|---|---|
20110260252 A1 | Oct 2011 | US |