1. Technical Field
Various embodiments generally relates to a vertical type semiconductor device, and more particularly, to a vertical type semiconductor device and a method of fabricating the same.
2. Related Art
The distribution rate of portable digital devices has been increasing day by day and ultra-high integration, ultra-high speed, and ultra-low power of memory devices, which are embedded in a limited size to process large capacity of data with high speed, have been required.
Studies on vertical memory devices have been actively progressed to meet these demands. Recently, the vertical structures are introduced into resistance memory devices which are spotlighted as next-generation memory devices.
The resistance memory devices are devices which select a memory cell through an access device, change a resistance state of a data storage material electrically connected to the access device, and store data. There are typically phase-change random access memories (PCRAMs), resistance RAMs (ReRAMs), magnetoresistive RAMs (MRAMs), and the like as the resistance memory devices.
Diodes or transistors may be employed as the access device of the resistive memory devices. In particular, the threshold voltage of the transistors is controlled to be low as compared with the diodes and thus the operation voltage thereof can be reduced, and the transistors have received attention again as the access device of the resistance memory devices by applying the vertical structure thereto.
That is, since the voltage of 1.1 V or more has to be applied to the diodes, there is a limitation to reduce an operation voltage of the diodes. Further, when the diodes are formed on a word line, a resistance of the word line is varied according to locations in the cells to cause word line to be bounced.
Since transistors in the related art are formed in a horizontal structure, the reduction rate is restricted. However, the vertical transistors can sufficiently ensure current drivability in the limited channel area. Further, voltage drop due to an external resistance component may be improved through reduction in a source resistance.
However, when a current vertical structure transistor is formed, a vertical structure transistor is formed by etching a semiconductor substrate in a cell area and a horizontal structure transistor is formed in the semiconductor substrate in a peripheral area. Therefore, desired degree of integration may not be obtained in a subsequent process due to a step between the cell area and the peripheral area. Further, there is a need for an alternative to compensate current drivability of the transistor lower than the diode.
An exemplary vertical type semiconductor device may include a common source region formed in a cell area of a semiconductor substrate; a channel region formed on the common source region, the channel region having a predetermined height and a first diameter; a drain region formed on the channel region, the drain region having a predetermined height and a second diameter larger than the first diameter; and a first gate electrode surrounding the channel region.
A method of fabricating an exemplary vertical type semiconductor device may include providing a semiconductor substrate having a cell area and a peripheral area; patterning the semiconductor substrate of the cell area to form a pillar structure; forming, in the pillar structure, a recess from a bottom of the pillar structure to a predetermined height; and forming a first gate electrode to surround the recess.
These and other features, aspects, and implementations are described below in the section entitled “DETAILED DESCRIPTION”.
The above and other aspects, features and other advantages of the subject matter of the present disclosure will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, exemplary implementations will be described in greater detail with reference to the accompanying drawings. In drawings, (a) is a cross-sectional view of a vertical type semiconductor device in a first direction (an X-direction, a A1-A2 direction of (c) in each drawing), for example, a word line direction, (b) is a cross-sectional view of the vertical type semiconductor device in a s direction (a Y-direction, a B1-B2 direction of (c) in each drawing), for example, a bit line direction, (c) is a plan view of the vertical type semiconductor device, and (p) is a cross-sectional view of a peripheral area of a vertical type semiconductor device.
Exemplary implementations are described herein with reference to cross-sectional illustrations that are schematic illustrations of exemplary implementations (and intermediate structures). As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, exemplary implementations should not be construed as limited to the particular shapes of regions illustrated herein but may be to include deviations in shapes that result, for example, from manufacturing. In the drawings, lengths and sizes of layers and regions may be exaggerated for clarity. Like reference numerals in the drawings denote like elements. It is also understood that when a layer is referred to as being “on” another layer or substrate, it can be directly on the other or substrate, or intervening layers may also be present.
Referring to
The semiconductor substrate 101 may include a semiconductor material, such as silicon (Si), silicon germanium (SiGe) or gallium arsenic (GaAs) and may have a single-layered structure or a multiple-layered structure.
As illustrated in
As illustrated in
The first insulating layer 107 formation region may be replaced with a gate electrode region in a subsequent process. Thus, a height of the first insulating layer 107 may be based on a desired channel height.
After the first and second insulating layers 107 and 109 are formed between the first pattern structures, a patterning process is performed on the semiconductor substrate in a first direction (an X-direction) to form a second pattern structure as illustrated in
After the second pattern structure is formed, as illustrated in
As illustrated in
As illustrated in
By recessing the semiconductor substrate 101, a diameter S1 of a portion of the semiconductor substrate 101 around the gate electrode formation region 200-1 is made smaller than a diameter 52 of an upper portion of the semiconductor substrate 101. The portion of the semiconductor substrate 101 having the diameter S1 may be formed, in a subsequent process, into a channel region. The upper portion of the semiconductor substrate 101 having the diameter S2 may be formed, in a subsequent process, into a drain region. Since the diameter S2 of the drain region is larger than the diameter S1 of the channel region as illustrated in
As illustrated in
As illustrated in
As illustrated in
Subsequently, a process for forming a transistor in the peripheral area is performed. First, as illustrated in
Alternatively, if the ion implantation process for forming the drain region, the channel region, and the common source region is not performed after the device isolation process in
Even if the common source region, the channel region, and the drain region are formed in any process among the above-described processes, the transistor may be an NMOS type, a PMOS type, or an impact-ionization MOS (I-MOS) type, based on a conductivity type of an impurity implanted to each region. In particular, the transistor may be an NMOS type.
If the NMOS transistor is formed, then N-type ions may be implanted into the common source region 101A and the drain region D, and P-type ions may be implanted into the channel region CH. If the PMOS transistor is formed, then P-type ions may be implanted into the common source region 101A and the drain region D, and N-type ions may be implanted into the channel region CH.
On the other hand, if an I-MOS transistor is formed, Ni+-type ions may be implanted into the common source region 101A, P+-type ions may be implanted into the drain region D, and P− type ions, N−-type ions, or a combination thereof may be implanted into the channel region CH. Alternatively, P+-type ions may be implanted into the common source region 101A, N+-type ions may be implanted into the drain region D, and P−-type ions, N−-type ions, or a combination thereof may be implanted into the channel region CH.
Since a memory cell, which is connected to a vertical transistor having the surround structure and formed in the bottom structure 300 of the cell area and serves as a data storage unit, is to be formed, as illustrated in
Here, the second conductive layer 127, the barrier metal layer 129, and the third conductive layer 131 serve as a lower electrode in the cell area. The first conductive layer, 125, the second conductive layer 127, the barrier metal layer 129, and the third conductive layer 131 serve as a gate electrode of the transistor in the peripheral area.
Each of the first conductive layer 125, the second conductive layer 127, and the third conductive layer 131 may be formed of W, Cu, TIN, TaN, WN, MoN, NbN, TiSiN, TiAlN, TiBN, ZrSiN, WSiN, WBN, ZrAlN, MoSiN, MoAlN, TaSiN, TaAlN, Ti, Mo, Ta, TiSi, TaSi, TiW, TiON, TiAION, WON, TaON, or a semiconductor material, such as doped-Si or doped-SiGe, or the like.
As illustrated in
As illustrated in
As illustrated in
Specifically, after the process illustrated in
The data storage material 143 may include a material for a PCRAM, a material for a ReRAM, a material for a spin-transfer torque magnetoresistive RAM (STTMRAM), and a material for a polymer RAM (PoRAM). For example, if the vertical memory device is a PCRAM, then the data storage material may be tellurium (Te), selenium (Se), germanium (Ge), antimony (Sb), bismuth (Bi), lead (Pb), tin (Sn), arsenic (As), sulfur (S), silicon (Si), phosphorus (P), oxygen (O), nitrogen (N), a compound thereof, or an alloy thereof.
The method of forming the data storage material illustrated in
The example in which the common source region 101A is formed through the ion implantation process is merely illustrative. Alternatively, an wiring layer of a line pattern may be formed as the common source region 101A.
The example of forming the vertical type semiconductor device in a single layer has been illustrated. However, an exemplary vertical type semiconductor device may be formed in a stacked structure, such as a multilevel stack structure. Alternatively, an exemplary semiconductor device may have the cell structures illustrated in
The above implementation is illustrative and not limiting. Various alternatives and equivalents are possible. The invention is not limited by the implementation described herein. Nor is the invention limited to any specific type of semiconductor device. Other additions, subtractions, or modifications are obvious in view of the present disclosure and are intended to fall within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0146381 | Dec 2012 | KR | national |
This application is a division of U.S. patent application Ser. No. 13/846,293 filed on Mar. 18, 2013, which claims priority under 35 U.S.C. 119(a) to Korean application number 10-2012-0146381, filed on Dec. 14, 2012. The disclosure of each of the foregoing application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6599798 | Tews et al. | Jul 2003 | B2 |
7781285 | Kim et al. | Aug 2010 | B2 |
20120248529 | Liu et al. | Oct 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20140248750 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13846293 | Mar 2013 | US |
Child | 14278070 | US |