X-point memory cell

Abstract
A memory cell and a method of fabricating the memory cell having a small active area. By forming a spacer in a window that is sized at the photolithographic limit, a pore may be formed in dielectric layer which is smaller than the photolithographic limit. Electrode material is deposited into the pore, and a layer of structure changing material, such as chalcogenide, is deposited onto the lower electrode, thus creating a memory element having an extremely small and reproducible active area.
Description




BACKGROUND OF THE INVENTION




1. Field Of The Invention




The present invention relates generally to semiconductor fabrication techniques and, more particularly, to a method for fabricating small electrodes for use with a chalcogenide switching device, such as, for example, a chalcogenide memory cell.




2. Background Of The Related Art




Microprocessor-controlled integrated circuits are used in a wide variety of applications. Such applications include personal computers, vehicle control systems, telephone networks, and a host of consumer products. As is well known, microprocessors are essentially generic devices that perform specific functions under the control of a software program. This program is stored in a memory device coupled to the microprocessor. Not only does the microprocessor access a memory device to retrieve the program instructions, it also stores and retrieves data created during execution of the program in one or more memory devices.




There are a variety of different memory devices available for use in microprocessor-based systems. The type of memory device chosen for a specific function within a microprocessor-based system depends largely upon what features of the memory are best suited to perform the particular function. For instance, volatile memories, such as dynamic random access memories (DRAMs), must be continually powered in order to retain their contents, but they tend to provide greater storage capability and programming options and cycles than non-volatile memories, such as read only memories (ROMs). While non-volatile memories that permit limited reprogramming exist, such as electrically erasable and programmable “ROMs,” all true random access memories, i.e., those memories capable of 10


14


programming cycles are more, are volatile memories. Although one time programmable read only memories and moderately reprogrammable memories serve many useful applications, a true nonvolatile random access memory (NVRAM) would be needed to surpass volatile memories in usefulness.




Efforts have been underway to create a commercially viable memory device, which is both random access and nonvolatile, using structure changing memory elements, as opposed to charge storage memory elements used in most commercial memory devices. The use of electrically writable and erasable phase change materials, i.e., materials which can be electrically switched between generally amorphous and generally crystalline states or between different resistive states while in crystalline form, in memory applications is known in the art and is disclosed, for example, in U.S. Pat. No. 5,296,716 to Ovshinsky et al., the disclosure of which is incorporated herein by reference. The Ovshinsky patent is believed to indicate the general state of the art and to contain a discussion of the general theory of operation of chalcogenide materials, which are a particular type of structure changing material.




As disclosed in the Ovshinsky patent, such phase change materials can be electrically switched between a first structural state, in which the material is generally amorphous, and a second structural state, in which the material has a generally crystalline local order. The material may also be electrically switched between different detectable states of local order across the entire spectrum between the completely amorphous and the completely crystalline states. In other words, the switching of such materials is not required to take place in a binary fashion between completely amorphous and completely crystalline states. Rather, the material can be switched in incremental steps reflecting changes of local order to provide a “gray scale” represented by a multiplicity of conditions of local order spanning the spectrum from the completely amorphous state to the completely crystalline state.




These memory elements are monolithic, homogeneous, and formed of chalcogenide material typically selected from the group of Te, Se, Sb, Ni, and Ge. This chalcogenide material exhibits different electrical characteristics depending upon its state. For instance, in its amorphous state the material exhibits a higher resistivity than it does in its crystalline state. Such chalcogenide materials can be switched between numerous electrically detectable conditions of varying resistivity in nanosecond time periods with the input of picojoules of energy. The resulting memory element is truly non-volatile. It will maintain the integrity of the information stored by the memory cell without the need for periodic refresh signals, and the data integrity of the information stored by these memory cells is not lost when power is removed from the device. The memory material is also directly overwritable so that the memory cells need not be erased, i.e., set to a specified starting point, in order to change information stored within the memory cells. Finally, the large dynamic range offered by the memory material theoretically provides for the gray scale storage of multiple bits of binary information in a single cell by mimicking the binary encoded information in analog form and, thereby, storing multiple bits of binary encoded information as a single resistance value in a single cell.




The operation of chalcogenide memory cells requires that a region of the chalcogenide memory material, called the “active region,” be subjected to a current pulse to change the crystalline state of the chalcogenide material within the active region. Typically, a current density of between about 10


5


and 10


7


amperes/cm


2


is needed. To obtain this current density in a commercially viable device having at least 64 million memory cells, for instance, the active region of each memory cell must be made as small as possible to minimize the total current drawn by the memory device. Currently, chalcogenide memory cells are fabricated by first creating a diode in a semiconductor substrate. A lower electrode is created over the diode, and a layer of dielectric material is deposited onto the lower electrode. A small opening is created in the dielectric layer. A second dielectric layer, typically of silicon nitride, is then deposited onto the dielectric layer and into the opening. The second dielectric layer is typically about 40 Angstroms thick. The chalcogenide material is then deposited over the second dielectric material and into the opening. An upper electrode material is then deposited over the chalcogenide material.




A conductive path is then provided from the chalcogenide material to the lower electrode material by forming a pore in the second dielectric layer by a process known as “popping.” Popping involves passing an initial high current pulse through the structure to cause the second dielectric layer to breakdown. This dielectric breakdown produces a conductive path through the memory cell. Unfortunately, electrically popping the thin silicon nitride layer is not desirable for a high density memory product due to the high current and the large amount of testing time required. Furthermore, this technique may produce memory cells with differing operational characteristics, because the amount of dielectric breakdown may vary from cell to cell.




The active regions of the chalcogenide memory material within the pores of the dielectric material created by the popping technique are believed to change crystalline structure in response to applied voltage pulses of a wide range of magnitudes and pulse durations. These changes in crystalline structure alter the bulk resistance of the chalcogenide active region. Factors such as pore dimensions (e.g., diameter, thickness, and volume), chalcogenide composition, signal pulse duration, and signal pulse waveform shape may affect the magnitude of the dynamic range of resistances, the absolute endpoint resistances of the dynamic range, and the voltages required to set the memory cells at these resistances. For example, relatively thick chalcogenide films, e.g., about 4000 Angstroms, result in higher programming voltage requirements, e.g., about 15-25 volts, while relatively thin chalcogenide layers, e.g., about 500 Angstroms, result in lower programming voltage requirements, e.g., about 1-7 volts. Thus, to reduce the required programming voltage, it has been suggested that the cross-sectional area of the pore should be reduced to reduce the size of the chalcogenide element.




The energy input required to adjust the crystalline state of the chalcogenide active region of the memory cell is directly proportional to the minimum lateral dimension of the pore. In other words, programming energy decreases as the pore size decreases. Conventional chalcogenide memory cell fabrication techniques provide a minimum lateral pore dimension, e.g., the diameter or width of the pore, that is limited by the photolithographic size limit. This results in pore sizes having minimum lateral dimensions down to approximately 1 micron.




The present invention is directed to overcoming, or at least reducing the affects of, one or more of the problems set forth above.




SUMMARY OF THE INVENTION




In accordance with one aspect of the present invention, there is provided a memory cell. The memory cell includes an access device that is formed on a semiconductor substrate. A layer of dielectric material is disposed on the access device. The layer of dielectric material has a port therein. The pore is smaller that the photolithographic limit. A first layer of conductive material is disposed within the pore to form a first electrode. A layer of structure changing material is disposed on the first electrode. A second layer of conductive material is disposed on the layer of structure changing material to form a second electrode.




In accordance with another aspect of the present invention, there is provided a memory array. The memory array includes a plurality of memory cells. Each memory cell includes an access device that is formed on a semiconductor substrate. A layer of dielectric material is disposed on the access device. The layer of dielectric material has a pore therein. The pore is smaller than the photolithographic limit. A first layer of conductive material is disposed within the pore to form a first electrode. A layer of structure changing material is disposed on the first electrode. A second layer of conductive material is disposed on the layer of structure changing material to form a second electrode. The memory array also includes a grid that is coupled to the plurality of memory cells. The grid is formed by a first plurality of conductive lines that generally extend in a first direction and a second plurality of conductive lines that generally extend in a second direction.




In accordance with still another aspect of the present invention, there is provided a method of fabricating a memory cell. The method includes the steps: (a) forming an access device on a semiconductor substrate; (b) depositing a layer of dielectric material on the access device; (c) forming a pore in the layer of dielectric material, where the pore is smaller than the photolithographic limit; (d) depositing a first layer of conductive material within the pore to form a first electrode; (e) depositing a layer of structure changing material on the first electrode; and (f) depositing a second layer of conductive material on the layer of structure changing material to form a second electrode.




In accordance with yet another aspect of the present invention, there is provided a method of fabricating a memory array. The method includes the steps of (a) forming an access device on a semiconductor substrate; (b) forming a first plurality of conductive lines, where each of the first plurality of conductive lines is coupled to respective access devices; (c) depositing a layer of dielectric material on the access device; (d) forming a pore in the layer of dielectric material, where the pore is smaller than the photolithographic limit; (e) depositing a first layer of conductive material within the pore to form a first electrode; (f) depositing a layer of structure changing material on the first electrode; (g) depositing a second layer of conductive material on the layer of structure changing material to form a second electrode; and (h) forming a second plurality of conductive lines, where each of the second plurality of conductive lines is coupled to respective second electrodes.




In accordance with a further aspect of the present invention, there is provided a method of fabricating an array of pores. The method includes the steps of (a) forming a mask over a layer of dielectric material, where the mask has a plurality of windows therein exposing portions of the layer of dielectric material, and where the windows are sized at the photolithographic limit; (b) forming a spacer within each of the windows, where each spacer covers a peripheral portion of the respective exposed portion of the layer of dielectric material to create a second window that exposes a portion of the layer of dielectric material smaller than the photolithographic limit; and (c) removing the exposed portions of the layer of dielectric material created by the second windows to create the pores.




In accordance with an even further aspect of the present invention, there is provided a memory cell. The memory cell includes an access device that is formed on a semiconductor substrate. A layer of dielectric material is disposed on the access device. The layer of dielectric material has a pore therein. The pore is formed by forming a mask over the layer of dielectric material. The mask has a window therein which exposes a portion of the layer of dielectric material. The window is sized at the photolithographic limit. A spacer is formed within the window. The spacer covers a peripheral portion of the exposed portion of the layer of dielectric material to create a second window exposing a portion of the layer of dielectric material smaller than the photolithographic limit. The exposed portion of the layer of dielectric material created by the second window is removed to create the pore. A first layer of conductive material is disposed within the pore to form a first electrode. A layer of structure changing material is disposed on the first electrode. A second layer of conductive material is disposed on the layer of structure changing material to form a second electrode.











DESCRIPTION OF THE DRAWINGS




The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:





FIG. 1

illustrates a schematic depiction of a substrate containing a memory device which includes a memory matrix and peripheral circuitry;





FIG. 2

illustrates an exemplary schematic depiction of the memory matrix or array of

FIG. 1

;





FIG. 3

illustrates an exemplary memory cell having a memory element, such as a resistor, and an access device, such as a diode;





FIG. 4

illustrates a top view of a portion of a semiconductor memory array;





FIG. 5

illustrates a cross-sectional view of an exemplary memory cell at an early stage of fabrication;





FIG. 6

,

FIG. 7

, and

FIG. 8

illustrate the formation of a spacer and a small pore for the exemplary memory element;





FIG. 9

illustrates the small pore of the memory element;




FIG.


10


and

FIG. 11

illustrate the formation of an electrode in the small pore;





FIG. 12

illustrates the deposition of memory material over the lower electrode;





FIG. 13

illustrates the deposition of the upper electrode of the memory cell;





FIG. 14

illustrates the deposition of an insulative layer and an oxide layer over the upper electrode of the memory cell; and





FIG. 15

illustrates the formation of a contact extending through the oxide and insulative layer to contact the upper electrode.











DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS




Turning now to the drawings, and referring initially to

FIG. 1

, a memory device is illustrated and generally designated by a reference numeral


10


. The memory device


10


is an integrated circuit memory that is advantageously formed on a semiconductor substrate


12


. The memory device


10


includes a memory matrix or array


14


that includes a plurality of memory cells for storing data, as described below. The memory matrix


14


is coupled to periphery circuitry


16


by the plurality of control lines


18


. The periphery circuitry


16


may include circuitry for addressing the memory cells contained within the memory matrix


14


, along with circuitry for storing data in and retrieving data from the memory cells. The periphery circuitry


16


may also include other circuitry used for controlling or otherwise insuring the proper functioning of the memory device


10


.




A more detailed depiction of the memory matrix


14


is illustrated in FIG.


2


. As can be seen, the memory matrix


14


includes a plurality of memory cells


20


that are arranged in generally perpendicular rows and columns. The memory cells


20


in each row are coupled together by a respective word line


22


, and the memory cells


20


in each column are coupled together by a respective digit line


24


. Specifically, each memory cell


20


includes a word line node


26


that is coupled to a respective word line


22


, and each memory cell


20


includes a digit line node


28


that is coupled to a respective digit line


24


. The conductive word lines


22


and digit lines


24


are collectively referred to as address lines. These address lines are electrically coupled to the periphery circuitry


16


so that each of the memory cells


20


can be accessed for the storage and retrieval of information.





FIG. 3

illustrates an exemplary memory cell


20


that may be used in the memory matrix


14


. The memory cell


20


includes a memory element


30


which is coupled to an access device


32


. In this embodiment, the memory element


30


is illustrated as a programmable resistive element, and the access device


32


is illustrated as a diode. Advantageously, the programmable resistive element may be made of a chalcogenide material, as will be more fully explained below. Also, the diode


32


may be a conventional diode, a zener diode, or an avalanche diode, depending upon whether the diode array of the memory matrix


14


is operated in a forward biased mode or a reverse biased mode. As illustrated in

FIG. 3

, the memory element


30


is coupled to a word line


22


, and the access device


32


is coupled to a digit line


24


. However, it should be understood that connections of the memory element


20


may be reversed without adversely affecting the operation of the memory matrix


14


.




As mentioned previously, a chalcogenide resistor may be used as the memory element


30


. A chalcogenide resistor is a structure changing memory element because its molecular order may be changed between an amorphous state and a crystalline state by the application of electrical current. In other words, a chalcogenide resistor is made of a state changeable material that can be switched from one detectable state to another detectable state or states. In state changeable materials, the detectable states may differ in their morphology, surface typography, relative degree of order, relative degree of disorder, electrical properties, optical properties, or combinations of one or more of these properties. The state of a state changeable material may be detected by measuring the electrical conductivity, electrical resistivity, optical transmissivity, optical absorption, optical refraction, optical reflectivity, or a combination of these properties. In the case of a chalcogenide resistor specifically, it may be switched between different structural states of local order across the entire spectrum between the completely amorphous state and the completely crystalline state.




The previously mentioned Ovshinsky patent contains a graphical representation of the resistance of an exemplary chalcogenide resistor as a function of voltage applied across the resistor. It is not unusual for a chalcogenide resistor to demonstrate a wide dynamic range of attainable resistance values of about two orders of magnitude. When the chalcogenide resistor is in its amorphous state, its resistance is relatively high. As the chalcogenide resistor changes to its crystalline state, its resistance decreases.




As discussed in the Ovshinsky patent, low voltages do not alter the structure of a chalcogenide resistor, while higher voltages may alter its structure. Thus, to “program” a chalcogenide resistor, i.e., to place the chalcogenide resistor in a selected physical or resistive state, a selected voltage in the range of higher voltages is applied across the chalcogenide resistor, i.e., between the word line


22


and the digit line


24


. Once the state of the chalcogenide resistor has been set by the appropriate programming voltage, the state does not change until another programming voltage is applied to the chalcogenide resistor. Therefore, once the chalcogenide resistor has been programmed, a low voltage may be applied to the chalcogenide resistor, i.e., between the word line


22


and the digit line


24


, to determine its resistance without changing its physical state. As mentioned previously, the addressing, programming, and reading of the memory elements


20


and, thus, the application of particular voltages across the word lines


22


and digit lines


24


, is facilitated by the periphery circuitry


16


.




The memory cell


20


, as illustrated in

FIG. 3

, may offer significant packaging advantages as compared with memory cells used in traditional random access and read only memories. This advantage stems from the fact that the memory cell


20


is a vertically integrated device. In other words, the memory element


30


may be fabricated on top of the access device


32


. Therefore, using the memory cell


20


, it may be possible to fabricate an X-point cell that is the same size as the crossing area of the word line


22


and the digit line


24


, as illustrated in FIG.


4


. However, the size of the access device


32


typically limits the area of the memory cell


20


, because the access device


32


must be large enough to handle the programming current needed by the memory element


30


.




As discussed previously, to reduce the required programming current, many efforts have been made to reduce the pore size of the chalcogenide material that forms the memory element


30


. These efforts have been made in view of the theory that only a small portion of the chalcogenide material, referred to as the “active region,” is structurally altered by the programming current. However, it is believed that the size of the active area of the chalcogenide memory element


30


may be reduced by reducing the size of an electrode which borders the chalcogenide material. By reducing the active area and, thus, the required programming current, the size of the access device may be reduced to create an X-point cell memory. For example, a cell with a chalcogenide cross-sectional area equivalent to a circle with an 0.2 μm diameter might require a current pulse of 2 mA to program to high resistance state. If the diameter of the cell is reduced to 0.1 μm the current could be reduced to about 0.5 mA. Over certain ranges of operation the programming current is directly proportional to the area of the cell.




The actual structure of an exemplary memory cell


20


is illustrated in

FIG. 15

, while a method for fabricating the memory cell


20


is described with reference to

FIGS. 5-15

. It should be understood that while the fabrication of only a single memory cell


20


is discussed below, thousands of similar memory cells may be fabricated simultaneously. Although not illustrated, each memory cell is electrically isolated from other memory cells in the array in any suitable manner, such as by the addition imbedded field oxide regions between each memory cell.




In the interest of clarity, the reference numerals designating the more general structures described in reference to

FIGS. 1-4

will be used to describe the more detailed structures illustrated in

FIGS. 5-15

, where appropriate. Referring first to

FIG. 5

, the digit lines


24


are formed in or on a substrate


12


. As illustrated in

FIG. 5

, the digit line


24


is formed in the P-type substrate


12


as a heavily doped N+ type trench. This trench may be strapped with appropriate materials to enhance its conductivity. The access device


32


is formed on top of the digit line


24


. The illustrated access device


32


is a diode formed by a layer of N doped polysilicon


40


and a layer of P+ doped polysilicon


42


. Next, a layer of insulative or dielectric material


44


is disposed on top of the P+ layer


42


. The layer


44


may be formed from any suitable insulative or dielectric material, such as plasma enhanced CVD SiO


2


, or PECVD silicon nitride or standard thermal CVD Sa


3


Ny.




The formation of a small pore in the dielectric layer


44


is illustrated with reference to

FIGS. 5-9

. First, a hard mask


46


is deposited on top of the dielectric layer


44


and patterned to form a window


48


, as illustrated in FIG.


6


. The window


48


in the hard mask


46


is advantageously as small as possible. For instance, the window


48


may be formed at the photolithographic limit by conventional photolithographic techniques. The photolithographic limit, i.e., the smallest feature that can be patterned using photolithographic techniques, is currently about 0.2 μm. Once the window


48


has been formed in the hard mask


46


, a layer of spacer material


50


is deposited over the hard mask


46


in a conformal fashion so that the upper surface of the spacer material


50


is recessed where the spacer material


50


covers the window


48


. Although any suitable material may be used for the spacer material


50


, a dielectric material, such CVD amorphous or polycrystalline silicon, may be advantageous.




The layer of spacer material


50


is subjected to an anisotropic etch using a suitable etchant, such as HBr+Cl


2


. The rate and time of the etch are controlled so that the layer of spacer material


50


is substantially removed from the upper surface of the hard mask


48


and from a portion of the upper surface of the dielectric layer


44


within the window


48


, leaving sidewall spacers


52


within the window


48


. The sidewall spacers


52


remain after a properly controlled etch because the vertical dimension of the spacer material


50


near the sidewalls of the window


48


is approximately twice as great as the vertical dimension of the spacer material


50


on the surface of the hard mask


46


and in the recessed area of the window


48


.




Once the spacers


52


have been formed, an etchant is applied to the structure to form a pore


54


in the dielectric layer


44


, as illustrated in FIG.


8


. The etchant is an anisotropic etchant that selectively removes the material of the dielectric layer


44


bounded by the spacers


52


until the P+ layer


42


is reached. As a result of the fabrication method to this point, if the window


48


is at the photolithographic limit, the pore


54


is smaller than the photolithographic limit, e.g., on the order of 0.1 μm. After the pore


54


has been formed, the hard mask


46


and the spacers


52


may be removed, as illustrated in FIG.


9


. The hard mask


46


and the spacers


52


may be removed by any suitable method, such as by etching or by chemical mechanical planarization (CMP).




The pore


54


is then filled to a desired level with a material suitable to form the lower electrode of the chalcogenide memory element


30


. As illustrated in

FIG. 10

, a layer of electrode material


56


is deposited using collimated physical vapor deposition (PVD). By using collimated PVD, or another suitable directional deposition technique, the layer of electrode material


56


is formed on top of the dielectric layer


44


and within the pore


54


with substantially no sidewalls. Thus, the layer of electrode material


56


on top of the dielectric layer


44


may be removed, using CMP for instance, to leave the electrode


56


at the bottom of the pore


54


, as illustrated in FIG.


11


. It should be understood that the electrode material


56


may be comprised of one or more materials, and it may be formed in one or more layers. For instance, a lower layer of carbon may be used as a barrier layer to prevent unwanted migration between the subsequently deposited chalcogenide material and the P+ type layer


42


. A layer of titanium nitride (TiN) may then be deposited upon the layer of carbon to complete the formation of the electrode


56


.




After the lower electrode


56


has been formed, a layer of chalcogenide material


58


may be deposited so that it contacts the lower electrode


56


, as illustrated in FIG.


12


. Various types of chalcogenide materials may be used to form the chalcogenide memory element


30


. For example, chalcogenide alloys may be formed from tellurium, antimony, germanium, selenium, bismuth, lead, strontium, arsenic, sulfur, silicon, phosphorous, and oxygen. Advantageously, the particular alloy selected should be capable of assuming at least two generally stable states in response to a stimulus, for a binary memory, and capable of assuming multiple generally stable states in response to a stimulus, for a higher order memory. Generally speaking, the stimulus will be an electrical signal, and the multiple states will be different states of crystallinity having varying levels of electrical resistance. Alloys that may be particularly advantageous include tellurium, antimony, and germanium having approximately 55 to 85 percent tellurium and 15 to 25 percent germanium, such as Te


56


Ge


22


Sb


22


.




If the lower electrode


56


is recessed within the pore


54


, a portion of the chalcogenide material


58


will fill the remaining portion of the pore


54


. In this case, any chalcogenide material


58


adjacent the pore


54


on the surface of the dielectric layer


44


may be removed, using CMP for instance, to create a chalcogenide element of extremely small proportions. Alternatively, if the lower electrode


56


completely fills the pore


54


, the chalcogenide material


58


adjacent the pore


54


may remain, because the extremely small size of the lower electrode


56


still creates a relatively small active area in a vertical direction through the chalcogenide material


58


. Because of this characteristic, even if the lower electrode


56


only partially fills the pore


54


, as illustrated, the excess chalcogenide material


58


adjacent the pore


54


need not be removed to create a memory element


30


having an extremely small active area.




Regardless of which alternative is chosen, the upper electrode


60


is deposited on top of the chalcogenide material


58


, as illustrated in FIG.


13


. After the upper electrode


60


, the chalcogenide material


58


, the dielectric layer


44


, and the access device


32


have been patterned and etched to form an individual memory cell


20


, a layer of insulative material


62


, such as silicon nitride, is deposited over the structure, as illustrated in

FIG. 14. A

layer of oxide


64


is then deposited over the insulative layer


62


. Finally, the oxide layer


64


is patterned and a contact hole


66


is formed through the oxide layer


64


and the insulative layer


62


, as illustrated in FIG.


15


. The contact hole


66


is filled with a conductive material to form the word line


22


.




While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.



Claims
  • 1. A memory cell comprising:an area defined by an intersection of a word line and a bit line; an access device; a memory element operatively coupled to the access device, the memory element comprising: dielectric material having a pore therein, the pore being smaller than a photolithographic limit; a first electrode disposed within the pore; a memory material disposed over the first electrode; and a second electrode disposed over the memory material; and wherein the access device and the memory element are disposed wholly in the area.
  • 2. The memory cell, as set forth in claim 1, wherein the first electrode is comprised of a plurality of layers.
  • 3. The memory cell, as set forth in claim 1, wherein the first electrode is comprised of a plurality of materials.
  • 4. The memory cell, as set forth in claim 1, wherein the first electrode comprises:a layer of carbon; and a layer of titanium nitride disposed adjacent the layer of carbon.
  • 5. The memory cell, as set forth in claim 1, wherein the second electrode is comprised of a plurality of layers.
  • 6. The memory cell, as set forth in claim 1, wherein the second electrode is comprised of a plurality of materials.
  • 7. The memory cell, as set forth in claim 1, wherein the second electrode comprises:a layer of carbon; and a layer of titanium nitride disposed adjacent the layer of carbon.
  • 8. The memory cell, as set forth in claim 1, wherein the memory material comprises a chalcogenide material.
  • 9. The memory cell, as set forth in claim 1, wherein the access device comprises a diode.
  • 10. The memory cell, as set forth in claim 9, wherein the diode comprises:a layer of N doped polysilicon disposed adjacent a layer of P doped polysilicon.
  • 11. The memory cell, as set forth in claim 1, wherein the memory material comprises a programmable resistive element.
  • 12. The memory cell, as set forth in claim 11, wherein the programmable resistive element changes between different resistance levels in response to electrical stimulus.
  • 13. The memory cell, as set forth in claim 1, wherein the memory material comprises structure changing material.
  • 14. The memory cell, as set forth in claim 13, wherein the structure changing material comprises a material which changes between different states of crystallinity in response to electrical stimulus.
  • 15. The memory cell, as set forth in claim 14, wherein each of the different states of crystallinity corresponds to a given resistance level.
  • 16. A memory cell comprising:an area defined by an intersection of a word line and a bit line; an access device; a memory element operatively coupled to the access device, the memory element comprising a memory material disposed between a first electrode and a second electrode; and dielectric material having a pore therein, the pore being smaller than a photolithographic limit, wherein at least one of the first electrode, the memory material, and the second electrode is disposed within the pore; and wherein the access device and the memory element are disposed wholly in the area.
  • 17. The memory cell, as set forth in claim 16, wherein the first electrode is comprised of a plurality of layers.
  • 18. The memory cell, as set forth in claim 16, wherein the first electrode is comprised of a plurality of materials.
  • 19. The memory cell, as set forth in claim 16, wherein the first electrode comprises:a layer of carbon; and a layer of titanium nitride disposed adjacent the layer of carbon.
  • 20. The memory cell, as set forth in claim 16, wherein the second electrode is comprised of a plurality of layers.
  • 21. The memory cell, as set forth in claim 16, wherein the second electrode is comprised of a plurality of materials.
  • 22. The memory cell, as set forth in claim 10, wherein the second electrode comprises:a layer of carbon; and a layer of titanium nitride disposed adjacent the layer of carbon.
  • 23. The memory cell, as set forth in claim 16, wherein the memory material comprises a chalcogenide material.
  • 24. The memory cell, as set forth in claim 16, wherein the access device comprises a diode.
  • 25. The memory cell, as set forth in claim 24, wherein the diode comprises:a layer of N doped polysilicon disposed adjacent a layer of P doped polysilicon.
  • 26. The memory cell, as set forth in claim 16, wherein the memory material comprises a programmable resistive element.
  • 27. The memory cell, as set forth in claim 26, wherein the programmable resistive element changes between different resistance levels in response to electrical stimulus.
  • 28. The memory cell, as set forth in claim 16, wherein the memory material comprises structure changing material.
  • 29. The memory cell, as set forth in claim 28, wherein the structure changing material comprises a material which changes between different states of crystallinity in response to electrical stimulus.
  • 30. The memory cell, as set forth in claim 29, wherein each of the different states of crystallinity corresponds to a given resistance level.
  • 31. An X-point memory cell comprising:a first conductive line extending in a first direction; a second conductive line extending in a second direction different than the first direction, the first conductive line and the second conductive line being spaced apart from one another, the second conductive line intersecting the first conductive line in an overlapping manner to form an area of intersection in a portion of the substrate; an access device wholly disposed in the area of intersection, the access device being operatively coupled to one of the first conductive line and the second conductive line; a memory element wholly disposed in the area of intersection, the memory element being operatively coupled to the access device, the memory element comprising a memory material disposed between a first electrode and a second electrode; and dielectric material having a pore therein, the pore being smaller than a photolithographic limit and being wholly disposed in the area of intersection, wherein at least one of the first electrode, the memory material, and the second electrode is disposed within the pore.
  • 32. The memory cell, as set forth in claim 31, wherein the first electrode is comprised of a plurality of layers.
  • 33. The memory cell, as set forth in claim 31, wherein the first electrode is comprised of a plurality of materials.
  • 34. The memory cell, as set forth in claim 31, wherein the first electrode comprises:a layer of carbon; and a layer of titanium nitride disposed adjacent the layer of carbon.
  • 35. The memory cell, as set forth in claim 31, wherein the second electrode is comprised of a plurality of layers.
  • 36. The memory cell, as set forth in claim 31, wherein the second electrode is comprised of a plurality of materials.
  • 37. The memory cell, as set forth in claim 31, wherein the second electrode comprises:a layer of carbon; and a layer of titanium nitride disposed adjacent the layer of carbon.
  • 38. The memory cell, as set forth in claim 31, wherein the memory material comprises a chalcogenide material.
  • 39. The memory cell, as set forth in claim 31, wherein the access device comprises a diode.
  • 40. The memory cell, as set forth in claim 39, wherein the diode comprises:a layer of N doped polysilicon disposed adjacent a layer of P doped polysilicon.
  • 41. The memory cell, as set forth in claim 31, wherein the memory material comprises a programmable resistive element.
  • 42. The memory cell, as set forth in claim 41, wherein the programmable resistive element changes between different resistance levels in response to electrical stimulus.
  • 43. The memory cell, as set forth in claim 31, wherein the memory material comprises structure changing material.
  • 44. The memory cell, as set forth in claim 43, wherein the structure changing material comprises a material which changes between different states of crystallinity in response to electrical stimulus.
  • 45. The memory cell, as set forth in claim 44, wherein each of the different states of crystallinity corresponds to a given resistance level.
  • 46. An X-point memory cell comprising:a first conductive line extending in a first direction; a second conductive line extending in a second direction different than the first direction, the first conductive line and the second conductive line being spaced apart from one another, the second conductive line intersecting the first conductive line in an overlapping manner to form an area of intersection in a portion of the substrate; an access device wholly disposed in the area of intersection, the access device being operatively coupled to one of the first conductive line and the second conductive line; and a memory element wholly disposed in the area of intersection, the memory element being operatively coupled to the access device, the memory element comprising a memory material disposed between a first electrode and a second electrode.
  • 47. The memory cell, as set forth in claim 46, wherein the first electrode is comprised of a plurality of layers.
  • 48. The memory cell, as set forth in claim 46, wherein the first electrode is comprised of a plurality of materials.
  • 49. The memory cell, as set forth in claim 46, wherein the first electrode comprises:a layer of carbon; and a layer of titanium nitride disposed adjacent the layer of carbon.
  • 50. The memory cell, as set forth in claim 46, wherein the second electrode is comprised of a plurality of layers.
  • 51. The memory cell, as set forth in claim 46, wherein the second electrode is comprised of a plurality of materials.
  • 52. The memory cell, as set forth in claim 46, wherein the second electrode comprises:a layer of carbon; and a layer of titanium nitride disposed adjacent the layer of carbon.
  • 53. The memory cell, as set forth in claim 46, wherein the memory material comprises a chalcogenide material.
  • 54. The memory cell, as set forth in claim 46, wherein the access device comprises a diode.
  • 55. The memory cell, as set forth in claim 54, wherein the diode comprises:a layer of N doped polysilicon disposed adjacent a layer of P doped polysilicon.
  • 56. The memory cell, as set forth in claim 46, wherein the memory material comprises a programmable resistive element.
  • 57. The memory cell, as set forth in claim 56, wherein the programmable resistive element changes between different resistance levels in response to electrical stimulus.
  • 58. The memory cell, as set forth in claim 46, wherein the memory material comprises structure changing material.
  • 59. The memory cell, as set forth in claim 58, wherein the structure changing material comprises a material which changes between different states of crystallinity in response to electrical stimulus.
  • 60. The memory cell, as set forth in claim 59, wherein each of the different states of crystallinity corresponds to a given resistance level.
Parent Case Info

This application is a Continuation of application Ser. No. 09/344,604, filed on Jun. 25, 1999, now U.S. Pat. No. 6,189,582 which is a Divisional of application Ser. No. 08/854,220, filed on May 9, 1997 now U.S. Pat. No. 5,952,671.

US Referenced Citations (61)
Number Name Date Kind
3423646 Cubert et al. Jan 1969 A
3602635 Romankiw Aug 1971 A
3796926 Cole et al. Mar 1974 A
3877049 Buckley Apr 1975 A
3886577 Buckley May 1975 A
4099260 Lynes et al. Jul 1978 A
4115872 Bluhm Sep 1978 A
4174521 Neale Nov 1979 A
4194283 Hoffmann Mar 1980 A
4203123 Shanks May 1980 A
4227297 Angerstein Oct 1980 A
4272562 Wood Jun 1981 A
4433342 Patel et al. Feb 1984 A
4458260 McIntyre et al. Jul 1984 A
4499557 Holmberg et al. Feb 1985 A
4502208 McPherson Mar 1985 A
4502914 Trumpp et al. Mar 1985 A
4569698 Feist Feb 1986 A
4616404 Wang et al. Oct 1986 A
4630355 Johnson Dec 1986 A
4642140 Noufi et al. Feb 1987 A
4666252 Yaniv et al. May 1987 A
4677742 Johnson Jul 1987 A
4757359 Chiao et al. Jul 1988 A
4795657 Formigoni et al. Jan 1989 A
4804490 Pryor et al. Feb 1989 A
4809044 Pryor et al. Feb 1989 A
4823181 Mohsen et al. Apr 1989 A
4876220 Mohsen et al. Oct 1989 A
4876668 Thakoor et al. Oct 1989 A
4881114 Mohsen et al. Nov 1989 A
4892840 Esquivel et al. Jan 1990 A
5144404 Iranmanesh et al. Sep 1992 A
5166096 Cote et al. Nov 1992 A
5166758 Ovshinsky et al. Nov 1992 A
5177567 Klersy et al. Jan 1993 A
5293335 Pernisz et al. Mar 1994 A
5296716 Ovshinsky et al. Mar 1994 A
5335219 Ovshinsky et al. Aug 1994 A
5341328 Ovshinsky et al. Aug 1994 A
5359205 Ovshinsky Oct 1994 A
5363329 Troyan Nov 1994 A
5414271 Ovshinsky et al. May 1995 A
5429988 Huang et al. Jul 1995 A
5510629 Karpovich et al. Apr 1996 A
5534711 Ovshinsky et al. Jul 1996 A
5534712 Ovshinsky et al. Jul 1996 A
5536947 Klersy et al. Jul 1996 A
5569932 Shor et al. Oct 1996 A
5578185 Bergeron et al. Nov 1996 A
5687112 Ovshinsky Nov 1997 A
5714768 Ovshinsky et al. Feb 1998 A
5714795 Ohmi et al. Feb 1998 A
5751012 Wolstenholme et al. May 1998 A
5789277 Zahorik et al. Aug 1998 A
5789758 Reinberg Aug 1998 A
5812441 Manning Sep 1998 A
5814527 Wolstenholme et al. Sep 1998 A
5831276 Gonzalez et al. Nov 1998 A
5841150 Gonzalez et al. Nov 1998 A
6111264 Wolstenholme et al. Aug 2000 A
Foreign Referenced Citations (3)
Number Date Country
0 117 045 Aug 1984 EP
1 319 388 Jun 1973 GB
60109266 Jun 1985 JP
Non-Patent Literature Citations (12)
Entry
Kim and Kim, “Effects of High-Current Pulses on Polycrystalline Silicon Diode with n-type Region Heavily Doped with Both Boron and Phosphorus,” J. Appl. Phys., 53(7):5359-5360, 1982.
Neale and Aseltine, “The Application of Amorphous Materials to Computer Memories,” IEEE, 20(2):195-205, 1973.
Pein and Plummer, “Performance of the 3-D Sidewall Flash EPROM Cell,” IEEE, 11-14, 1993.
Post and Ashburn, “Investigation of Boron Diffusion in Polysilicon and its Application to the Design of p-n-p Polysilicon Emitter Bipolar Transistors with Shallow Emitter Junctions,” IEEE, 38(11):2442-2451, 1991.
Post et al., “Polysilicon Emitters for Bipolar Transistors: A Review and Re-Evaluation of Theory and Experiment,” IEEE, 39(7):1717-1731, 1992.
Post and Ashburn, “The Use of an Interface Anneal to Control the Base Current and Emitter Resistance of p-n-p Polysilicon Emitter Bipolar Transistors,” IEEE, 13(8):408-410, 1992.
Rose et al., “Amorphous Silicon Analogue Memory Devices,” J. Non-Crystalline Solids, 115:168-170, 1989.
Schaber et al., “Laser Annealing Study of the Grain Size Effect in Polycrystalline Silicon Schottky Diodes,” J. Appl. Phys., 53(12):8827-8834, 1982.
Yamamoto et al., “The I-V Characteristics of Polycrystalline Silicon Diodes and the Energy Distribution of Traps in Grain Boundaries,” Electronics and Communications in Japan, Part 2, 75(7):51-58, 1992.
Yeh et al., “Investigation of Thermal Coefficient for Polycrystalline Silicon Thermal Sensor Diode,” Jpn. J. Appl. Phys., 31(Part 1, No. 2A):151-155, 1992.
Oakley et al., “Pillars—The Way to Two Micron Pitch Multilevel Metallisation,” IEEE, 23-29, 1984.
Prince, “Semiconductor Memories,” A Handbook of Design, Manufacture, and Application, 2nd Ed., pp. 118-123.
Continuations (1)
Number Date Country
Parent 09/344604 Jun 1999 US
Child 09/740256 US